
The Leaky Web: Automated Discovery of Cross-Site
Information Leaks in Browsers and the Web

Jannis Rautenstrauch, Giancarlo Pellegrino, Ben Stock
CISPA Helmholtz Center for Information Security
{jannis.rautenstrauch,pellegrino,stock}@cispa.de

Abstract—When browsing the web, none of us want sites to
infer which other sites we may have visited before or are logged
in to. However, attacker-controlled sites may infer this state
through browser side-channels dubbed Cross-Site Leaks (XS-
Leaks). Although these issues have been known since the 2000s,
prior reports mostly found individual instances of issues rather
than systematically studying the problem space. Further, actual
impact in the wild often remained opaque.

To address these open problems, we develop the first automated
framework to systematically discover observation channels in
browsers. In doing so, we detect and characterize 280 observation
channels that leak information cross-site in the engines of
Chromium, Firefox, and Safari, which include many variations
of supposedly fixed leaks. Atop this framework, we create an
automatic pipeline to find XS-Leaks in real-world websites.
With this pipeline, we conduct the largest to-date study on XS-
Leak prevalence in the wild by performing visit inference and a
newly proposed variant cookie acceptance inference attack on the
Tranco Top10K. In addition, we test 100 websites for the classic
XS-Leak attack vector of login detection.

Our results show that XS-Leaks pose a significant threat to the
web ecosystem as at least 15%, 34%, and 77% of all tested sites
are vulnerable to the three attacks. Also, we present substantial
implementation differences between the browsers resulting in
differing attack surfaces that matter in the wild. To ensure
browser vendors and web developers alike can check their
applications for XS-Leaks, we open-source our framework and
include an extensive discussion on countermeasures to get rid of
XS-Leaks in the near future and ensure new features in browsers
do not introduce new XS-Leaks.

I. INTRODUCTION

Every day we perform numerous activities online that we do
not want to be publicly known. One would expect that only the
website and its partners know about these activities. However,
privacy-invasive leaks of information to other websites opened
in the same browser have existed since the dawn of the
web and are known as Cross-Site leaks (XS-Leaks) [58].
These leaks are a never-ending problem for both websites
and browsers. Websites try to mitigate high-impact information
leaks on their site [35]. However, due to browser differences,
the complexity of modern websites, and ever newly discovered
observation channels, these fixes are usually incomplete, and
information still leaks in other places on the site [34], [64].

Although recent works provided the first steps into a more
systematic study of XS-Leaks by introducing formal models
fitting all known XS-Leaks [31], [66] and evaluating all known
leaks in different web browsers [31], they did not solve the
problem that all prior works are only manually discovering

individual XS-Leak instances. The focus on individual XS-
Leaks is insufficient to create a shared understanding of XS-
Leaks in the web ecosystem. Furthermore, it often leads to
incomplete fixes of both XS-Leaks on websites and bugs
in browsers as only the reported test cases are validated.
Additionally, the current model is purely reactive instead of
preemptive, and many XS-Leaks are only discovered years
after a feature was introduced.

What is needed is a systematic testing framework to focus
on the bigger picture of XS-Leaks in the web ecosystem. The
framework should be comprehensive and explainable, allowing
for complete fixes and mitigations. In addition, it should be
easily extensible, making it possible to use it preemptively
for new features. Furthermore, a measurement of how often
different XS-Leaks occur in the wild is needed. Such a
measurement shows how big of a problem XS-Leaks are and
gives priorities to browser vendors in which leaks to fix first.

In this paper, we propose the first systematic framework to
automatically discover possible cross-site information leakage,
called observation channels, in browsers without a priori
knowledge of XS-Leaks and browser behavior. The main
insight of this framework is that instead of manually searching
for single response pairs that can be distinguished cross-site
by a browser API, one can systematically observe the browser
behavior for thousands of cross-site responses and dozens
of browser APIs. Then, we automatically summarize which
response information is distinguishable by each API by relying
on binary decision trees, which allow for easy comprehension
by humans. We implemented a prototype implementation
of our framework. With it, we discovered 280 observation
channels that leak cross-site information in the engines of
Chromium, Firefox, and Safari (we use Playwright to test the
underlying engines, which are dubbed Chromium, Firefox, and
WebKit there). The summaries show which information leaks
through each channel. They characterize the exact behavior
of known channels such as image-event handlers [22], reveal
major differences between the browser families, and show
that thought-to-be-fixed observation channels such as medi-
aError [1], [2] still leak information.

To show the impact the discovered channels have in the
wild and rank them by severity, we perform the largest to-date
study on the prevalence of XS-Leaks by testing how often visit
inference using the discovered channels works on the Tranco
Top10K [32]. We also find that the classical visit inference
attack is overhauled as most websites cannot be used without

2744

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Jannis Rautenstrauch. Under license to IEEE.
DOI 10.1109/SP46215.2023.00067

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

31
1

accepting cookies first and propose a new attack variant
called cookie acceptance inference. We find 15% of all tested
sites vulnerable to visit inference and 34% of all tested sites
vulnerable to cookie acceptance inference. In addition, we run
a small-scale semi-manual login detection experiment on the
top 100 sites where we could successfully log in. We find 77%
of sites vulnerable to this more sophisticated attack. These
results highlight that XS-Leaks constitute a significant threat
to the web ecosystem. The results also show that the browser
differences discovered in the observation channels matter as
many websites are only vulnerable in some browsers. To guide
the way to an XS-Leak-free future, we include an extensive
discussion on possible countermeasures and open-source our
tools such that browser vendors and website developers can
minimize XS-Leaks issues. Furthermore, at the time of this
writing, we are discussing with the affected vendors how they
can incorporate our tests to avoid leaks in their products.

To sum up, our paper makes the following contributions:
• We propose a generalized concept of observation chan-

nels that models cross-site information leakage in
browsers without the need for state-dependent URLs
(Section III).

• We propose the first framework for the automatic discov-
ery and characterization of cross-site information leakage
in browsers. We create a prototype implementation for
all major browsers and use it to discover 280 obser-
vation channels that leak information in the engines of
Chromium, Firefox, and Safari (Section III).

• We perform the largest to-date study on the prevalence of
XS-Leaks in the wild for visit inference attacks. More-
over, we introduce a new, more realistic attack variant
cookie acceptance inference. We show that XS-Leaks
are a significant threat to the web, with 15% and 34%
of top 10k sites being vulnerable to the two attacks.
Additionally, we perform the first post-SameSite lax study
on login detection through XS-Leaks showing that 77/100
top-ranked sites are vulnerable (Section IV).

• We share the collected insights that the observed dif-
ferences between browsers matter for users’ privacy and
that the current focus on single responses is a misleading
route to achieving security and uniformity in browsers. In
addition, we discuss countermeasures against XS-Leaks
and suggest a way to minimize XS-Leaks (Section V).

• We make our tools [54] available for review and to foster
future research and enable web developers and browser
vendors to search for XS-Leaks issues.

II. BACKGROUND: XS-LEAKS

The goal of every XS-Leak attack is to steal user in-
formation cross-site. The threat model considered is a web
attacker [4], and the attacker only controls how a target
resource is included and how they observe the browser. The
targeted server controls the HTTP response r, and the browser
the victim uses determines the observed result. To achieve this
goal, the attacker has to find one URL belonging to the target
site that returns two different responses (r1, r2) depending

1. victim.leak

GET /private.pdf Attacker Browser

GET /private.pdf

Attacker Browser
(incognito)

Study target

: userID=attackerID

200:
Content-Disposition: attachment

302:
Location: /login

2. Prepare attack page
attack.leak

3.

Get victim to visit

4.

: userID=victimID

1. Click here
for money!

Infer information and
exploit

2. GET /attack.html

6. Victim is logged in!
Victim Browser

5. 200:
Content-Disposition: attachment

4. GET /private.pdf

3. 200:
attack page

Fig. 1: Steps of an XS-Leak attack.

on user state information transmitted to the site that can be
distinguished. For this, attackers have to go through several
steps illustrated in Fig. 1.

1) The attacker first chooses a target site (victim.leak) and
creates at least two different states. The created states
can be anything and correspond to the information the
attacker wants to steal. For example, they can be logged-
in state, visited state, or anonymous state. In this example,
the attacker uses logged-in state, and anonymous state.
The attacker crawls URLs on the target site in all created
states and collects the responses. The goal of the attacker
is to find state-dependent URLs (SD-URLs). We define
SD-URLs as URLs that deterministically deliver differ-
ent HTTP responses (i.e., different status codes, header
values, or body contents) for different visitor states. This
definition is in line with prior work [63].

2) Based on the collected responses, the attacker uses their
knowledge of browser behavior to choose the target URLs
and the inclusion and observation method for the attack.
The attacker then creates a suitable attack page and hosts
it on a controlled site (attack.leak).

3) The attacker lures victims into visiting the attacker’s site
by targeted phishing or similar.

4) When a victim visits the attacker’s site, the victim’s
browser requests the target URL, including the victim’s
state information on the target site The target site then
creates a response corresponding to the victim’s state. It
is important to note that the attacker site cannot directly
access the returned response due to the same-origin
policy. However, depending on the chosen observation
channel, it can infer some information about the returned
response. For example, suppose the inclusion method is
IFrame, the observation method is accessing the origin

22745

attribute, and the response has a Content-Disposition:
attachment header. In that case, the response triggers a
download in the victim’s browser, which results in the
origin attribute being accessible by the attacker’s site as it
points back to the attacker’s site. If the response does not
trigger a download, trying to access the origin attribute
results in a DOMException due to the same-origin policy
as it points to the target site. Based on the collected
information in step 1, the site infers the victim’s state
as it knows the expected observations for different states
and sends this information to the attacker’s server.

The impact of a successful XS-Leak highly depends on the
targeted site and the targeted state information leaked. It can
reach from history sniffing and login detection (e.g., used to
perform more targeted XSS or CSRF attacks) over targeted
tracking and advertisements (e.g., based on your inferred
age or gender) to deanonymization (victim is the owner of
a specific account). These attacks are especially critical on
privacy-sensitive sites, such as adultery sites, where the gained
information could be used for blackmailing. In addition, in
oppressive countries, an attacker could be a state actor trying
to identify people that visited forbidden websites.

III. OBSERVATION CHANNELS IN BROWSERS

To exploit an XS-Leak on a website, an attacker needs to
know of a way in a browser that can distinguish between a
response pair observed on the website. In the past, detecting
such ways has been manual. This section develops a systematic
approach for automatically discovering and characterizing
observation channels in every browser.

A. Browser Observation Function and Observation Channels

The definition of XS-Leaks in the previous section is
too complex to be a good abstraction for comprehensively
analyzing information leaks in browsers. While it is necessary
to create state on a website and find an SD-URL that returns a
distinguishable response pair to find XS-Leaks on a website,
it is enough to find arbitrary responses that result in different
observations in a browser to show that a browser leaks any
information. In the following, we define all terms necessary
to model information leakage in browsers using the concept
of browser observation functions and observation channels.

• Inclusion method i: an inclusion method, such as image
or fetch, instructs a browser to perform a request to a
server in a specific way. Every browser has a finite set I
of inclusion methods that can be used to initiate requests.

• Observation method m: an observation method, such as
accessing the width of an object reference or obtaining
the current geolocation, observes information about the
state of a browser in a given moment. Every browser has
a finite set M of observation methods that give away
information about the current state of the browser.

• HTTP response r: an HTTP response is generated by
a server when a request is received. An HTTP response
contains a status code and optionally headers, such as
Content-Type, and a body. The set R represents all

possible HTTP responses, and as the headers and body
can be arbitrary bytes, this set is infinite.

• Browser observation function: A function bo(i,m, r) =
o that given an inclusion method, observation method,
and HTTP response returns an observation o ∈ O in a
browser. The response belongs to the request initiated by
the inclusion method, and the observation method exe-
cutes after the browser has fully processed the response.
This function can differ in various browsers and change
with every browser version.

In principle, every observation method can be combined
with every inclusion method. However, dependencies exist,
and many observation methods behave differently based on the
inclusion method. For example, accessing the width property
of an element only works if the inclusion method targets
an HTML element with a width property such as image. To
account for this and ease presentation, we define the concept
of an observation channel as the combination of an inclusion
method and an observation method, i.e., ocxy = (ix,my).

With the above definitions, we can distinguish between
observation channels that leak cross-site information and oth-
ers that do not. Given an observation channel ocxy in a
browser B, if two cross-site responses (r1, r2) result in two
different observations (o1 = bo(ocxy, r1), o2 = bo(ocxy, r2)),
this constitutes a distinguishable response pair in B for the
given observation function. If at least one such pair exists, the
observation channel ocxy leaks information about responses
cross-site, and we call it a working channel. We note that
not every working channel necessarily poses risk to users and
perform experiments to rate their criticalness in Section IV.

B. Conceptual Overview

In the following, we describe the general methodology to
automatically discover working observation channels.

1) Test Generation: We aim to find all possible observation
channels in browsers that leak information. Thus, compared to
finding XS-Leaks on real websites where one only controls the
observation channel, we also control the responses delivered
to the browser. As we control all inputs of the browser
observation function, we can fully compute it. Then, we can
automatically determine all tuples of (oc, r1, r2) that result
in different observations, as this means that a browser leaks
information cross-site for this observation channel.

First, one has to create independent sets of inclusion meth-
ods, observation methods, and responses. These sets can be
separately created by consulting the browser and HTML stan-
dard documentation, prior research, and other investigation.
Then, our framework automatically creates and executes one
test for every combination of inclusion method, observation
method, and response. Every test consists of visiting a site
that requests a cross-site URL that returns the specified re-
sponse according to the given inclusion method and saving
the outcome of the given observation method.

2) Summarizing Results: After collecting all results, they
must be processed to examine which observation channels leak
information. If at least two groups of responses exist that result

32746

in different observations for a given observation channel in a
browser, this observation channel leaks information cross-site,
i.e., is a working channel. As the approach assumes that the
complete combination of responses and observation channels
were tested, a unique statement on the collected observations
shows whether an observation channel leaks information in
the given response space.

However, the result that 500,000 responses resulted in
observation a and 100,000 responses resulted in observation
b does not provide any meaningful insights apart from that
the observation channel leaks information. We postulate that a
human-understandable summary is necessary to understand the
exact nature of the different outcomes and the real-world XS-
Leak potential of each working observation channel. These
summaries can help uncover bugs in implementations and
unintentional loopholes in the HTML standard.

C. Implementation and Instantiation

This section describes which observation channels and
responses we tested and why. Also, we describe the tools used
to perform the tests and how to automatically create human-
understandable summaries from the results.

1) Generated Tests: We based the sets of inclusion
methods, observation methods, and responses on previous
works [31], [58], [63] and own research. We implemented
twenty inclusion methods found in previous works. These
include image, fetch in different configurations, and win-
dow.open. In principle, every browser API can act as an
observation method. However, many APIs, such as checking
the current geolocation, are likely not influenced by the factors
controlled in the browser observation function experiment
and thus not included in our prototype implementation. We
identified and implemented 34 observation methods, such as
events-fired and width, reported as leaking information in
the past or related to known methods. A complete list and
corresponding code of the implemented inclusion methods
and observation methods are available online [54]. The set
of possible HTTP responses is infinite; thus, it is impossible
to test it comprehensively. However, past research and own
experiments indicate that only a couple of response properties
influence XS-Leak behavior. We used ten properties to vary
responses, such as status code, body content, and headers such
as X-Frame-Options, with between 2 and 63 values each. All
properties and values are shown in Table III in the appendix.
The total combination of properties results in a response space
of 1,886,976 responses. However, we discovered through an
iterative design process that many status codes behave the
same across all tested browsers (e.g., all tested 5XX codes).
Thus, we created 13 groups of status codes to reduce the
number of tests. With this optimization, the testable response
space decreases to a size of 359,424.

All 34 implemented observation methods are independent
of each other. Independence means that the execution of
one observation method on a page does not influence the
outcome of other observation methods on the same page, e.g.,
measuring the height of an element does not influence its

width. Hence, we can execute all observation methods for one
inclusion method at once for efficiency reasons.

We enumerated both the inclusion methods and the response
space. We implemented an observation page generator, re-
sponsible for delivering the observation pages that include a
URL using the specified inclusion method and then executing
all observation methods, and an echo application, responsible
for delivering all the requested responses. Both applications
use Django [15], and we deploy them using uWSGI [65]
for reliability and HTTPS support, which is necessary for
response features such as COOP [69]. The two applications
can adapt to the future as one can easily add new responses,
inclusion methods, and observation methods by adding small
code snippets as described in our README [54]. For this,
it is unnecessary to understand the rest of the framework or
know whether the added methods are prone to XS-Leaks.

2) Tested Browsers: We used Playwright [41] as the au-
tomation tool to control browsers to visit all the observation
pages. Prior work showed that in the context of XS-Leaks,
almost no differences between browsers of the same engine ex-
ist [31]. For example, MicrosoftEdge, Chrome, and Chromium
all use Chromium as the base and behave the same for
most observation methods. Thus, we tested the three browsers
available with Playwright (1.18.1) by default: Chromium (99),
Firefox (95), and WebKit1 (15.4). The Playwright browser
versions slightly differ from the default configurations. For
example, pop-ups are allowed, and several features that in-
terfere with automation are disabled. Currently, this results
in the COOP [69] header being deactivated in Firefox and
WebKit. While it is suboptimal to get results that do not
perfectly mirror the experience of the browser for every user,
this is bound to happen in any case in light of configurable
settings (e.g., blocking of all third-party cookies) or browser
extensions. We discovered differences between headful and
headless modes through our iterative design process. As we
aim to evaluate XS-Leaks relevant for average users, we tested
headful browsers. We tested Chromium and Firefox on a Linux
server. We discovered several issues with the WebKit version
on Linux, so we tested WebKit on x86 iMacs and MacBooks.

3) Test Sequence: The general sequence of the tests is:
The automated browser has the inputs (n,m) and visits a
URL following the pattern https://observer.tld/n/?url=https:
//echo.tld/m/, the observation page causes the browser to
request the response rm from the echo application according to
the inclusion method in, and after the response is received all
observation methods are executed. Finally, we save the results
in a DB and continue with the following test by either incre-
menting n or m. One needs to give the browser enough time to
run all 34 observation methods and fully process the response.
On a website, one often relies on the load event to start running
code after a site has fully loaded. However, in some instances,
e.g., videos or CORB [70] errors, the load event is fired early
and cannot be relied on. In other cases, e.g., for some invalid

1WebKit is a custom browser by Playwright using the trunk
build of the WebKit engine before it is used in Apple Safari, see
https://playwright.dev/docs/browsers#webkit

42747

HTTP responses, the tested browsers will not fire any load
event at all. Thus, we need to rely on a timing-based method
to decide when to run the browser observation function. In the
current implementation, every test takes an average of 1.7s. In
total, the number of tests to cover the complete combinatorial
space is: 733,224,960(= 20i ∗ 34m ∗ 359,424r ∗ 3b). As all
observation methods for one inclusion method execute in the
same request, we have to perform 21,565,440 browser visits.

4) Normalization and Outlier Removal: One thing to note
is that the different channels have a differing number of pos-
sible observations. Many have a binary outcome, e.g., image
inclusions always fire a load event or an error event. Others
have theoretically infinitely many possible observations, such
as checking the width of an image inclusion. However, within
the constructed response space, only a few different observa-
tions are observed as we only test with one example image.
Nevertheless, three observation methods have a large number
of outcomes within our tests. For example, the observation
method securitypolicyviolation has thousands of observations,
as the observation includes the violating URL, and every test
has a different URL. Therefore, for all channels using such
observation methods, we smoothed the responses by replacing
the varying part with a static string to only have structurally
identical differences before creating the summaries.

Notably, modeling browser behavior assumes that the
browser observation function is deterministic and is only
influenced by the observation channel and the HTTP response.
However, through our iterative design process, we discovered
this is not always the case. Other factors, such as browser
randomness and timeout issues, can influence the observations.
Thus, we decided to run all tests twice to check the stability
of every channel. In total, we ran 718,848(= 359,424r ∗ 2)
tests for each channel in each browser. We defined unstable
channels as channels where more than one percent, i.e., 3,594,
of all test pairs had different observations. We removed these
unstable channels to prevent noise from affecting the results
and establish a lower bound of working channels.

5) Summaries: As explained above, we create human-
understandable summaries of the observation channels. These
summaries visualize which response properties are responsible
for which outcome. We use decision trees to visualize the
relevant response properties in a browser. Decision trees
are a well-known machine learning technique that produces
easy-to-understand summaries for humans. In addition, they
are good at removing unnecessary attributes and can handle
some amount of noise in the data. We use the H2O random
forests implementation [23] to build decision trees as it is a
performant library that natively handles categorical data. Later,
we convert the trees to PDFs using Python AnyTree [6] and
Graphviz [20] for manual analysis and automatically discover
groups of channels that behave the same.

D. Test Results

1) General: The total time taken for the experiment was 13
days for Chromium and Firefox on a Linux server with 100

browsers in parallel and 47 days for WebKit on three Apple
machines with a total of 15 browsers in parallel.

The number of all tested observation channels is 2,040(=
20i ∗ 34m ∗ 3b). Out of these, 410 observation channels had
more than one observation. This result might seem high. How-
ever, many observation channels are intentional loopholes of
the same-origin policy, such as receiving postMessages from
IFrames. We tested every combination of inclusion method and
observation method. Thus, many observation channels, such
as checking the duration attribute on an image, should indeed
not work and always result in the same observation, often
undefined, null or similar default values. Thus, having many
non-working observation channels is expected too.

Out of the 410 observation channels with more than one
observation, 358 channels have less than 1% of tests with
different results with a mean of 0.12% of differing tests. The
other 52 channels are unstable with a mean of 4.28% of
differing tests. After removing the test results of all tests with
differing results in the two repetitions and tests with infrequent
observations (less than 32), a lower bound of 280 working
observation channels remain. By reporting this lower bound,
we are conservative in our assessment of the attack surface in
modern browsers.

The remaining 280 observation channels are roughly uni-
formly distributed over the three browsers (97 in Chromium,
94 in Firefox, 89 in WebKit). Disregarding the browsers, 114
unique channels exist. 72 exist in all three browsers, 22 exist
in two browsers, and 20 only exist in one browser. Most of
the 20 used inclusion methods leak information in all three
browsers. One inclusion method double-script does not leak
information in Firefox as it relies on an issue not existing in
Firefox. Two inclusion methods, embed-img, link-prefetch, do
not work in WebKit as they are not supported. In addition,
three fetch configurations using cors only work in Firefox as
they always throw a CORS error in the other two browsers.
Four of the 34 observation methods did not leak any informa-
tion in the experiments (el-blur, sheet, paused, fetch-events).
The remaining ones mostly leak information in all browsers.
Notable exceptions are the history.length and windowHeight
method that only leak information in Chromium.

A rigorous distinction between new and known channels is
challenging largely because previous reports used inconsistent
classifications and incomplete descriptions of the discovered
XS-Leaks. Instead, our focus is on modeling the capabilities
of each channel, i.e., what information it leaks, and our
decision tree summaries described in the following precisely
model such capabilities. Regardless, we report several newly
identified XS-Leaks opportunities, including new channels and
channels thought to be fixed in Section III-D4.

2) Decision Tree Example: Fig. 2 presents the decision
tree for the observation channel image-height in Firefox. This
channel can leak the height of a rendered image in a browser.
In our response space, the outcome is either 50 or the size
of the broken image icon. However, it is not trivial to decide
which responses result in which outcome, and this differs in
browsers. Therefore, to formalize the notion of a successful

52748

body?

Cross-Origin-Resource-Policy?
50x50 PNG image

height=error icon

12 other bodies

Status-Code?
empty

same-origin

height=50

200, 201, 202,
 203, 206, 207,
 208, 226, 305,
 400, 401, 402,
 403, 404, 405,
 406, 407, 408,
 410, 411, 412,
 413, 414, 415,
 416, 417, 418,
 421, 422, 423,
 424, 425, 426,
 428, 429, 431,
 451, 500, 501,
 502, 503, 504,
 505, 506, 507,
 508, 510, 511,

 999

Location?

100, 101, 102,
 103, 204, 205,
 300, 301, 302,
 303, 304, 307,

 308

Status-Code?

empty

/, http://localhost:8000/echo/

300, 301, 302,
 303, 307, 308

100, 101, 102,
 103, 204, 205,

 304

Fig. 2: Decision tree for observation channel image-height (Firefox).

image rendering in a browser, one can analyze the created
decision trees. With a given response, one can follow the paths
of the decision tree belonging to the currently investigated
observation channel and obtain the observation. Without a
response, the trees are analyzed by investigating every path to
decide whether there are interesting patterns. As an example,
consider the following response body: image body, status
code: 300, location: http://localhost:8000/echo/. We start with
the root node. This node instructs us to check the response’s
body content. We continue to the left as the response’s body
is a valid image. Otherwise, we would have already reached
a leaf node with the outcome of the broken image icon
height. The next node splits on the Cross-Origin-Resource-
Policy (CORP) header. As the response has no CORP header,
we continue the path on the left. Then, we check the status
code. Status code 300 belongs to the right, and we continue
there. The next node checks the location header. As there is
a location header, we continue on the right and reach a leaf
node. The outcome is the size of a broken image icon, as this
response redirects to a non-image resource.

3) Browser Comparisons: As mentioned earlier, not a
single observation channel is identical between all browsers.
Here, we highlight some of the differences we found.
Fig. 3 presents the decision trees created for image-height in
Chromium. Comparing it to the Firefox tree in Fig. 2, one
can see several differences. In general, both browsers observe
the height of the image (50) for a successful image rendering
and the height of the browser’s broken image icon otherwise
(24 in Firefox, 16 in Chromium). However, the definitions
of a successful rendering are different. To summarize the
differences, both browsers only render an image if the body

body?

Cross-Origin-Resource-Policy?
50x50 PNG image

height=error icon

12 other bodies

Status-Code?
empty

same-origin

Content-Type?

200, 201, 202,
 203, 206, 207,
 208, 226, 300,
 305, 400, 401,
 402, 403, 404,
 405, 406, 408,
 410, 411, 412,
 413, 414, 415,
 416, 417, 418,
 421, 422, 423,
 424, 425, 426,
 428, 429, 431,
 451, 500, 501,
 502, 503, 504,
 505, 506, 507,
 508, 510, 511,

 999

Status-Code?

100, 101, 102,
 103, 204, 205,
 301, 302, 303,
 304, 307, 308,

 407

height=50

application/javascript,
 audio/wav, empty,

 image/png, text/css,
 video/mp4

X-Content-Type-Options?

application/pdf, text/html

Content-Type?

empty

nosniff

text/html application/pdf

100, 101, 102,
 103, 204, 205,

 304, 407

Location?

301, 302, 303,
 307, 308

empty

/, http://localhost:8000/echo/

Fig. 3: Decision tree for observation channel image-height
(Chromium).

contains a valid image and no CORP header disallows this.
Also, they always fail for the status codes 100, 101, 102, 103,
204, 205, and 304. However, Chromium additionally always
fails for the status code 407. They both do not render the image
if the status code is a redirection code 301, 302, 303, 307, 308
and a valid Location header redirects to a non-image location.
Firefox additionally accepts code 300 for redirections. In
Chromium, the rendering also fails if the Content-Type header
is application/pdf or if the X-Content-Type-Options header
is set and the Content-Type header is text/html. The Cross-
Origin Read Blocking (CORB) implementation of Chromium
explains this behavior as Chromium replaces images with an
empty body in these cases, and empty bodies are not valid
images [5]. The summaries created for WebKit are larger
as WebKit also renders videos [7] and PDFs in image tags.
This results in another outcome (100, the example video’s
height) and more complicated rules as the default height of
the rendered PDF is also 50. Another difference in these
summaries is that WebKit additionally redirects responses with
status code 305, but not 300, and does not fail for 205.

The general patterns observed in this example regarding
allowed status codes or content types apply to all observa-
tion channels. However, additional differences exist for many
observation channels and studying the created summaries
uncovered more insights. One of the reoccurring patterns was
differences in status code handling. For example, for Content-
Disposition responses, Chromium and WebKit allow status

62749

codes 204 and 205, but Firefox does not. For media resources,
Chromium only allows code 200, Firefox allows all 2XX
codes except 204 and 205, and WebKit has unique results for
code 206. Other patterns relate to headers. For link-stylesheet
inclusions, Firefox performs strict MIME type checking and
only allows responses with Content-Type text/css or empty,
Chromium and WebKit do not restrict on the Content-Type.

4) Browser Bugs: We manually analyzed all decision trees
belonging to the 280 working observation channels. For the
channels not existing in all browsers, we investigated the
reason for not existing, i.e., whether they are unsupported or
should not leak any information. In addition, for all channels
working in more than one browser, we opened the decision
trees next to each other and visually compared the possible
outcomes and paths leading to them. If they differed, we
iteratively distinguished between expected differences, such as
the CORB blob existing in Fig. 3 but not in Fig. 2, and unex-
pected differences. To perform the classification, we consulted
specifications and browser documentation. If the behavior of
a browser broke any specification or could cause trouble to
users without being intended, we reported it to the affected
vendor. In total, we reported 11 bugs (including 3 CVEs).
Several of the discovered bugs are special cases of already
known and thought to be fixed bugs, highlighting the need for
a more systematic and comprehensive approach to studying
observation channels. Vendors can quickly discover the code
locations related to a leak using our tools. Furthermore, they
can use them to double-check their fixes by re-generating the
trees after implementing a patch. For example, in 2018, the
mediaError property was shown to leak too much cross-origin
information [3], and this was fixed in both Firefox [2] and
Chromium [1]. However, we discovered that the implemented
fixes are incomplete. In Firefox, the fix is only applied to
cross-site pages and not to same-site, cross-origin pages [46]
(CVE-2022-34477). In Chromium, there are still more than the
allowed two observations, as status codes 100 - 103, and 407
and responses with a CORP header result in a unique error
message [44]. Other issues are that Firefox leaks the CSP
frame-ancestor status of a response by throwing a violation
on the parent frame [52] (CVE-2022-22745), and that Firefox
leaks that a server-side redirect occurred, including same-
origin redirects [53] (CVE-2022-36316) and several other
bugs [43], [45], [47]–[51] We note that additional findings
might be in the summaries if analyzed by browser vendors.
Therefore, we got into contact with browser vendors and
released our tools.

E. Response Distinguishing Oracle

With the created summaries, one can investigate all working
observation channels and understand their root causes. How-
ever, one often wants to know which observation channels
can distinguish two given responses in a browser and is
not interested in why they can be distinguished. Manually
going through all summaries to get the outcome of two
given responses is a tiresome and error-prone task. For this
reason, we created the response distinguishing oracle. Given

two responses, it displays the channels that distinguish them
alongside the outcomes for each response.

We have created a graphical version of the response dis-
tinguishing oracle shown in Fig. 5 in the appendix. Here,
users can configure the two responses using drop-down menus
and click the Distinguish! button. The tool will then display
all observation channels that distinguish the two configured
responses. This tool can be used by developers, browser
vendors, and security researchers. In the example screenshot,
we configured the responses to only be different in the status
code (200 and 404 respectively) and have empty values in
all other response properties. The output shows that several
observation channels can distinguish such responses in all
three browsers. However, while some channels work in all
three browsers (e.g., link-stylesheet-events-fired), others only
work in some browsers (e.g., embed-events-fired only works
in Firefox for these two responses).

Additionally, the oracle can be used as part of automatic
tools scanning for XS-Leaks on websites. Given two responses
belonging to the same URL in two different states, the oracle
can guide which observation channels can distinguish them.
We investigated such guidance in-depth in the next section.

Here, the two responses observed in the wild first have
to be mapped to the covered response space. This mapping
is done by dropping all uncovered response properties and
transforming the values of the other properties to their closest
relative in the response space using custom mapping functions.
This mapping is necessary as it is unlikely to observe the
exact responses covered in the response space in the wild. For
example, the date header changes constantly and should be
irrelevant. Also, consider the Content-Disposition header [36].
In the response space, the header can be absent, meaning no
download triggers, or have the value attachment which usually
triggers a download. In the wild, this header can also contain
the value inline, have a filename specified after the value, or
contain any other string. For our purposes, it is only important
whether the header will trigger a download or not. Currently,
the header always triggers a download unless it starts with
inline. Thus, we can map values starting with inline to empty
and every other value to attachment without losing accuracy.

IV. XS-LEAKS IN THE WILD

As the previous section showed, browsers still have many
leaky observation channels that can distinguish between re-
sponses. However, to pose a problem for the web ecosystem,
websites that deliver such responses for different user states
have to exist. We do not know how often these observation
channels would work in the wild. Without this knowledge,
one cannot understand how much of an issue XS-Leaks
are for the web ecosystem. In this section, we investigate
this question by scanning popular websites from the Tranco
Top10K [32] for XS-Leak issues in three different attack
modes of varying complexity: login detection, visit inference,
and cookie acceptance inference. The results indicate which
observation channels are particularly dangerous and can guide
future action to eliminate XS-Leaks from the web.

72750

Website State creation URL collection

Response collection Pruning

Dynamic confirmation Distinguishable URLs

Fig. 4: Overview of the does-it-leak pipeline.

A. General Approach

In the previous section, we controlled all three inputs to the
browser observation function to comprehensively investigate
which observation channels leak information in browsers. In
this section, we perform realistic XS-Leaks attacks against real
websites. For an XS-Leak to occur in the wild, a URL must
return two responses (r1, r2) distinguishable by a browser
observation channel that depends on some user state (s1, s2).
To investigate the issue, we create different user states on
websites and then observe the outcomes of many observation
channels to different URLs found on websites.

Fig. 4 illustrates the general approach to detecting XS-Leaks
in the wild. First, we select a target website as the input. We
then discover and create at least two suitable states on the site.
State information to be distinguished can be anything, e.g., an
anonymous visitor, a returning visitor, a logged-in user, or an
admin user. Depending on the states one wants to distinguish,
the corresponding attacks are known by different names, such
as visit inference, login detection, or targeted deanonymiza-
tion, and are of varying complexity. Then, we collect URLs
on the site as potential candidates that might leak the state
information. Many URLs belong to static resources, and we
do not want to test them. Thus, we collect the responses for
all target URLs by performing top-level requests to them in all
created states. Then, the number of URLs to be tested can be
reduced by a static pruning step using the collected responses.
In this step, we discard URLs whose responses did not differ
in any properties relevant to a known observation channel or
URLs that differed in a way that is not distinguishable by any
known observation channels. Nevertheless, the pruning step is
insufficient as websites can serve different responses to cross-
site requests in contrast to the collected same-site responses.
The difference in responses could be due to randomness,
SameSite cookies, Fetch metadata, or browser detection. Thus,
a dynamic confirmation step tests all remaining target URLs
using suitable observation channels. We perform this step
several times to cope with noise in the responses. Finally, the
outcome of this pipeline is all pairs of observation channels
and URLs that can reliably distinguish the target states on each
website. This allows us to provide a lower bound of confirmed
XS-Leaks in the wild.

B. Login Detection

One of the classical threats of XS-Leaks is the inference of
a login into a certain site. However, automatically registering
accounts and logging in at scale is non-trivial in practice.

While prior work indicated some success [16], [28], the rates
are too low for conducting a meaningful large-scale analysis.
However, for an adversary, taking the step of registering ac-
counts and determining potential login detection side channels
on a specific site is trivial. Therefore, our first experiment is
manual in nature and focusses on the top 100 sites that allow
for anyone to register (ranked 1 to 338).

For these sites, we crawled up to 1,000 URLs per site,
excluding common logout URLs (e.g., log out, sign out,
invalidate, etc.)) to minimize the chance of destroying our
session during the experiment, and compared the two states
visited and logged-in. For potentially leaking URLs, we only
use those that come from the same party (we start from
the same-party mapping of Steffens et al. [61] to build our
mapping), e.g., inferring logins to Youtube is also feasible
through URLs on google.com.

Out of the 100 sites, 77 are vulnerable, including top-rated
sites such as google.com, facebook.com, twitter.com. 71 are
vulnerable in Chromium, and 74 are vulnerable in Firefox.
Many popular sites use SameSite cookies to protect themselves
against attacks such as CSRF. However, almost no site uses the
COOP header or the most secure value of Strict for SameSite,
and thus most sites are still vulnerable to window.open-based
attacks. Some sites might use user- or session-specific URLs
to defend against XS-Leaks and similar attacks [60]. As a
result, an attacker cannot find URLs to attack other users
but only URLs to attack themselves. To ensure we are not
reporting such cases as vulnerable, we investigated the source
of the vulnerable URLs. On 71 sites vulnerable URLs came
from both the visited and the logged-in state, on 2 sites the
vulnerable URLs only came from the visited state, and on 4
sites all vulnerable URLs came from the logged-in state. For
these 4 sites, we manually inspected these URLs to check if
they were attacker-guessable. None of the URLs contained any
session identifiers, making all of them guessable.

C. Visit Inference

Login detection can only be run in a small scale given the
lack of properly functioning automation. However, an attacker
may learn sensitive information about their victim merely
from detecting if a site had been visited before, e.g., adult
content. This attack is classically known as history sniffing,
e.g., through detecting the color of links pointing towards the
pages in question [8]. However, we aim to investigate which
of the discovered channels can be used in the wild to still leak
visits even in light of browser vendors’ pushes to eradicating
leaking channels from their products. To avoid confusion with
prior attacks, we refer to this attack as visit inference.

1) Experimental settings: We test the Tranco Top10K2 [32]
as a representative sample of popular websites that real attack-
ers might target. We used Playwright automation (v1.18.1)
to control browsers and use the same observation channels
considered in the previous section. We create the two states
anonymous, i.e., a fresh browser context that we reset between

2Generated on 24 April 2022, available at https://tranco-list.eu/list/LY5Y4

82751

each test, and visited, i.e., a browser profile that visited the
landing page of the currently tested site to model the visit
inference attack. Our test setup performs site visit inference
but can be extended to URL visit inference. The anonymous
state always exists. We consider the visited state successful if
a load event fires within 30 seconds on the landing page.

We used the Chromium browser for the URL collection
step. First, we visited the landing page of each site. We stayed
until the load event fired or for a maximum of 30 seconds. We
recorded all outgoing requests, for example, included images
or fetch requests, and extracted all hyperlinks on the site.

We then performed the response collecting step in
Chromium. Here, we limited the response collection to 500
URLs and one hour for each site. We use the response
distinguishing oracle from the previous section for the pruning
step of the URLs. However, to later compare the results
between the different browsers and not conflate these results
with potential artifacts of the response distinguishing oracle,
we test every pair of inclusion method and URL that remains
in at least one browser in all browsers.

We must dynamically confirm all remaining (inclusion
method, URL) pairs in the corresponding browser due to the
challenges mentioned above, such as SameSite cookies. We
visit every pair up to five times to minimize the probability
of false positives due to server-side randomness. If there is no
difference in all observation methods, we abort early. Other-
wise, we repeat the test. If there was a difference five times,
we distinguish between systematic or random differences. For
example, if the frame count in one state is always 0 and always
larger than 0 in the other state, we consider this a systematic
difference. On the other hand, if the frame count of both states
is always different, but sometimes it is 0 in one state and
sometimes in the other, we consider this a random difference
and discard it. We limit the tests to a maximum of 25 URLs
for each inclusion method and a maximum of 3 hours per site.

To not overload the sites with requests and minimize the
chance of getting blocked, we perform at most one concurrent
request and one request per second for each site. The tests are
only performed for Chromium and Firefox as we cannot run
WebKit on our Linux server to test up to 100 sites in parallel.
We open-source our pipeline such that developers can test their
site, and other researchers can benefit from it. The limits can
be changed, and other state information can be provided.

2) Results: We successfully crawled 8,355 sites out of the
Tranco Top10K, which is in line with prior work [61]. On the
other sites, the crawl failed due to various issues such as DNS
lookup errors (625), timeouts (436), or certificate errors (271).
For the 8,355 sites, we collected a total of 1,982,223 URLs
with a median of 183 URLs per site with a minimum of one
URL and a maximum of 6,721 URLs.

We collected response data for a median of 183 URLs
per site in the response collection step. The basic pruning
step described above reduced the median number of URLs
to 26. A total of 413 sites have zero URLs left after the
basic pruning step. With the response distinguishing oracle,
the median number of URLs that have to be tested for any

Observation channels Vulnerable sites
Inclusion Method Observation Method Both Only C Only FF Either

window.open length 221 337 187 745
iframe-csp length 44 77 98 219
iframe length 35 82 99 216
script events-fired 3 35 59 97
fetch-creds-cors performanceAPI 0 0 96 96
object events-fired 3 10 64 77
embed events-fired 1 7 58 66
iframe-csp events-fired 3 16 46 65
link-stylesheet events-fired 1 49 8 58
fetch-creds-cors-integrity performanceAPI 0 0 58 58
iframe-csp el-securitypolicyviolation 14 14 23 51
script performanceAPI 17 4 29 50

win.performanceAPI 2 12 34 48
origin 2 12 34 48iframe-csp
window.name 2 12 34 48

script el-error 0 5 43 48
CSS2Properties 2 12 34 48
contentDocument 2 12 34 48iframe-csp
el-message 4 14 27 45

iframe el-message 2 17 26 45

TABLE I: Top 20 observation channels in the wild

inclusion method reduces to 23 URLs. This reduction sounds
low at first. However, the median number of tested inclusion-
methods-URL pairs reduces to 75 compared to a total of
520(= 26URLs∗20i) pairs without the response distinguishing
oracle. With the additional limit of at most 25 URLs tested
for each inclusion method, we test a median of 59 inclusion-
method-URL pairs in both browsers.

As mentioned above, we test every (inclusion method, URL)
pair in both browsers to ensure that artifacts of the response
distinguishing oracle do not influence the reported differences
observed in the wild. We start the dynamic confirmation
step on 7,856 sites. In total, our pipeline executed 3,521,427
dynamic tests. The early abort is highly effective, as 2,436,935
tests start in the first phase and only 344,082 remain for a
second run and 227,329 tests in the fifth run. The complete
pipeline from URL collection to dynamic confirmation used
up to 100 browsers in parallel and took 7 days and 6 hours.

Many tested URLs belong to third parties, as most websites
include resources and hyperlinks from many vendors. While
visiting most websites also sets cookies for several third-party
domains, and these URLs could be used for XS-Leaks, these
domains often are included by several first-party sites (e.g.,
Google’s DoubleClick). Hence, we cannot necessarily say that
a specific site was visited before, but possibly only one in a
set. Therefore, to be conservative in our analysis and to avoid
false positives, we limit our analysis to same-site (based on
the public suffix list [38]) URLs only.

After limiting the analysis to same-site URLs, a total of
1,291 sites have distinguishable URLs, i.e., 15% of all tested
sites. This number might seem low in comparison to the login
detection experiment. However, many sites deliver entirely
different experiences for logged-in users, whereas refreshing a
site as a logged-out user mostly returns the same content. Out
of all vulnerable sites, only 363 sites are distinguishable in
both browsers, 490 sites are only vulnerable in Firefox, and
438 sites are only vulnerable in Chromium. While some of
these differences can be explained by web servers performing
browser detection and only serving vulnerable responses to
one of them, many are caused by the browser differences
discovered in the previous section. Table I shows the 20

92752

channels that worked the most often, split by the two browsers,
highlighting the differing severity of channels as the top 3 are
responsible for most of the leaks. We note that several working
channels did not leak any information in our experiments. The
best-working channel window.open-length worked on a total of
745 sites. We explain the success of this channel by the fact
that the inclusion method window.open is the only one that
works when the state defining cookies have a SameSite value
of Lax and that sites often change the number of included
frames based on the user state. Of these, 585 sites are only
vulnerable to window.open, highlighting the need to reconsider
whether the often recommended value of Lax is secure enough
and whether browsers should leak the number of frames in a
document cross-site. For most other channels, more sites are
vulnerable only in Firefox. The different SameSite defaults can
partly explain it. Chromium defaults to Lax and only accepts
None with a Secure flag. Firefox currently still defaults to None
and allows None without a Secure flag. Another informative
example is link-stylesheet-events-fired that worked 50 times
in Chromium and only nine times in Firefox. Here, Firefox
performs strict MIME type checking and can only distinguish
between valid and invalid stylesheets, whereas Chromium
can distinguish between responses with success status codes
and ones without. As these results show, numerous XS-Leak
attacks work in the wild, and there are notable differences
between Chromium and Firefox. This finding highlights that
browser vendors need a proper testbed to get rid of XS-Leaks
in the future and cannot rely on isolated bug reports.

D. Cookie Acceptance Inference

In addition to the visit inference, we further introduce a
variant called cookie acceptance inference. On today’s web,
users are frequently faced with banners such as accept cookies
or agree to our terms to continue [14], [39]. Thus, it is not
unrealistic to assume that when actually visting a site, users
will interact with these dialogs, and we emulate it in this
attack. Furthermore, this attack is more robust in the wild
as it only identifies users that interacted with the target site
and none that accidentally visited, allowing the attacker to run
several sequential tests without corrupting the victim’s state.

1) Experimental Settings: We use the same general settings
as in the visit inference experiment. In addition, to the previous
two states, we create the accepted state. This state represents
a user that visited a site and interacted with it by accepting all
cookies. For this, we built a simple script that first detects all
elements that one has to click to use a site without distraction,
such as accept cookies, continue, ok. For this, we use 93
locators [42], manually extracted from the top 250 websites.
Then, we automatically try to click on all detected elements.
We consider the accepted state successful, if we visit the
landing page, at least one target locator is clicked successfully,
and then a change in the cookies on the site, i.e., new cookies,
removed cookies, or changed values, is observed. Otherwise,
we record that the state could not be reached and do not test the
site. Many websites have more than one way to deal with these
banners, such as reject all cookies or individualize choices,

Observation channels Vulnerable sites
Inclusion Method Observation Method Visit & Acceptance Only Acceptance

window.open length 247 665
el-securitypolicyviolation 13 182iframe-csp length 47 81
length 43 80iframe el-blur 4 52

iframe-csp el-blur 1 52
iframe el-message 6 35
iframe-csp el-message 5 33
window.open el-message 4 28
embed el-blur 0 32
object el-blur 0 29
link-stylesheet events-fired 16 12
embed el-message 1 17
script events-fired 13 5

origin 12 1
CSS2Properties 12 1
win.performanceAPI 12 1window.open

window.name 12 1
iframe-csp events-fired 8 3
object performanceAPI 5 6

TABLE II: Top 20 observation channels by attack type (Chromium)

and there might be ways to distinguish these options. The
idea of our tool is to choose the easiest option, as previous
research has shown that most users tend to choose the easiest
option [39]. We believe the easiest option is often accept
all [14], [39]. Note that we only used Chromium for this
experiment given technical issues with the automated clicking
in Firefox through Playwright.

2) Results: Out of the 7,856 sites that had at least one
URL after pruning, for 3,160 sites, we successfully reached
the accept state. The other sites had the following issues. On
726 sites, a locator was found and clicked, but no change
in the cookies was observed. On 3,970 site no locator was
detected. Still, 1,059 changed their cookies without us clicking
anything. With this in mind, we have to note that the success
heuristic is not fool-proof, as many sites change their cookies
by themselves, and we cannot guarantee that our click caused
the observed change in the cookies.

Out of the 3,160 sites where we reached the accept state,
visits to 348 sites could already be discovered through the
basic visit inference attack. With the addition of cookie
acceptance inference, we could identify an additional 749
sites as vulnerable, increasing the number of vulnerable sites
to 34%. These numbers show the importance of our more
realistic attack variant, as more than twice as many sites are
vulnerable. Out of these, on 123 sites, all three states could
be distinguished from each other, and 12 sites were only
vulnerable in the visit inference case.

Table II presents the working observation channels for
the cookie acceptance inference attack compared to the visit
inference attack. Most channels increased the number of sites
where they worked. However, the increase is not uniformly
distributed as it is related to how the cookie banners accepted
by our module are usually implemented. Many cookie banners
are implemented as a frame, so the length method often
changes by one if cookies are accepted. Another notewor-
thy increase is the el-securitypolicyviolation method. This
method’s number increases as many sites redirect to another
origin for the cookie acceptance check (e.g., https://consent.si
te.tld). Another interesting increase is for the el-blur method.

102753

This method often works as the cookie banner is autofocused,
meaning that a blur event on the observation page framing a
site with a cookie banner is fired.

V. DISCUSSION

In this section, we first identify key insights derived from
our work. We then discuss limitations and countermeasures,
and end with our ethical considerations and how our research
results can help secure browsers in the future.

A. Key Insights

Still, plenty of possibilities exist to leak information cross-
site using a plethora of different observation channels in all
major browsers. Some of these channels are known exceptions
of the same-origin policy, such as receiving postMessages
from an included IFrame. However, many of these channels
have strange edge-cases. Furthermore, many new channels
and bugs are slight adjustments of previously reported and
allegedly fixed problems. As prior work always focussed on
single isolated response pairs instead of systematic testing over
large response spaces, all these cases were previously missed.
These cases highlight the necessity for a framework like ours,
which allows for systematic testing.

We highlight that XS-Leaks are prevalent on the web and a
considerable threat to the web ecosystem. We tested the three
attack modes visit inference, cookie acceptance inference, and
login detection and, even with limited number of tested URLs,
could find 15%, 34%, and 77% of tested sites vulnerable,
respectively. These results suggest that it is easy to find
vulnerable URLs for single sites for an attacker. In fact, for
350 (27%) sites vulnerable to visit inference, the homepage
itself was vulnerable. Common patterns on websites include
showing information, such as a welcome banner, in a frame
and only for the first visit of a site or redirecting requests
without cookies to first set cookies and then repeat the request.

Another insight is that there are substantial differences
between the different browser implementations. For example,
not a single observation channel worked the same for any two
of Chromium, Firefox, and WebKit. Some of these differences
are due to missing or deactivated features in browsers, such
as CORB only existing in Chromium and link-prefetch being
disabled in WebKit. Most, however, are due to previously
missed edge cases. Examples include the treatment of status
codes such as 204, 205, 300, and 407 or the priority of
different contradicting response properties. The results for visit
inference show that less than half of all vulnerable websites
are vulnerable in both tested browsers. This result shows that
the differences in the browsers really matter and that the
unification of edge-case behavior could greatly reduce the total
attack surface. Some differences between browsers are due to
conscious decisions of browser vendors, such as the differing
SameSite default setting in browsers. If no SameSite value is
set for a cookie, in the tested versions, Chromium defaults to
Lax whereas Firefox defaults to None. All inclusion methods
except for window.open only work with SameSite None, as
otherwise, no cookies are send for subresources.

B. Limitations

We aim to establish a lower bound of working observation
channels in browsers and show that XS-Leaks constitute a
significant threat to the web ecosystem to increase awareness
and future mitigation of XS-Leaks. We do not aim to cover
every possible observation channel in each browser or find
every XS-Leak on each tested website.

We limited the set of tested browsers to recent versions of
Chromium, Firefox, and WebKit given their significant market
share of over 85% in 2022 [10]. Hence, we might have missed
additional channels in less popular browsers. We limited the
set of observation channels and the tested response space so
that the testing stays feasible while covering as many potential
cases as possible. While most channels can be executed
stealthily in the background, the best working channels based
on window.open usually require user interaction. In addition,
the opened windows can be spotted by an attentive visitor in
the absence of browser bugs, such as pop-unders, limiting the
impact of these channels. We also limited the crawling time
and depth and limited ourselves to the three discussed attacks.
Thus, only because we did not report a site as prone to XS-
Leaks does not mean that the site is not vulnerable.

For the reported XS-Leaks in the wild, we limited ourselves
to same-site URLs to ensure that the tested site causes the leak
and uniquely identifies the site visit. However, most websites
include a plethora of third-party URLs. Thus, the URLs of
these parties might also leak information. When testing these
cross-site URLs, we found an additional 1,664 sites vulnerable
in the visit inference experiment. However, as such URLs may
also be influenced by visiting pages on other first-party sites,
we excluded them from further consideration, therefore likely
underreporting real-world findings.

Additionally, not every site vulnerable in only one browser
has to be caused by a browser difference. The websites
may also implement browser switches based on the User-
Agent header, and only serve problematic responses for some
browsers. Also, while we made sure to make false positives
as unlikely as possible by repeating every test five times, we
cannot ensure that no false positives exist in the data that
randomly differed in all five repetitions.

C. Countermeasures

Although XS-Leaks have been known for over 20 years,
many countermeasures were only introduced recently. For
many years, only two methods existed for websites to be
secure, and both are impractical. The first is to return similar
responses for all states that result in the same observations.
Such behavior, however, is infeasible for every non-trivial
website. The second is to use session-specific URLs, which
would destroy many legitimate features, such as link sharing.

Over the years, many security headers were introduced
against various attacks that can also mitigate some XS-Leaks.
These include X-Frame-Options and CSP’s frame-ancestors
directive that stops XS-Leaks using the IFrame inclusion
method. CORP that stops XS-Leaks using various inclusion
methods such as image or video. COOP that stops XS-Leaks

112754

using the window.open inclusion method. These, however,
often restrict a site’s legitimate functionality, such as being
used in a mashup. In addition, it is of utmost importance
that these headers are consistently deployed for all states as
otherwise, their presence or absence can often be detected. As
prior work has shown, this either does not occur consistently
across all pages on a site [11] or may be influenced by client
characteristics such as the geo location [55].

An orthogonal approach to changing the responses is mak-
ing the requests indistinguishable or giving the server more
information about requests so that the server can deny dubious
requests. One drastic method to stop many XS-Leaks is com-
pletely blocking third-party cookies implemented in browsers
like Safari or Brave [9], [67]. Another method is partitioning
the cookies by top-level site as recently deployed by Fire-
fox [37]. The most widely used browser, Chrome, currently
does not do either but plans to take steps by 2024 [19]. It
is important to note that these approaches do not stop leaks
using the window.open method nor same-site attackers [59].

Another promising method is the SameSite flag of cookies.
Cookies with a value of Lax are not sent with any cross-site
requests apart from top-level get requests such as issued by
window.open. The more secure setting of Strict even blocks
cookies on window.open and could block all XS-Leaks using
cookies as the state channel. However, both secure settings
also destroy legitimate use cases. Thus, almost no site uses the
most secure setting of Strict [30] and many sites only protect
some of their cookies with Lax to hinder CSRF attacks. At
the same time, they explicitly set other cookies to None to
have greater functionality, often enabling XS-Leaks even in
browsers that use the new default of Lax.

The non-cookie-based approach is to add request headers
that give servers more information about the context of the
request. The first two headers that did this were the Referer
and the Origin header. However, these are not attached to every
request making it difficult for a server to rely on them. A
new addition is the set of Fetch Metadata headers that only
contain more coarse-grained information, such as whether it
is a cross-site request and whether the response is used as
an image or script. A strict policy could block XS-Leaks,
e.g., disallowing cross-origin image loading. However, this
cannot protect legacy browsers (which do not send the headers)
and aggressive blocking of cross-origin embedding is likely
infeasible for all resources that might leak.

Another approach to counter XS-Leaks is reducing the
observation methods’ power. One could, for example, restrict
currently allowed same-origin bypasses such as being allowed
to access the length property of cross-origin window objects.
Lastly, browser features such as CORB and removal of edge-
cases in favor of the most secure browser can reduce the
available attack surface of XS-Leaks in browsers.

We stress that currently, XS-Leaks are an ecosystem prob-
lem, and not a single entity is responsible alone. While many
defenses exist, it is difficult for a website to be free of XS-
Leaks. The browser support of different defenses varies, many
defenses interfere with legitimate usage, and other defenses are

opt-in for websites and challenging to deploy. It is, therefore,
imperative that operators can assess their risk and mitigate
specific leaks, which is why we make our tools available [54].

D. Ethical Considerations

This work deals with security issues in browsers and on
websites. We responsibly disclosed all security-critical bugs
found in the process of this work to the affected browser
vendors. In addition, we contacted the three leading browser
vendors to discuss the general methodology with them. The
discussions are currently ongoing.

While testing real websites, we followed best practices to
not put real users at risk or inconvenience. We only attacked
accounts and sessions we created for these experiments and
limited ourselves to a maximum of one request per second for
every site and a maximum of a few thousand requests per site.
We discovered many sites to be vulnerable to history inference,
cookie acceptance inference, and login detection. However, the
impact of all these attacks depends on the exact security needs
of the site; what is worse, sites may even not care about their
users’ privacy regarding these attacks. Given that prior work
in vulnerability notifications [62] has had limited impact when
disclosing problems to vast amounts of operators, we rather
decided to discuss with browser vendors to help them close
the leak channels in the first place.

E. Going Forward

We open-source our tools to foster future research and
help developers and browser vendors alike to secure their
products. The response distinguishing oracle can be used as
an educational and awareness tool for developers. Instead of
requiring in-depth knowledge about XS-Leaks, developers can
simply provide two responses from any of their endpoints, and
our tools present them with all channels that can distinguish it
in any browser. In addition, the does-it-leak pipeline could be
bundled with a web vulnerability scanner to scan websites for
XS-Leak issues automatically. While these tools could be used
for malicious purposes, attackers only need to find a single
vulnerable URL on a site, which is often possible without
advanced tools. Finding all vulnerable URLs is more helpful
for defenders as they can then correctly secure their site.

Our results show that the past focus on single response
pairs left many edge-case leaks and browser differences undis-
covered. The focus on single responses is problematic for
browser vendors using single responses for regression tests
and browser standardization projects such as web-platform-
tests [71] that only use a couple of responses to test each
standard and thus over-report conformity between browsers.
In the future, browser vendors and browser test organizations
can switch from this single isolated responses model to a
new model where they test many responses from a vast
response space. They then can find edge-cases and differences
before they reach users where they might have severe privacy
implications. It is hard to a priori see which implications a
change in a browser brings. Every new feature introduced in
a browser can change the browser observation function and

122755

create new leaks. When browser vendors test a vast response
space before the roll-out of new features, they could have more
confidence that they do not unintentionally introduce new leaks
or make existing leaks more dangerous. Also, standardization
bodies and browser vendors can unify edge-case behavior by
agreeing on the most secure implementation for every browser
difference, decreasing the overall attack surface.

VI. RELATED WORK

In this section, we survey related works in the areas of XS-
Leaks, history sniffing, and browser testing.

A. State of XS-Leaks

In 2021, Knittel et al. proposed a formal model for XS-
Leaks and manually discovered several new leaks using it.
Furthermore, they automatically evaluated 56 browser config-
urations against their list of leaks and found many differences,
and thus proposed a new mitigation technique of changing the
browser behavior [31]. In 2022, Van Goethem et al. extended
this formal model with the concept of components and a
thorough evaluation of currently available defenses [66]. In
2020, Sudhodanan et al. were the first to test many known XS-
Leak methods in three mainstream browsers, including newly
detected variants. In addition, they manually created accounts
on 58 tested websites and tested them for several attacks
such as login detection and account type identification [63].
The general problem of XS-Leaks has been known since
the early 2000s when Felten and Schneider described access
detection attacks exploiting cache behavior via a timing side-
channel [17]. Since then many different leak channels were
discovered [12], [21], [22], [24], [25]. Recently the XS-Leaks
wiki project tried to group all the leak channels and provide
a central place of information [58].

The observation channels considered in this work fit into
the proposed formal model. We generalize it by removing
the need to manually choose distinguishable response pairs
and show that one can systematically test a response space
and summarize the result instead. Our framework is the first
that can automatically find new information leaks in browsers.
Moreover, our results of large-scale real-world analyses not
only show that attackers can infer login, visit, or cookie
accepted states in a large body of sites, but also enables to
identify the most critical bugs. This way, browser vendors can
prioritize fixing efforts based on our real-world findings.

B. History Sniffing

The web community has known history sniffing attacks
since the 2000s. Since then many methods were discovered,
fixed, and re-discovered over time [8], [13], [27], [29], [40],
[57], [68]. Most of the works on history sniffing focused on
leaking information from the browser history storage, e.g.,
using the color of visited links, and did not include requests
to the target sites. However, Sanchez-Rola et al. showed that
it is also possible to detect that a user visited a site by sending
requests to a target site and timing the results. Such detection

works because many sites set cookies when visited, and the
responses differ based on the cookies attached to requests [56].

Our real-world test builds upon this insight and uses visit
inference as the primary example attack to study how big
of an issue XS-Leaks are for the web ecosystem. However,
nowadays, it is not possible to use many sites without first
accepting cookies. Thus we extended the visit inference attack
to the cookie acceptance inference attack, where we also
interacted with the sites by clicking on every accept button.

C. Browser Testing
Browsers are regularly tested for functionality and security.

The web-platform-tests project hosts an extensive collection
of tests to ensure specification conformance and compatibility
between browsers [71]. In 2015, Hothersall-Thomas et al.
presented BrowserAudit, a test suite to check various security
features in browsers such as CSP and CORS [26]. In 2018,
Franken et al. studied whether third-party cookie blocking
policies block all third-party cookies [18]. In 2019, Luo et al.
created a test suite for security features such as CSP and HSTS
and used it to study their evolution in mobile browsers [33].

All these works specify the correct behavior of each test
upfront and mostly rely on hand-crafted tests in the orders
of hundreds. In contrast, our pipeline observes behavior for
millions of automated tests, and we later analyze the results
by comparing the created decision tree summaries.

VII. CONCLUSION

XS-Leaks have been known for years, yet still new instances
frequently appear. To make significant leaps in the arms race of
finding and patching them, we introduced the first framework
to automatically discover and characterize cross-site infor-
mation leaks in browsers. A key aspect of our approach is
to use decision trees to generate explainable summaries of
the root causes of the leaks. We discovered 280 information
leaking channels in the engines of Chromium, Firefox, and
Safari. While analyzing the generated descriptions, we found
11 bugs, including 3 CVEs, in browsers, several of which were
thought to be fixed. Furthermore, we uncovered that more than
previously thought flaws are specific to individual engines.

To show that such information leaks and the differences
between the browsers impact users’ privacy, we performed
three case studies finding XS-Leaks on real websites. Our
visit inference and cookie acceptance attacks showed 15%
and 34% of sites being vulnerable, respectively, even with
a shallow crawl. Furthermore, our login detection study on
100 top-ranked sites showed that 77 of them were vulnerable
through XS-Leaks. These findings underline the importance of
being able to detect leak channels in a systematic way.

With our discussion of current countermeasures, we hope
to spark a new discussion between browser vendors and
specifications bodies to make the web more secure by default
and show a realm of promising future research directions. We
open-source our tools [54] such that web developers can ensure
their own site is XS-Leaks free. Further, at the time of this
writing, we are discussing with browser vendors how to best
integrate our pipeline in their development processes.

132756

ACKNOWLEDGMENT

We thank our anonymous shepherd and the reviewers for
their valuable feedback.

This work was conducted in the scope of a dissertation at the
Saarbrücken Graduate School of Computer Science. This work
received funding from the European Union’s Horizon 2020
research and innovation programme under the TESTABLE
project (grant agreement 101019206).

AVAILABILITY

Code for all experiments is available online:
https://github.com/cispa/xs-observations

Data is available on request.

REFERENCES

[1] G. Acar. “1450853 - (CVE-2020-15666) MediaError
message property leaks cross-origin response status.”
(2018), [Online]. Available: https://bugzilla.mozilla.org
/show bug.cgi?id=1450853.

[2] G. Acar. “828265 - MediaError message property leaks
cross-origin response status.” (2018), [Online]. Avail-
able: https://bugs.chromium.org/p/chromium/issues/det
ail?id=828265.

[3] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N.
Feamster, “Web-based Attacks to Discover and Control
Local IoT Devices,” in Workshop on IoT Security and
Privacy, 2018. DOI: 10.1145/3229565.3229568.

[4] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D.
Song, “Towards a Formal Foundation of Web Security,”
in IEEE Computer Security Foundations Symposium,
2010. DOI: 10.1109/CSF.2010.27.

[5] L. Anforowicz. “More CORB-protected MIME types
- adding protected types one-by-one. · Issue #860 ·
whatwg/fetch,” GitHub. (2019), [Online]. Available: ht
tps://github.com/whatwg/fetch/issues/860.

[6] Any Python Tree Data, 2022. [Online]. Available: https
://anytree.readthedocs.io/en/latest/.

[7] Apple. “Delivering Video Content for Safari.” (2022),
[Online]. Available: https://developer.apple.com/docum
entation/webkit/delivering video content for safari.

[8] D. Baron. “Preventing attacks on a user’s history
through CSS :visited selectors.” (2010), [Online]. Avail-
able: https://dbaron.org/mozilla/visited-privacy.

[9] Brave. “OK Google, don’t delay real browser privacy
until 2022,” Brave Browser. (), [Online]. Available: htt
ps://brave.com/ok-google/.

[10] “Browser Market Share Worldwide,” StatCounter
Global Stats. (2022), [Online]. Available: https:/ /gs.s
tatcounter.com/browser-market-share.

[11] S. Calzavara, T. Urban, D. Tatang, M. Steffens, and
B. Stock, “Reining in the Web’s Inconsistencies with
Site Policy,” in Network and Distributed System Security
Symposium, 2021. DOI: 10.14722/ndss.2021.23091.

[12] M. Cardwell. “Abusing HTTP Status Codes to Expose
Private Information,” Grepular. (2011), [Online]. Avail-
able: https://www.grepular.com/Abusing HTTP Status

Codes to Expose Private Information.
[13] A. Dabrowski, G. Merzdovnik, N. Kommenda, and E.

Weippl, “Browser History Stealing with Captive Wi-
Fi Portals,” in IEEE Security and Privacy Workshops,
2016. DOI: 10.1109/SPW.2016.42.

[14] M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F.
Schaub, and T. Holz, “We Value Your Privacy ... Now
Take Some Cookies: Measuring the GDPR’s Impact
on Web Privacy,” in Network and Distributed System
Security Symposium, 2019. DOI: 10.14722/ndss.2019.2
3378.

[15] Django, version 4.0.3, 2022. [Online]. Available: https
://www.djangoproject.com/.

[16] K. Drakonakis, S. Ioannidis, and J. Polakis, “The
Cookie Hunter: Automated Black-box Auditing for
Web Authentication and Authorization Flaws,” in ACM
SIGSAC Conference on Computer and Communications
Security, 2020. DOI: 10.1145/3372297.3417869.

[17] E. W. Felten and M. A. Schneider, “Timing attacks on
Web privacy,” in ACM Conference on Computer and
Communications Security, 2000. DOI: 10.1145/352600
.352606.

[18] G. Franken, T. V. Goethem, and W. Joosen, “Who Left
Open the Cookie Jar? A Comprehensive Evaluation
of Third-Party Cookie Policies,” in USENIX Security
Symposium, 2018. [Online]. Available: https://www.us
enix.org/conference/usenixsecurity18/presentation/fran
ken.

[19] Google. “Expanding testing for the Privacy Sandbox for
the Web,” Google. (2022), [Online]. Available: https://b
log.google/products/chrome/update-testing-privacy-san
dbox-web/.

[20] “Graphviz,” Graphviz. (2022), [Online]. Available: http
s://graphviz.org/.

[21] J. Grossman. “I Know What Websites You Are Logged-
In To (Login-Detection via CSRF),” WhiteHat Security.
(2012), [Online]. Available: https://web.archive.org/we
b/20160317054027/https://www.whitehatsec.com/blog
/i-know-what-websites-you-are-logged-in-to-login-det
ection-via-csrf/.

[22] J. Grossman. “Login Detection, whose problem is it?”
(2008), [Online]. Available: https://blog.jeremiahgross
man.com/2008/03/login-detection-whose-problem-is-it
.html.

[23] H2O: Distributed Random Forest (DRF), 2022. [On-
line]. Available: https://docs.h2o.ai/h2o/latest-stable/h2
o-docs/data-science/drf.html.

[24] R. Hansen. “Detecting States of Authentication With
Protected Images,” ha.ckers. (2006), [Online]. Avail-
able: https : / / web . archive . org / web / 20150417095319
/http://ha.ckers.org/blog/20061108/detecting-states-of-a
uthentication-with-protected-images/.

142757

[25] E. Homakov. “313737 - Disclose domain of redirect
destination taking adventadge of CSP.” (2013), [On-
line]. Available: https://bugs.chromium.org/p/chromiu
m/issues/detail?id=313737.

[26] C. Hothersall-Thomas, S. Maffeis, and C. Novakovic,
“BrowserAudit: Automated testing of browser security
features,” in International Symposium on Software Test-
ing and Analysis, 2015. DOI: 10.1145/2771783.277178
9.

[27] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An
empirical study of privacy-violating information flows
in JavaScript web applications,” in ACM Conference on
Computer and Communications Security, 2010. DOI: 1
0.1145/1866307.1866339.

[28] H. Jonker, S. Karsch, B. Krumnow, and M. Sleegers,
“Shepherd: A Generic Approach to Automating Website
Login,” in Workshop on Measurements, Attacks, and
Defenses for the Web, 2020. DOI: 10 .14722/madweb
.2020.23008.

[29] S. Karami, P. Ilia, and J. Polakis, “Awakening the Web’s
Sleeper Agents: Misusing Service Workers for Privacy
Leakage,” in Network and Distributed System Security
Symposium, 2021. DOI: 10.14722/ndss.2021.23104.

[30] S. Khodayari and G. Pellegrino, “The State of the Same-
Site: Studying the Usage, Effectiveness, and Adequacy
of SameSite Cookies,” in IEEE Symposium on Security
and Privacy, 2022. DOI: 10.1109/SP46214.2022.98336
37.

[31] L. Knittel, C. Mainka, M. Niemietz, D. Trevor Noß, and
J. Schwenk, “XSinator.com: From a Formal Model to
the Automatic Evaluation of Cross-Site Leaks in Web
Browsers,” in ACM SIGSAC Conference on Computer
and Communications Security, 2021. DOI: 10.1145/346
0120.3484739.

[32] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczynski, and W. Joosen, “Tranco: A Research-
Oriented Top Sites Ranking Hardened Against Manip-
ulation,” in Network and Distributed System Security
Symposium, 2019. DOI: 10.14722/ndss.2019.23386.

[33] M. Luo, P. Laperdrix, N. Honarmand, and N. Niki-
forakis, “Time Does Not Heal All Wounds: A Lon-
gitudinal Analysis of Security-Mechanism Support in
Mobile Browsers,” in Network and Distributed System
Security Symposium, 2019. DOI: 10.14722/ndss.2019.2
3149.

[34] R. Masas. “Mapping Communication Between Face-
book Accounts Using a Browser-Based Side Channel
Attack,” Imperva. (2019), [Online]. Available: https://w
ww.imperva.com/blog/mapping-communication-betwe
en-facebook-accounts-using-a-browser-based-side-cha
nnel-attack/.

[35] R. Masas. “Patched Facebook Vulnerability Could Have
Exposed Private Information About You and Your
Friends,” Imperva. (2018), [Online]. Available: https :
//www.imperva.com/blog/facebook-privacy-bug/.

[36] MDN. “Content-Disposition.” (2022), [Online]. Avail-
able: https:/ /developer.mozilla.org/en- US/docs/Web
/HTTP/Headers/Content-Disposition.

[37] Mozilla. “Firefox Rolls Out Total Cookie Protection By
Default To All Users.” (2022), [Online]. Available: htt
ps://blog.mozilla.org/en/products/firefox/firefox-rolls-o
ut-total-cookie-protection-by-default-to-all-users-worl
dwide/.

[38] Mozilla. “Public Suffix List.” (2022), [Online]. Avail-
able: https://publicsuffix.org/.

[39] M. Nouwens, I. Liccardi, M. Veale, D. Karger, and
L. Kagal, “Dark Patterns after the GDPR: Scraping
Consent Pop-ups and Demonstrating their Influence,” in
Conference on Human Factors in Computing Systems,
2020. DOI: 10.1145/3313831.3376321.

[40] L. Olejnik, C. Castelluccia, and A. Janc, “Why Johnny
Can’t Browse in Peace: On the Uniqueness of Web
Browsing History Patterns,” in HotPETs, 2012. [On-
line]. Available: https://hal.inria.fr/hal-00747841.

[41] Playwright. “Fast and reliable end-to-end testing for
modern web apps.” (2022), [Online]. Available: https
://playwright.dev/.

[42] Playwright. “Locators.” (2022), [Online]. Available: ht
tps://playwright.dev/docs/locators.

[43] J. Rautenstrauch. “1251534 - Security: CSP matching
algorithm does not ignore paths for client-side redirec-
tions.” (2021), [Online]. Available: https://bugs.chromi
um.org/p/chromium/issues/detail?id=1251534.

[44] J. Rautenstrauch. “1251921 - Security: MediaError mes-
sages still leak cross-origin informatio.” (2021), [On-
line]. Available: https://bugs.chromium.org/p/chromiu
m/issues/detail?id=1251921.

[45] J. Rautenstrauch. “1260366 - Security: X-Frame-
Options and CSP: Frame-ancestor information leaks
cross-origin using object tag.” (2021), [Online]. Avail-
able: https://bugs.chromium.org/p/chromium/issues/det
ail?id=1260366.

[46] J. Rautenstrauch. “1731614 - MediaError message prop-
erty leaks information on cross-origin same-site pages.”
(2021), [Online]. Available: https://bugzilla.mozilla.org
/show bug.cgi?id=1731614.

[47] J. Rautenstrauch. “1732012 - X-Frame-Options is ig-
nored on redirection status-codes (without a location
set).” (2021), [Online]. Available: https://bugzilla.mozi
lla.org/show bug.cgi?id=1732012.

[48] J. Rautenstrauch. “1732069 - Sec-Fetch-Site inconsis-
tent on localhost/IPs.” (2021), [Online]. Available: http
s://bugzilla.mozilla.org/show bug.cgi?id=1732069.

[49] J. Rautenstrauch. “1732106 - Cross-Origin-Resource-
Policy incorrectly applied on object and embed tags.”
(2021), [Online]. Available: https://bugzilla.mozilla.org
/show bug.cgi?id=1732106.

[50] J. Rautenstrauch. “1732141 - Request loads forever if
code is 101 or 304 and ct=application/pdf.” (2021),
[Online]. Available: https : / / bugzilla . mozilla . org / sho
w bug.cgi?id=1732141.

152758

[51] J. Rautenstrauch. “1732199 - Infinite reload of 201, 203,
204 responses.” (2021), [Online]. Available: https://bu
gzilla.mozilla.org/show bug.cgi?id=1732199.

[52] J. Rautenstrauch. “1735856 - Securitypolicyviolation
leaks cross-origin information for frame-ancestors vi-
olations.” (2021), [Online]. Available: https://bugzilla
.mozilla.org/show bug.cgi?id=1735856.

[53] J. Rautenstrauch. “1768583 - Fetch requests with mode
cors and credentials leak whether the request redirected
or not via performanceAPI.” (2022), [Online]. Avail-
able: https://bugzilla.mozilla.org/show bug.cgi?id=176
8583.

[54] J. Rautenstrauch. “Code for all experiments conducted
in this paper.” (2022), [Online]. Available: https://githu
b.com/cispa/xs-observations.

[55] S. Roth, S. Calzavara, M. Wilhelm, A. Rabitti, and
B. Stock, “The Security Lottery: Measuring Client-
Side Web Security Inconsistencies,” in USENIX Security
Symposium, 2022. [Online]. Available: https://www.us
enix.org/conference/usenixsecurity22/presentation/roth.

[56] I. Sanchez-Rola, D. Balzarotti, and I. Santos, “Baking-
Timer: Privacy analysis of server-side request process-
ing time,” in Annual Computer Security Applications
Conference, 2019. DOI: 10.1145/3359789.3359803.

[57] M. Smith, C. Disselkoen, S. Narayan, F. Brown, and
D. Stefan, “Browser history re:visited,” in Workshop on
Offensive Technologies, 2018. [Online]. Available: http
s://www.usenix.org/conference/woot18/presentation/sm
ith.

[58] M. Sousa et al. “XS-Leaks Wiki.” (2020), [Online].
Available: https://xsleaks.dev/.

[59] M. Squarcina, M. Tempesta, L. Veronese, S. Calzavara,
and M. Maffei, “Can I Take Your Subdomain? Explor-
ing Same-Site Attacks in the Modern Web,” in USENIX
Security Symposium, 2021. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presenta
tion/squarcina.

[60] C.-A. Staicu and M. Pradel, “Leaky Images: Targeted
Privacy Attacks in the Web,” in USENIX Security Sym-
posium, 2019. [Online]. Available: https://www.usenix
.org/conference/usenixsecurity19/presentation/staicu.

[61] M. Steffens, M. Musch, M. Johns, and B. Stock,
“Who’s Hosting the Block Party? Studying Third-Party
Blockage of CSP and SRI,” in Network and Distributed
System Security Symposium, 2021. DOI: 10.14722/ndss
.2021.24028.

[62] B. Stock, G. Pellegrino, F. Li, M. Backes, and C.
Rossow, “Didn’t You Hear Me? - Towards More Suc-
cessful Web Vulnerability Notifications,” in Network
and Distributed System Security Symposium, 2018. DOI:
10.14722/ndss.2018.23171.

[63] A. Sudhodanan, S. Khodayari, and J. Caballero, “Cross-
Origin State Inference (COSI) Attacks: Leaking Web
Site States through XS-Leaks,” in Network and Dis-
tributed System Security Symposium, 2020. DOI: 10.14
722/ndss.2020.24278.

[64] terjanq. “Mass XS-Search using Cache Attack.” (2019),
[Online]. Available: https://terjanq.github.io/Bug-Bount
y/Google/cache-attack-06jd2d2mz2r0/index.html.

[65] uWSGI, version 2.0.20, 2021. [Online]. Available: http
s://uwsgi-docs.readthedocs.io/en/latest/.

[66] T. Van Goethem, G. Franken, I. Sanchez-Rola, D.
Dworken, and W. Joosen, “SoK: Exploring Current
and Future Research Directions on XS-Leaks through
an Extended Formal Model,” in ACM Symposium on
Information, Computer and Communications Security,
2022. DOI: 10.1145/3488932.3517416.

[67] WebKit. “Full Third-Party Cookie Blocking and More,”
WebKit. (), [Online]. Available: https://webkit.org/blog
/10218/full-third-party-cookie-blocking-and-more/.

[68] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C.
Jackson, “I Still Know What You Visited Last Summer:
Leaking Browsing History via User Interaction and Side
Channel Attacks,” in IEEE Symposium on Security and
Privacy, 2011. DOI: 10.1109/SP.2011.23.

[69] WHATWG. “Cross-Origin-Opener-Policy.” (2022),
[Online]. Available: https://html.spec.whatwg.org/multi
page/origin.html#cross-origin-opener-policies.

[70] WHATWG. “Fetch Standard CORB.” (2022), [Online].
Available: https://fetch.spec.whatwg.org/#corb.

[71] WPT. “Web-platform-tests documentation.” (2022),
[Online]. Available: https://web-platform-tests.org/.

APPENDIX

Property Count Options

Status-Code 63 100, 101, 102, 103, 200, 201, 202, 203, 204,
205, 206, 207, 208, 226, 300, 301, 302, 303,
304, 305, 307, 308, 400, 401, 402, 403, 404,
405, 406, 407, 408, 409, 410, 411, 412, 413,
414, 415, 416, 417, 418, 421, 422, 423, 424,
425, 426, 428, 429, 431, 451, 500, 501, 502,
503, 504, 505, 506, 507, 508, 510, 511, 999

Body 13 HTML with one frame, HTML with two
frames, HTML that sends postMessage,
HTML with meta refresh, HTML that
opens paymentAPI, CSS that sets h1 color
to blue, Invalid JavaScript, JavaScript that
sets a variable, 50x50 PNG image, 100x100
mp4 video with duration 2s, WAV audio file
with duration 1s, PDF, empty

Content-Type 8 text/html, text/css, application/javascript,
video/mp4, audio/wav, image/png, applica-
tion/pdf, empty

Content-Disposition 2 attachment, empty
Location 3 http://localhost:8000, /, empty
X-Frame-Options 2 deny, empty
X-Content-Type-Options 2 nosniff, empty
Cross-Origin-Resource-Policy 2 same-origin, empty
Cross-Origin-Opener-Policy 2 same-origin, empty
Content-Security-Policy 3 frame-ancestors ‘self’, default-src ‘self’,

empty

TABLE III: Considered properties and options of the response space

162759

Fig. 5: Screenshot of the response distinguishing oracle.

172760

