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Abstract—Property inference attacks allow an adversary to
extract global properties of the training dataset from a machine
learning model. Such attacks have privacy implications for data
owners sharing their datasets to train machine learning models.
Several existing approaches for property inference attacks
against deep neural networks have been proposed [1]-[3], but
they all rely on the attacker training a large number of shadow
models, which induces a large computational overhead.

In this paper, we consider the setting of property inference
attacks in which the attacker can poison a subset of the training
dataset and query the trained target model. Motivated by our
theoretical analysis of model confidences under poisoning, we
design an efficient property inference attack, SNAP, which
obtains higher attack success and requires lower amounts of
poisoning than the state-of-the-art poisoning-based property
inference attack by Mahloujifar et al. [3]. For example, on
the Census dataset, SNAP achieves 34% higher success rate
than [3] while being 56.5x faster. We also extend our attack
to infer whether a certain property was present at all during
training and estimate the exact proportion of a property of
interest efficiently. We evaluate our attack on several properties
of varying proportions from four datasets and demonstrate
SNAP’s generality and effectiveness.

1. Introduction

The adoption of machine learning (ML) in a variety
of critical applications raises many privacy risks for users
contributing datasets for ML training. In a property inference
attack [1]-[4] (also called distribution inference [5]), an
adversary with query access to a trained model infers global
properties of a training dataset, for example, the fraction of
people belonging to a certain demographic group or with a
rare disease. Some of the dataset properties leaked through
these property inference attacks might reveal sensitive infor-
mation an attacker can use to its advantage. As an example,
a company mounting a property inference attack on an ML
model released by its competitor can learn the demographic
information of the competitor’s clients, and adjust its targeted
advertising policy for monetary gain.

Property inference attacks proposed in the literature
demonstrated that global training data properties can be
inferred for deep neural networks [1], [2], [5]. Recently,
Mabhloujifar et al. [3] showed that poisoning the training
dataset of an ML model can improve the success of property
inference attacks. This threat model becomes relevant in
the context of collaborative machine learning, in which

© 2023, Harsh Chaudhari. Under license to IEEE.
DOI 10.1109/SP46215.2023.00111

400

users contribute their datasets for training ML models and
adversaries can control a fraction of the training dataset
with relatively low effort. The main limitation of existing
approaches [1], [2], [5], including [3], is that their design
relies on the attacker learning a meta classifier over training
examples generated from hundreds and thousands of so-
called shadow models. This meta classifier technique, which
has been used in other privacy attacks such as membership
inference [6], incurs a large computational cost and does not
always lead to the optimal attack.

In this paper, we consider the setting of property inference
attacks, in which the attacker has the capability to poison
a subset of the training dataset and obtains ML model
confidences for selected queries. The goal of the adversary
is to learn global properties of the underlying dataset used
for training the model. We address the question of how to
design a property inference attack that is more efficient than
those from previous work, requires lower poisoning rates,
and achieves higher attack success. Keeping these goals in
mind, we introduce a novel property inference attack called
SNAP (Subpopulation INference Attack with Poisoning) that
meets all these requirements by leveraging the insight that
data poisoning attacks mounted for properties of interest
create a separation between the model confidences trained
with different proportions of the property. Our attack design
is motivated by a novel theoretical analysis of model confi-
dences under poisoning, leading to an efficient distinguishing
test based on learning the distribution of model confidences.
In particular, our attack does not require training a meta
classifier, but relies on a small number of shadow models
(at most 4) to learn the distribution of model confidences.
This offers a significant improvement in efficiency compared
to prior work [3]. We also extend our attack to a label-only
threat model, in which the adversary only has access to the
predicted labels of the target model. We design attacks for
several property inference tasks, including: (1) distinguishing
between models trained on two different fractions of the
target property; (2) checking a property’s existence in the
training set; and (3) inferring the exact size of the property
used in training.

We evaluate our attacks comprehensively on logistic
regression and neural network models trained on several
datasets (Adult [7], Census [7], Bank Marketing [7], and
CelebA [8]) and a large set of 18 properties which constitute
different fractions of the training data. We show that our
attacks require low poisoning rates to be highly effective
and are extremely efficient compared to previous attacks.
To distinguish between a property present in either 1% or



3.5% of the Census dataset, a small poisoning rate of 0.4%
suffices to reach an attack accuracy of 96%. To check if a
property is present in the training set at all we require at
most 8 poisoning samples to obtain attack accuracy higher
than 95%. We compare our SNAP attack to the state-of-the-
art property inference attack by Mahloujifar et al. [3] and
show that SNAP consistently achieves higher attack success
for multiple properties on the Census dataset, while being
56.5x more efficient. For instance, when distinguishing the
proportion of Females in the dataset, our attack achieves 91%
accuracy, while [3] obtains 57% success at 3% poisoning
for a logistic regression model.

Our Contributions. To summarize, our main contributions
are as follows:
We propose an efficient property inference attack, SNAP,
based on an effective poisoning attack and distinguishing
test between ML model confidences under poisoning. Our
attack strategy is motivated by our theoretical analysis of
the impact of poisoning on model confidence scores.
o We extend our attack to perform property existence to
determine if a certain property is represented anywhere in
the training data, and estimate the exact proportion of the
property of interest.
We evaluate our attacks on four datasets and several ML
models with a large set of properties of different sizes. We
show that our attack strategy generalizes across small,
medium, and large properties, and the attack success
exceeds 90% at low poisoning rates.
« We show that our attack improves upon the state-of-the-art
property inference attack [3], while being 56.5x faster.

2. Background and Related Work

This section includes the required background on neural
networks and the related work on existing privacy, poisoning,
and property inference attacks.

2.1. Machine Learning Background

Supervised learning encompasses a range of techniques
for training ML models from labeled data. To train a model,
a training dataset D including d-dimensional feature vectors
X C R% and class labels Y C R™ is needed. The training
procedure typically includes an optimization algorithm such
as Stochastic Gradient Descent, to learn the model M :
X — R™ that minimizes a loss metric.

Neural networks for classification learn to predict the
probabilities of class labels, in addition to the label itself.
For multi-class classification, the output of a neural network
on input x is an m-dimensional vector yi,...,¥y,, Whose
entries sum up to 1 (3°1", y; = 1). The value y; can be
interpreted as the probability that the model predicts class 1.
To generate the prediction for an input sample, the neural
network performs computations across multiple layers using
linear matrix operations and activation functions in each layer,
to finally predict the class with the largest output probability.
The neuron values at the penultimate layer z; are called
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logits. The output probabilities y; of a neural network are
called model confidences and are typically computed using
the softmax activation function on a model’s logit values:
y; = softmax(z;). The logit values of the model can be
recomputed (up to an additive shift) from model confidence

as z; = log 13—@ .
2.2. Related Work

Individual Privacy Attacks on ML. In many settings,
ML leverages user data to train predictive models, which
might introduce a number of privacy risks for these users,
as documented in previous work.

The most glaring example of privacy leakage for a user
is when it is possible to reconstruct their data present in a
model’s training set. This has been shown to be possible for
statistical databases in early work [9], in generative language
models [10], [11] and in federated learning models [12]-[14]
in recent work.

A less glaring form of leakage is known as a membership
inference attack. Here, an adversary seeks to determine
whether a given sample was present in the training set of a
model [6], [15]-[21]. The best existing membership inference
attacks train multiple models to analyze the distribution of
loss [22] or logits [23] with respect to the target sample.

Poisoning Attacks in ML. Poisoning attacks assume adver-
sarial control of a fraction of the training set. The goal of the
attacker is to tamper with training data to tweak the model’s
behavior at inference time. Previous work on poisoning
attacks can be classified into: availability attacks which de-
crease the accuracy of models on the entire test set [24]-[26],
targeted attacks which fool the model into misclassifying
a set of target samples [27]-[30], and backdoor attacks
which fool the model into reacting to a specific backdoor
pattern [31], [32]. Subpopulation poisoning attacks [33] target
specific subpopulations of data distributions. Subpopulations
can be constructed by matching samples on a subset of
features, or by defining clusters in the representation space
of the model.

The relationship between privacy attacks and poison-
ing attacks has been investigated in prior work. Ma et
al. [34] show that differential privacy could be a defense
for poisoning attacks. Poisoning attacks have been used
to improve success of privacy attacks in several settings.
For instance, poisoning of private models enables auditing
of private machine learning to infer lower bounds on the
privacy budget [35], [36]. Also, the most recent membership
inference attack [37], with higher success rate than previous
works [22], [23], is constructed with the help of data
poisoning.

Property Inference. Property inference attacks aim to learn
global information of the training data distribution from an
ML model, in contrast to attacks that leak information about
individuals, such as reconstruction or membership inference
attacks. Introduced by Ateniese et al. [4], these attacks were
formalized as a distinguishing game between two worlds,
where different fractions, ¢y and ¢, of the sensitive data



were used to train an ML model [5]. Property inference
attacks can either be classified as white-box attacks [1], [4],
[5], in which the adversary has knowledge of the model
architecture and parameters, or black-box attacks [2], [3],
in which the attacker can query the trained ML model to
receive either model confidences or labels. Initial property
inference attacks were designed for Hidden Markov Models
and Support Vector Machines [4], while most of the recent
papers propose attacks on deep neural networks, including
feed-forward neural networks [1]—[3], convolutional neural
networks [5], federated learning models [38], generative
adversarial networks (GAN) [39], and graph neural net-
works [40]. Mahloujifar et al. [3] showed that data poisoning
can help property inference attacks achieve higher success.

We address this limitation by proposing SNAP, a more
efficient property inference attack. SNAP uses a distinguish-
ing test designed by following rigorous theoretical analysis
to achieve higher success than previous work while also
being more efficient.

3. Problem Statement and Threat Model

In this section, we introduce our problem formulation of
property inference attacks and discuss the considered threat
model.

Property Inference. We follow the model introduced by
Ateniese et al. [4] and used in previous property inference
attacks [1]-[3]. Given a dataset D and a trained classifier M :
X — R™, the goal of the adversary is to learn information
about a boolean property defined on the feature space of the
model f: X — {0,1}. In particular, the adversary would
like to learn the fraction of training examples satisfying the
target property of interest by querying the trained model in a
black-box fashion. The formalization in [5] defines a privacy
game in which the adversary needs to distinguish between
two worlds:
o World 0: Model M was trained with ¢ fraction of training
samples with property f;
o World 1: Model M was trained with ¢; fraction of training
samples with property f.
The privacy game with poisoning capabilities defined in [3]
proceeds as follows:
Challenger C' selects a bit b € {0, 1} uniformly at random
and samples a clean dataset D,. of size (1 — p)n including
fraction t; of the property.

Adversary sends a poisoned dataset D), of size pn to the
challenger.

Challenger trains a model M, on the poisoned dataset
D. U D,,.

Adversary queries M, on a set of points 1, ..
receives y1 = My(x1), ..., Ym = Mp(Tm).
Adversary finally outputs a guess b’ € {0,1} and wins the
game if b=10'.

., Xy, and

Property Size Estimation. A generalization of the property
inference formulation above, considered in [3], [5], is to allow
the adversary to infer the exact size of the property of interest,
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without prior knowledge of the possible choices of ¢y and
t1. We consider the same setting as our property inference
formulation where the adversary has the ability to poison
and query a black-box model to obtain output probabilities.
Instead of distinguishing between two worlds, the adversary
will use the black-box model’s output probabilities to perform
an iterative search for the true size of the property, ¢*.

Property Existence. Property existence attacks can be
viewed as a special case of property inference and a gener-
alization of membership inference. In this case the smaller
fraction ¢y is 0, and the adversary would like to test if there
are any samples with the target property in the training set,
such that ¢; > 0.

Property existence attacks bear some resemblance to
membership inference attacks [6], [22], [23], [37]. However,
membership inference attacks test if a specific sample
was present in the training set, while property existence
determines if any example matching a given target property
is present in the training set, without requiring complete
knowledge of any particular sample. As a result, membership
inference attacks may not be immediately applicable to test
property inference or existence.

Threat Model. We assume that the adversary can inject a
small fraction of poisoned samples into the training dataset.
This could happen in collaborative learning scenarios, in
which users contribute their datasets for training ML models,
and adversaries can control a part of the training set with low
effort. We would like to minimize the amount of poisoning
controlled by the adversary so that the model performance
at the classification task remains similar after poisoning. The
adversary can sample training examples with and without
the property of interest from the distribution of training data.
The adversary can also query the ML model trained on the
poisoned dataset to get the model output probabilities or
confidence scores. We assume that the adversary is aware
of the training algorithm, model architecture, features, and
the number of samples used for training the target model
by the model owner, but has no knowledge of the trained
model parameters and the training samples.

4. Methodology

We start by providing a brief overview of our SNAP
attack in Section 4.1, after which we give the attack details in
Section 4.2, introduce our theoretical analysis in Section 4.3,
and finally present various extensions in Section 4.4.

4.1. SNAP Attack Overview

Given the problem statement described in our previous
section, there are several existing approaches in the liter-
ature for constructing property inference attacks. Recent
approaches [1]-[3] are based on a meta classifier, a machine
learning model trained by the attacker to distinguish the two
worlds (i.e., fractions ¢y and ¢; of the target property in
the training set). To generate training examples for a meta
classifier, the attacker trains multiple shadow models (on the
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Figure 1: Effect of poisoning on the distribution of logit values for a given target property “Gender = Female; Occupation =
Sales” in the Adult dataset. With increased poisoning rate, the separation between the logit distribution in the two worlds

increases and the logit variance decreases.

order of hundreds and thousands) for each of the worlds.

These approaches draw inspiration from the literature on
membership inference attacks, which uses meta classifiers
and shadow models [6]. The main differences between
existing property inference attacks are how they train the
shadow models and generate training samples for the meta
classifier. In white-box settings [1] neuron values of each
shadow model are sorted to generate feature vectors for the
meta classifier. In black-box settings, the training examples
of meta classifiers represent either model confidences [2] or
labels [3] from a set of queries.

In our setting, we consider a similar setup to [3], in
which the attacker has black-box query access to the target
model and mounts a data poisoning attack to increase the
success of property inference. Our main goal is to reduce the
computational complexity of property inference attacks, and
achieve higher attack success at lower poisoning rates than
previous work. To achieve these ambitious goals, we start by
making the fundamental observation that poisoning samples

with the target property impacts the two worlds differently.

Using this fact, we can build an effective distinguishing test
without training a meta classifier for strategically chosen
poisoning rates. For instance, if we poison with a rate close
to the smaller fraction ¢, we can change the prediction of the
classifier on most of the points in World 0. The impact will be
much smaller in World 1 given that ¢; > ¢y. The difference
between the poisoning success on the two worlds increases
as the gap between t( and ¢; gets larger. In essence, we can
mount a subpopulation poisoning attack [33] on the small
world (World 0), if we treat the target property of interest as
a subpopulation. Subpopulation attacks are effective at low
poisoning rates and generalize to poison the predictions of
new points from the same subpopulation. This is important,
as we can obtain query points for the distinguishing test by
selecting points uniformly at random from the subpopulation
and testing if they are misclassified.

A critical missing component of our attack is performing
the distinguishing test between the poisoned models in the
two worlds efficiently. Towards this, we first analyze the
behavior of the logit values of samples with the property,
computed by querying the poisoned models with different
fractions of the property. Figure 1 shows the distributions
of the logit values for two fractions at different poisoning
rates (for a property on the Adult dataset). We observe that
the logit distribution under poisoning approximately follows
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a Gaussian distribution. Moreover, as the poisoning rate
increases, the variance of the logit distribution decreases,
leading to a higher separation between the distributions. As
a result, we design a distinguishing test by fitting a pair of
Gaussians to the two logit distributions and subsequently
compute a threshold that minimizes the overlap between the
two Gaussians. As we obtain a large number of samples
with the property from each trained model, and the variance
of the logit distribution is low, we need to train a small
number of shadow models (at most 4) to estimate the mean
and standard deviation of the logit distribution accurately.
This leads to an exponential reduction in the number of
shadow models compared to previous property inference
attacks [1]-[3]. Previous work modeling logit distributions
for membership inference [23], [37] used the logit of a single
sample per model, which still required training hundreds of
shadow models to estimate the logit distribution parameters.
We obtain significant savings as we model logits of all
samples with the property, obtained from a small number
of shadow models. In Section 4.3, we provide theoretical
analysis on the logit distribution under poisoning, which
allows us to configure our attack effectively.

4.2. SNAP Attack Details

Our attack starts with the data poisoning step, in which
poisoned samples are generated from the target property with
the victim label of the attacker’s choice. In the next stage,
the attacker performs the model confidence learning offline
by training a small number of shadow models for each of
the two worlds. The attacker learns the parameters of the
Gaussian distribution of model logits for the two worlds and
a separation threshold. The last stage of the attack involves
the distinguishing test once the model owner trains the target
model on the poisoned set. Algorithm 1 provides an overview
of the attack strategy and we give details below:

Data Poisoning. Given a target property f of interest,
we consider all the samples with the property as being
part of a subpopulation of the training data. The attacker
chooses a victim class label v that forms the majority in this
target subpopulation and creates a dataset D’ with samples
satisfying property f and having label v. The class label for
each sample in D’ is then changed to a target label © # v
of the adversary’s choice to construct the poisoned dataset
D, (first two steps of Algorithm 1). We observe that setting



the target label to the minority class in the subpopulation
requires least amount of poisoning for the attack to succeed,
and we thus set © to the minority class. This form of label
flipping strategy is similar to poisoning attacks used in prior
work [3], [33], [41]. The size of D,, is a parameter of the
attack, and can be computed using our theoretical analysis.

Model Confidence Learning. To distinguish models trained
in the two worlds, the adversary samples points to construct
datasets Dy and D, with to and ¢; fractions of the target
property f, respectively. The adversary then appends the
poisoned set D,, to both datasets and trains £ shadow models
per world. The adversary constructs a query set D, with
samples from the target property f and class label v. The
attacker queries the 2k models on D, to obtain the two logit
distributions. The adversary then fits a Gaussian on both
logit distributions from the ¢y and ¢; shadow models and
finally computes a threshold T that minimizes the overlap
between the two distributions as in Claim 4.3. In our attack,
the number of shadow models is orders of magnitude smaller
than in previous work [1]-[3] (i.e., at most 4) since we only
use the shadow models to estimate the parameters of the
target model’s logit distribution (and not for meta classifier
training).

Distinguishing Test. In this stage, the model owner trains
the target model on its dataset, which also includes the
poisoning set D,,, and the adversary is granted black-box
query access to the target model. The adversary selects
a query set D, C D,, for querying the target model to
obtain model confidences and compute the corresponding
logit values. We expect the target models’ logit values to
significantly overlap with either the distribution associated to
World 0 or World 1. Our analysis of logits in Figure 1 shows
that the logit values for the smaller ¢ fraction increase faster
than for ¢;. The difference in the rate of the shift for the
two distributions occurs because the poisoned dataset D),
impacts models trained with fractions ¢y and ¢; differently:
The model trained with the smaller fraction of target property
examples is impacted more than the model trained with a
larger fraction of examples with the target property. This is
confirmed by our theoretical analysis in Section 4.3, where
we prove that the means of the two logit distributions shift at
different rates, and the separation increases with the amount
of poisoning. Equipped with these observations, the adversary
compares the logit values to the threshold T and outputs
World 0 if the majority of the logit values are greater than
the threshold. Otherwise, the adversary outputs World 1.

4.3. SNAP Attack Analysis

We now analyze several aspects of our SNAP attack.

We theoretically investigate the effect of poisoning on logit
distributions, show how to compute an optimal separation
threshold T, and analyze the number of queries needed to
succeed in the distinguishing test with high probability. The
proofs of the claims are given in Appendix A.

Effect of Poisoning on Logit Distribution. We use capital
letters to denote sets (e.g., X) and calligraphic letters to
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Algorithm 1 SNAP Attack Strategy

Input
f : Target property
n : Number of training samples available to model owner
to, t1 : Fractions satisfying property f in the two worlds
k : Number of shadow models trained by attacker
p : Poisoned fraction of training set

1. Sample instances with property f with label v to
construct dataset D' = {(x1,v),..., (zpn,v)} of size pn.
2. Construct poisoned data D), = {(z1,0),..., (Tpn, D)}
by changing victim label v to target label v.

3. Construct datasets Dy and D; of size (1 — p)n with
tp and t; fractions of samples z with target property
Fla) = 1.

4. Train k shadow models M, ..
D,,. Similarly, train k shadow models M1,.
D, U D,.

5. Construct dataset D, of points = with property f(z) =1
and label v.

., M§ on dataset Dy U
., M on

6. Query samples in D, on the 2k shadow models to obtain
logit values and fit two Gaussians on the corresponding
logit values.

7. Compute separation threshold T that minimizes overlap
between the Gaussians (See Claim 4.3).

8. Generate query set D, C D, and query the samples
against the black-box target model. Obtain target model
confidences and compute the corresponding logit values.

9. If majority of logit values are larger than T, output
World 0; otherwise output World 1.

denote distributions (e.g., D). We use D, = D,, to denote
equivalence of two distributions. We use (X, Y) to denote the
joint distribution of two random variables. Notation a < A
denotes sampling a from a distribution A.

Consider the setting of a binary classifier. Let D = (X, Y)
denote the original data distribution of clean samples. The
attacker attempts to infer the prevalence of a property f.
To generate the adversarial distribution D, they choose a
victim label v (the majority label of samples satisfying f). To
generate a data point in D, the attacker samples a data point
(z,y) < D, such that f(x) = 1 and y = v. The attacker then
assigns the target poisoned label v to this feature vector z.
All points from D,, thus satisfy the property f (with original
label v) and have poisoned label as v.

For a property f, after poisoning with rate p, the resulting
distribution D can be viewed as a weighted mixture of D
and D,, i.e.,

b:P‘DpJF(l*p)'D

Let (X,Y) be the joint distribution of samples from D.
Let t = Pr,p[f(X) = 1] be the probability that a
sample satisfies property f in the unpoisoned distribution
and m, = Pr[Y = v|f(x) = 1] the probability of label v
in the unpoisoned distribution for points with property f.



We now relate the logit of the poisoned model qz(x)g to the
logit of the clean model ¢(x); with respect to target label o.
While each model’s logits are likely a complicated function
of their training data, we assume that they approximate the
class probabilities present in the training data, so that the
classifier learns M(x), = Pr[Y = v|X = z], where the
probability is taken over the distribution M was trained on.

Theorem 4.1. For any sample (x,y) € D, such that f(x) =
1 and y = v, a model M which satisfies M(z), = Pr[Y =
v|X = x| will have a poisoned logit value with respect to ©

| i

For fixed 7, and ¢, the poisoned logits will become
further shifted as the poisoning rate p increases. Smaller
values of property fraction ¢ will be impacted more by a
fixed amount of poisoning p, matching our intuition and
making this an effective property inference test. Given the
relation of the poisoned logit ¢(x); in terms of the clean
logit ¢(x); from Theorem 4.1, we analyze the behavior of
¢(x); under the assumption that the logit distribution is
Gaussian, which empirically holds, as seen in Figure 1.

p

d(x)s 1
e ( T

Theorem 4.2. Assume that the clean logit ¢(x); for a
sample x follows a Gaussian distribution N (u1,0?). Then
the mean and variance of the poisoned logit (5((1}'){) are
log M —log (/= +1) and 6% = log (3= +1)
respectively, where values M and V denote the mean and
variance of the log-normal random variable e®*)s.

a_

Figure 2 shows how the mean and variance of the
poisoned logits vary based on our theoretical analysis com-
pared to the experimental results. Here we train a neural
network model for two properties on the Adult dataset. We
observe that our analysis follows very closely to the values
in our experimental results, and the relationship between the
poisoned and clean logits is tight. Our analysis also confirms
our observations from Figure 1: With an increase in poisoning
rate, the mean of the two distributions shift at different rates,
and the variance of both distributions shrinks, thus creating a
larger separation between the two logit distributions. In our
experiments, we observe that selecting the poisoning rate p
such that the theoretical variance in Theorem 4.2 is below a
fixed threshold (e.g., 0.15) results in consistent high attack
success larger than 90% for all the properties we tested.

Computing the Optimal Separation Threshold. Assuming
the logit distribution for models trained on fractions %g
and t; of the property are Gaussian, we now describe how
to compute the optimal separation threshold. Suppose we
observe n iid samples drawn from some unknown N (j, o?).
Given two hypotheses: H, : 1 = p, versus Hy : = up, we
can use the Neyman-Pearson Lemma to derive an optimal
test statistic and a corresponding threshold T that minimizes
the probability of making Type-II errors (also called /3) for a
given significance level « (i.e., probability of making Type-I
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(a) Shift in mean of logit distribution for models trained with to and t;
fractions of the target property as a function of the poisoning rate.
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(b) Decrease in variance of logit distribution for models trained with ¢o and
t1 fractions of the target property as a function of the poisoning rate.

Figure 2: Theoretical and experimental plots on the behavior
of logit values for two target properties on the Adult dataset.
Experimental results confirm theoretical analysis.

error). However, in our case both hypotheses H, and H,
associated to fractions ¢; and ty are of equal importance,
and, as a result, we compute a threshold that minimizes the
sum of the probabilities of making Type-I and Type-II errors.
Consequently, we determine the optimal separation threshold
as follows:

~

Claim 4.3. Given two Gaussian distributions X
N(po,00) and X1 ~ N(u1,01) such that puy > po and
objective function J = o+ 3, where oo = Pr[Xo > T| and
B = Pr[Xy < T), the threshold T that minimizes J is one
of the following two values:

_ 2 o
(lu,oaf—plo'g):l:20'10'0\/(7“1 S0 ) +(02—0?) 1og<%>

22
91795

In the case when the standard deviations of the two Gaus-
sians are the same, i.e., 09 = o1, the separation threshold is
computed as T = (o + 1£1)/2. We use T = (uo + p1)/2 as
an approximation when the standard deviations of the logit
distributions are close.

Number of Test Queries. Finally, we analyze how many
samples are required in the set D, to query the target model
in order for the adversary to succeed in the distinguishing test
with high probability. Towards this, we provide a Chernoff
bound analysis to compute the number of queries as a
function of the error probabilities o and S.

Claim 4.4. Given the probabilities o and [ of making

Type I and Type Il errors, respectively, if the adversary A
2(2a+1)log1/e 2(28+1)log1 .
Cotlogtle 2000008 1e | queries,

they will succeed at the distinguishing test with probability
greater than 1 — max(«, 5) — e

issues |D,|= max



The number of queries increases as max(a, ) ap-
proaches 0.5, therefore fewer queries are needed as the
distributions become more distinguishable.

4.4. Attack Extensions

We describe several extensions of our attack to check
property existence, infer properties using class labels, and
estimate the size of the target property in the training set.

Property existence. Our attack strategy remains the same
in the special case of property existence when ¢y = 0 and
0 < t1 < 1. The goal of the adversary is to infer whether or
not the target property is present in the dataset. Interestingly,
our attack strategy for property existence requires much
fewer poisoning samples (at most 8 samples for several
tested properties) as we demonstrate in our evaluation.

Label-Only Property inference. Recent work by Mahlouji-
far et al. [3] used data poisoning to amplify property leakage
under the label-only attack model in which the model returns
only the predicted labels, and not the confidence scores. We
construct a label-only extension of our attack for a fair
comparison with [3]. Our attack uses the observation that
given a sample x, the poisoned model will always predict the
target class v if the output probability on that class is greater
than 0.5. This happens only when the associated poisoned
logit ¢(x); is greater than 0. We use this insight to select
an appropriate poisoning rate p* such that only the logits
associated with the smaller world ¢( shift from negative to
positive, causing the predicted label for that world to change.
As an example, in Figure 1, setting p* = 3% (the right-most
figure) for target property “Gender = Female; Occupation =
Sales” causes most of the world ¢( logits to become positive,
while the most of the world ¢; logits remain negative.
However, picking a large poisoning rate p* can be
detrimental as it may cause the logits of the larger world %,
to also become positive. We give an example in Figure 8
(Appendix B.2), where the attack accuracy of our label-only
extension increases and then drops with increase in poisoning
rate. As a consequence, we propose a principled way to derive
a suitable poisoning rate p* using our theoretical analysis
described in Section 4.3. Briefly, we first show that the
mean i associated to the poisoned logit ¢(x)5 is a strictly
increasing function of the poisoning rate p, i.e, for a given
constant ¢, there exists only one value of p for which g = c.
We then compute an optimal p* such that i > 0 with respect
to world ¢y, while ji associated to world ¢; stays negative.

Estimating property size. Given model confidences, we
propose a generalization of SNAP outlined in Algorithm
1. Instead of starting with two guesses (to and ¢;) for the
fraction of samples, x, with target property f(z) = 1, we
estimate the frue fraction, t*. Prior work [3], [5] required
thousands of shadow models to perform a distinguishing test
between the worlds where the target property made up either
to or t; of the total samples. Because our distinguishing
test only requires at most 4 shadow models to achieve high
attack success, we can train models on datasets with several
different fractions and compare their logit distributions to
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the target model’s logit distribution when queried on D,,.
Following this procedure introduces the same computational
hurdle as observed in [3]’s distinguishing test: Depending on
the desired precision of our estimation, we are required to
train a large number of shadow models (e.g., to estimate the
fraction of the target subpopulation to the nearest hundredth,
we require S = 100 shadow models to be trained and
pick the one with the most similar logit distribution to the
target model). This fact is made evident in the prior work,
where 20,000 [3] and several thousand [5] shadow models
are required to perform estimation with a regression meta-
classifier to obtain a precision of 0.1.

By making a key observation, we can reduce the com-
putational complexity of the estimation: The smaller the
subpopulation is in the target model’s dataset, the lower the
target model’s prediction confidences on the subpopulation
(with respect to the true labels) will be on average under data
poisoning. In other words, models trained on smaller target
subpopulations will have more shifted logits, which is both
empirically true and justified by Theorem 4.1. Additionally,
more data poisoning magnifies the shifting of the logit
distributions as shown in Figure 1. Using this observation,
we can impose an ordering on the set of fractions we are
searching over and perform binary search, using a similarity
measurement as our stopping condition.

To perform an estimation using binary search, we in-
troduce the following procedure: 1. Initialize £ to 0.5; 2.
Query D, on the poisoned target model and define T as
the interval from the minimum target logit value and the
maximum target logit value; 3. Train shadow models on a
dataset with a f fraction of the target subpopulation, and
check the percentage of logits that fall within the interval,
T'; 4. If enough logits fall into the interval, stop. Else, halve
the search space to include higher or lower fractions. Pick
the middle of the search space to be the next ¢. 5. Repeat
until convergence.

This method reduces the number of shadow models we
need to train from S to log,(S). In contrast to the thousands
of shadow models required in the estimation attacks by [3]
and [5], our experiments required a maximum of 12 shadow
models to yield estimations up to a precision of 0.001.

5. SNAP Evaluation

We now evaluate the performance of our SNAP attack
on four datasets: three tabular datasets (Adult, Census and
Bank Marketing) and a computer vision dataset (CelebA).
We select a large set of properties of different sizes (large,
medium, and small) to show the generality of our methods.
We vary the attack parameters such as poisoning rate, model
complexity, size of training set, number of shadow models,
and number of queries for the distinguishing test. We also
compare SNAP to prior work [3] and show its improved
success and performance.



5.1. Experimental Setup

We first discuss the datasets and ML models used in our
setup and then provide a description of the various properties
considered in each dataset.

Datasets and Models. We perform experiments on four
datasets from different application domains (census, financial,
and computer vision). The Census and CelebA datasets have
been used in previous property inference papers [1], [3], and
we select similar properties to previous work for comparing
our attack.

o Adult: The UCI Adult dataset [7] is a binary classification
task with 48,842 records extracted from the 1994 Census
database based on surveys conducted by the U.S. Census
Bureau. Each record has 14 demographic and employment
attributes such as gender, race and marital status. The
classification task is to predict whether a person’s income
is over $50,000 a year. The class label split for the dataset
is 76% and 24% for class 0 and 1, respectively. We use
a neural network model with two hidden layers with
32 and 16 neurons after experimenting with multiple
architectures, and we show later in this section results
on other architectures.

Census: The U.S. Census Income dataset [7] is a richer
version of the UCI Adult dataset containing Census data
extracted from 1994 and 1995 population surveys. The

dataset includes 299,285 records with 41 unique attributes.

The classification task is similar to Adult, to predict
whether a person’s income is over $50,000 a year. The
class label split for Census dataset is 94% and 6% for
class 0 and 1, respectively. We use the same two-layer
neural network architecture as for Adult.

Bank Marketing: The Bank Marketing dataset [7] is a
binary classification task with 45,211 records related to

marketing campaigns of a Portuguese banking institution.

Each record has 16 unique attributes such as education,
occupation, month of contact, and race. The classification
task is to predict if the client has subscribed a term deposit
or not. The class label split for the dataset is 88% and 12%
for class 0 and 1, respectively. We use the same two-layer
neural network architecture as for Adult.

o CelebA: The CelebA dataset [8] contains 202,599 images
of celebrity faces, with each image being further annotated
with a set of 40 binary attributes such as gender, race
and wearing eyeglasses. The class label split for CelebA
is balanced. We use a ResNet-18 convolutional neural
network model, where the goal of the classifier is to predict
whether a person is smiling or not.

Selection of Target Properties. We perform our experiments

on 18 different target properties across the four datasets.

Table 1 summarizes 11 of these properties considered for
the Adult and Census datasets. The remaining 7 properties
associated to the Bank Marketing and CelebA dataset are
given in Table 7 in Appendix B. These properties are chosen
to account for a wide range of attributes and fractions across
the four datasets. Two of the properties in the Census dataset
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and one property in CelebA were considered by Mahloujifar
et al. [3], and we include them to facilitate comparison with
their approach in Section 5.4. We divide the target properties
into three broad categories based on their size relative to the
size of the entire training dataset: large (above 10%), medium
(between 1% and 10%), and small (below 1%). The large and
medium categories are used for property inference attacks,
while the small category is used for property existence
tests. Note that previous work primarily focused on large
properties [1], [3], but we augment the set of considered
properties with medium and small ones. Even in the more
challenging scenario of small and medium properties for
which the separation between fractions is lower, our attacks
are successful at low poisoning rates.

Attack Type  Property Size  Dataset Target Properties Distinguishing Test
Adult ‘Workclass = Private 20% vs 40%
Race = White; Gender = Male 15% vs 30%
Large Census Race = Black 10% vs 25%
sus S N 3 s 509
Property Gender = Female 30% vs 50%
Inference Adult Gender = Female; Occupation = Sales 1% vs 3.5%
. Marital-Status = Divorced; Gender = Male 1% vs 5%
Medium
Census Education = Bachelors 2% vs 8%
s Industry = Construction 2% vs 7%
Native Country = Germany 0% vs 0.10%
Property Adult Occupation = Protective Services 0% vs 0.05%

Existence Small

Census Hispanic-Origin = Cuban 0% vs 0.20%

TABLE 1: Target properties considered in the Adult and
Census datasets. The attacker’s objective is to distinguish
between the two percentages of the target property shown
in the last column.

Target and Shadow Model Training. To create training
datasets for the attacker and the model owner we partition
the original training set equally between the two such that the
two subsets are disjoint. The attacker trains shadow models
for each fraction ¢y or ¢; of the property of interest. The
default value for the number of shadow model is 4 for each
fraction tg and ¢;, which is sufficient to learn the distribution
of model logits. We vary the number of shadow models later
in the section. The remaining samples with the property f
and label v not used for shadow model training will be part
of the attacker query set D.

Test Query Set. The attacker requires black-box access to
the target model and obtains the confidence scores of the
model on a set of queries, denoted by D, which is a subset
of D,. Note that each sample x in D, needs to satisfy the
property f(x) =1 and its corresponding label v. For all the
target properties, we set our query set size to 1000 samples
based on our conservative analysis described in Claim 4.4
with respect to a large property and a small poisoning rate
p = 1%. We also vary this parameter later in Section 5.2.

Success Metric. Similar to previous works [1]-[3], the at-
tacker’s success is computed in terms of accuracy of correctly
distinguishing which fraction of the target property the ML
model was trained on. We repeat all of our experiments 5
times. In each of the 5 trials, we train 10 target models
per fraction and query them on 10 different test query sets,
giving us a total of 200 observations per trial. As a result, the
reported attack accuracy is averaged over 1000 observations.
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Figure 3: Attack accuracy by poisoning rate for large, medium and small target properties on Adult and Census dataset.

5.2. Property Inference Evaluation

We first evaluate the performance of our SNAP attack
depending on the amount of poisoning while using the default
parameters described earlier. We then evaluate how different
parameters such as the number of shadow models, complexity
of model architecture, training set size and the number of
test queries impact the attack accuracy. To understand the
impact of each parameter, we vary one parameter at a time
while fixing the rest.

Amount of Poisoning. We analyze the accuracy of our
property inference attack on the target properties as we vary
the poisoning rate. Figures 3a and 3b provide results of attack

accuracy for large and medium target properties, respectively.

The attack accuracy for all the target properties is low when
there is no poisoning (close to the 50% random guessing
probability of the distinguishing test). As we increase the
poisoning rate, the attack accuracy improves dramatically
for all properties. For large target properties, as shown in
Figure 3a, the attack accuracy reaches close to 100% (perfect
success) as we approach 10% poisoning, but it is above 90%
at 5% poisoning rate.
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Previous works in property inference [1]-[3] primarily
attacked large target properties and did not consider medium
and small properties as we do. Performing the attack on
smaller properties is more challenging as the attacker needs
to distinguish between smaller separations. As observed
in Figure 3b, our attack is successful on all 4 medium
properties (with thresholds between 1% and 8%), and the
attack accuracy exceeds 90% with as little as 0.6% poisoning
on the Adult and Census datasets. In fact, for distinguishing
between 1% and 3.5% of “Gender = Female; Occupation =
Sales” on the Adult dataset, SNAP achieves 96% success at
only 0.4% poisoning.

Based on the observation that our strategy for medium
properties achieves high attack accuracy with low poisoning
rate, we are able to attack large properties more effectively.
Concretely, we can target and poison a smaller sub-property
within the larger target subpopulation. For instance, for
the target property “Gender = Male; Race = White” we
originally require 5% poisoning to achieve 90% attack
accuracy at distinguishing between 15% and 30% of sam-
ples with this property. With our optimized approach, by
poisoning the smaller subpopulation “Gender = Male; Race
= White; Marital-Status = Never-Married”, we require only



1% poisoning to reach 90% attack accuracy for the same
distinguishing test between 15% and 30% of “Gender
Male; Race = White” in the whole dataset. The intuition is
that a separation between worlds in the larger subpopulation
“Gender = Male; Race = White” still results in a separation
for the sub-property, particularly if the proportion of “Marital-
Status = Never-Married” is uniform within the “Gender =
Male; Race = White” population, which can be ensured by
selecting independent features for the sub-property. Table
8 in Appendix B includes the sub-properties used to attack
each of the large properties and Figure 3c provides the attack
accuracy for large properties with our described optimization.
Our modified version is very effective as it achieves attack
accuracy close to 90% with only 1.5% poisoning across all
properties. We observe similar results for the Bank-Marketing
dataset, included in Figure 7 in Appendix B.

We measured the precision, recall and F1 score of the
original models and models poisoned at different rates.
For large properties, poisoning could reduce the F1 score
metrics by at most 8%, but the metrics remain similar at low
poisoning rates, as required for the medium properties and
our optimized attack on large properties.

Complexity of Models. So far, we have fixed the model
architecture to a two-layer neural network (2NN) model for
Adult and Census datasets. Here, we vary the complexity of
the model from one to six layer neural networks to understand
its impact on the attack accuracy. Table 2 provides the model
architectures chosen similarly to prior work [3].

Model Type | INN 2NN 3NN

[32, 16, 8]

4NN
[32, 16, 8, 4]

5NN
[32, 16, 8, 4, 2]

6NN

Architecture | [32]

TABLE 2: Model architectures, each element in the list is
the number of nodes in a hidden layer of a neural network.

[32, 16] [64, 32, 16, 8, 4, 2]

We evaluate our attack accuracy and F1 score of the
model on “Race = White; Gender = Male” and “Gender =
Female; Occupation = Sales” target properties at poisoning
rates 2% and 0.2%, respectively. We use F1 scores instead of
test accuracy as the datasets have high class imbalance. We
observe that as the complexity of the model increases from
one layer to two layers, the ability of the model to fit the data
improves, and, consequently, the attack accuracy improves.
For instance, for “Race = White; Gender = Male” property,
we observe the attack accuracy and F1 score improve by 10%
and 6% respectively. However, as the model starts overfitting,
both the F1 score and the attack accuracy drop. The attack
accuracy of the 6NN model is lower than the 2NN model
by at least 17% across both target properties, which shows
that overfitting deteriorates our attack accuracy.

Training set size. In this experiment we fix the model
architecture to 2NN and vary the size of the training dataset
in Figure 4 to understand its impact on the attack accuracy.
We observe that the attack accuracy improves with larger
training sets. With more samples, the shadow models are
able to learn the logit distributions better, and, consequently
the attack accuracy increases. We also observe that when the
poisoning rate is high, the models achieve high success with
fewer training samples. Our explanation is that with more
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poisoning the variance of the logit distribution reduces and,
as a result, we can fit a Gaussian distribution on the logit
values even with just a few samples of the target property.

Number of shadow models. Next, we examine the effect on
attack accuracy by varying the number of shadow models to
infer the logit distribution. We conduct our ablation on “Race
= Black” and ‘“Marital-Status = Divorced; Gender = Male”
properties from Table 1. We observe that the attack accuracy
for both properties is already higher than 90% with just one
shadow model per fraction. At low poisoning rates, the attack
accuracy improves with increase in shadow models as the
attacker learns a better logit distribution, and consequently
computes a better threshold T for the distinguishing test.
However, as the poisoning rate is increased, for instance for
target property “Race = Black” with poisoning rate p = 5%,
we achieve a high attack accuracy of 96% with only 2
shadow models. This happens because the variance of the
logit distribution shrinks with increase in poisoning rate as
observed in Figure 2, and as a result fewer shadow models
are enough to obtain a good representation of the distribution.

Number of Test queries. We now analyze the effect on
attack accuracy by varying the set size used for querying the
target model in Figure 5. We observe that for low poisoning
rates, the attack accuracy improves and then stabilizes as
the number of queries increases. The same phenomenon
occurs much earlier when the poisoning rate is higher. These
observations adhere to our Claim 4.4, where our analysis
suggests fewer queries are needed at larger poisoning rates.
Moreover, our analysis provides a conservative lower bound
on the query set size, while in practice we achieve similar
attack accuracy with fewer queries. For instance, for target
property “Workclass=Private” on Adult, our analysis suggests
around 260 test queries at poisoning rate p = 5%, while
Figure 5 shows that 100 queries are enough to obtain the
same attack success of 92%.

Evaluating more properties. In our previous experiments,
we selected representative properties using sensitive features
in our datasets such as Race and Gender, in line with those
used in prior work [3]. The target properties were chosen to
cover a wide range of attributes and fractions across the four
datasets. Here, we provide further evidence that our attack
strategy generalizes to a wider set of properties. We perform
an experiment on the Adult dataset where we attack large
properties by trying all possible combinations of the features
used for defining properties in Table 1. We observe that from
all the combinations, 15 properties fall in the large category
(having more than 10% representation in the training set).
We set the distinguishing test as 10% vs 25% with poisoning
rate p = 5% and observe that SNAP still achieves an attack
accuracy greater than 93% across all 15 properties. This
demonstrates our attack’s generalization to a wide range of
properties.

5.3. Property Existence Evaluation

The goal of the attacker performing property existence is
to identify if a target property is present at all in the training
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More training samples improve the shadow models
performance, resulting in higher attack accuracy.

dataset or not. We target three such properties as described in
Table 1, to check for their existence in the dataset. Figure 3d
shows the attack accuracy as a function of the amount of
poisoning. Note that the x axis in Figure 3d represents
the number of samples used for poisoning instead of the
poisoning rate as used in our previous experiments (Figures
3a, 3b, and 3c). The reason for this choice is that the property
existence attack works with a few poisoning samples since
even a small amount of poisoning will induce a separation
in the logit distributions. We reach 95% attack accuracy with
only 8 poisoned samples, for all three considered properties.
We notice that without poisoning the property existence
attack does not work very well (its success is between 29%
and 62%), but a small amount of poisoning makes a huge
difference in the attack success. A similar observation was
made in Truth Serum [37], which also showed that a small
amount of poisoning improved the success of membership
inference attacks.

5.4. Comparison to previous work

After evaluating the performance of our attack under
multiple parameter settings, we now turn our attention to
comparison with previous work. The attack by Mahloujifar
et al. [3] is the only property inference attack which uses
poisoning and is the closest related to ours. Mahloujifar et al.
compare their attack to previous property inference attacks
without poisoning [1] and show the benefits achieved by
poisoning. Therefore, we compare SNAP only with [3].
The attack from [3] requires black-box access to the
trained model, similar to SNAP. Mahloujifar et al.’s attack
can be summarized in three main steps:
 Data Poisoning: The poisoned dataset D,, is constructed by
collecting samples with the target property and assigning
them a specific label .

e Query Selection: An ensemble of r» models is created,
where each model is trained on a random sample of 500
records with the property and 500 records without it. The

410

Higher poisoning rate requires fewer queries to
successfully distinguish between the fractions.

ensemble is used to select a set of query samples D, for
the distinguishing test.
Distinguishing Test: A set of £ shadow models are trained
per world and then queried on D,. The output labels of
the shadow models are used to construct a dataset for
training the attack meta-classifier model, which is then
used to predict World 0 or World 1.
The implementation from [3] is currently not publicly
available and we implemented the attack with the help of the
authors. We initialize their attack with target label v = 1 (for
Data Poisoning), number of models in the ensemble » = 100
(for Query Selection), and the number of shadow models
k = 500 (for Distinguishing Test), where each shadow model
is trained on a random subset of 1500 samples. The size
of D, is set to 1000 queries and the architecture used for
the shadow models is a logistic regression model. These
parameter choices are confirmed by the authors to be similar
to those in [3]. For a fair comparison we run our attack with
the same parameters, except that we use 4 shadow models.
We first compare the model confidence version of SNAP
with [3] for two target properties on the Census dataset:
“Gender = Female” and “Race = Black”. We observe that
our attack consistently outperforms [3] and requires lower
poisoning rates. For instance, for target property “Gender
= Female”, SNAP obtains 91% accuracy at 3% poisoning,
while [3] obtains 57% accuracy at the same poisoning rate.
Similarly, for target property “Race = Black”, SNAP achieves
93% accuracy at 2% poisoning, while [3] achieves only 58%
accuracy. In addition, our attack takes a total of 13.6 seconds,
while the Mahloujifar et al. attack needs 768.2 seconds. These
results are averaged over 5 independent trials and timings are
measured on a local machine with an M1 chip and 8-core
CPU, as results on a GPU-enabled machine resulted in longer
run times for both attack strategies (due to the small size
of the logistic regression model). We observe that SNAP is
significantly faster than [3] with a run time improvement of
56.5x. We observe higher attack success for SNAP when we
change the model architecture to a two layer neural network
(2NN) as shown in Figure 6. Our attack accuracy for both



properties reaches above 96% at only 2% poisoning rate,
while [3] has attack accuracy below 60% for the “Gender =
Female” property.
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Figure 6: Comparison of SNAP to [3] with two-layered
neural network as the shadow model architecture. Our attack
consistently outperforms [3] across various poisoning rates.

We also compare our strategy to [3] on the CelebA
dataset, using a distinguishing test from [3] to determine
whether the percentage of Males in the dataset is 30% or
70% on the smile detection classification task. Given the
poisoned dataset, our attack accuracy is higher than [3]
with 250x fewer shadow models. At a poisoning rate of 2%,
SNAP achieves 92% attack success on the distinguishing test,
which is obtained by [3] at 5% poisoning. Moreover, at 5%
poisoning, our attack achieves 100% success, an improvement
of 8% over [3]. We defer the details of our setup for CelebA
dataset to Appendix B.1.

As Mahloujifar et al. [3] only used the class labels from
the target model, we compare it against the SNAP label-only
extension described in Section 4.4. Table 3 provides the
details of our comparison over multiple target properties,
where we use the optimized version of our attack for
large properties and choose the poisoning rate p* based
on our theoretical analysis summarized in Section 4.4. We
observe that the label-only version of SNAP also consistently
outperforms [3] across all properties. For instance, for target
property “Workclass = Private”, SNAP achieves an accuracy
of 94% at only 1.1% poisoning, while [3] obtains an accuracy
of 56% for the same poisoning rate.

Target Property Distinguishing Test p* SNAP  Mahloujifar et al. [3]
Race= Black 10% vs 25% 3.7%  100% 97%
Gender= Female 30% vs 50% 4.5%  98% 70%

20% vs 40%
15% vs 30% 95%

TABLE 3: Comparison of label-only version of SNAP
with [3] based on our optimal poisoning rate p*. SNAP
consistently outperforms [3] across various target properties.

1.1%
5.7%

94% 56%

65%

Workclass= Private
Gender= Male Race= White

5.5. Estimating size of target property

We conducted our property estimation for eight subpop-
ulations whose actual fractions (¢*) range from medium to
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large. In these experiments, the target model and shadow
model architectures are two-layer neural networks. Our
estimations for each property at a given poisoning rate are
averaged over 5 trials where we make 2000 queries to the
target model with 2 shadow models per estimated 7. For these
experiments, we search for ¢* over the discrete interval [0, 1],
incremented by 0.001 and initialize ¢ as 0.5. Additionally,
we stop when either 95% of the shadow models’ logits
distribution falls within the bounds of the target model’s logit
distribution or when the algorithm has made 6 iterations.
We present the results for medium and large subpopulation
estimations in Tables 4 and 5. Each iteration of the estimation
algorithm took 74 seconds and 16 seconds on an M1 CPU for
Census and Adult, respectively. With our experimental setup,
the maximum possible running time for a single estimation
is 7 minutes and 24 seconds on Census and 1 minute and
36 seconds on Adult.

In a similar fashion to the distinguishing test, the property
estimation algorithm achieves better success as poisoning
increases. For medium properties, our method requires up
to 1% poisoning to achieve estimates within 1% - 10% of
the true fraction, t*. For larger properties, such as “Gender
= Female” and “Workclass = Private”, we require up to 5%
poisoning to achieve estimates within 0% - 5% of t*.

Our Estimation

Target Property t*

0% 0.5% 1%
Industry = Construction  3.0% 326%  3.7% 3.1%
Education = Bachelors  10.0%  583% 99%  10.4%
Gender = Female, Occupation = Sales 3.9% 249%  9.9% 4.3%
Gender = Male; Marital-Status = Divorced ~ 5.4% 337% 5.8% 6.1%

TABLE 4: Estimated ¢ values from our property estimation
algorithm on medium target properties at varying poisoning
rates.

Our Estimation

1% 3%

Target Property t*

0% 5%

Gender = Female  52.1% 303% 419% 45.0% 50.0%

Race = Black  102% 17.5% 10.3% 9.2% 9.3%

Workclass = Private  40.0%  50.0% 50.0%  50.0%  40.0%

Race = White, Gender = Male  43.0% 31.5% 259% 50.0% 45.0%

TABLE 5: Performance of our property estimation algorithm
on large target properties by poisoning rate.

We also empirically measure the robustness of our
estimation algorithm to overpoisoning. In some settings, the
adversary may not know what poisoning rate they should use
prior to running the estimation. Because of this, the adversary
may choose a larger poisoning rate than the optimal one.
Poisoning with rates higher than those shown in Tables 4 and
5 still results in effective property size estimation with low
estimation error. For instance, the properties ‘“Marital-Status
= Divorced; Gender = Male” (on Adult) and “Race = Black”
(on Census) make up 5.4% and 10.2% of their datasets,
respectively. Although a poisoning rate of 0.5% is optimal
for “Marital-Status = Divorced; Gender = Male,” our average
estimate stays within 1.5% of ¢t* when we set the poisoning
rate to 5.0% (ten times higher than optimal). Similarly, the
optimal poisoning rate for “Race = Black™ is 1%, but our



estimate remains within 0.9% of t* when increasing the
poisoning rate by ten times to 10%. The attack is thus not
very sensitive to the exact selection of the poisoning rate.
Finally, we analyze how changing the stopping condition
of our estimation algorithm impacts the accuracy of the
estimation. In the default setting, we stop when 95% of the
shadow models’ logits distribution overlap with the target
model’s logit distribution. We vary the 95% threshold, using
70%, 90%, and 99%, for property “Marital-Status = Divorced;
Gender = Male” (t* = 5.4%) at 5% poisoning rate. Our
average estimates over 5 trials are 13.7%, 7.5%, and 6.2%,
respectively, compared to the 5.8% estimate for a threshold
of 95%. Although the estimation accuracy is lower, using
a smaller fraction for the stopping condition allows the
estimation algorithm to converge in fewer iterations.

6. Discussion and Conclusion

We introduce an efficient property inference attack
motivated by sound theoretical analysis of the effects of
poisoning on model confidence distributions. Our attack,
SNAP, outperforms prior work [1], [3], [5] in multiple
settings while requiring several orders of magnitude fewer
shadow models. This resulted in a 56.5x speed increase when
compared to [3] on the Census dataset and a higher attack
success at lower poisoning rates than [3]. SNAP achieves
above 90% attack success with only 8 poisoned samples on
small properties, 0.6% poisoning on medium properties, and
1.5% poisoning on large properties.

We also introduce several extensions to our SNAP frame-
work. Our property existence attack extends SNAP to be a
generalization of membership inference, where we are able
to determine if a group of individuals with a certain property
have been used in training the target model. The label-only
extension only requires the target model’s predicted labels
and outperforms attacks from previous work [3]. The property
size estimation attack generalizes SNAP by requiring no prior
knowledge of possible fractions ¢y and ¢;. It makes precise
estimates of property proportion in the training set with low
poisoning rates, while requiring exponentially fewer shadow
models than previous work [5] and [3].

Next, we discuss several aspects of our attacks and
directions for future work.

Attack Configuration. The parameters for our attack can
be selected by following the theoretical analysis of model
confidences under poisoning, described in Theorem 4.2.
Our bounds, depicted in Figure 2, provide good estimates
for how the poisoning rate affects the mean and variance
of the target model’s logit distribution. Consequently, as
described in Section 4.3, choosing a poisoning rate p for
which the theoretical variance of both worlds is below a fixed
threshold (e.g., 0.15) is a valid strategy. Another strategy is
to choose the poisoning rate p such the difference between
the theoretical logit means of the two worlds is above a
fixed threshold. For the label-only extension described in
Section 4.4, our principled approach of choosing an optimal
poisoning rate gives a good strategy for consistently obtaining
high attack accuracy.
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Selecting Target Properties.. Given that our attack requires
poisoning, the adversary needs to commit to a target property
and poisoning points before the target ML model is trained.
We observed that our attack not only builds an accurate
distinguishing test for the target property itself, but can also
be used to infer information about underlying sub-properties.
We have exploited this observation to design the optimized
version of our attack described in Section 5.2. Thus, an
attacker has the potential to infer information on multiple
sub-properties by poisoning a larger target property during
training. We leave formulating a poisoning strategy that
maximizes the attack accuracy on sub-properties of the target
property as future work.

Defenses against Property Inference. Differential privacy
was explicitly designed to make it possible to reveal statistical
properties of a dataset [42], and thus is not intended to
provide defense against property inference. Prior work [3]
confirmed empirically that differentially private training
algorithms do not defend against property inference attacks.

To empirically test this, we trained our target models
using DP-Adam and ran our attack on two properties from
the Census and Adult datasets (“Race = White, Gender =
Male” from Adult and “Race = Black” from Census). Overall,
SNAP is able to achieve high success even when the target
model has been trained with differential privacy as shown
in Table 9 (Appendix B.4). The configurations of these
experiments are also detailed in Appendix B.4.

The attack also performs better as the number of queries
increases, and therefore bounding the number of queries by
user is a potential strategy to mitigate these attacks. We also
show that our attack success rate improves as the amount
of poisoning increases, suggesting that applying poisoning
defenses [34], [43], [44] may help prevent our attacks. We
leave a thorough evaluation of defenses for property inference
or a proof of defense impossibility for future work.

Property Inference as an Auditing Tool. In addition to
revealing sensitive information about training datasets of ML
models, property inference has the potential to be used as a
tool for auditing the fairness of ML models. If a company
shares their model with a third party, they would be able to
determine the demographics of the dataset used to train the
model using different SNAP attack variants. This way, an
auditor could efficiently determine whether the dataset used
to train this company’s model contains fair representations of
its constituent properties. We believe that adapting property
inference for auditing of ML fairness is a promising direction
for future work.
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Appendix A.
Attack Analysis

In this section, we provide proofs for the theorems and
claims presented in Section 4.3.

A.1. Effect of Poisoning on Logit Distribution

Theorem 4.1. For any sample (x,y) € D, such that f(x)
1 and y = v, a model M which satisfies M(z), = Pr[Y =

v|X = x] will have a poisoned logit value with respect to ©

of

) —log | P @ (1P

Proof. By the logit definition for binary classification, and
our assumption on the classifier, we can write:

7 _ M(z)s | _ Pr[Y=0|X=x]

dla)s = tog [ %52 | =102 [EREIRE]] @
where all probabilities are over the poisoned distribution.

_Then we just need to compute the probability Pr[Y =
v|X = z]. The proof is similar to that of Mahloujifar et
al. [3], but is adapted to our attack. We write the event E,
for the event where an example is sampled from the poisoned
distribution, which happens with probability p, and E. for

the complementary event where an example is sampled from
the clean distribution. Then we have:

PrlY =v[X =z] =Pr[Y =v|X =z A E]-
+Pr[Y =v|X =z AE,)-

Pr[E.|X = 2]
Pr[E,[X = 1]
Note that Pr[Y = v|X = x A E,] = 0, as poisoned samples

x < D, always have the associated label v. We can then
re-write the above equation as:

Pr[Y = v|X = 2] = Pr[Y =v|X = 2 A E.] - Pr[E.|X = 1]
3
We compute Pr[E.|X = z] using Bayes® theorem as: ®
Pr[X = z|E.| - Pr[E,]
Pr[X = z]
We now compute the numerator of the above equation,
relative to the probabilities in the clean distribution:

Pr[E.|X = 2] = )

Pr[E,] - Pr[X = z|E.] = (1 — p) - Pr[X = z]
=(1—-p)-PrX=zAf(z)=1AY =1]
= Pr[f(z) =1] - Pr[Y = v|f(z) = 1]
PrX =a]Y = v A f(£) = 1]- (1 - p)
=(1-pir, PriX=2|Y=vA f(x)=1 (5)
Similarly, we can rewrite the denominator as follows:
Pr[X = 2] = Pr[X = z|E,] - Pr[E,]
+Pr[X = | B, - Pr(E,]
=[tm(1—p)+p] - PrX=2[Y=0vAf(z)=1 (6
Substituting Eqn. (5) and (6) into Eqn. (4), we obtain:
tm, (1 —p)
PrBX = o] = e P ™
Now substituting Eqn.(7) back into Eqn. (3), we get:
Pr[\? = U|X =z] = 7“%(1 —p)
p + tﬂ-v(l - p)
PrlY =v|X =z A E,
tm, (1 — p) B B
. )-Pr[Y—v|X—x] (8)



Similarly, we can then calculate probability Pr[Y = #|X =
x] using Eqn. (8) as follows:

Pr[Y =9|X = 2] =1 — Pr[Y = 0|X = 1]

1—
— _M.pr[yzvpg:x}
p+tmy(1—p)
1—
— P Tl =P) pyy — gx = a
p+tm,(1—p) p+tr,(1—p)
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Substituting Eqn. (8) and Eqn. (9) back into Eqn. (2) and
simplifying the equation, we get:

La—C (1 +
O

tm, (1 — p)

p

dg(f)i = log [ m

Theorem 4.2. Assume that the clean logit ¢(x); for a
sample x follows a Gaussian distribution N(,u,gQ). Then
the mean and variance of the poisoned logit ¢(x); are

o logM—log(\/%—i—l) and &> log(%—i-l)
respectively, where values M and V denote the mean and
variance of the log-normal random variable e®®)7.
p o(@)s (1 p
-t © ( T

Under the assumption that logit value ¢(z)s is a Gaussian
random variable, random variable e®(*)s as a consequence
follows log-normal distribution with mean e n+o®/2 and
variance (e? —1).(e 2}‘*"2). We now compute the mean of
the random variable ¢(®)® as follows:

Proof. We re-write Eqn.1 as follows:

eﬁz(z)ﬁ _

_ p o(x)s p
M=E|—— 14—
md—pit © < +7rv(1p)t)]
p - p
= 4 E[@] (14 ————
ol —pyt e ( +7fv(1—p)t)
SR R AT T T
m—pi ° ( +7Tv(1—p)t) (10

Similarly, we compute the variance of e?(®)7 as

_ p #(x)s p
V= Var 71'v(l_p)t—’_e <1+7Tv(1_p)t):|
2
_ $(x)s p
= Var(e ). (1 + o= p)t>
2
_ (02 o 2pu+0? p
= (e 1).(e ##79). (1+7Tv(1—p)t> (11)

For simplicity of analysis, we assume ¢(x); also follows
Gaussian distribution with % and 6% denoting its mean and
variance respectively. As a result random variable e?(®)?
follows a log-normal distribution with mean and variance
as M and V respectively. We can now write a system of
equations from standard log-normal definition as: e+ /2 =

415

M and (e7°~1).(e2+%%) = V. On solving for @ and &2, we

get:
[V
ﬂzlogM—log( ]\42+1>

- v
5% = log (]\42 + 1>
O
Note that, based on Eqn. (1), when the term ﬁ > 0,

then random variable ¢(x); does not follow a Gaussian
distribution naturally. However, in practice the poisoning
fraction p is chosen to be a very small value and as a result
assuming ¢(x)z to be Gaussian is a fair approximation.

A.2. Computing Optimal Threshold

Claim 4.3. Given two Gaussian distributions Xqo ~
N(po,00) and X1 ~ N(p1,01) such that puy > po and
objective function J = o+ 3, where oo = Pr[Xo > T| and
B = Pr[Xy < TJ, the threshold T that minimizes J is one
of the following two values:

— 2 o
(uoaf—plag)iZUlag\/(w> +(o2—02) 10g<%>

= 32
91790

Proof. Our goal is to find threshold T that minimizes the
objective function J = o + 3. We re-write the objective
function as follows:

J=a+=Pr[Xe>T]+Pr[X; <T]
= Pr[X; < T] +1— Pr[X, < T]

:Hq)(T—m)_@(T—m)

01 (o))
where ® (%) denotes the CDF of the random variable

X,;. To compute the optimal value of T, we differentiate J
with respect to T and solve the equation is as follows:

5;]7&@ T—m 72© T — o
oT  oT o1 oT 0o
:1¢(T—M1> 1¢<T—M0>
o1 o1 [ofs) g0

where ¢ %) denotes the PDF of the random variable X.

Setting the above equation to 0 and substituting the gaussian
PDF equation for ¢, we get:

e~ (T=m)*/20% — (5, [gq)2 e~ (T—H0)*/203

On re-arranging the above equation:

(07 — o) T + 2(pa0g — poo )T

+pg0t — piog +4otoglog (o0 /01) =0

12



The roots of equation 12 can then be written as:

H1—H0O
2

2
(#00%*M10(2))i20100\/< ) (o3 —0?)10g(22)
= ]

2
917 %

O

When the standard deviations for the two Gaussians are
the same, i.e. o9 = 01, Eqn. (12) becomes:

piot — pgoi  potm
2

T =
2(mof — poot)

A.3. Number of Test Queries

Claim 4.4. Given the probabilities o and [ of making

Type I and Type II errors, respectively, if the adversary A
2(2a+1)logl/e 2(2B+1)logl/e
(1-20)% > (1-28)?
they will succeed at the distinguishing test with probability

greater than 1 — max(a, §) — e

issues |Dy|= max ] queries,

Proof. We define a Bernoulli random variable b = 1 with
probability «, and O otherwise, where o denotes the prob-
ability of making Type-I errors. We predict fraction ¢; iff
Pr[(Xo = Y%, b)) > qo/2] < e, for some very small
probability e.

We can then bound this probability by applying Chernoff
bound, with § > 0, as follows:

Pr[X, > 2

51 =Pr{Xo > (14 0)ul

where 1 = « - ¢ is the mean of Xy and §, = 1/2a —

1. Condition §, > 0 implies « < 1/2. Now solving for
—52 1

ezM; =€, we get

 —(2+4da)loge

q0 = a- 62

Similarly, we define another Bernoulli random variable
b' = 1 with probability 3, where 5 denotes the probability
of making Type-II errors and we predict ¢y iff Pr[(X; =
2, b)) > q1/2] < e. On applying Chernoff bound and
solving for ¢;, we get
—(2+465)loge
G =729
B 05

where 03 = % —1 and 8 < 1/2. We then set the number

of queries |D,|= max(qo, q1).
O]

Appendix B.
Additional Experiments

In this section, we present additional experiments and
comparison to prior work.
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B.1. Comparison with prior work [3]

We compare our attack strategy to [3] on the CelebA
dataset, on the target property “Gender = Male” and the
percentages as 30% or 70% on a smile detection task. We
report the results in Table 6. We use two ResNet-18 shadow
models per fraction and train each model for 30 epochs
using Adam with a learning rate of 0.03 and a batch size
of 64. Before we run our attack, we ensure that our target
models have achieved high accuracy, precision, and recall.
We run the attack for 5 trials, each containing 20 queries to
the target model. On average, each trial takes 1 hour and
40 minutes on 32 Intel Xeon E5-2680 CPU threads and one
Nvidia Titan X (Pascal) GPU.

Poisoning Rate

Attack Strategy # Shadow Models

0% 5% 10%
Mahloujifar et al. [3] 500 73% 92% 97%
SNAP (Ours) 2 47% 100% 100%

TABLE 6: Attack accuracy comparison with [3] using
ResNet-18 as the model architecture trained on CelebA
dataset with the target property “Gender = Male.”

B.2. Label-Only Evaluation

Recall that in our label-only extension, choosing an
appropriate poisoning rate p* is crucial for our attack to
succeed. Figure 8 shows one such instance where the attack
accuracy for the label-only SNAP attack is as high as our
model confidence version for a small range of poisoning
rates. Our approach of computing a suitable poisoning rate
p* indeed gives us a high attack success on the distinguishing
task. For instance, given the target property ‘Female Sales’
in Figure 8, our approach suggests a poisoning rate p* of
1.23%, for which we achieve an attack accuracy of 98%.

B.3. Additional Properties

We perform experiments on the remaining properties
considered for Bank Marketing and CelebA datasets. Table 7
summarizes the target properties associated to these datasets.

Attack Type  Property Size Dataset Target Properties

Month = May
Marital-Status = Married

Distinguishing Test
10% vs 25%

25% vs 50%

30% vs 0%

25% vs 60%

15% vs 40%

1% vs 6%

3% vs 8%

Property Large Bank Marketing

Inference

Gender = Male
Age = Old
Wearing Earrings

CelebA

Contact = Telephone
Previous Campaign = Failure

TABLE 7: Properties considered in Bank Marketing and

CelebA datasets. The attacker’s objective is to distinguish
between the two percentages of the target property.

Medium Bank Marketing

Figure 7 provides results of attack accuracy for large and
medium target properties on the Bank Marketing dataset. We
observe the attack accuracy improves dramatically across
all properties as the poisoning rate increases. The attack
accuracy reaches 90% with as little as 0.6% poisoning
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Figure 7: Attack accuracy by poisoning rate for large and medium properties on Bank Marketing dataset. Attack accuracy
reaches 90% at 0.6% poisoning rate for medium properties. Our optimized attack for large properties consistently outperforms
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Figure 8: Behavior of Label-only and Model confidence
versions of SNAP. Attack accuracy for the confidence version
increases with the amount of poisoning, while the attack
accuracy increases and then drops for Label-only version,
making it crucial to choose an appropriate poisoning rate.

for medium properties. For large properties, we observe
the optimized variant consistently outperforms our original
variant, obtaining close to 90% accuracy with only 1%
poisoning.

We run SNAP on two more properties from CelebA:
Older Faces (Young = 0) and Wearing Earrings with the
classification tasks of smile prediction and gender prediction,
respectively. The Young property has been used in prior
work on property inference [1], [5]. Our distinguishing tests
for these two properties are 25% vs 60% and 15% vs 40%,
respectively. For 0%, 5%, and 10% poisoning on Older Faces,
our attack success was 57%, 99%, and 99%. For 0%, 5%,
and 10% poisoning on Wearing Earrings, our attack success
was 40%, 73%, and 79%. This shows that SNAP works on
computer vision tasks, which are in general challenging for
meta classifier-based property inference attacks.

Sub-properties used for our optimized attack. Table 8
provides the sub-properties used in our optimized SNAP
attack, when targeting large properties for the Adult, Census
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and Bank Marketing datasets. Recall that the adversary poi-
sons the sub-property within the large property to distinguish
between the two fractions of the large property as given in
the last column of Table 8.

Distinguishing Test

20% vs 40%
15% vs 30%

Dataset Target Properties Sub-Properties

Workclass = Private
Race = White; Gender = Male

Occupation = Transportation

Adult Marital-Status = Never-Married

Census Race = Black Education = High-School 10% vs 25%
o Gender = Female Race = Black 30% vs 50%
Month = May Occupation = Technician 10% vs 25%

Bank Marketing

Marital-Status = Married Month = July 25% vs 50%

TABLE 8: Sub-properties considered for our optimized attack
on Adult, Census and Bank Marketing datasets.

B.4. Experiments with Differential Privacy

The target and shadow model architectures for our
experiments on Census and Adult were 4NN and 3NN,
respectively. We used PyTorch’s differential privacy library,
Opacus [45], to train all of the neural network models. Each
model was trained using the Adam optimizer [46] with the
Opacus wrapper for 40 epochs with a batch size of 512, a
learning rate of 0.003, and a clipping threshold of 1.2. The
poisoning rate was set to 4% for Census and 6% for Adult.
The privacy parameters (g,d) were chosen ahead of time,
and Opacus tracked the remaining privacy budget at each
training epoch.

Attack Success (g,5 = 1079)

Target Property

e=8 e=4 =2 =1
Race = Black 100% 100% 100% 98%
Race = White, Gender = Male 95% 99% 90% 75%

TABLE 9: Attack success of SNAP when the target model
is trained using DP-Adam for several privacy parameters.

The success of SNAP begins to decrease once private
training decreases the utility of the model. For instance, the
attack success is lowered to 75% on the “Race = White;
Gender = Male” property for € = 1, but the F1 score of the
private target model on the subpopulation is only 0.07.



