
Investigating Package Related Security Threats in Software Registries

Yacong Gu∗, Lingyun Ying∗�, Yingyuan Pu∗†, Xiao Hu∗,
Huajun Chai∗, Ruimin Wang∗‡, Xing Gao§, Haixin Duan¶‖

∗QI-ANXIN Technology Research Institute, †Ocean University of China, ‡Southeast University,
§University of Delaware, ¶Tsinghua University, ‖Tsinghua University-QI-ANXIN Group JCNS

∗{guyacong, yinglingyun, puyingyuan01, huxiao, chaihuajun, wangruimin}@qianxin.com,
§xgao@udel.edu, ¶‖duanhx@tsinghua.edu.cn

Abstract—Package registries host reusable code assets, allowing
developers to share and reuse packages easily, thus accelerating
the software development process. Current software registry
ecosystems involve multiple independent stakeholders for
package management. Unfortunately, abnormal behavior and
information inconsistency inevitably exist, enabling adversaries
to conduct malicious activities with minimal effort covertly. In
this paper, we investigate potential security vulnerabilities in
six popular software registry ecosystems. Through a systematic
analysis of the official registries, corresponding registry mirrors
and registry clients, we identify twelve potential attack vectors,
with six of them disclosed for the first time, that can be exploited
to distribute malicious code stealthily. Based on these security is-
sues, we build an analysis framework, RScouter, to continuously
monitor and uncover vulnerabilities in registry ecosystems. We
then utilize RScouter to conduct a measurement study spanning
one year over six registries and seventeen popular mirrors,
scrutinizing over 4 million packages across 53 million package
versions. Our quantitative analysis demonstrates that multiple
threats exist in every ecosystem, and some have been exploited
by attackers. We have duly reported the identified vulnerabilities
to related stakeholders and received positive responses.

1. Introduction
Software registries play an essential role in the open

source software supply chain. By providing repositories for
maintaining software packages, registries enable developers
to share rich libraries and add-on packages, and thus ac-
celerate the entire software development process. Millions
of packages are actively maintained in software registries
for almost all popular programming languages. In 2021,
the top four software registry ecosystems (i.e., Maven [1],
npm [2], PyPI [3], NuGet [4]) contained a combined 37
million different versions of packages, attracting more than
2.2 trillion downloading requests [5].

Meanwhile, the number of attacks against the software
registry ecosystem has also substantially increased by 650%
in 2021 [5]. The popularity of software registries inevitably
attracts unwanted attention from adversaries, as serious
security threats can be posed with compromised packages.

�Lingyun Ying is the corresponding author.

For example, the ua-parser-js package [6], which attracts
millions of weekly downloads in npm, was hijacked to install
a cryptocurrency miner and harvest credential information,
posing significant security threats to developers and end-
users. Unfortunately, the software registry ecosystem involves
multiple independent stakeholders for package management,
and one insecure stakeholder can potentially affect the whole
architecture. The desynchronized data and inconsistent infor-
mation among different stakeholders might allow attackers
to conduct malicious activities with minimal effort covertly.

In this paper, we systematically study potential security
threats to package management in the software registry
ecosystem. We primarily focus on vulnerabilities that can
be exploited without compromising any parties, including
registries, registry mirrors, code hosting platforms, and
software build pipelines. We analyze multiple stakeholders
in the ecosystem following the lifecycle of a package, from
the publishing and maintenance (e.g., upgrade, unpublishing)
process, to the distribution of a package. In total, we identify
twelve potential attack vectors that can lead to severe con-
sequences, such as covertly distributing malicious packages
or stealthily injecting malicious code. Particularly, attackers
can exploit (1) reused resources, including package names,
registered accounts, and code hosting platform locations; (2)
inconsistency between the official registry and its mirrors;
and (3) confused resources, such as case sensitivity, package
version, and dependency, to mount multiple attacks. We also
study potential vulnerabilities related to typosquatting.

Our work greatly complements previous research ef-
forts on understanding security threats in software reg-
istries [7] [8] [9]. To the best of our knowledge, we reveal
six of these potential attack vectors for the first time. We
have also conducted an in-depth study on registry mirrors. In
particular, we identify several new approaches for attackers
to hijack packages in both upstream registries and registry
mirrors. For example, we find that code hosting platforms
(e.g., GitHub) automatically redirect renamed users [10] and
transferred projects [11] from an old repository location to
a new location. While both links can be used to download
the package, attackers may preempt the previous repository
location, and GitHub will immediately cut off the redirection.
If the repository location is not updated in registries, users
will download the malicious package (denoted as Package

1578

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Yacong Gu. Under license to IEEE.
DOI 10.1109/SP46215.2023.00066

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

33
2

Redirection Hijacking Attack). Some registry mirrors may
fail to properly handle letter cases, such as Buffer and buffer.
Users will always get the same package no matter what
case is used in the request. Attackers can simply publish a
malicious package with the same name but different cases
as the victim package and then potentially hijack all requests
(named as Case Sensitivity Confusion Attack). Meanwhile, we
report new findings (e.g., new exploitation approaches) and
results for other known attacks. For example, in addition to
hijacking accounts in registries via expired domain names [8],
we discover that a similar attack can be mounted by exploiting
deleted third-party website (e.g., GitHub) accounts. We also
find that mirror synchronization failures could amplify the
damage of package reference attacks [7].

To investigate the existence of the above threats and
understand the status quo, we conduct a large-scale measure-
ment study on six popular software registry ecosystems, in-
cluding Maven [1], PyPI [3], npm [2], NuGet [4], Cargo [12],
and Go [13]. We develop RScouter to carefully collect
various information (e.g., the daily published and unpublished
packages, package metadata such as account and version)
from both official registries and the corresponding registry
mirrors, and identify vulnerabilities using differential analysis.
Specifically, RScouter combines multiple approaches to
collect maintainer accounts from different registries, such as
extracting accounts from the source code repository, contact
information, and their web portal. During our measurement
spanning one year over six registries and seventeen popular
mirrors, we have collected over 4 million unique packages
across more than 53 million distinct package versions.

We find that 16,807 maintainer accounts and 40,327
packages can be immediately taken over in both centralized
registries and de-centralized registries (e.g., Go). In particular,
12,121 packages in Go are threatened by the newly disclosed
Package Redirection Hijacking Attack. 85,192 and 38,496
packages in PyPI and npm, respectively, are vulnerable to
the Package Use-After-Free Attack. We also find that many
widely-used registry mirrors have resource confusion and syn-
chronization problems, allowing attackers to hijack packages.
For example, the Aliyun npm mirror [14], which serves more
than 2 billion downloads per month, suffers from the Case
Sensitivity Confusion Attack: 2,038 packages can be hijacked
immediately, and some popular victim packages attract more
than 1 million downloads in one month. Furthermore, we
discover eight real Package Reference Attacks against PyPI,
where malicious packages are referenced in popular packages,
affecting many mirror users. Finally, we find that a large
number of malicious packages (e.g., officially marked by
npm) have similar package names to existing benign packages,
with the Damerau-Levenshtein distance one, indicating that
attackers have heavily abused typosquatting.

We have disclosed our results to all affected registries and
mirrors and received positive feedback. The npm, PyPI, and
Go teams have confirmed multiple issues that we reported,
and the npm team has awarded us with a $2,000 bug bounty.
Aliyun and Tsinghua mirror maintainers have confirmed the
reported vulnerabilities and taken action to fix these issues
by retrofitting their repository mirroring software. We have

been working together with them to fix/remove vulnerable
packages and minimize the impact on both users and package
maintainers in the software registry ecosystem.

In summary, the major contributions of this work include:
∙ We perform a systematic study on package related security

threats in software registry ecosystems, including upstream
registries and their mirrors. We disclose six new potential
threats and report new findings/results for six other attacks.

∙ We developed the RScouter tool and conducted a large-
scale measurement study on the six popular software
registries and seventeen popular mirrors. Our measurement
study covers more than 4 million unique packages.

∙ Our measurement results indicate that many registries are
indeed threatened by our disclosed attacks, and tens of
thousands of packages are at the risk of being hijacked.

2. Background
2.1. Primary Stakeholders
Registries. Registries host packages and provide users with
services such as searching and downloading. Most existing
registries are centralized, such as Maven Central for Java,
PyPI for Python, npm for JavaScript, Cargo for Rust, and
NuGet for .NET. Centralized registries typically maintain a
website so that package maintainers can register a unique
account (denoted as a maintainer account) to publish and
manage packages. According to the way of registration,
maintainer accounts can be divided into two categories: email
and a third-party account sign-in (e.g., a GitHub account).
Centralized registries also store package files and metadata,
such as description, maintainer information, and code link.

By contrast, decentralized registries, such as Go, do not
maintain a centralized website for package management.
Package maintainers typically use code hosting platforms
like GitHub to manage packages, and they only need to
publish the information of their packages to the registry
index. For instance, Go officially maintains an index website
(i.e., pkg.go.dev) for users to search and view the Go packages.
Meanwhile, Go also operates an official centralized mirror
caching its package files.

Generally, a tuple ⟨repository, package name, version,
hash value⟩ uniquely identifies a package. The repository
is the code hosting location of the package. The package
name can be customized by the package maintainer as long
as it follows the naming standards and does not conflict with
the existing packages in the registry. The version should be
unique for the package’s each publishing, and the hash value
is calculated according to the package’s content.
Registry Mirrors. Registry mirrors provide a data mirroring
service for registries, aiming at network acceleration or
bypassing Internet censorship. Usually, a mirror contains the
same content as the upstream registry, and multiple mirrors
might be separately maintained by different organizations.
Typically, mirror maintainers should not directly add or
remove packages on mirrors but only synchronize with the
upstream registry through tools developed by themselves or
off-the-shelf repository management tools such as Nexus [15]

1579

and Artifactory [16]. Almost all popular registries have mirror
sites, which are used worldwide. For example, the Aliyun
npm mirror has more than 2 billion monthly downloads [14].
Registry Clients. Finally, package maintainers use registry
clients (provided by the corresponding registries or third
parties) for developing, maintaining, and managing packages,
and package users also use registry clients for searching,
downloading and installing packages. In particular, for
compiled programming languages (e.g., Java), registry clients
pull dependent packages at the package compiling time, and
all dependent package code is compiled into object binaries.
While for interpreted programming languages (e.g., Python),
dependent packages are pulled at the package installing time,
and all dependent package code is saved as separate files.
2.2. Package Lifecycle

Generally, a package maintainer first registers an account
on the registry’s web portal. Then she/he uses this account as
a credential to conduct all operations (e.g., publish, update,
unpublish). Different registries have different unpublish
policies. Some registries (e.g., PyPI, npm) allow maintainers
to delete a package completely so users can no longer
use the package. The second policy is to unlist a package
(e.g., Cargo, NuGet), i.e., remove the package from the
package index so that users cannot find it easily. However,
unlisted packages can still be downloaded and installed by
using an exact version number. Other registries (e.g., Maven
Central) prohibit maintainers from unpublishing a package.
For decentralized registries, package maintainers use their
code hosting platform accounts as the credential and publish
packages on the code hosting platform.

Registry mirrors then synchronize package data from
the upstream registry, including the acquisition of newly
published packages and synchronization of unpublished
packages. Some mirrors run in the full synchronization mode
and regularly synchronize the changes of all packages by
parsing the registry index file. Users might be allowed to
force synchronization to obtain the latest version of a package.
Others operate in the proxy mode, where packages will be
cached upon user requests.

Package users (usually software developers) integrate
packages into their software using a registry client, which
resolves and installs the target package and its dependencies
from registries or mirrors, based on its configuration. If the
package version is not specified, registry clients may adopt
different strategies to choose the most suitable version. For
example, NuGet 2.8x always uses the latest version, while
NuGet 3.x gets the oldest eligible version by default [17].
2.3. Overview of Registry Abuse

Security breaches have become prevalent in software
registries in recent years. Thousands of malicious packages
such as ransomware [18] and cryptojacking [19] have been
removed from different types of registries [2] [3]. Among
those attacks, typosquatting has been widely used to trick
users into downloading and installing malicious packages [7].
Attackers exploit typographical mistakes made by victims

by publishing packages with similar names to the legitimate
package. This also includes squatting popular package names
across multiple registries [7], where attackers intentionally
upload packages with the same names as popular packages
on other platforms.

Package hijacking is another popular attack: attackers
attempt to take over existing packages via various methods, in-
cluding social engineering and exploiting weak passwords [9].
Resource reuse, which is a common scenario on today’s
Internet, has been widely exploited to hijack packages. For
example, emails might be recycled by email providers and
thus reused by other users [20]. Private email domain names
might be expired and be purchased by others [21]. Similarly,
package and account names might also be reused by other
users. Attackers can then utilize legitimate operations such
as password recovery via email to control the account and all
associate packages [8], [22]. Those issues have been raised
several times before [23] [24] and received some attention
from the press [25] [26].

Finally, package distribution systems can also be abused
by attackers as they can publish a malicious package with
the same name as the private package to the official registry
to launch a dependency confusion attack [27] [28]. Attackers
can compromise the registry web service to manipulate exist-
ing package binaries [29] [30]. They can tamper with package
contents through man-in-the-middle (MITM) attacks when
victims download packages through insecure channels [31].

3. Threats on Software Registries
This work aims to highlight the existence of many poten-

tial vulnerabilities in the current software registry ecosystem,
which can be exploited to distribute malicious code to users
stealthily. Different from previous research efforts, we expand
the scope of resource reuse to include third-party website
accounts and disclose several new hijacking attacks. Also,
we present an in-depth study on registry mirrors and find that
inconsistency might exist between registries and their mirrors,
causing security threats such as package overriding. Finally,
existing software registries and mirrors might confuse about
particular resources, such as case sensitivity, package version,
and dependency, enabling attackers to hijack packages or
stealthily distribute malicious code.

The exploitation can be considered in two types: (1)
to bait users into obtaining software packages maintained
by adversaries, and (2) to introduce malicious code or
vulnerabilities to users in a stealthy manner. We consider the
scenario that all attacks can be mounted without compromis-
ing any package management stakeholders (e.g., hacking their
software systems). To exploit the vulnerabilities described
in this paper, adversaries can continuously monitor key
events (e.g., package unpublishing, account deletion, and
synchronization failure) in registries, mirrors, and third-party
code hosting platforms. All these events can be collected
from public sources by many approaches, such as parsing
the package index file provided by the registry, obtaining
through web APIs, and crawling. For instance, the Maven
Central registry provides a complete index file, including

1580

TABLE 1. Overview of potential threats on each registry ecosystem.
The columns highlighted in gray color indicate novel attacks. The ✓

means vulnerable.
Registry

Ecosystem 𝑈1 𝑈2 𝑈3 𝑀1 𝑀2 𝑇1 𝑅1 𝑅2 𝐶1 𝐶2 𝑂1 𝑂2

Maven ✓ ✓ ✓ ✓ ✓∗ ✓

PyPI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

npm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cargo ✓ ✓

NuGet ✓ ✓ ✓ ✓

Go ✓ ✓ ✓

* Gradle [38] tool is vulnerable to Dependency Confusion Attack (𝐶1).

all packages’ versions and release time; the npm registry
provides CouchDB APIs [32], which can be used to obtain
package addition and deletion events. Adversaries can also
find expired domain names by analyzing DNS records
(e.g., via the NXDOMAIN status [33] using the whois
command [34]).

In most attacks, adversaries need to publish packages
to the registries. These packages could contain malicious
code to compromise victims (once the packages are obtained
by victims). Thus, it requires the adversaries to have the
capability to circumvent the target registries’ checking mech-
anisms. While the creation of such malicious code is outside
the scope of this paper, it has been shown that existing
registries already contain many malicious or vulnerable
packages [35] [36] [37] [6]. Once victims are tricked into
downloading and installing malicious packages, the damage
could be severe: adversaries can (1) implant a backdoor so
that they can remotely control the victim’s system [37]; (2)
steal the victim’s sensitive data [35]; (3) generate financial
profits (such as mining cryptocurrency using the victim’s
machine) [6]; and (4) harvest computing resources of the
host machine for launching advanced attacks (e.g., denial-of-
service) [36].

In the remainder of this section, we discuss twelve
potential attack vectors related to different stakeholders,
belonging to six categories. In each category, we introduce
the specific threat model and attackers’ motivation. We mark
six attacks disclosed by us for the first time (to the best of our
knowledge) as novel. We report our new findings for other
attacks, including new exploitation approaches. All vectors
combined form the basis of our scanning tool, RScouter, for
a large-scale measurement study in Section 4. A summary of
investigated registry ecosystems with potential vulnerabilities
is listed in Table 1.
3.1. Package Hijacking in Upstream Registries
Threat Model and Motivation. Attackers attempt to bait
users into obtaining software packages maintained by adver-
saries. They can hijack (e.g., override or take over) existing
packages through normal activities (such as publishing a
package). Once the target package is hijacked, future users
will get the attacker’s package instead of the original one. The
victim package of current users will also be replaced if they
upgrade their packages. Generally, this type of attack requires
attackers to publish new packages or purchase expired domain
names. For publishing a new package, attackers need to

Old Location
(GH/userA/pn)

New Location
(GH/userB/pn) Benign Package

(GH/userB/pn)

GitHub Creates Redirection

Project Transfer or User Rename

Old Location
(GH/userA/pn)

New Location
(GH/userB/pn)

Malicious Package
(GH/userA/pn)

Dangling Account (userA)

Maintainer Account (userB)

Dangling Account (userA)
Re-register

Dangling Account

Redirection Cut-off

(a) Some users use old location to download packages after redirection is created.

(b) Attackers can re-register the account and preempt the old location.

User

User

Maintainer Account (userB)

Benign Package
(GH/userB/pn)

Publish GH/userA/pn package Attacker

Figure 1. Overview of Package Redirection Hijacking Attack (𝑈3).
register a new account on the registry web portal or code
hosting platforms (e.g., GitHub), which typically requires
a unique and verifiable email address. For some hijacking
attacks, attackers need to purchase an expired domain name.
As domain registration generally costs $2∼$20 per year [39],
we consider that the cost is low.

∙ Package Use-After-Free (UAF) Attack (𝑈1). Users rely on a
unique identifier to retrieve a package. A package UAF attack
can occur if a registry allows package maintainers to reuse
the name of a deleted package. Attackers can continuously
monitor the registry’s package list and preempt those deleted
packages with malicious ones. Then, users who attempt to
use the previous packages will download the new (malicious)
packages published by the attackers. Besides, if a project
has integrated the previous packages, the update process will
replace the benign packages with the malicious ones.

∙ Package Maintainer Account Hijacking Attack (𝑈2). If
attackers can compromise a package maintainer’s account,
they can inject malicious code into existing packages or
release new malicious packages under the compromised
account. In particular, existing registries primarily rely on
third-party identity provider services (e.g., email providers) to
register accounts. The resource reuse on the identity provider
side is unknown to software registries. If the email domain
name for registering the maintainer account is expired,
attackers can purchase this domain name and then take over
the account on the registry side through password recovery.
Similarly, attackers can register any deleted GitHub accounts
and take over the associated maintainer accounts if a registry
relies on GitHub accounts to sign in.

∙ Package Redirection Hijacking Attack (𝑈3 – Novel). In
this type of attack, attackers can hijack a package without
compromising the current maintainer account for the target
package, as illustrated in Figure 1. For decentralized reg-
istries, such as Go, there are no web portals for package
maintainers to manage packages, but they utilize code hosting
platforms (e.g., GitHub and GitLab) to publish and manage
packages. Instead, Go only maintains an official website (i.e.,

1581

pkg.go.dev) for users to search and view the Go packages.
Code hosting platforms support users to change their user-
name [10] or transfer their project to another account [11]
(step ❶). For these cases, GitHub will automatically redirect
the package from the old repository location to the new
location (via the HTTP response status code 301 Moved
Permanently), and both links can be used to download
the package (steps ❷❸). The problem is that the registry’s
website (e.g., pkg.go.dev) is unaware of the changes and
does not update the Repository field of the package with
the new location accordingly. As shown in Figure 1, if the
GitHub account corresponding to the old repository location
is deleted, attackers can re-register the account and preempt
the previous repository location (steps ❹❺), and GitHub
will immediately cut off the redirection (step ❻). As a result,
users will obtain the malicious package when downloading
or upgrading the victim package if they use the registry’s
official website (step ❼).
3.2. Package Hijacking in Registry Mirrors
Threat Model and Motivation. This type of adversary
attempts to hijack packages in registry mirrors. However,
they do not have the capability to directly publish a package
to the mirror (to potentially hijack a package). Instead, they
can monitor package information in the target mirror and
publish packages to the corresponding upstream registry.

∙ Mirror Package Override Attack (𝑀1 – Novel). Registry
mirrors should maintain exactly the same content as the
official registry. However, in practice, a mirror might still
store packages that do not exist in the upstream registry. For
example, a mirror may not synchronously delete packages
that have been deleted in the registry. Another example is
that mirror maintainers might publish internal packages. If
a mirror stores a package that does not exist in the official
registry, it may allow attackers to override the package on the
mirror. Attackers can compare the package lists between the
official registry and the target mirror to locate those packages.
Then they can publish a package to the registry with the same
name, causing the package in the mirror to be overwritten
during the synchronization process. In particular, for mirrors
that use the proxy mode or support forced synchronization,
attackers can accelerate the attacking process by forcing a
package sync.

∙ Case Sensitivity Confusion Attack (𝑀2 – Novel). Some
registries support package names with mixed letter cases.
For example, in the npm registry, Buffer and buffer are two
distinct packages. However, a registry mirror may fail to
handle the case logic correctly. In this situation, no matter
what the download request is (e.g., Buffer or buffer), users
will always get the same package (e.g., buffer). Thus, the
downloaded package by users will not match the package
name they entered. Attackers can exploit registry mirrors by
simply publishing a malicious package with a different case
of the benign package name.
3.3. Typosquatting (𝑇1) in Registries
Threat Model, Motivation, and Attacks. Typosquatting
has been a widespread tactic for abusing many Internet

services [40] [41] [42] [43]. This type of adversary attempts
to exploit potential typos made by users in software registries.
Attackers can generate many typosquatting package names
similar to existing popular and benign packages. If users
accidentally misspell the package name (e.g., by making a
typo) or omit the specifier of a package name, they will
obtain an incorrect package instead of the intended one. In
particular, some registry ecosystems like Maven, npm, and
Go use a segmented package name scheme, which consists
of a scope segment and a name segment: the former should
be unique in the registry, and the latter can be duplicated.
In this case, attackers can carry out typosquatting attacks by
constructing a package with the exact same name segment
and a similar scope segment as the victim package.

We also consider a cross-registry scenario [44] where
multiple registries contain packages with the same package
name. Users might naively think that these packages across
different registries provide the same functionalities. Adver-
saries can exploit this to launch a cross-registry squatting
attack by intentionally publishing lure packages whose names
exist in other registries but not in the target registry. As a
result, users might download the squatting package.
3.4. Reference Attack and Variants
Threat Model and Motivation. In this type of attack, we
assume users have already downloaded one normal package
controlled by adversaries (e.g., via the above-mentioned
hijacking or typosquatting attacks). Meanwhile, although
adversaries have the capabilities to create packages containing
vulnerabilities in registries, it is challenging to create a
large amount of them without being noticed. We assume
adversaries may only successfully deploy a limited number
of malicious packages in registries. Also, those malicious
packages may not be popular (users will not download them
voluntarily). Thus, adversaries have the motivation to attract
victims to use their malicious packages.

The normal package controlled by attackers looks un-
suspicious to users, as the malicious logic is not directly
implemented in this package. Instead, adversaries attempt
to utilize this normal package to further direct victims to
their malicious packages through the methods described
below. The motivation is to mount the attack stealthily (by
avoiding publishing many packages that directly contain
malicious code/vulnerability) but to affect more victim users.
Adversaries can (1) reduce the number of uploaded packages
directly containing malicious logic so that they can reduce
the possibility of being detected; and (2) attract victims to
download unpopular malicious packages.

∙ Package Reference Attack (𝑅1). Instead of injecting ma-
licious code directly into existing packages, attackers can
reference malicious packages in a normal package. Users will
then automatically download malicious packages when using
the normal package. Such an attack is subtle as malicious and
trusted code is stored separately in different packages. It has
been used in practice: the maintainer imports a dependent
malicious package (i.e., the peacenotwar package) in the
recent npm package node-ipc [45] incident (CVE-2022-
23812), and attracts tens of thousands of users to download.

1582

Dangling References. In particular, we find the existence
of many dangling references in published packages. A dan-
gling reference is a non-existent package (potentially caused
by package unpublishing) referenced by benign packages.
Attackers can exploit these dangling references to launch
package reference attacks by hijacking the dangling package
(e.g., via publishing a package with the same name). For
this package, they can directly publish malicious packages
or further reference to other malicious packages (i.e., nested
dependency). Thus, for safety concerns, registries should be
cautious about these references. For example, they should
remove any normal packages that reference known malicious
and dangling packages.

∙ Ghost Package Attack in Mirrors (𝑅2 – Novel). The
package reference threat can be even worse in registry mirrors
if they fail to unpublish malicious packages synchronously.
The problem is that registry mirrors may not handle package
synchronization properly, especially for package unpublish-
ing. A registry can unpublish a package for security or
maintenance reasons. Depending on its policy, a registry
may (1) entirely delete a package’s content and metadata,
(2) remove it from the index file while keeping package
content, or (3) only change package status. If a registry
mirror cannot precisely synchronize with the official registry
in the package unpublishing operation, some packages that
have been unpublished in the official registry will still be
accessible in the mirror. We refer to these packages as ghost
packages in mirrors. If the package reference attack happens
to the ghost package (i.e., referencing a ghost package),
mirror users will still suffer the threat even when the original
malicious package has been deleted from the registry.
Creating Ghost Packages. Attackers could deliberately
create a ghost package in these vulnerable mirrors. First, they
can publish a malicious package to the registry and then wait
for (or force) the mirror to synchronize the package. After
that, they can actively delete it from the registry. Because the
mirror cannot precisely synchronize with the official registry,
this package becomes a ghost package in this mirror. Also, if
automated malware detection systems [46] [47] only monitor
official registries but not mirrors, it might be difficult to detect
these malicious ghost packages. Attackers can intentionally
reference a malicious ghost package (in a normal package)
to attack mirror users.
3.5. Registry Client Related Vulnerabilities

We further report two vulnerabilities in existing registry
clients. We find that, in certain conditions, some registry
clients cannot correctly handle different versions of the same
package. While exploiting them requires strong threat models
(described individually below), they could still potentially
cause security threats to users.

∙ Dependency Confusion Attack (𝐶1). It is common for
users to use multiple sources (e.g., public and private
registries) to download packages. This hybrid configuration
might automatically pick the source with the highest version
number for a package with multiple different versions. A
dependency confusion attack (DCA) occurs when attackers

discover a private package that does not exist in public
registries [48]. Attackers can simply publish a malicious
substitute with the same name but a higher version number
to public registries, forcing the users to download the
malicious version unknowingly. This attack differs from the
aforementioned hijacking attacks, as attackers do not override
any packages in registries. However, it requires the attacker
to gain internal information about private packages. Previous
works have studied this problem in the virtual repository
mode supported by many popular package management tools
(e.g., Nexus [15] and Artifactory [16]), referred to as virtual
repository-side DCA. Both public and private registries are
logically integrated into a virtual repository. Thus, users
using these virtual repositories potentially suffer from this
attack. We further show that some registry clients can be
similarly exploited (referred to as registry client-side DCA).
Users configure multiple upstream registries for registry
clients without using the virtual repository. Both cases will
automatically pick the package with the highest version
number for users. We illustrate the details of both attacks in
Figure 9 in the Appendix.

∙ Package Version Downgrade Attack (𝐶2 – Novel). Packages
can set constraints on their allowed versions of all dependent
packages (i.e., the maximum and minimum package versions)
in package configurations, to avoid using buggy versions
of a particular package (named as 𝑃𝑣𝑢𝑙). We find that
these constraints might be broken by package references
in some registry clients. If another package (used by the
user) references a lower version of 𝑃𝑣𝑢𝑙, the registry client
will replace the existing version of 𝑃𝑣𝑢𝑙 with the specific
lower version, which the constraint prohibits. Attackers can
exploit 𝐶2 to break version constraints of other packages, if
the victim user has already downloaded one normal package
controlled by adversaries, as well as a benign version of
package 𝑃𝑣𝑢𝑙. Attackers can then reference a low-version of
𝑃𝑣𝑢𝑙 (which contains vulnerabilities) in the normal package.
As a result, the benign version of package 𝑃𝑣𝑢𝑙 in the victim’s
client will be replaced by the vulnerable low-version. Such
an attack is unobtrusive for users as the current version of
all used packages has no malicious code.
3.6. Miscellaneous Vulnerabilities

We finally present two miscellaneous vulnerabilities.
Exploiting them might be difficult in practice, as it requires
attackers to have extra capabilities. However, we believe
registries and mirrors should prevent them from happening.

∙ Package Version Reuse Attack (𝑂1 – Novel). If the
registry allows version reuse (i.e., packages that use the same
version number but have modified code), it potentially allows
attackers to inject malicious code stealthily. Instead of directly
publishing a malicious package (which users might notice),
attackers can first publish a normal package to attract users.
After victim users have downloaded this normal package, they
can update it with malicious code while keeping the version
number unchanged. Users might be unaware of the change
with the same version number. Furthermore, it can attack
users with version pinning enabled, a feature supported by all

1583

registry clients. Users can use version pinning to indicate the
specific version of the package, ensuring the same codebase
is used (and potentially avoiding vulnerable versions). For
the above reasons, registries usually have disabled version
reuse, such as the PyPI and npm registries [49] [50].

∙ Package Tampering Attack (𝑂2). A package generally
contains an integrity checking file (e.g., SHA1 checksum)
to avoid using tampered packages during the downloading
process. Registry mirrors should not remove this integrity
checking file; otherwise, users have to turn off the registry
client’s package integrity checking function to use the mirror
normally. It might cause damage if adversaries can intercept
the user’s network traffic. For example, if registry mirrors
support the insecure HTTP channel, adversaries can modify
packages by implementing a MITM attack [31].
4. Measurement Methodology

To investigate the current security status of the software
registry ecosystem, we design RScouter to monitor popular
registries and their mirrors continuously. Overall, RScouter
first collects a broad spectrum of package information (e.g.,
package content and metadata) and monitors various events
(e.g., package addition, deletion, and modification). It then
conducts a differential analysis of the contents between an
official registry and its mirrors to capture any inconsistency.
With the collected data, RScouter adopts multiple vulnera-
bility detectors to find potential vulnerabilities. The overall
workflow of RScouter is illustrated in Figure 2. This section
details all components of RScouter. We also discuss ethical
concerns and limitations.
4.1. Data Source
Registries. We strive to cover all types of registries, includ-
ing both compiled and interpreted programming languages,
centralized and decentralized registries, and different login
methods. We thus select official registries for the six popular
programming languages based on the TIOBE [51] and PYPL
[52] popularity indices, including Maven Central, PyPI,
npm, NuGet, Cargo, and Go. Among them, Maven Central,
PyPI, and npm utilize emails to register package maintainer
accounts. NuGet uses Microsoft accounts, and Cargo uses
GitHub accounts for sign-in. Finally, Go has no centralized
package hosting site, and packages are directly maintained on
code hosting platforms. We treat the code hosting platform’s
account as the package maintainer account.
Registry Mirrors. Since there is no official registry mirror
list, we manually find several widely used mirrors for each
registry through the GitHub and Google search functions.
While most threats studied in this paper are general problems
in mirrors, we primarily focus on mirrors in China, as mirrors
are widely used there to accelerate and bypass the Great
Firewall [69]. We choose seventeen different target mirrors
from all six registries (details in Table 2).
4.2. Crawler and Package Parser

We first develop a crawler to collect package information
and observe all related activities (e.g., releasing a new

TABLE 2. Overview of potential threats on each registry mirror.
The columns highlighted in gray color indicate novel attacks. The ✓

means vulnerable.
Registry Mirrors 𝑀1 𝑀2 𝑅2 𝑂2

Maven Central
Aliyun [53] ✓
Huawei [54] ✓ ✓

NJU [55] ✓

PyPI
Aliyun [56] ✓
Douban [57] ✓ ✓ ✓

NJU [58] ✓
Tsinghua [59] ✓ ✓

npm
Aliyun [14] ✓ ✓ ✓ ✓
Huawei [60] ✓ ✓
Tencent [61] ✓

NJU [62]

Cargo
Tsinghua [63]

STJU [64]
USTC [65]

NuGet Huawei [66] ✓ ✓
Azure China [67]

Go Qiniu [68]

version or removing a package). All six target registries
provide package index files maintaining the package name,
version, and other information. When a package changes,
the corresponding package index file changes accordingly.
We thus regularly record package information by parsing the
package index file daily. We also download and record the
package and its metadata for every version of all packages.
Particularly, we extract references between packages and
build a dependency graph.

We use three different strategies for registry mirrors. (1)
For mirrors that provide package index files, we use the
processing method similar to the above; (2) for mirrors that
allow traversal of their file structure on the web, we collect
data through a web crawler; (3) for other mirrors, we collect
packages and their metadata using the mirrors’ download
interface. Notably, for the last method, we consider that a
deleted package (from the registry) is removed from the
mirror if it cannot be downloaded.

We extract each package’s repository information (e.g.,
the registry or mirror information), package name, version,
publish time (i.e., the package’s release time), maintainers,
contact information, dependency packages, and file hash
values. The maintainer’s information includes the login
account (i.e., maintainer account) for managing the package
on the registry web. The contact information represents the
package developers’ contact information (typically emails).
Maintainer Accounts. We use several approaches to extract
the maintainer accounts. First, npm and Maven Central allow
us to obtain account information directly from public sources.
npm provides the package maintainer account information,
including username and email, in the package metadata, from
which we successfully extracted 595,508 unique accounts.
Maven Central uses JIRA [70] to manage package publish
requests [71]. When a maintainer applies for a new package
release, she/he needs to register an account on JIRA and
create an issue claiming the requested package name. Then

1584

Publish TimeRegistries and Registry
Mirrors

Registries

Data Source

Registry Mirrors

Crawler Package Parser

Event Monitor Vulnerability

Detector

Diff Analyzer
Result

Cargo

Metadata

Package Index

Package File

Others
Version Remove

Package Remove

Status Change

Version

Dependency

Package Name

Figure 2. Workflow of RScouter.

Maven Central will use the same login email and password as
the applicant’s JIRA account to create a maintainer account
on the web portal. Anyone with a JIRA account can browse
all issues, including the creator’s login email and requesting
package name. We use this method to successfully extract
21,213 independent accounts in Maven Central.

For Cargo and Go, we extract their account information
through the source code repository URL. Cargo uses the
GitHub account sign-in function to log in to the registry
maintainer account. Meanwhile, most packages in Cargo
expose the source code repository URL on GitHub, where
we extract the GitHub account identifier. Among the 74,441
packages in Cargo, we find that 56,795 (76.3%) packages
expose GitHub links, and a total of 16,441 independent
accounts are collected. Similarly, we analyze the vast majority
of Go packages hosted on GitHub (91.8%) and GitLab (1.2%),
and extract a total of 206,220 independent accounts.

Next, for PyPI, we infer maintainer accounts through
contact information. PyPI does not disclose the maintainer’s
account in package metadata by default, but 290,911 out
of 346,000 (84.1%) packages provide a total of 138,039
independent contact emails. We infer that most contact emails
are the same as the maintainer accounts’ login emails. For
example, for Maven Central and npm that provide both
information, 46.5% of 109,385 Maven Central accounts and
66.3% of 577,000 npm accounts use the same email for
both contact and maintainer account. Thus, we conduct an
analysis using the contact information on PyPI.

Finally, we find that NuGet does not expose the main-
tainer account or contact information. If the user wants to
contact the package maintainer, NuGet utilizes an email
forwarding function that only exposes the email when the
maintainer replies. Thus, we are unable to collect the account
information on NuGet.
4.3. Event Monitor and Diff Analyzer

RScouter monitors several events in registries, including
the addition, removal, and modification of packages. Par-
ticularly, registries or package maintainers might remove a
specific version or the whole package (i.e., all versions of
a package). Instead of removing a package, they can also
change the access status of a package from downloadable to
not-downloadable. RScouter also records if the content of a
specific version of the package file has been changed.

RScouter further conducts a differential analysis of the
contents between a registry mirror and its corresponding
official registry. As registry mirrors are supposed to maintain
the same content as the official registry, any differences
can potentially be used to identify problems in mirrors. In

particular, we focus on the following differences: (1) mirrors
do not synchronously remove the deleted package in the
official registry; (2) mirrors do not synchronously remove
some versions of packages deleted from the official registry;
(3) mirrors do not synchronize a package’s access status
change in the official registry; (4) packages only exist in
mirrors but not in the official registry; and (5) mirrors modify
the contents of the package file.
4.4. Vulnerability Detector

Based on the logic of each attack, we implement cor-
responding detectors to identify potential vulnerabilities
in the existing software registry ecosystem. Since most
implementations are trivial, we list some details below. We
adopt a similar method as [20] to identify vulnerable email
accounts that attackers can potentially hijack. We use the
WHOIS lookup service to find expired domain names by
checking the NXDOMAIN status (which indicates a non-
registered domain), whose accounts are then considered
vulnerable. We also utilize the APIs provided by GitHub [72]
and GitLab [73] to find deleted accounts. We detect version
reuse if the hash value is the only difference for two tuples
⟨repository, package name, version, hash value⟩.

In mirrors, we first collect and group all packages with the
same name but different cases in a registry. For each group
(which includes at least two packages), we use the registry
client to download each package and observe whether or not
the downloaded package is inconsistent with the requesting
name. For attacks related to references, we focus on two
situations: malicious references and dangling references. The
former means a benign package refers to a known malicious
package (e.g., identified by the registry). The latter means a
benign package refers to a non-existent package that attackers
can exploit.
4.5. Ethical Considerations

We take ethical considerations very seriously. To assess
security issues in software registries, we constantly monitor
and measure package status in target registries and mirrors.
Also, we intentionally register several accounts and upload
multiple packages to the registry ecosystems. For all these
experiments, we have conducted them in legitimate manners.
First, we never compromise any accounts in any involved
parties but register all accounts legally through the web
interface. Meanwhile, all crawled information is public and
can be obtained through legitimate approaches. Second, we
never intentionally trick users. Szurdi et al. [74] studied
email typosquatting by intentionally registering typosquat-
ting domain names, and Liu et al. [75] studied container

1585

typosquatting by intentionally publishing docker images. We
have not conducted similar experiments, but only reported
the current status (e.g., potential threats). Third, we have
never hijacked any account. For most threats, we verify them
on our own package, which is set as private when possible.
Finally, at the end of our study, we have manually deleted
all of our published packages/accounts and disclosed our
findings to the corresponding parties via emails.

The only exception is for the Mirror Package Override
Attack (𝑀1). The verification step of 𝑀1 is semi-automated.
It includes an automated process to identify potentially
vulnerable packages in mirrors based on the Diff Analyzer of
RScouter (e.g., by finding packages that only exist in mirrors)
and a manual process to further confirm the vulnerability.
However, we cannot verify the problem with our own package
as we are unable to directly publish a package to a mirror. We
have conducted the following steps to minimize the potential
impact. First, for packages that only exist in mirrors, we
publish a package with the exact same name and content to
the official registry. We then observe whether the package
in the mirrors is overridden. If the package is overridden,
only the package description will be changed, which has no
(or negligible) impact on users. For the first tested mirror,
we only tested two packages in total (the first one to verify
the vulnerability and the second one to avoid measurement
errors). We then immediately contact the mirror maintainers
to inform them of the vulnerability. For the rest of the mirrors,
we conducted the experiments after the corresponding mirror
maintainers having granted our permission. All our uploaded
packages are removed immediately after the verification. In
fact, all mirror maintainers have confirmed that no real users
were affected during the experiment. Thus, we argue that
the ethical impact is negligible.

4.6. Limitations
Registries and registry mirrors are black boxes for us;

we can only detect potential threats through data analysis
and testing. Thus, our approach might cause false posi-
tives/negatives. First, we can only find contact emails for
PyPI when collecting the maintainer accounts, and it may
generate false positives as contact emails are not necessarily
the same as maintainer accounts. Similarly, because we
cannot find a complete list of malicious packages deleted
by the PyPI registry, whose names are not allowed to
re-register, it also may cause false positives. Second, we
utilize the NXDOMAIN status to identify expired email
domain names. This method cannot cover expired domains
registered by domain name registrars or brokers for sale.
Thus, our result might contain false negatives, indicating that
the actual situation might be even worse than our results.
Third, the account hijacking attack may not succeed if the
account is protected by multi-factor authentication (MFA).
However, we find that all registries either do not provide
MFA functionalities (i.e., Maven Central, Cargo) or do not
enable MFA by default (i.e., PyPI, npm, NuGet). Thus, the
impact of MFA might be limited. Note that npm has forced
MFA login authentication from March 1st, 2022, later than

 16,621
(15.1%)

38,496 (61.7%)

Republished UAF Attack Vulnerable

85,192 (77.4%)

UAF Attack VulnerableRepublished

PyPI
Unpublished

(110,096)

npm
Unpublished

(62,395)
21,787 (34.9%)

Same Maintainer Different MaintainerSecurity Placeholder

229 (0.4%)1,883 (3.0%)
8,283 (7.5%)

Figure 3. PyPI and npm unpublishing statistics.
the end time of our evaluation. Fourth, according to GitHub
policy [76], the deleted account name becomes available after
90 days. Some vulnerable accounts we uncovered may still be
in the 90-day time window, making registration impossible.
Finally, we cannot pull all packages from the registry mirrors
that do not provide a package index file and do not allow us
to traverse the file structure. As a result, we cannot determine
whether these mirrors contain packages that do not exist in
their corresponding registries (as 𝑀1).

5. Measurement Results
We adopt RScouter to conduct the evaluation for twelve

months, starting from January 2021, and have collected
4,061,330 unique packages across 53,282,905 distinct pack-
age versions. We identify that many registries and mir-
rors monitored by RScouter are vulnerable to the threats
mentioned in this paper. In this section, we report our
measurement results in detail.
5.1. Package Hijacking in Upstream Registries
Package Use-After-Free Attack (𝑈1). We find that PyPI
and npm are vulnerable to this attack. In PyPI, we use its
XML-RPC APIs [77] to gather package updating activities,
while in npm, we obtain the list of unpublished packages by
continuously monitoring the changes in the package index.
Our results indicate that the unpublishing operation happens
frequently: 110,096 packages in PyPI and 62,395 packages
in npm (since August 2021) have been unpublished. Any
of these packages that are not republished are subject to
this attack. Specifically, the number of vulnerable packages
is 85,192 (77.3%) in PyPI and 38,496 (61.7%) in npm, as
shown in Figure 3.

We further analyze whether the 𝑈1 risk already existed
in these two registries. Among 24,904 republished pack-
ages in PyPI, 8,283 (33.2%) were republished by different
maintainers. If a package is identified as malicious and
deleted by the registry, PyPI does not allow re-registration
of the package with the same name. As for npm, 229 out of
23,899 republished packages were republished by different
maintainers. Surprisingly, the npm web portal displays the
download count of the previously unpublished package on
the republished one, making it more difficult for users to
identify a package UAF attack.
Package Maintainer Account Hijacking Attack (𝑈2). We
find that five registries (except NuGet) are vulnerable to

1586

Maven PyPI npm Cargo Go

103

104

Pa
ck

ag
e

Co
un

t

Vulnerable Accounts
Vulnerable Packages

0

2

4

6

8

10

Vu
ln

er
ab

le
 A

cc
ou

nt
 R

ad
io

 (%
)

Figure 4. Package maintainer accounts takeover
measurement results.

0 10 20 30
Number of Packages in An Account

0%

20%

40%

60%

80%

100%

CD
F

Figure 5. Package redirection results.

0 5 10 15 20 25 30

102

103

104

Da
ily
 D
ow

nl
oa

d
Co

un
t

Old Location
New Location

Figure 6. Vulnerable Go packages’ daily down-
load count from the Qiniu proxy (2022-02-
12∼2022-03-13).

𝑈2. As shown in Figure 4, all registries have over 16,807
accounts and 40,327 vulnerable packages in total. The ratios
of vulnerable accounts to all accounts in each registry vary
from 0.44% (Cargo) to 4.96% (Go). We should mention that,
even after taking over the maintainer account, Cargo does
not allow attackers to modify packages published by the
previous owner. However, attackers hold control of all other
resources and can publish new packages under this account.
Package Redirection Hijacking Attack (𝑈3). Go is vulner-
able to 𝑈3. From 597,340 Go packages hosted on GitHub,
we find 11,788 (2.0%) vulnerable packages with redirection,
for which the accounts corresponding to the old location
have been deleted. Among 8,323 packages hosted on GitLab,
we detect 333 (4.0%) vulnerable Go packages. Figure 5
shows the distribution of the number of packages affected
by those deleted accounts. 64.4% of those accounts affect
one project, and 6.7% of them affect more than five projects.
In particular, the account s**io (name hidden due to ethical
concerns), which has been deleted on GitHub, has affected
32 Go packages.

Since Go is a decentralized registry, there is no download
count for each package. We thus use a Go proxy [68]
that provides download statistics to evaluate the impact
if these Go packages are under attack. Figure 6 shows
the number of downloads using both the old and the new
location for vulnerable Go packages in the time window
from February 12th, 2022, to March 13th, 2022. We can
observe that the old location still attracts many downloads.
Some packages even have the old location dominated for
downloads. For example, all 6,066 downloads of the package
github.com/0LuigiCode0/library are from the old location
github.com/000mrLuigi000/Library. Note that our data is
collected from merely one proxy, and the actual download
count should be much larger.

5.2. Package Hijacking in Registry Mirrors
Mirror Package Override Attack (𝑀1). We find a large
number of packages in PyPI, npm, and Maven mirrors can
be overridden immediately. Specifically, for PyPI mirrors,
51,387 packages in Douban, 32,616 packages in Tsinghua,
and two packages in NJU are vulnerable to this attack. For
npm mirrors, we find that 11,763 vulnerable packages exist
in the Aliyun mirror and 2,363 packages in the Huawei
mirror. Finally, the NJU Maven mirror exposes 11 packages.

TABLE 3. Incomplete list of case sensitivity problems in the Aliyun npm
mirror. The packages highlighted in gray color are the winners.
Packages with Uppercase Packages with All Lowercase
Name DL∗ Update† Name DL∗ Update†

Buffer 7,219 2011-08-01 buffer 173M 2020-11-23
Express 574 2016-12-07 express 95M 2022-02-17
Promise 1,111 2016-09-13 promise 55M 2020-03-02
D 23,390 2017-08-11 d 42M 2019-06-14
MD5 24,008 2015-07-15 md5 31M 2020-08-02
Validator 1,761 2021-08-01 validator 28M 2021-11-01
JSONStream 24M 2018-10-14 jsonstream 12,114 2015-04-30
FileList 17,294 2014-10-24 filelist 22M 2021-02-06
jQuery 13,279 2012-07-01 jquery 18M 2021-03-02
jStat 79,393 2019-11-04 jstat 499,271 2021-08-10
* Download count from 2022-02-04 to 2022-03-04. M = Million.
† Last update time of a package. The date format is yyyy-MM-DD.

Just like normal packages on the mirror, these packages are
all listed on the index page and can be accessed by public
users. We have further confirmed that none of these packages
is malicious by antivirus software detection and manual
verification. After collaborating with mirror maintainers, we
find that the vulnerable packages in both NJU PyPI and
Maven mirrors are private (e.g., added by internal users).
The vulnerable packages in all other mirrors are packages
that have been unpublished in official registries but are not
synchronously deleted in mirrors.
Case Sensitivity Confusion Attack (𝑀2). We find npm
contains package names with mixed cases. Although npm
has banned newly released packages from including any
uppercase letters since 2017 [78], there are still 793 groups,
a total of 1,588 packages, with the same name but different
cases. Some packages are very popular, as shown in Table 3.
For example, the package buffer has more than 170 million
downloads per month, and Buffer has more than 7,000 down-
loads per month. These packages were published before the
uppercase ban, but they can still be updated and downloaded.

We then find that the Aliyun npm mirror, which has
more than 2 billion monthly downloads, does not handle
these mixed-case packages properly. Our testing results show
that users will always get the last updated package (i.e., the
package with the latest version release time). For example,
the buffer is updated after Buffer; no matter which package is
requested by the user (Buffer or buffer), the final downloaded
package is always the buffer.

The case sensitivity confusion problem might cause a

1587

TABLE 4. Top 10 downloaded
packages affected by 𝑀2.

Package Name Downloads∗

objectFitPolyfill 1,106,785
CSSselect 162,742
CSSwhat 155,559
jxLoader 137,346
diveSync 83,180
canvas-toBlob 41,734
wProto 30,874
wConsequence 30,850
wCopyable 30,672
wColor 30,404
* From 2022-02-04 to 2022-03-04.

com.google.code.gson gson:

Group ID Artifact ID

github.com/tidwall gjson/

Host Account Module Name

@josecarlosrz json-db/

Scope (optional) Module Name

Maven

Go

npm

Name SegmentScope Segment

Figure 7. Package name schemes.
Aug, 2021 Nov, 2021 Mar, 2022 Jul, 2022

101

102

103

104

105

106

Ev
en

t I
nt
er
va

l (
M
in
ut
es
)

1 day

1 month

1 year

Figure 8. Version reuse results.
TABLE 5. Typosquatting measurement results.

Identical Pkgs Segment
Registry # Pkgs # DL-1 Pkgs # Deleted # DL-1 Pkgs # Malicious # DL-1 Pkgs # DL-1 Pkgs # Total

Maven Central 457,827 81,149 (17.7%) - - - - 353 (3.5%) 10,202
PyPI 363,320 116,369 (32.0%) 110,096 89,121 (80.9%) - - - -
npm 1,973,657 132,068 (6.7%) 40,608 35,792 (88.1%) 21,787 21,108 (96.9%) 34,792 (15.0%) 231,416

Cargo 79,510 18,304 (23.0%) - - - - - -
NuGet 521,201 47,439 (9.1%) - - - - - -

Go 644,256 73,249 (11.4%) - - - - 372 (0.1%) 268,921

more severe security threat. For a benign package containing
uppercase letters in the npm registry, if its corresponding
package with all lowercase letters does not exist, the attacker
can publish a malicious package with all lowercase letters
to the registry. As long as the attacker ensures that the last
update time of the malicious package is newer than the benign
one (which is very easy to achieve), any user using the Aliyun
npm mirror to download the benign package (with uppercase)
will end up with the malicious package (with lowercase),
even though the user has entered the correct benign package
name. We count the number of such vulnerable packages and
find this attack threatens 2,038 packages. The top 10 most-
downloaded packages among them are shown in Table 4.
Particularly, the package objectFitPolyfill has more than 1
million downloads in one month, potentially affecting a
significant number of users.

5.3. Typosquatting (𝑇1) in Registries

It has been shown that people are more likely to make
typos that involve a one-character distance, also called as
Damerau-Levenshtein distance one (i.e., DL-1) [79]. We
hence measure the package identifier pairs of DL-1 for
all six registries. The result is shown in Table 5. Among
all existed packages in Maven Central, PyPI, npm, Cargo,
NuGet, and Go, the packages with at least one similar DL-
1 package account for 81,149 (17.7%), 116,369 (32.0%),
132,068 (6.7%), 18,304 (23.0%), 47,439 (9.1%) and 73,249
(11.4%), respectively.

We have two interesting observations: (1) on PyPI and
npm, which allow deleting packages, the deleted packages
with at least one similar DL-1 package are 81.0% and 88.1%,
respectively; and (2) 96.9% of malicious packages (officially
marked by npm) are similar to existing benign packages (i.e.,
DL is 1). The result indicates that typosquatting is already
heavily abused by attackers.

We also analyze registries using the segmented package
name, such as Maven Central, npm, and Go. As shown in
Figure 7, typically, the package name contains two parts: a
scope segment (i.e., a specifier used for namespace isolation)
and a name segment (i.e., a label used to identify a package in
the scope). As Table 5 shows, in Maven Central, there are 353
(3.5%) pairs of similar packages whose name segments (i.e.,
Artifact ID) are exactly the same, and scope segments
(i.e., Group ID) are DL-1. This number is 372 (0.14%)
in Go, and even higher in npm, up to 34,792 (15.0%).
These results show that the segmented package name also
potentially suffers the typosquatting threat.

In npm, we further find a scope-related typosquatting
threat, because the scope in npm is optional [80]. There are
266,465 (13.50%) npm packages with scope segments, but
their corresponding non-scoped package names are available
for registering. For example, there are 462 different scopes
for package names @{scope}/lo**nt (name hidden due to
ethical concerns), but attackers can register the name lo**nt
without any scope. If users forget to enter the scope segment
(since it is optional), they will download the lo**nt package
without any scope. In total, we identify 233,922 such package
names, affecting 80,013 scopes.
Cross-Registry Squatting. We evaluate the cross-registry
squatting risk across four registries with non-scoped (or
optional-scope) package names, including PyPI, npm, Cargo
and NuGet. Among the top 10k PyPI packages downloaded
in 2021, only 363 package names exist in all four registries
simultaneously, and 747 package names exist in three reg-
istries. Thus, the last registry might be vulnerable to this type
of typosquatting risk. For example, we find a package r**x
(name hidden due to ethical concerns), with more than 20
million downloads per month in PyPI, more than 67 million
downloads in total in Cargo, and thousands of downloads
per week in npm, does not yet exist in NuGet. Attackers can
preempt this in NuGet and potentially attract victims.

1588

5.4. Reference Attack and Variants
Package Reference Attack (𝑅1). During our monitoring, we
discover eight real package reference attacks against PyPI.
One is the package pydspace released on December 18th,
2021. This package does not contain malicious code itself
but refers to the malicious package matlabengineforpython.
It installs the malicious package synchronously during the
installation process. Note that matlabengineforpython was
officially removed by PyPI on March 1st, 2021, before the
release of pydspace. Another is AAmiles, published on May
18th, 2020, which references the malicious package request.
PyPI removed the malicious package request on August 4th,
2020. As a result, when the user uses the PyPI registry to
install pydspace and AAmiles, the installation is terminated
due to the failure of dependency resolution.

However, we find that two widely used mirrors (i.e.,
Douban and Tsinghua) do not delete the malicious package
synchronously. Therefore, users using these mirrors will still
download malicious packages when installing pydspace and
AAmiles. Note that pydspace references a deleted malicious
package, representing a real example of mounting reference
attack on ghost packages.
Dangling References. Moreover, after analyzing more than
120 million dependency information of 1.9 million packages,
we find that 228 packages in npm have the dangling reference
problem: the referenced package does not exist in the registry
and can be taken over by attackers immediately. This is
interesting, as npm explicitly states that a package cannot be
unpublished if other packages depend on it [50]. Installing
those packages will be terminated due to dependency res-
olution failure. Still, once attackers reuse these package
names, their dependency resolution and installation process
will succeed, which means malicious code will be executed.
Similarly, we find 561 packages in PyPI that have the
dangling reference problem.

In addition, when handling a malicious package, npm
will unpublish all versions of the package and then pub-
lish a security placeholder. The placeholder’s name is the
same as the malicious package, but the version is always
0.0.1-security. We find that 803 npm packages with
at least one version reference the security placeholder,
indicating that these packages reference a deleted malicious
package at these versions. Note that attackers cannot exploit
these placeholder-related dangling packages directly.
Ghost Package Attack in Mirrors (𝑅2). We further find
that many mirrors have synchronization issues. First, some
mirrors do not synchronously delete packages that have been
deleted in the upstream registry. These ghost packages are
also vulnerable to Mirror Package Override Attack (𝑀1).Vulnerable mirrors include Douban and Tsinghua PyPI
mirrors, and Aliyun and Huawei npm mirrors, with the
specific numbers of vulnerable packages presented in 𝑀1.Second, some mirrors do not synchronize the access
status of the package when the corresponding one in the
registry changes. In particular, Maven Central does not delete
any known malicious package, but only changes its access
status to inaccessible. When a user attempts to download

the package, the registry returns an HTTP status code 403
Forbidden, preventing the user from obtaining it. However,
we find that both Huawei mirror and Aliyun mirror have not
updated the access status of packages correctly, resulting
in 233 and 222 ghost packages, respectively. For example,
com.github.codingandcoding:servlet-api [81]
is a known malicious package but still available for
downloading at the above mirrors. Similarly, the Huawei
NuGet mirror also has this problem. We find that the listed
status of 2,358 packages in the Huawei NuGet mirror is
inconsistent with the status of corresponding packages in
the official registry. Note that these ghost packages are not
vulnerable to Mirror Package Override Attack (𝑀1) since
their binary files still exist in registries and thus cannot be
republished by attackers.

Finally, some mirrors do not synchronously delete a
specific version of the package already deleted in the registry.
The npm registry allows maintainers to unpublish a specific
version without unpublishing the whole package. In particular,
since npm handles malicious packages by modifying the
package version (i.e., 0.0.1-security mentioned in 𝑅2),
any version synchronization errors will leave packages (that
have been officially marked as malicious) to still accessible to
mirror users. In particular, we discover that 1,210 packages in
the Aliyun npm mirror have different versions from the npm
registry. We have verified that they are malicious packages
marked by the npm registry.
5.5. Registry Client Related Vulnerabilities
Dependency Confusion Attack (𝐶1). While virtual
repository-side DCA is a well-known attack vector, this paper
mainly analyzes registry client-side DCA. Two conditions
are required to mount 𝐶1 on registry clients: (1) the registry
client supports specifying multiple upstream registries; and
(2) when the registry client tries to download a package
from one (usually private) registry, it actually downloads
the package from another (usually public) registry. We test
each registry client by building two upstream registries and
checking their official documents. For official clients of all
registries, we find that PyPI and NuGet are vulnerable. Go
and npm do not meet the first condition; Maven and Cargo
do not meet the second. However, we find that Gradle [38],
which is a popular third-party registry client for Maven and
used by 49% of Java developers [82], is vulnerable.

Particularly, we find that Java developers often use
multiple registries (e.g., Maven Central, JCenter [83], and
JitPack [84]) at the same time. So Gradle users may suffer
this threat even using multiple public registries. On GitHub,
we find that 485,000 projects use both Maven Central and
JCenter, and 123,000 projects use both Maven Central and
JitPack. For example, we find that 435,513 (95.1%) package
names in Maven Central do not exist in JitPack. Attackers
can publish a malicious package with the same name and
higher version number to JitPack, thereby attacking Gradle
users who use both Maven Central and JitPack.
Package Version Downgrade Attack (𝐶2). We find that
packages installed by pip (the official registry client of PyPI)

1589

are vulnerable to 𝐶2. If two packages pull different versions
of a package (denoted as 𝑃𝑑𝑒𝑝) as dependencies, the later
installed version will overwrite the earlier installed version.
According to the CVE database [85], 328 packages (denoted
as 𝑃𝑣𝑢𝑙; examples including requests and numpy) in PyPI
have known vulnerabilities that existed in some specific
versions. Developers widely use these 𝑃𝑣𝑢𝑙 packages: we find
that 21,977 (6%) packages in PyPI directly depend on them.
Attackers can publish a lure package, which references a
vulnerable version of a 𝑃𝑣𝑢𝑙 package. If attackers can trick
users into installing the lure package, the vulnerable version
of 𝑃𝑣𝑢𝑙 will overwrite the benign one (if it existed), regardless
of any constraint. As a result, this vulnerable version of 𝑃𝑣𝑢𝑙will be further used by all other packages on the victim host.
5.6. Miscellaneous Vulnerabilities
Package Version Reuse Attack (𝑂1). We find that PyPI
used to allow version reuse, but this was in 2015 [49].
Similarly, npm banned version reuse in 2014 [50]. However,
during the evaluation, we find that 559 packages in npm
have experienced 562 version reuse events. These packages
are republished with the same version numbers, but their
contents have been changed. In particular, we find that 557
(99.1%) version reuse events happen within one year, and
five events have a time interval greater than one year. The
package karyon@1.0.0 has the longest interval (1,109
days), which occurred on April 29th, 2022. We show the
details of version reuse events in Figure 8 and list some
packages with version reuse in Table 7 in the Appendix.
However, we are not able to reproduce the version reuse case,
as the checking logic is implemented on the server side. We
have contacted several maintainers for those version-reused
packages. They all mentioned that the publishing process of
those packages is as usual without any special operations.
Package Tampering Attack (𝑂2). We observe two phe-
nomena that could lead to package tampering attacks. First,
some mirrors modify the package content, and thus users
cannot verify the integrity of the package. In particular, the
Huawei Maven mirror will delete the checksum file of all
packages and modify/add content to the package metadata
(i.e., the maven-metadata.xml) file. In addition, we find that
the Aliyun npm mirror not only makes necessary changes to
the metadata (i.e., changes the package’s download address),
but also modifies the created and modified time in the
metadata. These changes make it hard for users to notice if a
package has been tampered with. Second, we find that many
mirrors, including Huawei Maven, Aliyun PyPI, Douban
PyPI, Tencent npm, and Huawei NuGet, can still be accessed
through HTTP. It is insecure and vulnerable to many well-
known attacks, such as a MITM attack.
6. Countermeasures and Disclosure
6.1. Defense Practices

We propose several defensive practices to reduce the
occurrence of discovered threats. While fully addressing
them requires coordination among different stakeholders, the
proposed countermeasures here are primitive and preliminary.

We believe the affected registries or mirrors should enforce
appropriate defensive mechanisms that best fit their systems.

Registries should adopt MFA to reduce account hijacking
related attacks. They can also enforce code signing mech-
anisms so that users can realize potential attacks if the
code signature is different. In addition, registries should add
more scrutiny to automatically filter out suspicious packages.
For example, they should be more careful when handling
package name/version reuse to reduce the risk of a UAF
attack. For registries that rely on code hosting platforms,
they should regularly check user account creation time and
project redirecting conditions on those platforms. Moreover,
we suggest registries provide package operation information
(e.g., package unpublish) via public APIs so that mirrors can
synchronize consistently.

Registry mirrors should ensure that all information in the
mirror (e.g., packages, metadata files, status) are consistent
with the upstream registry, especially for registries that
support package deletion or version deletion. They can also
regularly check and compare with the upstream registry
to detect and avoid any inconsistencies. Mirrors should
update/upgrade their repository mirroring software in time
and they should avoid exposing private packages.

Registry clients should inform users if attacks related to
package version confusion and dependency confusion could
occur. They should also compare the input package name
with popular packages to detect and alert potential typos.

Finally, Package maintainers should enable MFA and
code signing for their accounts and published packages when
possible. If they decide to delete accounts/packages or transfer
projects, they should inform users through package metadata,
GitHub readme file, and others.
6.2. Disclosure and Response

We have initiated responsible disclosure with five relevant
official registries (note that the official NuGet registry is not
vulnerable to most threats) and twelve mirrors maintained
by five entities to help them mitigate the detected threats.
In detail, we have reported all issues found in this paper
and the mitigation practices proposed in Section 6.1 to these
entities. We have received multiple positive feedback. The
npm team has confirmed multiple issues, including package
use-after-free (𝑈1), package maintainer account hijacking
(𝑈2), dangling references (𝑅1), and republished package
inheritance problem (e.g., download count). At the same
time that the npm team attempts to fix the above issues, we
are still working with them to find the cause for version reuse.
Furthermore, they rewarded us with a bug bounty of $2,000.
The Go team has confirmed package maintainer account
hijacking (𝑈2) and package redirection hijacking (𝑈3) issues
and is currently working on mitigation measures for them.
Moreover, the PyPI team has confirmed package maintainer
account hijacking (𝑈2) and package use-after-free (𝑈1) issues.
For the former, PyPI has introduced the un-verify email
mechanism to alleviate it partially. The Aliyun mirror and
Tsinghua mirror have acknowledged our report and confirmed
that those issues are caused by their outdated repository
mirroring software. The Aliyun mirror has fixed the case

1590

TABLE 6. The comparison of the attacks from our paper and prior works.
Attack Vector Prior Works Our Contributions

𝑈1 - Package UAF Mentioned by Ohm et al. [22]. Measure the problem in PyPI and npm on a large scale.
𝑈2 - Package Maintainer
Account Hijacking

Duan et al. [7] indicated that account hijacking is the second
most exploited vectors. Zimmermann et al. [9] studied traditional
methods (e.g., weak/compromised passwords and social engi-
neering); Zahan et al. [8] studied expired email domain for npm.

Disclose a new attack caused by deleted third-party
website accounts, affecting Go and Cargo.

𝑇1 - Typosquatting Duan et al. [7] uncovered many malicious packages with ty-
posquatting package names.

Analyze and measure scoped package names and ty-
posquatting across ecosystems.

𝑅1 - Package Reference
Zimmermann et al. [9] found that package dependencies grows
rapidly in npm. Duan et al. [7] showed that reverse dependencies
can amplify the impact of malicious packages.

Uncover several real attacks on malicious packages; study
dangling references in registries and ghost packages in
mirrors.

𝐶1 - Dependency Confu-
sion (DCA)

Virtual repository-side DCA has occurred several times [27]
[28].

Focus on registry client-side DCA, affecting PyPI, NuGet,
and Gradle in Maven.

𝑂2 - Package Tampering Ohm et al. [22] mentioned the attack on registries. Discover some registry mirrors are vulnerable.
Mirror Related Cappos et al. [86] studied security impact of malicious mirrors. Disclose several new vulnerabilities in benign mirrors.

sensitivity confusion attack (𝑀2) and ghost package issues.
Both Huawei and NJU mirror maintainers confirmed and
acknowledged our findings on their corresponding mirrors.
7. Related Work
Software Registry Ecosystem. The software registry ecosys-
tems face many security threats, such as typosquatting [87],
package vulnerability [88] [89], account takeover [20] [90]
and infrastructure compromise [91]. Many empirical studies
have been conducted on different software ecosystems [92]
[93] [94] [95]. Particularly, Duan et al. [7] designed a
comparative framework to identify security threats in PyPI,
npm, and RubyGems. They detected hundreds of malicious
packages and found that typosquatting and account hijacking
are the two most exploited vectors. They also studied package
reference attacks and found that package dependency may
amplify attack impact. We extend their study by considering
registry mirrors (including package hijacking and reference
attacks) and decentralized registries. We also analyze scoped
packages typosquatting in registries. Zimmermann et al. [9]
studied the account take over attack (𝑈2) through traditional
methods, such as using weak passwords and via social
engineering; and Zahan et al. [8] further analyzed this
problem in npm caused by expired email domain names.
In contrast, we disclose a new account take over attack by
exploiting deleted third-party website (e.g., GitHub) accounts.

Meanwhile, with the growing software ecosystem, pack-
age dependency is getting more complex and causes potential
security issues [96] [97] [98]. Several studies [99] [100]
demonstrated that vulnerable packages might be exploited to
affect dependent packages further, impacting a large part of
the ecosystem. Our research discloses several actual incidents
that exploit reference attacks on malicious packages. Finally,
little research has been carried out on the security of registry
mirrors. Cappos et al. [86] found that attackers can build
their own (malicious) mirror to compromise clients, while
we disclose several new vulnerabilities in benign mirrors. A
detailed comparison with previous works is listed in Table 6.
Resource Reuse and Typosquatting Attack. Resource reuse
attacks are dangerous as they are stealthy for users, and thus
attract extensive research in recent years, including reused
domain names [21] [101] [102] [23], shared TLS certificates

[103], reused email addresses [20] [104], recycled phone
numbers [105] [106], and reused passwords [107] [108]
[109]. Liu et al. [24] analyzed the threat in DNS posed
by dangling DNS records, which adversaries can exploit to
hijack domains. Lee et al. [105] found that a large fraction of
recycled phone numbers is linked to leak login credentials on
the web, which could enable account hijacking. Hanamsagar
et al. [110] reported that 98% of users reuse their passwords
with no changes. In our work, we further extend the resource
reuse problems on popular registry ecosystems and identify
several new threats that widely exist in the wild.

Many research studies have been conducted on typosquat-
ting, which is a common software supply chain attack [41]
[40] [111] [42]. Prior works mainly focus on domain
names [112] [113] [114] or a single software ecosystem [115]
[9]. In this paper, we collect an enormous number of package
name information from multiple software ecosystems and
analyze the possible typosquatting attack in these ecosystems.
Our experimental result shows that typosquatting remains a
significant security threat across different ecosystems.
8. Conclusion

This paper systematically analyzes package-related se-
curity vulnerabilities that existed in different package stake-
holders of the software registry ecosystems. We identified
twelve security threats, including eight new security issues
disclosed for the first time. We developed a scanning tool
to continuously monitor software registry ecosystems for
six popular programming languages, covering millions of
packages in six official registries and seventeen corresponding
mirrors over a one-year measurement study. Our experimental
results show that many packages are vulnerable to identified
security threats. We have discussed potential mitigation,
reported all security issues to corresponding stakeholders,
and received positive responses.
Acknowledgments

We would like to thank the anonymous reviewers for
their insightful comments. We also thank Chaoyi Lu for
assisting in editing this paper.

This work is partially supported by the National Natural
Science Foundation of China (U1836213, U19B2034).

1591

References
[1] “Maven Central Repository Search,” https://search.maven.org/.
[2] “npm,” https://www.npmjs.com/.
[3] “PyPI · The Python Package Index,” https://pypi.org/.
[4] “NuGet Gallery,” https://www.nuget.org/.
[5] “Sonatype’s 2021 State of the Software Supply Chain,” https://www.

sonatype.com/resources/state-of-the-software-supply-chain-2021.
[6] “Popular npm Library Hijacked to Install Password-stealers, Min-

ers,” https://www.bleepingcomputer.com/news/security/popular-npm
-library-hijacked-to-install-password-stealers-miners/.

[7] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio,
and W. Lee, “Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages,” in NDSS, 2021.

[8] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila,
and L. Williams, “What are Weak Links in the npm Supply Chain?”
in IEEE/ACM ICSE-SEIP, 2022.

[9] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small
World with High Risks: A Study of Security Threats in the npm
Ecosystem,” in USENIX Security, 2019.

[10] “Changing Your GitHub Username,” https://docs.github.com/en/acc
ount-and-profile/setting-up-and-managing-your-github-user-accou
nt/managing-user-account-settings/changing-your-github-usernam
e.

[11] “Transferring a Repository,” https://docs.github.com/en/repositories/
creating-and-managing-repositories/transferring-a-repository.

[12] “crates.io: Rust Package Registry,” https://crates.io/.
[13] “Go Packages,” https://pkg.go.dev/.
[14] “Aliyun npm Mirror,” https://registry.npmmirror.com/.
[15] “Nexus Repository - Software Component Management,” https://ww

w.sonatype.com/products/repository-pro.
[16] “JFrog Artifactory - Universal Artifact Repository Manager,” https:

//jfrog.com/artifactory/.
[17] “NuGet Package Version Reference,” https://docs.microsoft.com/en-

us/nuget/concepts/package-versioning.
[18] “Malicious NPM Libraries Caught Installing Password Stealer and

Ransomware,” https://thehackernews.com/2021/10/malicious-npm-li
braries-caught.html.

[19] “Cryptocurrency Clipboard Hijacker Discovered in PyPI Reposi-
tory,” https://bertusk.medium.com/cryptocurrency-clipboard-hijacker
-discovered-in-pypi-repository-b66b8a534a8.

[20] D. Gruss, M. Schwarz, M. Wübbeling, S. Guggi, T. Malderle, S. More,
and M. Lipp, “Use-after-freemail: Generalizing the Use-after-free
Problem and Applying It to Email Services,” in AsiaCCS, 2018.

[21] J. A. Reed and J. Reed, “Potential Email Compromise via Dangling
DNS MX,” 2020.

[22] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain
Attacks,” in Springer DIMVA, 2020.

[23] E. Alowaisheq, “Cracking Wall of Confinement: Understanding and
Analyzing Malicious Domain Takedowns,” in NDSS, 2019.

[24] D. Liu, S. Hao, and H. Wang, “All Your DNS Records Point to Us:
Understanding the Security Threats of Dangling DNS Records,” in
ACM CCS, 2016.

[25] “Millions of Phone Numbers Are Being Reused Every Year,”
https://medium.com/codex/two-thirds-of-mobile-phone-numbers-ar
e-reused-7fbf03e1b88f.

[26] “Recycled Bank Accounts Can Mean Sending Money to the Wrong
Person,” https://www.theguardian.com/money/2016/dec/17/recycled
-bank-accounts-send-money-wrong-person.

[27] “Dependency Confusion: How I Hacked Into Apple, Microsoft and
Dozens of Other Companies,” https://medium.com/@alex.birsan/de
pendency-confusion-4a5d60fec610.

[28] “This week in malware—400+ npm packages target Azure, Uber,
Airbnb developers,” https://blog.sonatype.com/this-week-in-malware
-400-npm-packages-target-azure-uber-airbnb-developers.

[29] “Remote code execution on rubygems.org,” https://justi.cz/security/
2017/10/07/rubygems-org-rce.html.

[30] “Remote code execution on packagist.org,” https://justi.cz/security/
2018/08/28/packagist-org-rce.html.

[31] “How to take over the computer of any Java (or Clojure or Scala)
developer,” https://max.computer/blog/how-to-take-over-the-compu
ter-of-any-java-or-clojure-or-scala-developer/.

[32] “The CouchDB API,” https://docs.couchdb.org/en/stable/api/index.h
tml.

[33] “NXDOMAIN: There Really Is Nothing Underneath,” https://datatr
acker.ietf.org/doc/html/rfc8020.

[34] “Whois - Client for the WHOIS Directory Service,” https://manpag
es.debian.org/stretch/whois/whois.1.en.html.

[35] “Large-scale npm Attack Targets Azure Developers with Malicious
Packages,” https://jfrog.com/blog/large-scale-npm-attack-targets-az
ure-developers-with-malicious-packages/.

[36] “Sonatype Stops Software Supply Chain Attack Aimed at the Java
Developer Community,” https://blog.sonatype.com/malware-remove
d-from-maven-central.

[37] “Malicious PyPI Packages with over 10,000 Downloads Taken
Down,” https://www.bleepingcomputer.com/news/security/malicious
-pypi-packages-with-over-10-000-downloads-taken-down/.

[38] “Gradle Build Tool,” https://gradle.org.
[39] “How Much Does a Domain Name Cost? Find Out!” https://www.

godaddy.com/garage/how-much-domain-name-cost/.
[40] J. Szurdi, B. Kocso, G. Cseh, J. Spring, M. Felegyhazi, and C. Kanich,

“The Long ’Taile’ of Typosquatting Domain Names,” in USENIX
Security, 2014.

[41] P. Agten, W. Joosen, F. Piessens, and N. Nikiforakis, “Seven Months’
Worth of Mistakes: A Longitudinal Study of Typosquatting Abuse,”
in NDSS, 2015.

[42] N. Nikiforakis, M. Balduzzi, L. Desmet, F. Piessens, and W. Joosen,
“Soundsquatting: Uncovering the Use of Homophones in Domain
Squatting,” in Springer ICS, 2014.

[43] K. Tian, S. T. Jan, H. Hu, D. Yao, and G. Wang, “Needle in a
Haystack: Tracking Down Elite Phishing Domains in the Wild,” in
IMC, 2018.

[44] “Package phishing,” http://blog.fatezero.org/2017/06/01/package-fis
hing/.

[45] “node-ipc npm Package Sabotage to Protest Ukraine Inva-
sion,” https://securityaffairs.co/wordpress/129174/hacking/node-ipc
-npm-package-sabotage.html.

[46] “Meet the Developers Behind Sonatype’s Automated Malware
Detection System Securing Open Source Supply Chains,” https://bl
og.sonatype.com/meet-the-developers-behind-sonatypes-automated
-malware-detection-system-securing-open-source-supply-chains.

[47] “New npm scanning tool sniffs out malicious code,”
https://portswigger.net/daily-swig/new-npm-scanning-tool-sni
ffs-out-malicious-code.

[48] A. Birsan, “Dependency Confusion: How I Hacked Into Apple,
Microsoft and Dozens of Other Companies,” https://medium.com/@
alex.birsan/dependency-confusion-4a5d60fec610, 2021.

[49] D. Stufft, “[Distutils] Closing the Delete File + Re-upload File
Loophole,” https://mail.python.org/pipermail/distutils-sig/2015-Janua
ry/025683.html, 2015.

1592

[50] “Npm-Unpublish | Npm Docs,” https://docs.npmjs.com/cli/v8/comm
ands/npm-unpublish.

[51] “TIOBE Index,” https://www.tiobe.com/tiobe-index/.
[52] “PYPL PopularitY of Programming Language,” https://pypl.github.

io/PYPL.html.
[53] “Aliyun Maven Repository Central,” https://maven.aliyun.com/repos

itory/central.
[54] “Huawei Cloud Maven Public,” https://repo.huaweicloud.com/reposit

ory/maven/.
[55] “NJU Maven Repository Central,” https://doc.nju.edu.cn/books/35f

4a/page/maven.
[56] “Aliyun Python Package Index,” https://mirrors.aliyun.com/pypi/si

mple/.
[57] “Douban Python Package Index,” http://pypi.doubanio.com/simple.
[58] “NJU Python Package Index,” https://mirrors.tuna.tsinghua.edu.cn/p

ypi/web/simple.
[59] “Tsinghua Python Package Index,” https://mirrors.tuna.tsinghua.edu.

cn/pypi/web/simple.
[60] “Huawei npm Mirror,” https://repo.huaweicloud.com/repository/np

m/.
[61] “Tencent npm Mirror,” https://mirrors.cloud.tencent.com/npm/.
[62] “NJU npm Mirror,” https://doc.nju.edu.cn/books/35f4a/page/npm.
[63] “Tsinghua Cargo Mirror,” https://mirrors.tuna.tsinghua.edu.cn/git/cra

tes.io-index.git.
[64] “SJTU Cargo Mirror,” https://mirrors.sjtug.sjtu.edu.cn/git/crates.io-

index/.
[65] “USTC Cargo Mirror,” https://mirrors.ustc.edu.cn/crates.io-index.
[66] “Huawei NuGet Mirror,” https://repo.huaweicloud.com/repository/nu

get/v3/index.json.
[67] “Microsoft Azure NuGet Mirror for China,” https://nuget.cdn.azure.

cn/v3/index.json.
[68] “Qiniu Cloud - Goproxy.cn,” https://goproxy.cn/.
[69] N. P. Hoang, A. A. Niaki, J. Dalek, J. Knockel, P. Lin, B. Marczak,

M. Crete-Nishihata, P. Gill, and M. Polychronakis, “How Great is the
Great Firewall? Measuring China’s DNS Censorship,” in USENIX
Security, 2021.

[70] “Sonatype JIRA,” https://issues.sonatype.org.
[71] “OSSRH Guide - The Central Repository Documentation,” https:

//central.sonatype.org/publish/publish-guide/.
[72] “Users API | GitHub,” https://docs.github.com/en/rest/reference/user

s#get-a-user.
[73] “Users API | GitLab,” https://docs.gitlab.com/ee/api/users.html.
[74] J. Szurdi and N. Christin, “Email Typosquatting,” in IMC, 2017.
[75] G. Liu, X. Gao, H. Wang, and K. Sun, “Exploring the Unchartered

Space of Container Registry Typosquatting,” in USENIX Security,
2022.

[76] “Deleting Your User Account,” https://docs.github.com/en/account-a
nd-profile/setting-up-and-managing-your-github-user-account/man
aging-user-account-settings/deleting-your-user-account.

[77] “PyPI’s XML-RPC methods,” https://warehouse.pypa.io/api-referenc
e/xml-rpc.html.

[78] “New Package Moniker Rules,” https://blog.npmjs.org/post/168978
377570/new-package-moniker-rules.html.

[79] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals,” in Soviet Physics Doklady, 1966.

[80] “Scoped Packages,” https://docs.npmjs.com/cli/v8/using-npm/scope.

[81] S. S. R. Team, “Sonatype Stops Software Supply Chain Attack Aimed
at the Java Developer Community,” https://blog.sonatype.com/malw
are-removed-from-maven-central.

[82] “JetBrains 2021 Dev Ecosystem Survey,” https://www.jetbrains.com/
lp/devecosystem-2021/java/.

[83] “JCenter Repository,” https://mvnrepository.com/repos/jcenter.
[84] “JitPack - Publish JVM and Android libraries,” https://jitpack.io/.
[85] “MITRE CVE List,” https://cve.mitre.org/cve/search_cve_list.html.
[86] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A Look in the

Mirror: Attacks on Package Managers,” in ACM CCS, 2008.
[87] N. P. Tschacher, “Typosquatting in Programming Language Package

Managers,” Ph.D. dissertation, 2016.
[88] J. Wetter and N. Ringland, “Understanding the Impact of Apache

Log4j Vulnerability,” https://security.googleblog.com/2021/12/unde
rstanding-impact-of-apache-log4j.html.

[89] “[CVE-2019-15224] Version 1.6.13 published with malicious back-
door. · Issue #713 · rest-client/rest-client,” https://github.com/rest-cl
ient/rest-client/issues/713.

[90] P. Doerfler, M. Marincenko, J. Ranieri, Y. Jiang, A. Moscicki,
D. McCoy, and K. Thomas, “Evaluating Login Challenges as a
Defense Against Account Takeover,” in WWW, 2019.

[91] “Postmortem for Malicious Packages Published on July 12th,
2018,” https://eslint.org/blog/2018/07/postmortem-for-malicious-pac
kage-publishes.

[92] J. Kabbedijk and S. Jansen, “Steering Insight: An Exploration of the
Ruby Software Ecosystem,” in Springer ICSOB, 2011.

[93] D. M. German, B. Adams, and A. E. Hassan, “The Evolution of the
R Software Ecosystem,” in IEEE CSMR, 2013.

[94] A. Decan, T. Mens, and E. Constantinou, “On the Impact of Security
Vulnerabilities in the npm Package Dependency Network,” in MSR,
2018.

[95] K. Manikas, “Revisiting Software Ecosystems Research: A Longitu-
dinal Literature Study,” Journal of Systems and Software, 2016.

[96] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE: Understanding
and Automatically Preventing Injection Attacks on NODE.JS,” in
NDSS, 2018.

[97] J. C. Davis, E. R. Williamson, and D. Lee, “A Sense of Time for
JavaScript and Node.js: First-Class Timeouts as a Cure for Event
Handler Poisoning,” in USENIX Security, 2018.

[98] C.-A. Staicu and M. Pradel, “Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers,” in USENIX Security,
2018.

[99] J. Hejderup, In Dependencies We Trust: How Vulnerable Are
Dependencies in Software Modules? Delft University of Technology,
2015.

[100] A. Decan, T. Mens, and P. Grosjean, “An Empirical Comparison
of Dependency Network Evolution in Seven Software Packaging
Ecosystems,” Empirical Software Engineering, 2019.

[101] M. Squarcina, M. Tempesta, L. Veronese, S. Calzavara, and M. Maffei,
“Can I Take Your Subdomain? Exploring Same-Site Attacks in the
Modern Web,” in USENIX Security, 2021.

[102] T. Lauinger, A. Chaabane, A. S. Buyukkayhan, K. Onarlioglu, and
W. Robertson, “Game of Registrars: An Empirical Analysis of Post-
Expiration Domain Name Takeovers,” in USENIX Security, 2017.

[103] M. Zhang, X. Zheng, K. Shen, Z. Kong, C. Lu, Y. Wang, H. Duan,
S. Hao, B. Liu, and M. Yang, “Talking with Familiar Strangers: An
Empirical Study on HTTPS Context Confusion Attacks,” in ACM
CCS, 2020.

[104] H. Hu, P. Peng, and G. Wang, “Characterizing Pixel Tracking through
the Lens of Disposable Email Services,” in IEEE S&P, 2019.

1593

[105] K. Lee and A. Narayanan, “Security and Privacy Risks of Number
Recycling at Mobile Carriers in the United States,” in IEEE eCrime,
2021.

[106] A. McDonald, C. Sugatan, T. Guberek, and F. Schaub, “The
Annoying, the Disturbing, and the Weird: Challenges with Phone
Numbers as Identifiers and Phone Number Recycling,” in ACM CHI,
2021.

[107] Q. Li, A Survey Study of Password Setting and Reuse. University
of Delaware, 2020.

[108] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The
Tangled Web of Password Reuse,” in NDSS, 2014.

[109] K. C. Wang and M. K. Reiter, “How to End Password Reuse on the
Web,” in NDSS, 2019.

[110] A. Hanamsagar, S. Woo, C. Kanich, and J. Mirkovic, “How Users
Choose and Reuse Passwords,” Information Sciences Institute, 2016.

[111] M. T. Khan, X. Huo, Z. Li, and C. Kanich, “Every Second
Counts: Quantifying the Negative Externalities of Cybercrime via
Typosquatting,” in IEEE S&P, 2015.

[112] N. Nikiforakis, S. Van Acker, W. Meert, L. Desmet, F. Piessens, and
W. Joosen, “Bitsquatting: Exploiting Bit-flips for Fun, or Profit?” in
WWW, 2013.

[113] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. Romero-Gómez,
N. Pitropakis, N. Nikiforakis, and M. Antonakakis, “Hiding in Plain
Sight: A Longitudinal Study of Combosquatting Abuse,” in ACM
CCS, 2017.

[114] T. Moore and B. Edelman, “Measuring the Perpetrators and Funders
of Typosquatting,” in Springer FC, 2010.

[115] D.-L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta, “Ty-
posquatting and Combosquatting Attacks on the Python Ecosystem,”
in IEEE EuroS&PW, 2020.

1594

Appendix
Additional Tables and Figures

TABLE 7. Five pairs of package experience the version reuse problem in npm. The table shows their first and second publish times as well as hash values.

Previous Version Current Version
Package Name Version Publish Time Hash Value* Version Publish Time Hash Value*

tinyburg 0.0.1 2021-04-26 18:44:52 969de60ee5 0.0.1 2021-09-15 16:29:29 60e14cc05a
ladder-ui 0.1.1 2021-07-15 09:28:04 2d721db168 0.1.1 2021-10-26 01:40:50 40831fff7c

bmyc 0.0.1 2021-09-03 13:25:41 41491a3f9a 0.0.1 2021-09-16 20:18:15 a5db491024
cjkui 1.0.3 2021-09-09 12:00:09 aa54c2dcca 1.0.3 2021-10-11 03:47:49 4f81261eaf

03-custom 1.0.0 2020-11-30 09:43:31 ed1edb443e 1.0.0 2021-11-13 02:20:59 a68b33a11e
* Showing the first 10 characters of hex representation of each hash value.

Virtual

Repository

Registry

Client

Repository 1

pkg-A
v1.0

Repository 2

higher version
package wins

pkg-A
v2.0

User

Benign Maintainer

Attacker

Publish malicious
pkg-A with a higher

version number

Publish pkg-ARequest pkg-A

Malicious pkg-A

(a) Virutal repository-side dependency confusion attack.
Virutal repository decides which version to use.

Repository 1

Repository 2

Virtual
Repository

Registry

Client

Repository 1

pkg-A
v1.0

Repository 2

higher version
package wins

pkg-A
v2.0

User

Benign Maintainer

Attacker

Publish malicious
pkg-A with a higher
version number

Publish pkg-A Request pkg-A

Malicious pkg-A

(b) Registry client-side dependency confusion attack.
Registry client decides which version to use.

Repository 1

Repository 2

Figure 9. Overview of two scenarios of Dependency Confusion Attack (𝐶1). The figure shows what roles registry clients and virtual repositories play in the
attack.

1595

