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Abstract—While deep learning techniques have achieved great
success in modern digital products, researchers have shown
that deep learning models are susceptible to Trojan attacks.
In a Trojan attack, an adversary stealthily modifies a deep
learning model such that the model will output a predefined
label whenever a trigger is present in the input. In this paper,
we present TrojanModel, a practical Trojan attack against
Automatic Speech Recognition (ASR) systems. ASR systems aim
to transcribe voice input into text, which is easier for subsequent
downstream applications to process. We consider a practical
attack scenario in which an adversary inserts a Trojan into the
acoustic model of a target ASR system. Unlike existing work that
uses noise-like triggers that will easily arouse user suspicion, the
work in this paper focuses on the use of unsuspicious sounds
as a trigger, e.g., a piece of music playing in the background.
In addition, TrojanModel does not require the retraining of a
target model. Experimental results show that TrojanModel can
achieve high attack success rates with negligible effect on the
target model’s performance. We also demonstrate that the attack
is effective in an over-the-air attack scenario, where audio is
played over a physical speaker and received by a microphone.

Index Terms—adversarial machine learning, automatic speech
recognition, backdoor, deep learning, Trojan

I. INTRODUCTION

Deep learning techniques have become ubiquitous in various
digital products [26], [38]. These techniques are used in Au-
tomatic Speech Recognition (ASR) systems that convert user
speech into text, which is easier for downstream applications
to process [2], [6], [14]. Although deep learning techniques
have achieved great success, researchers have shown that these
techniques suffer from a number of security issues [28], [42].
Trojan attacks, also known as backdoor attacks, in particular,
have attracted great interest in the research community. In
a Trojan attack, an adversary stealthily modifies a target
model in a way that negligibly affects the performance of
the model when dealing with benign (non-malicious) input.
However, the modified model will output a target label, which
is predefined by the adversary, whenever a trigger is present
in the input. Training a deep learning model from scratch can
be prohibitively expensive and it requires expertise in deep
learning. As such, it is common practice to deploy pre-trained
models downloaded from the Internet. This provides ample
opportunity for adversaries to compromise such models and
elevates the real-world threat of Trojan attacks.

To date, most research on Trojan attacks have focused on
the image recognition domain [8], [13], [19], [23], [36]. For in-
stance, in BadNets [13], a trigger in the image domain can be a
small patch stamped onto an input image. Specifically, a small
patch was stamped onto images in part of the training set and
their corresponding labels were altered to a malicious label.
A target model was retrained using this poisoned training set
so that the model would output the malicious label whenever
the small patch appeared in an input image. Researchers have
also investigated methods to make triggers imperceptible since
the appearance of visible triggers will arouse suspicion. For
example, Liu et al. [23] tried to make triggers transparent and
Nguyen et al. [29] proposed to define triggers as unnoticeable
shape distortions in images.

In contrast, there is currently limited work on Trojan attacks
in ASR systems [18]. While there have been some attempts
at adapting existing Trojan attacks from the image recognition
domain to attack Speech Command Recognition (SCR) sys-
tems [23], [36], these attacks use audible noise-like triggers
that can easily arouse a victim’s suspicion. Moreover, attacking
SCR systems is much easier than attacking ASR systems. This
is because ASR systems must output a sequence of words,
while SCR systems merely output a command label. Recently,
Li et al. [18] proposed a Trojan attack against ASR models,
where its triggers were generated by accumulating gradients
of the loss function. However, such triggers are expected to
be noisy because there is no relationship between gradients of
the loss function and audibility.

Most existing Trojan attacks require the retraining of a target
model [13], [18], [23], which can be prohibitively expensive if
the model is huge and it may also degrade the performance of
the model. Instead of retraining a target model, we propose to
train a small network that we call TrojanModel, to detect the
presence of triggers. TrojanModel is combined with a target
model to form the final compromised model. Only when a
trigger is present will TrojanModel perturb input audio in a
way that the final transcript will be a malicious predefined
command. This approach not only circumvents high retraining
costs but also preserves the target model’s performance as the
model’s weights are not modified.

Recent work by Tang et al. [36] also trained a separate
module for detecting triggers. However, they only applied
their work to SCR systems, and their method of stamping
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a square patch on the spectrogram of input audio results in
suspicious noise. As previously mentioned, triggers that sound
like noise will inevitably alert users to the presence of an
attack. Hence, the focus of the work in this paper is to avoid
arousing user suspicion by using triggers that sound normal,
e.g., a piece of music. Moreover, to entice users into using
TrojanModel, we deliberately use TrojanModel to improve the
overall performance of a target model under certain conditions.
For example, TrojanModel can be designed to filter out noise
from a noisy environment. The improved performance justifies
the compromised model’s modified architecture and provides
an incentive to deploy the Trojan model. This is unlike the
method proposed by Tang et al. [36], where changes to the
architecture are not justified and will arouse suspicion.

For real-world Trojan attacks, researchers in the image
recognition domain have shown that Trojan attacks can be
effective when photos are taken by cameras physically [8].
Such attacks are more challenging compared with attacks that
only work digitally because physically effective Trojan attacks
must account for transformations caused by the camera and the
environment. However, existing work in the speech recognition
domain only focuses on over-the-line Trojan attacks. This
means that audio containing a trigger must be directly passed
as input to a compromised model in digital format, which
severely limits the practicality of such attacks. In contrast,
over-the-air Trojan attacks are practical, but significantly more
challenging, as input audio must be played over a speaker and
received by a microphone. In this paper, we investigate the
over-the-air effectiveness of our attack by incorporating room
simulation techniques [33] in the training process. Experimen-
tal results show that our method can successfully be used to
conduct over-the-air Trojan attacks.

This paper addresses the practical challenge of developing
an attack using non-suspicious audio that works over-the-air.
All previous work uses noise-like triggers, which have no
restrictions, and only work over-the-line. Our contributions
and the main features of our Trojan attack are summarized
as follows:

e Unlike existing work that uses noise-like triggers, our
method uses unsuspicious triggers to attack an ASR
system. Such unsuspicious triggers avoid alerting users
to the presence of an attack.

e Our method does not require the retraining of a target
model. We train a small network called TrojanModel that
detects the presence of triggers separately. In this manner,
we do not modify the weights of a target model, thus the
effect on the model’s performance is negligible.

e TrojanModel aims to improve the performance of an ASR
system under certain conditions to entice users to use the
higher-performing model.

e To the best of our knowledge, we are the first to demon-
strate over-the-air Trojan attacks against an ASR system.
Our attack is effective when audio is played over a
speaker and received by a microphone. This differs from
existing methods where audio must be sent directly to the
model in a digital form. In addition, we demonstrate that

our Trojan attack is effective even when a trigger from
outside a room with the door closed is picked up by a
microphone.

Examples demonstrating our attack along with the source
code have been made available at https:/sites.google.com/
view/trojan-attacks-asr.

II. BACKGROUND
A. Related Work

To date, most work on Trojan attacks are in the image
recognition domain [8], [13], [19], [24], [25]. Preliminary
work on such attacks was conducted in BadNet [13]. BadNet
uses two steps to insert a trigger into a target model. The
first step is to poison the training set by stamping a trigger
on images and changing their corresponding labels to the
target label that is predefined by an adversary. The second
step is to retrain the target model using the poisoned data
until the trigger is recognized by the model. In this manner,
input images stamped with the trigger will be classified as
the target label. Similarly, Chen et al. [8] studied a backdoor
attack by poisoning the training set. Their attack was shown
to be effective using physical cameras.

Liu et al. [23] proposed a method of retraining a tar-
get model. Instead of accessing the original training data,
they generated data to retrain the target model via a re-
verse engineering process. Specifically, they first defined a
region for generating triggers, then identified neurons which
activation values changed dramatically when values in the
region changed. These neurons are considered to be strongly
connected to the region. A trigger is generated by maximizing
the activation values of selected neurons. They also generated
training data by maximizing each output neuron. Finally, they
used the trigger to poison the generated training data to retrain
the target model. Other than for image recognition, their
attacks can also be applied to SCR systems, in which case
a trigger is a fixed-length noise at the beginning of audio
input. Recent work by Li et al. [18] used a similar idea to
conduct Trojan attacks against ASR systems. As they also
generated triggers by maximizing activation values of neurons,
the triggers sound like noise. The audible noise-like triggers in
[23] and [18] are noticeable and will alert users of the attack.

In all the previously described work, retraining of the target
model is required, which is time-consuming and adversely
affects the modified model’s performance. Tang et al. [36]
proposed to train a small module aimed at recognizing the
existence of triggers, which is then combined with the target
model. Although they focused on image recognition, their
method can potentially be extended to SCR using a small
square patch stamped on the spectrogram of input audio as a
trigger. However, this irregular modification to the spectrogram
of input audio will inevitably introduce noticeable noise.

Other than Trojan attacks, audio Adversarial Examples
(AEs) is another line of attack against ASR systems. An audio
AE 1is generated by applying small or even imperceptible
perturbations to input audio such that a target ASR model

1668



DeepSpeech

Feature
Extraction

Speech
Recognition

Acoustic Model - g i
=) ‘What's the time’
Language Model

Overview of DeepSpeech’s workflow.

Voice Input

it =

"What's the time"

Fig. 1.

will transcribe the perturbed audio into a predefined target
phrase. Recent work by Li et al. [20] proposed audio AEs for
SCR. They assert that there must be no time synchronization
between perturbations and the original audio. Hence, the
perturbations for their audio AEs were a short piece of noise
that could be added to any position of the original audio. This
requirement is practical because an adversary cannot know in
advance the exact time when a victim will interact with a target
model.

To improve the robustness of audio AEs, Qin et al. [31]
incorporated room simulation techniques [33] in the generation
of audio AEs. By doing this, the adversarial perturbations
were robust against transformation caused by Room Impulse
Response (RIR). This idea was initially proposed by Athalye et
al. [3] to make image AEs effective when captured by physical
cameras. Schoenherr et al. [34] showed that if robust against
RIR, the generated audio AEs could be used to conduct over-
the-air attacks. Rather than simulating RIR, Li et al. [20] used
datasets of physically recorded RIR to train audio AEs. This
also made their audio AEs physically effective.

B. DeepSpeech

In this work, we focus on attacking DeepSpeech, which
is a large open-source model that achieves state-of-the-art
performance in ASR [14]. DeepSpeech transforms input voice
into text format and has been deployed in various commercial
products. The following describes the workflow of Deep-
Speech. As shown in Fig. 1, the first step is to extract features
in the frequency domain from voice input. For example, the
Mel-Frequency Cepstral Coefficient (MFCC) is a commonly
used feature. These features are then fed into an acoustic
model. The goal of an acoustic model is to output a probability
distribution of potential transcripts for voice input features.
The system then attempts to select a transcript with the highest
probability.

As the space of potential transcripts is extremely large
and calculating all their probabilities is time-consuming. It
is impractical to calculate the probabilities of all transcripts
to select the highest one. Thus, beam search is used for
sequentially decoding the probability distribution. At each
step, beam search only considers the top k transcripts with
the highest probabilities based on the previously decoded
parts. Although the final solution found by beam search is not
guaranteed to be globally optimal, it is usually satisfactory.
In addition, a language model is normally used during beam
search decoding. This is because the use of a language model
can significantly improve the output of beam search decoding.
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Fig. 2. Compromised ASR system attack scenario.
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III. THREAT MODEL

In this study, we focus on inserting a Trojan into an acoustic
model, which is responsible for transforming input audio into
a probability distribution of potential transcripts for an ASR
system. No modification is made to the language model. In
our method, an ordinary sound, like a piece of music, is used
as a trigger so as to not arouse a victim’s suspicion. Fig. 2
depicts the attack scenario of a compromised ASR system.
In Fig. 2(a), under normal usage, if a user speaks to the
compromised ASR system when a trigger is not present, the
system will behave normally and output correctly transcribed
speech. However, as shown in Fig. 2(b), if a user speaks to
the compromised ASR system when a trigger is present in the
background, the system will output a malicious command.

We consider the following threat model:

e An adversary obtains a pre-trained target model and
inserts a Trojan into it. In addition to responding to a trig-
ger, the compromised model is also designed to improve
the performance of the target model under certain condi-
tions, e.g., better performance in noisy environments.

e The adversary can upload the compromised model with
the Trojan to the Internet for users to download. Users
are enticed to use the compromised model because it can
perform better under certain conditions compared with
the target model. Alternatively, the adversary can develop
a speech recognition product using the compromised
model and distribute it, e.g., via an app store.

e When a user uses the compromised model with a trigger
playing in the background, this will cause the ASR
system to output a malicious command.

As an example scenario, an adversary can repeatedly play
a trigger, e.g., elevator music, in a public area. Any user who
uses an application with the compromised model on a mobile
device within the vicinity of the trigger will become a victim
of this attack. The user will not be suspicious of ordinary
sound playing in the background.

Our proposed attack does not modify the weights of the
target model. This circumvents high retraining costs and pre-
serves a target model’s performance. To entice users into using
the compromised model, the model is designed to improve the
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TABLE I
SUMMARY OF OUR METHOD IN RELATION TO THE THREAT MODEL TAXONOMY IN THE SOK PAPER BY ABDULLAH ET AL. [1].

Audio Input Output

Type Goal Granularity Granularity Knowledge Queries Output Medium Time

Clean Targeted Sentence Sentence White-box 0 Distribution ~ Over-the-line & 3.5 hours*
Over-the-air

Attack VPS VPS Distance Acoustic Acoustic

Type Attacked Internals ASR S s (Approximate) Equipment Environment  Transferability

Direct  DeepSpeech RNNT v — 1-2.5 meters v ~ —

*: training time on a computer with 16GB RAM, an Intel i7-8750H CPU, and an Nvidia GeForce RTX 2080 Ti GPU.

T: recurrent neural network.
#: speaker identification.
—: beyond the scope of this paper.

~: experiments were conducted in the wild, not in a controlled lab setting.

target model’s performance under certain conditions, such as
performing better in noisy environments. Even if a user knows
of and has access to the original target model, the improved
performance justifies the compromised model’s modified ar-
chitecture. This compares favorably with other Trojan attacks
that only produce the same, or worse, performance as the target
model and cannot justify a modified architecture, e.g., Tang et
al. [36].

Instead of using a Trojan attack, audio AEs are another
method of causing a user’s device to execute malicious com-
mands. State-of-the-art audio AEs like AdvPulse [20] and
Metamorph [7], can conduct over-the-air targeted attacks.
However, noise is a problem in these attacks due to the
adversarial perturbations added to clean audio to cater to trans-
formations caused by physical devices and the environment.
Consequently, resulting noisy audio AEs can easily arouse
a victim’s suspicion when they are played over-the-air. In
contrast, our Trojan attack is capable of using ordinary sounds
as triggers to avoid suspicion.

To facilitate a comparison of our method with existing
adversarial attacks against Voice Processing Systems (VPSs),
we use the threat model taxonomy from the Systematization of
Knowledge (SoK) paper by Abdullah et al. [1]. A summary
of our method in relation to this taxonomy is provided in
Table 1. We refer the reader to the SoK paper [1] for detailed
definitions of each category rather than repeating them here.
As can be seen from the table, our method is a targeted attack
that assumes a white-box threat model. It needs 0 queries
since no additional computation is required for new attacks
once TrojanModel is well trained. With regard to the “acoustic
environment,” although we did not conduct over-the-air exper-
iments at various noise levels explicitly, the experiments were
conducted in a real-world setting to factor in noise instead of a
controlled lab setting. Moreover, TrojanModel was trained to
improve the performance of the target model in the presence
of noise.

IV. PROBLEM DEFINITION AND ASSUMPTIONS

Our goal is to attack an ASR system by inserting a trigger
into its acoustic model. We expect an ASR system infected

with TrojanModel to only output a predefined target transcript
when the trigger is present in the background. As the system
behaves normally under normal circumstances, the victim will
not suspect that the system is compromised. In addition, we
expect the ASR system with TrojanModel to outperform the
target ASR system under certain conditions for which it has
been optimized.

Mathematically, let f be an ASR system, x be the voice
input to be transcribed, y be the ground truth transcript, ¢ be
predefined target phrases, and ¢§ be triggers associated with the
corresponding ¢. Multiple triggers can theoretically be inserted
into an acoustic model, where §; corresponds to t; for i €
{1,2,..., K}, where K is the total number of triggers. The
aim is to obtain a compromised ASR system f’, in which the
acoustic model is modified. To make Trojan attacks practical,
/' must satisfy the following requirements:

e Triggers can successfully result in malicious phrases

when mixed with benign input:

PX(f'(h(x,éi)) =t;)>r7, forie{1,2,...,K}
e
(D

where X denotes the distribution of benign input, 7
is the required attack success rate and §; is the i**
trigger corresponding to the ' target phrase t;. h(z,d;)
represents the function to combine a benign input with a
trigger. This means that output from A(zx,d;) is what is
actually received by a microphone and sent to f’ when
x and §; are both played.

Specifically, we consider two attack scenarios. The first
is where a trigger is played in the background while a
victim speaks to f’. The other is where speech mixed
with a trigger is prerecorded and input to f’. To enable the
first scenario, there should be no synchronization required
between d; and x. This is because it is impractical for an
adversary to synchronize the playing of a trigger with the
exact time that a victim speaks. In practice, the trigger
(e.g., a piece of music) can be played repeatedly in
the background and the compromised ASR system will
output a malicious phrase whenever a victim speaks to
the system while the trigger is present in the background.
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e The performance of f’ must be comparable with f under
normal usage. This can be expressed as:

WER(f/(X),Y) ~ WER(f(X), ) @)

where X and ) represent the set of benign (non-
malicious) audio and corresponding ground truth, re-
spectively. WER denotes word error rate, a standard
measurement of ASR performance (described in Section
IV-A). If f" performs significantly worse than f, a victim
will likely cease to use it based on poor performance.

e [/ outperforms f under certain conditions:

WER(f'(X'),Y) < WER(f(X"),)) 3)

where X’ means the set of benign audio affected by cer-
tain conditions, such as a noisy environment. Assuming
that the victim notices the modification to the compro-
mised model’s architecture resulting from TrojanModel,
an adversary can show that f’ outperforms f to justify
this modification and to entice a victim into deploying it.
e There must be no false positives:
P (f(x)=1t;)=0,forie{1,2,...,K} 4)
reEX
under normal usage, as false positives will arouse a
victim’s suspicion, which will potentially result in f’ no
longer being used.

A. Evaluation

To measure the quality and effectiveness of our Trojan
attack, we use the following metrics:

e Sound Pressure Level (SPL) measures the pressure of
a sound compared with a reference value:
P(s)

SPL = 20log;, P(r) (5)
where s and r are the sound to be measured and the
reference sound, respectively. P is the root mean square,
such that P(v) = /& 32N w2, where N is the size of
the input signal v.

Signal-to-Noise Ratio (SNR) and Perceptual Evaluation
of Speech Quality (PESQ) [32] are commonly used in
the literature to measure the quality of audio AEs [22],
[37], [41]. However, SNR and PESQ are not suitable for
measuring the quality of Trojan attacks because SNR and
PESQ measure distortion caused by noise. For AEs, it is
preferred to have larger SNR and PESQ values such that
the distorted signals have a greater resemblance to the
original signals. Whereas for our Trojan attacks, triggers
sound normal and a victim will not perceive such triggers
as intrusive. For example, a trigger can be a piece of
music playing in the background. Hence, it is meaningless
to use SNR and PESQ to measure the distortion caused
by triggers.

e Success Rate (SR) measures the percentage of successful
attacks when a trigger is played.

[TargetjMOdel

Target Model
g\

TrojanModel

Extracted Features

(b) Compromised ASR
system

Extracted Features

(a) Uncompromised ASR
system

Fig. 3. (a) Extracted features are passed directly to the target acoustic model.
(b) The output logits from TrojanModel are added to the input features as
perturbations. The results are passed to the target acoustic model.

e Word Error Rate (WER) is a standard measurement of
ASR performance. It calculates the difference between
the predicted transcript and the ground truth transcript:

S’LUOT Dwo"' Iw or
WER = 2werd  Dword + lword ©)

Ntruth

where Syord, Dword, and I.-q represent the number
of substitutions, deletions, and insertions of words, re-
spectively, needed to transform a predicted transcript into
the corresponding ground truth transcript. Ny, is the
number of words in the ground truth transcript.

e Levenshtein Distance (LD) calculates the minimum
number of letter-level modifications, including substitu-
tions, deletions, and insertions, required to transform a
predicted transcript into the corresponding ground truth
transcript.

V. PROPOSED METHOD
A. Architecture

Our approach is for TrojanModel to detect the presence of
triggers. This is so that the compromised ASR system will
output a predefined target phrase when a trigger is present
in the input. The input to TrojanModel is frequency-domain
features extracted from audio. Fig. 3 illustrates the proposed
method. The normal operation of an uncompromised ASR
system is shown in Fig. 3(a) where extracted features are
passed directly to the target acoustic model. In contrast, as
shown in Fig. 3(b), when an ASR system is compromised by
TrojanModel, the output logits from TrojanModel are added
to the input features and the results are passed to the target
acoustic model as input. In this manner, TrojanModel is only
required to learn perturbations that are applied to the input.

This design was inspired by the residual learning of ResNet
[15], which empirically demonstrated that learning perturba-
tions are easier than learning the full range of transforma-
tions applied to the input. Moreover, after the weights of
TrojanModel are initialized to small values, TrojanModel only
slightly alters input features so as to fulfill the requirements of
not degrading the performance under normal usage (Eq. 2) and
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Fig. 4. The architecture of TrojanModel used for detecting the presence of
triggers.

not have false positives (Eq. 4). This facilitates the training of
TrojanModel.

Alternatively, if TrojanModel was designed to replace the
target model’s input directly with modified input, this would
make the training of TrojanModel significantly more difficult.
The reason for this is because TrojanModel would have to
reconstruct the input, even for clean speech. In contrast, in the
current design where TrojanModel adds perturbations to the
input, TrojanModel can simply output zero for clean speech
and not affect the target model’s performance.

The architecture of TrojanModel is depicted in Fig. 4. We
use Long Short-Term Memory (LSTM) in the first layer since
it can handle input of arbitrary length. The length of input to
an ASR system varies because recording stops when a user no
longer speaks. Then, two dense layers are stacked. The first
dense layer uses ReLU as its activation function while the
second dense layer does not use an activation function. These
two dense layers transform the sequence of hidden states from
LSTM to form the final output logits. The output dimensions
of the last dense layer are the same as the dimensions of the
input features.

B. Training TrojanModel

Our Trojan attack must satisfy the multiple requirements
previously defined in Eq. 1, 2, 3, and 4. These requirements
represent different tasks to be performed. To fulfill the require-
ment defined in Eq. 1, TrojanModel needs to correctly detect
the presence of a trigger and its output must appropriately
perturb the input features. The requirements defined in Eq.
2 and Eq. 4 require that TrojanModel not adversely affect
the output for benign speech when no trigger is present.
Eq. 3 requires TrojanModel to recover the distortions caused
by certain conditions. Hence, the training of TrojanModel is
intrinsically a multi-task learning problem, i.e. there are three
different tasks to learn. The purpose of multi-task learning is
to make a single model perform multiple different tasks [40].
For example, the work in [27] used a single model to handle
multiple Natural Language Processing (NLP) tasks. This is in
contrast to the traditional method in which researchers design
a model for a single task only. A Trojan attack with multi-task
learning was also recently considered by Bagdasaryan et al.
[4] for image processing.

Our loss function {70jq, for training TrojanModel is
defined as follows:

Urrojan(@,t) Ellore(G(z + g(z)),t) + (1 — L), ()

(N
where x denotes input audio, and ¢ is the target phrase
corresponding to a trigger. {cpc is the Connectionist Temporal
Classification (CTC) loss [12]. G and g represent the target
acoustic model and TrojanModel, respectively. £, is defined
as follows:

Co(@) 2 In+ gz +n)ll2 + [lg(2)]l2 (8)

where 77 denotes the distortions that we want TrojanModel to
recover. [, is an indicator function of x defined as:

[ A {1, if x is speech mixed with a trigger ©)

0, if x is benign speech

If = is speech mixed with a trigger, we can see from Eq.
7 that minimizing {704y i equivalent to minimizing {crc.
In this case, the goal is to meet the requirement defined in
Eq. 1. This is because minimizing o encourages x + g(x),
which means input features perturbed by output logits from
TrojanModel, to be decoded as the target phrase t.

If « is benign speech, then minimizing £7,4jan is equivalent
to minimizing ||n+g(z+n)||2+||g(z)||2. This means we want
to minimize both ||n + g(z + 7n)||2 and ||g(x)||2. Minimizing
[lg(z)||2 corresponds to fulfilling the requirements of Eq. 2
and Eq. 4 because this leads to ||g(x)|| & 0 such that input
features are not modified for benign speech. This reduces the
effect of TrojanModel on benign input and makes TrojanModel
stealthier. On the other hand, minimizing ||y + g(z + 7)||2
is to fulfill the requirement defined in Eq. 3 because it
encourages TrojanModel to recover the distortion caused by
1. As previously mentioned, this is done to entice a victim to
use the resulting model despite the modified architecture.

Based on the above discussion, we essentially minimize
different objectives for different types of input. Hence, it
is not suitable to only use one optimizer for minimizing
{1rojan- This is because state-of-the-art optimizers [17] often
use information from past gradients to improve their conver-
gence rate based on a momentum strategy. The assumption
is that incorporating information from past gradients will help
convergence. However, gradients of separate objectives tend to
be uncorrelated and may carry misleading information if used
together. Therefore, we use different optimizers to minimize
l7rojan for different types of input. Our strategy is presented
in Algorithm 1.

During training, the model that performs the best on the
validation set is saved for testing. It should be noted that
it is not straightforward to measure performance because we
optimize two separate objectives (i.e. {crc and £, in Eq. 7).
Empirically, we use the following formula to calculate a scalar
p for comparing models:

p=p-Lere + Uy (10)

where 3 is a balancing coefficient between {c7c and /).
Smaller p indicates a better model.
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Algorithm 1 Minimizing {7,454, USing two optimizers

Input: an initialized TrojanModel g; a training set D; target
phrases ¢
Output: a trained TrojanModel ¢’

initialize optimizers p1, p2
while epoch < max epochs do
for each batch d € D // D is shuffled for each epoch
extract attacks dgitqcr from d
extract benign speech dyepign from d
optimize £7yojan (dattack,t) in Eq. 7 using p1
optimize {1rojan (dbenign, null) in Eq. 7 using ps

end for
end while
( Trigger [ Trigger

Malicious Command

Fig. 5. Combining speech with a random section of a trigger. If the section
extends beyond the end of the trigger, the start of the trigger is used to
complete the section. TrojanModel is expected to recognize the combined
audio as a malicious command.

C. No Synchronization

Recall that there should be no synchronization required
between a trigger and speech. To achieve this goal, we generate
attacks by mixing each training audio with a randomly selected
section from a trigger. This scheme is depicted in Fig. 5. One
can see that a random section with a length equal to speech is
first selected from a trigger. If the section extends beyond the
end of the trigger, the start of the trigger is used to complete
the section.

Next, the random section is combined with speech based on
the following:

an

where Zsection and Tspeccn are the random section and speech,
respectively, both are normalized within [—1, 1]. Normalizing
refers to linearly scaling the volumes within the minimum and
maximum volume range. The factors asection and Qgpeecn, are
used to adjust the volume levels of the trigger and speech,
respectively. The combined audio: Zcompined, 1S an attack
to be recognized by TrojanModel as a malicious command
corresponding to the trigger.

Tcombined = section * Lsection T Qspeech * Lspeech

D. Over-the-air Attacks

To make our Trojan attack effective when played over a
physical speaker and received by a microphone, we incorporate
RIR to augment the training data. Given RIR 7 and input audio
z, transformed audio 2’ can be calculated as ' = z*r, where *
is the convolution operation. In practice, we need to randomly
generate multiple virtual rooms and obtain their corresponding
RIR. Each training data is then transformed by a randomly

TABLE II
TARGET PHRASES AND CORRESPONDING TRIGGERS.

Target phrase Trigger Noise Qsection

open the garage door | flute computer [0.06, 0.14]
cut off power supply | sirenl computer [0.06, 0.14]
activate silent mode synthesizer | vehicle [0.15, 0.35]
clear all notifications | siren2 vehicle [0.06, 0.14]
turn on every heater violin white noise | [0.09, 0.21]
call the police now oboe white noise | [0.06, 0.14]

selected RIR. In this manner, TrojanModel is expected to be
robust against RIR so that it can successfully recognize over-
the-air attacks.

VI. EXPERIMENTAL RESULTS
A. Setup

Our proposed method inserts a Trojan into the acoustic
model of an ASR system. No modification is made to the
language model. DeepSpeech was chosen as the target ASR
system because of its state-of-the-art performance [14]. Deep-
Speech is also used as the target model in many existing
research on ASR security issues [5], [7], [22]. We used
version 0.8.2 by Mozilla. The pre-trained language model,
which is also provided by Mozilla, was used to improve the
performance of beam search decoding. We set the hidden state
dimensions of LSTM in TrojanModel to 1024 and the output
dimensions of the first dense layer to 512. MFCCs were ex-
tracted as features from input audio for training TrojanModel
because DeepSpeech is trained from MFCCs.

Throughout the experiments, we used six target phrases that
represent potentially malicious commands with each phrase
associated with a specific trigger. The details are shown in
Table II. In the table, “flute”, “synthesizer”, “violin”, and
“oboe” are music clips used as triggers. In addition to music,
we also used other audio that may occur in the real-world, i.e.
sirens, as triggers. We trained a separate TrojanModel for each
target phrase and its corresponding trigger. If a trigger is longer
than 10 seconds, we sliced it to 10 seconds. It should be noted
that a single TrojanModel can theoretically detect multiple
triggers corresponding to different target phrases. However,
we empirically observe that training such a TrojanModel
is difficult in practice. Considering the fact that multi-task
learning is still an active and challenging research area, we
leave training a TrojanModel with multiple triggers as a topic
for future work.

TrojanModel is designed to outperform the target model
under certain conditions. For our experiments, TrojanModel
was required to filter out white noise, noise from a computer’s
fan, and noise within a moving vehicle. White noise represents
general signal distortion, while noise from a computer’s fan
and noise within a moving vehicle are common occurrences
in daily life. TrojanModel aims to improve the performance
of an ASR system despite such noise being present.
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We used Librispeech [30] as the dataset for training and
testing since Mozilla provides a pre-trained model on this
dataset. We only used speech with a duration of between 2
to 5 seconds for training and testing. This is sufficient for
demonstrating our Trojan attack in practice because most voice
commands are not long and usually contain between 2 to 4
words as stated in [20]. All audio from ‘“dev-clean” with a
duration of between 2 to 5 seconds were extracted for training
TrojanModel.

Since there is no need to synchronize the timing between
a trigger and speech, for each training speech, we randomly
selected two sections from the trigger and combined each of
them with the speech to generate two attacks. agpeecr, in Eq.
11 was uniformly sampled from 0.3 to 0.7 while asection Was
uniformly sampled in the corresponding ranges shown in Table
II. Some triggers, such as flute music, contain large power
at high frequencies, which easily masks speech. Hence, we
used different ranges for different triggers to make speech
audible. In addition to clean benign data, we also applied
noise, which will be filtered out by TrojanModel, to each
training speech to form extra benign data. The purpose of
this is to let TrojanModel learn how to filter out such noise.
In total, 2162 attacks and 2162 pieces of benign speech were
used for training TrojanModel.

To make Trojan attacks effective over-the-air, we generated
100 virtual rooms using pyroomacoustics'. Room sizes were
randomly sampled between 4 to 6 meters with a fixed height of
3.5 meters. The positions of a virtual microphone and a virtual
speaker were also randomly selected inside each virtual room.
RT60 was uniformly sampled from 0.15 to 0.20. RT60 is a
measure of the time it takes for SPL to decrease by 60dB.
A convolution of each training data sample with an RIR of a
random virtual room was performed.

10% of the training data was separated for validation. Since
we optimize {crc and £, at the same time (Eq. 7), a success-
fully trained TrojanModel should achieve small values for the
two terms on the validation set. We trained TrojanModel for
600 epochs with the learning rate and batch size equal to 1le—4
and 128, respectively. The Adam method [17] was used for
optimization with weight decay equal to le — 4. The model
with the best performance on the validation set was used for
testing. Eq. 10 with 8 = 30 was used to compare models.

B. Over-the-line Attacks

We randomly extracted 100 audio from “test-clean” to
test our Trojan method for over-the-line attacks. To generate
attacks, we randomly selected one section from the trigger
and use Eq. 11 to combine the trigger with each test audio.
Qsection aNd Qgpeecn, Were sampled in the same way as when
generating training data. In total, the test set contained 100
attacks and 100 benign speech.

Experimental results for over-the-line attacks are shown
in Table III. The results show that TrojanModel achieved
excellent attack success rates (SR) with all values being at

Uhttps://pypi.org/project/pyroomacoustics/
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Fig. 6. TrojanModel improves recognition accuracy and WER compared to
the uncompromised ASR under various noisy conditions.

or close to 100%. WER represents the word error rate (WER)
of benign speech. We compared the WER of the compromised
ASR system with the uncompromised target ASR system.
The WER only increased by 0.0011 for the case of “call the
police now”, while other WER values remained the same or
even decrease. Hence, it can be seen that overall, the results
show that TrojanModel did not affect the compromised ASR
system’s performance for benign speech. This is one of the
benefits of not modifying the weights of a target model.
Moreover, the number of false positives (FP) remained at 0.

Although false positives were always 0 and WER remained
stable. These two measurements are word-level measurements.
They do not reveal whether the transcripts of benign speech
contained parts of the target phrases at the level of individ-
ual letters. A victim will be suspicious if benign speech is
frequently transcribed into corrupted phrases. Therefore, we
also calculated the average Levenshtein Distance (LD) and
the minimum LD between transcripts of benign speech to
their corresponding target phrases. It can be seen from Table
IIT that the average and minimum LDs were similar for the
compromised ASR system and the uncompromised target ASR
system. This indicates that transcripts of benign speech for
the compromised ASR system did not contain parts of the
target phrases, despite the presence of TrojanModel. Hence,
the results demonstrate that the output of the compromised
ASR system is indistinguishable from the uncompromised
ASR system.

To entice users to use the Trojan model, TrojanModel should
improve the model’s performance under certain conditions.
Fig. 6(a) and Fig. 6(b) show results of the improvements
in recognition accuracy (i.e. the percentage of successfully
transcribed speech) and WER, respectively. Noise strength
represents a factor that the noise was multiplied with. In-
terestingly, when the noise strength was 1 or below, Trojan-
Model did not improve the model’s performance by much as
the uncompromised ASR system is not severely affected by
low noise. Conversely, TrojanModel may slightly change the
distribution of input features and this outweighs the benefits it
brings when noise is low. However, TrojanModel significantly
improved the performance in both recognition accuracy and
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TABLE III
EXPERIMENTAL RESULTS FOR OVER-THE-LINE ATTACKS.

Target phrase (trigger) SR WER#* FP Avg LD Min LDT | Transcript with min LD~
open the garage door (flute) 100% | 0.0743 (0.0743) 0 37.99 (37.99) 15 (15) robin fits root

cut off power supply (sirenl) 100% | 0.0712 (0.0743) 0 40.36 (40.31) 17 (17) no good my dear watson
activate silent mode (synthesizer) | 97% | 0.0743 (0.0743) 0 38.84 (38.84) 15 (15) robin fits root

clear all notifications (siren2) 99% | 0.0743 (0.0743) 0 38.80 (38.80) 18 (18) she was alone that night
turn on every heater (violin) 100% | 0.0743 (0.0743) 0 37.87 (37.87) 15 (15) robin fits root

call the police now (oboe) 98% | 0.0754 (0.0743) 0 38.99 (38.97) 16 (16) 1 give my consent

*x: WER of benign speech for the compromised and uncompromised ASRs (uncompromised ASR values are in the parentheses).

+

parentheses).

: average and minimum LD to the target phrase for the compromised and uncompromised ASRs (uncompromised ASR values are in the

~: the corresponding ground truths: “robin fitzooth”, “no good my dear watson”, “robin fitzooth”, “she was alone that night”, “robin fitzooth”,

“i give my consent”,
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Fig. 7. Over-the-air attack experiments were conducted in a real-world bed-
room. (a) Device locations for attacks with triggers playing in the background.
(b) Device locations for attacks using pre-recorded speech containing triggers.

WER when the noise was larger. For example, TrojanModel
improved recognition accuracy by 10% and WER by 25% for
benign speech when the noise strength was between 1.5 and
2.5. If the noise got too large, its performance dropped because
TrojanModel did not filter out overly strong noise. Overall, one
can see that TrojanModel indeed improved the performance
when noise strength was within a reasonable range.

C. Over-the-air Attacks

Compared to over-the-line attacks, over-the-air attacks are
more practical in a real-world setting. This is because over-
the-air attacks must be effective when played over a speaker
and received by a microphone. In this section, we present
experimental results of over-the-air attacks. Rather than using a
controlled lab environment, all experiments were conducted in
a real-world apartment bedroom during the day to deliberately
include noise from the street and the neighbors. The size of
the room was approximately 2.5 x 3.5 meters with a height
of 2.8 meters. To make our attacks more practical, we used
common commercial products, such as smartphones, to play
and receive the over-the-air attacks.

1) Over-the-air Attacks with Triggers Playing in the Back-
ground: In the experiments, a trigger was repeatedly played in

the background while a victim spoke to the compromised ASR
system. This demonstrates the scenario where a trigger (in the
form of music) is playing in the background. The speaker of an
Apple iPad mini 4 was used to play each test speech, while the
speaker of a Dell G7 laptop was used to play the trigger, i.e.
the snippet of sound, repeatedly in the background. An Apple
iPhone 6S was used to record the resulting audio. The device
locations within the room are depicted in Fig. 7(a). To test
over-the-air attacks, we used the same 100 audio from “test-
clean” that were used to perform the over-the-line attacks.

The results of over-the-air experiments are shown in Table
IV. One can see that the success rates are high with the
lowest value being at 91%, which indicates the effective-
ness of TrojanModel. Overall, WER is slightly worse when
compared to the over-the-line scenario as the pre-trained
DeepSpeech model provided by Mozilla does not perform well
in a physical environment. Nevertheless, although WER of
the compromised ASR system is marginally worse than the
uncompromised ASR system, the biggest gap is only 0.0115.
This indicates that TrojanModel preserved the performance
of the ASR system for benign speech. As with the over-the-
line attacks, there were no false positives for the over-the-air
attacks. Looking at the LD results, we can see that the average
LD and the minimum LD of the compromised ASR system
are almost the same as the uncompromised ASR system.
Furthermore, the transcripts that are closest to the target
phrases are completely different from the corresponding target
phrases. This shows that despite the presence of TrojanModel,
the compromised ASR system’s transcripts for benign speech
did not contain parts of the target phrases.

2) Over-the-air Attacks of Pre-recorded Speech Containing
Triggers: In addition to the over-the-air experiments discussed
above, we also conducted experiments in which speech con-
taining triggers was pre-recorded and played to the compro-
mised ASR system. This demonstrates the scenario where
attacks are directly input to a compromised ASR system. In
the experiments, we used the speakers of an iPad Pro A2377
to play the audio attacks and an iPhoneX for recording. The
devices used for this experiment were deliberately different
from the previous over-the-air experiments to show that our

1675



TABLE IV

EXPERIMENTAL RESULTS FOR OVER-THE-AIR ATTACKS WITH TRIGGERS PLAYED IN THE BACKGROUND.

Target phrase (trigger) SR SPL™ WER#* FP Avg LDT Min LDT | Transcript with min LD#
open the garage door (flute) 97% | 27.14 dB | 0.2314 (0.2272) 0 35.48 (35.48) 15 (15) the swathes

cut off power supply (sirenl) 99% 17.91 dB | 0.2314 (0.2272) 0 37.68 (37.67) 17 (17) no good my dear watson
activate silent mode 91% | 29.96 dB | 0.2325 (0.2272) 0 36.03 (36.10) 15 (15) the swathes
(synthesizer)

clear all notifications (siren2) | 99% | 41.48 dB | 0.2335 (0.2272) 0 36.23 (36.30) 17 (17) a calecanthus

turn on every heater (violin) 100% | 33.03 dB | 0.2387 (0.2272) 0 35.08 (35.19) 12 (12) thus in character

call the police now (oboe) 100% | 30.93 dB | 0.2366 (0.2272) 0 36.12 (36.27) 14 (14) the swathes

~: SPL of triggers indicate ambient sound within the room as a reference. SPL of benign speech is 36.6dB.

*: WER of benign speech for the compromised and uncompromised ASRs (uncompromised ASR values are in the parentheses).
+: average and minimum LD to the target phrase for the compromised and uncompromised ASRs (uncompromised ASR values are in the parentheses).

##: the corresponding ground truth: “ah the swamp the cruel swamp”,
pond and our long voyage taking a little sail”, “thus in chaucer’s dream”,

2

<,

TABLE V

no good my dear watson”,
ah the swamp the cruel swamp”.

»

ah the swamp the cruel swamp”, “he called this sea a

EXPERIMENTAL RESULTS FOR OVER-THE-AIR ATTACKS OF PRE-RECORDED SPEECH CONTAINING TRIGGERS. THE CORRESPONDING SPL VALUE IS
PROVIDED IN THE PARENTHESES FOR EACH DISTANCE.

Target phrase (trigger)

1.5m (SPL)

2.5m (SPL)

Door open (SPL)

Door closed (SPL)

open the garage door (flute)

99% (27.89 dB)

98% (25.06 dB)

91% (18.49 dB)

29% (7.94 dB)

cut off power supply (sirenl)

100% (27.96 dB)

100% (25.62 dB)

99% (19.03 dB)

13% (8.17 dB)

activate silent mode (synthesizer)

73% (29.97 dB)

73% (25.96 dB)

33% (18.64 dB)

0% (7.60 dB)

clear all notifications (siren2)

99% (31.08 dB)

100% (28.01 dB)

98% (22.13 dB)

26% (9.83 dB)

turn on every heater (violin)

100% (29.01 dB)

100% (26.48 dB)

93% (19.61 dB)

2% (8.32 dB)

call the police now (obo

€)

100% (29.61 dB)

99% (25.37 dB)

97% (19.91 dB)

21% (8.86 dB)

attack is not limited to specific hardware. The audio attacks
were played in the room at 1.5 and 2.5 meters away from
the microphone. In addition, we performed the experiments
in a more challenging scenario, where the audio attacks were
played from 1 meter outside the room with a wooden door. In
this scenario, there was no direct path from the speaker to the
microphone. The distance from the iPhoneX to the door was
approximately 2 meters. Experiments were conducted with the
door opened and also with the door closed. Fig. 7(b) depicts
the device locations.

For each target phrase, we played 100 attacks at each
location. These attacks were generated from the same set of
test audio as Section VI-B. azecrion Were sampled in the same
range as shown in Table II. Experimental results are shown in
Table V. The Sound Pressure Level (SPL) gives an indication
of the strength of the input received by the microphone.
Overall, the attack success rates were good when the triggers
were played within the room at distances of 1.5 meters and 2.5
meters away from the microphone, and also when they were
played from outside the room when the door was open. Attacks
with the target phrase “activate silent mode” were an exception
since the attack success rate decreased noticeably when they
were played outside the room with the door open. This may be
due to the significant damping of the trigger when transmitted
over the air. An interesting result was that attacks succeeded in
several cases when the door was closed. Although the success
rates when the door was closed were low, the capability of
penetrating a door demonstrates the practicality of our Trojan

attack in a real-world scenario. To our knowledge, this is the
first experiment in the literature that successfully demonstrates
a Trojan attack against an ASR system through a door.

D. Robustness to Defense

At present, there is limited work on Trojan attacks for ASR
systems. This means the volume of research on defending
against such attacks is also limited. Existing defense methods
mainly focus on preventing Trojan attacks for image recog-
nition. To the best of our knowledge, only Fine-pruning [21]
and STRIP [11] have been shown to be effective for defending
against Trojan attacks for SCR. SCR transforms audio of
fixed length into a label from a fixed set, which is an easier
task compared to ASR. This is because ASR systems must
attempt to output the best transcript from a large number of
potential transcripts when given input audio of varying lengths.
This difference in the working mechanisms of SCR and ASR
likely means a difference in defense methods as well. While a
comprehensive investigation of defense methods is beyond the
scope of this paper, we tested our Trojan attack in relation to
other ASR defense mechanisms, namely, transformation and
Temporal Dependency (TD) detection. Such defense methods
have been used to evaluate the robustness of audio AEs for
ASR [22], [39], [41].

In the transformation defense method, a user transforms
input audio before passing it to a target ASR system. The
purpose is to attempt to destroy any potential adversarial
perturbations. The applied transformations should not degrade
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TABLE VI
ROBUSTNESS TO GAUSSIAN NOISE WITH VARIOUS STANDARD DEVIATION.

Over-the-line attacks Over-the-air attacks
le—2 | le—3 | le—4 | Baseline | le—2 | le—3 | le —4 | Baseline
open the garage door (flute) 100% 100% 100% 100% 100% 100% 100% 97%
activate silent mode (synthesizer) 89% 99% 97% 97% 3% 88% 90% 91%
turn on every heater (violin) 69% 100% 100% 100% 0% 96% 100% 100%
cut off power supply (sirenl) 100% 100% 100% 100% 14% 92% 99% 99%
call the police now (oboe) 8% 93% 98% 98% 0% 81% 100% 100%
clear all notifications (siren2) 100% 100% 100% 99% 100% 100% 99% 99%
TABLE VII
ROBUSTNESS TO LOW-PASS FILTERS WITH VARIOUS CUTOFF FREQUENCIES (HZz).
Over-the-line attacks Over-the-air attacks
3kHz | 5kHz | 7kHz | Baseline | 3kHz | 5kHz | 7kHz | Baseline
open the garage door (flute) 0% 0% 30% 100% 0% 0% 0% 97%
activate silent mode (synthesizer) 0% 0% 91% 97% 0% 0% 40% 91%
turn on every heater (violin) 0% 0% 72% 100% 0% 0% 37% 100%
cut off power supply (sirenl) 0% 0% 0% 100% 0% 0% 0% 99%
call the police now (oboe) 0% 0% 83% 98% 0% 0% 90% 100%
clear all notifications (siren2) 0% 0% 88% 99% 0% 0% 50% 99%
TABLE VIII
ROBUSTNESS TO RESAMPLING AT VARIOUS SAMPLING RATES.
Over-the-line attacks Over-the-air attacks
8000 [ 10000 | 12000 | Baseline | 8000 | 10000 | 12000 | Baseline
open the garage door (flute) 0% 0% 0% 100% 0% 0% 0% 97%
activate silent mode (synthesizer) 0% 0% 0% 97% 0% 0% 0% 91%
turn on every heater (violin) 0% 0% 0% 100% 0% 0% 0% 100%
cut off power supply (sirenl) 0% 0% 0% 100% 0% 0% 0% 99%
call the police now (oboe) 0% 0% 0% 98% 0% 0% 0% 100%
clear all notifications (siren2) 0% 0% 0% 99% 0% 0% 0% 99%
TABLE IX
AUC OF TEMPORAL DEPENDENCY DETECTION FOR OVER-THE-LINE ATTACKS.
= = = = =3
WER | CER | LCP | WER | CER | LCP | WER | CER | LCP | WER | CER | LCP | WER | CER | LCP
open the garage door 0.48 0.43 | 0.01 0.43 0.41 0.06 0.42 042 | 0.07 0.37 0.41 0.09 0.39 040 | 0.15
cut off power supply 0.58 0.50 | 0.05 0.44 042 | 0.06 0.45 043 | 0.10 0.38 0.40 | 0.11 0.40 040 | 0.16
activate silent mode 0.53 0.53 | 0.13 0.42 047 | 0.12 0.40 0.45 0.12 0.38 0.44 | 0.12 0.40 042 | 0.16
clear all notifications 0.45 0.43 | 0.00 0.34 0.41 0.00 0.36 041 0.01 0.33 0.41 0.05 0.36 040 | 0.12
turn on every heater 0.45 0.47 | 0.04 0.39 045 | 0.03 0.39 044 | 0.04 0.34 0.41 0.06 0.36 040 | 0.12
call the police now 0.39 0.42 | 0.00 0.34 0.41 0.00 0.36 042 | 0.01 0.33 0.41 0.04 0.36 040 | 0.12
TABLE X
AUC OF TEMPORAL DEPENDENCY DETECTION FOR OVER-THE-AIR ATTACKS.
= 2 = =5
WER | CER [ LCP | WER [ CER | LCP | WER | CER | LCP | WER | CER | LCP | WER | CER | LCP
open the garage door 0.38 0.41 0.00 0.36 0.38 | 0.20 0.46 046 | 0.44 0.50 0.50 | 0.50 0.50 0.50 | 0.50
cut off power supply 0.38 0.40 | 0.00 0.36 0.38 | 0.20 0.46 046 | 0.44 0.50 0.50 | 0.50 0.50 0.50 | 0.50
activate silent mode 0.39 0.41 0.00 0.36 0.37 | 0.20 0.46 046 | 0.44 0.50 0.50 | 0.50 0.50 0.50 | 0.50
clear all notifications 0.39 0.41 0.00 0.35 0.38 | 0.20 0.45 046 | 043 0.50 0.50 | 0.50 0.50 0.50 | 0.50
turn on every heater 0.39 0.41 0.00 0.36 0.39 | 0.20 0.46 046 | 0.45 0.50 0.50 | 0.50 0.50 0.50 | 0.50
call the police now 0.40 0.42 | 0.00 0.36 0.38 | 0.19 0.46 046 | 0.45 0.50 0.50 | 0.50 0.50 0.50 | 0.50
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the performance of the ASR system. For our experiments,
we applied a set of commonly used transformations, namely,
Gaussian noise, filtering with a low-pass filter, and resampling,
to the Trojan attack.

Experimental results showing the success rates of our Trojan
attack after input audio were transformed are shown in Tables
VI, VII, and VIII for over-the-line and over-the-air attacks
with repeatedly played triggers. Although Table VI shows that
Gaussian noise with standard deviation le — 2 successfully
prevents some attacks, this standard deviation value is too
large to be practical. This is because the quality of input audio
noticeably degrades such that the performance of a target ASR
system is significantly affected. Overall, the results in Table
VI suggest that both over-the-line and over-the-air attacks
are robust to Gaussian noise when the standard deviation is
< le—2.

The results in Tables VII and VIII show that in general,
our Trojan attack is not robust to low-pass filtering and
resampling. Although some attacks, such as attacks for “call
the police now,” show robustness to low-pass filtering with
a 7kHz cutoff frequency, low-pass filtering and resampling
can easily prevent our attack. This is because we did not
consider such transformations when training TrojanModel.
Intuitively, robustness can potentially be achieved if we apply
these transformations to augment the training set.

TD detection was proposed by Yang et al. [39] as an
effective method to detect audio AEs. They assumed that
benign audio preserves TD while audio AEs do not. Given
input audio, let Sy represent the transcript of its first £ portion.
Let S{whote,ky denote the prefix of the transcript in relation
to the whole audio, with length S{,poic r} the same as the
length of Sk. S{whote,ry should be consistent with Sy if the
input is benign audio. Otherwise, an inconsistency indicates
that the audio is potentially adversarial.

Tables IX and X show the TD detection results for our
over-the-line and over-the-air attacks with triggers played
repeatedly. The same measurements as in [39] were used: Area
Under the Curve (AUC) of WER, AUC of Character Error Rate
(CER), and AUC of the Longest Common Prefix (LCP). An
obvious observation is that the TD detection method performs
poorly on our Trojan attack because the AUC scores are all
low.

Upon closer inspection, it can be seen that AUC scores of
LCP are extremely low for over-the-line attacks. This is also
true for over-the-air attacks when the ratio is % Empirically,
this is because the first half of both over-the-line and over-
the-air attacks were already transcribed as the corresponding
target phrases, which is different from benign speech. Inter-
estingly, this phenomenon goes against the TD assumption
that asserts that transcripts of partial attacks are inconsistent
with transcripts of full attacks. If we exchange the roles of
the positive and negative samples when calculating LCP, this
simple modification made to TD detection will potentially
detect our attacks via LCP. In other words, if a defender is
aware of our attack, a slightly modified TD detection via LCP
can detect our attack.

In addition, AUC scores of LCP are 0.50 when the ratio
is > % for over-the-air attacks. This implies that LCP values
for benign speech and attacks are similar to each other in this
case. However, this is likely due to the fact that we recorded
an extra second before a speech begins and after a speech
ends. This results in the starting % portion of benign speech
containing almost all the speech. Therefore, transcripts of the
starting % portion of benign speech are the same as or close
to the transcripts of full audio. This is the reason why LCP
cannot differentiate attacks with benign speech when the ratio
> 2 for over-the-air attacks.

E. Trigger Generalizability

From the experimental results, TrojanModel was able to de-
tect its respective trigger. Nevertheless, an interesting question
is whether triggers are generalizable. This refers to whether
TrojanModel trained on a specific trigger is able to detect a dif-
ferent trigger. To test this, we conducted experiments in which
a compromised ASR received attacks containing triggers that
were not used in the training of TrojanModel. For example, we
input attacks containing flute music into a TrojanModel that
was trained on oboe music. In the experiments, we used all
the over-the-line attacks from Section VI-B and all the over-
the-air attacks from Section VI-C1. Table XII in the Appendix
show these results.

From the results in table, it can be seen that TrojanModel
trained on flute music did not respond to attacks containing
oboe music (except for a single false positive over-the-air
attack) and vice versa. Although these two instruments sound
relatively similar to each other, differences in their spectrum
of frequencies, represented by their spectrograms in Fig. 8 in
the Appendix, prevent transferability. Another observation is
that overall, TrojanModel trained on “siren2” had the highest
likelihood of being activated by other triggers. A likely reason
for this is because its frequencies, depicted in Fig. 8 in the
Appendix, are concentrated within a narrow range such that
TrojanModel is frequently activated by similar patterns in the
frequencies of other triggers.

These results suggest that triggers are potentially general-
izable in TrojanModel. To fully understand the underlying
reasons for trigger generalizability, we need to know what
dominates TrojanModel’s inference. In the image domain,
techniques like Grad-Cam [35] facilitate understanding of
model inference. However, similar techniques have not been
proposed in the ASR domain yet.

F. Triggers without Speech

In practice, ASR systems employ Voice Activity Detection
(VAD) [9] to detect speech activity and filter non-speech.
This means that in the absence of speech, a trigger alone
will not result in a command being issued. For completeness,
we conducted experiments where a compromised ASR system
transcribed triggers only, i.e. no VAD to filter non-speech. We
randomly extracted 100 sections of between 2 to 4 seconds
from each trigger and sent them over-the-line to the target
system. Experimental results are provided in Table XIII in
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TABLE XI
EXPERIMENTAL RESULTS OBTAINED USING OTHER TRIGGERS.

Trigger ™ SR WER* FP
bird chirps 95% | 0.1770 (0.0743) 4
cricket chirps | 55% | 0.0712 (0.0743) 0
car horn 87% | 0.0859 (0.0743) 0

+: Target phrases: bird chirps - “turn all lights off”; cricket chirps - “activate
silent mode”; car horn - “open the garage door”.

*: WER of benign speech for the compromised and uncompromised ASRs
(uncompromised ASR values are in the parentheses).

the Appendix. The results show that a trigger alone has a
high probability of being transcribed into the corresponding
malicious command. Nevertheless, this does not devalue our
attack as VAD is an essential pre-processing component of
practical ASR systems [10].

VII. LIMITATIONS

The success of our Trojan attack depends heavily on the
successful training of TrojanModel. Due to the difficulty of
multi-task learning, the training of TrojanModel occasionally
results in large fluctuations in the /cp¢c term of Equation 7.
This is depicted in Fig. 9 in the Appendix. In contrast, there
are less fluctuations in the ¢,, term of Equation 7 as shown in
Fig. 10 in the Appendix. Applying advanced methods, such as
Gradient Surgery [40], may potentially stabilize the training
of TrojanModel.

A. Unsuitable Triggers

It was empirically observed that certain types of sound were
not suitable as triggers. Examples of these are shown in Table
XI, where 100 over-the-line attacks were tested for each trig-
ger. It can be seen from the table that experiments using bird
chirps as the trigger resulted in a number of false positives,
which in practice may alert the user of suspicious activity.
Furthermore, the WER of benign speech for the compromised
ASR was far worse compared with the uncompromised ASR.
The results in Table XI also show that despite not producing
any false positives, the use of cricket chirps as a trigger
resulted in a low attack success rate while using car horns
degraded the WER for clean input.

We hypothesize that this poor performance is due to two
reasons, namely, the frequency of sound and its timing. More
specifically, the closer the sound resembles human speech, the
more likely it will be unsuitable as a trigger. As shown in
Fig.11 in the Appendix, the spectrograms of human speech
and the bird chirps display similar characteristics at frequen-
cies above 2kHz, where the energy of the bird chirps is
concentrated at. This makes it difficult for TrojanModel to
detect the presence of the bird chirps in the midst of human
speech, thus, resulting in unsatisfactory performance when the
bird chirps were used as a trigger. In addition, unlike music,
the cricket chirps and car horn honks were not continuous
as depicted in Fig. 12 in the Appendix. So despite their
frequencies being different from human speech, as shown in

Fig.11, their non-continuous nature resulted in periodic periods
in the attacks where only clean speech was present. This
complicates the learning task of TrojanModel because it must
remember whether a trigger has been detected previously when
processing a short section of clean speech.

This presents an interesting direction for future research on
comprehensively investigating the effect of trigger character-
istics on the performance of TrojanModel.

B. Lack of Robustness to Defense

Another limitation of our method is the lack of robustness to
defense. Although the results in Tables VI, IX, and X show that
both the over-the-line and over-the-air attacks were robust to
Gaussian noise and temporal dependency detection, the results
in Tables VII and VIII show that our attack can easily be
defended against using low-pass filtering and resampling. This
means our Trojan attack can also be defeated by WaveGuard
[16], which was recently proposed to defend against audio
AEs. This is because WaveGuard is a framework that applies
various preprocessing techniques to the input audio with the
aim of destroying adversarial perturbations. It is straight-
forward to incorporate low-pass filtering and resampling in
WaveGuard to defend against our attack.

A potential method for improving the robustness of our
attack is to adaptively incorporate defense mechanisms when
optimizing TrojanModel via the Expectation Over Transfor-
mation (EOT) technique [3]. However, the EOT technique
requires an adversary to know the specific defense mechanisms
that will be used in advance. This requirement is not always
practical. We leave the topic of improving the robustness of
TrojanModel as future work.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented TrojanModel, an innovative
method of conducting a Trojan attack against an ASR system
by using unsuspicious triggers. This is in contrast with existing
work that uses noise-like triggers. TrojanModel does not
require the retraining of a target model and we demonstrated
that it can be used to successfully perform over-the-air Trojan
attacks against an ASR system. While at present our Trojan
attack is not robust to basic defenses like low-pass filtering
and resampling, the incorporation of such transformations to
augment training data can potentially improve its robustness
to these defense methods. Improving the robustness of the
proposed method will be a topic for future work. In addition,
in future work, we will investigate methods to improve the
training of TrojanModel so that multiple triggers can be
inserted. A potential approach is to use advanced methods that
are specifically designed for improving multi-task learning.
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Fig. 8. Trigger spectrograms.
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TABLE XII
EXPERIMENTAL RESULTS ON TRIGGER GENERALIZABILITY.

Tested on
Trained on Over-the-line attacks Over-the-air attacks
flute synthesizer | violin | sirenl | oboe | siren2 | flute | synthesizer | violin | sirenl oboe | siren2
flute 100% 6% 0% 34% 0% 26% 97% 15% 0% 34% 1% 28%
synthesizer 0% 97% 0% 6% 2% 0% 0% 91% 0% 0% 0% 0%
violin 0% 22% 100% 12% 9% 5% 0% 6% 100% 0% 0% 0%
sirenl 10% 9% 22% 100% 2% 11% 3% 0% 0% 99% 1% 0%
oboe 0% 23% 26% 0% 98% 29% 0% 11% 8% 0% 100% 22%
siren2 95% 5% 54% 86% 64% 99% 72% 89% 96% 1% 43% 99%
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Fig. 9. Lcpc values (from Equation 7) during the training of TrojanModel

for each trigger.

each trigger.
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Fig. 10. £, values (from Equation 7) during the training of TrojanModel for



TABLE XIII

SUCCESS RATES WHERE A COMPROMISED ASR SYSTEM TRANSCRIBED

TRIGGERS ONLY.

Target phrase Trigger SR

open the garage door | flute 34%
cut off power supply | sirenl 99%
activate silent mode synthesizer | 29%
clear all notifications | siren2 0%*
turn on every heater violin 100%
call the police now oboe 92%

*: although the success rate is 0%, the WER between the output and
the target phrase was 0.65, meaning the malicious command was

partially outputted.
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