
Not Yet Another Digital ID: Privacy-Preserving Humanitarian Aid Distribution

Boya Wang∗, Wouter Lueks†, Justinas Sukaitis‡, Vincent Graf Narbel‡, Carmela Troncoso∗
∗SPRING Lab, EPFL, Lausanne, Switzerland
{boya.wang,carmela.troncoso}@epfl.ch

†CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
lueks@cispa.de

‡International Committee of the Red Cross, Geneva, Switzerland
{jsukaitis,vgraf}@icrc.org

Abstract—Humanitarian aid-distribution programs help bring
physical goods to people in need. Traditional paper-based
solutions to support aid distribution do not scale to large
populations and are hard to secure. Existing digital solutions
solve these issues, at the cost of collecting large amount
of personal information. This lack of privacy can endanger
recipients’ safety and harm their dignity. In collaboration with
the International Committee of the Red Cross, we build a
safe digital aid-distribution system. We first systematize the
requirements such a system should satisfy. We then propose a
decentralized solution based on the use of tokens that fulfills
the needs of humanitarian organizations. It provides scalability
and strong accountability, and, by design, guarantees the
recipients’ privacy. We provide two instantiations of our design,
on a smart card and on a smartphone. We formally prove
the security and privacy properties of these solutions, and
empirically show that they can operate at scale.

Index Terms—privacy-preserving technologies, privacy engi-
neering, humanitarian aid distribution

1. Introduction

Humanitarian organizations, such as the International
Committee of the Red Cross (ICRC) [30], aim to protect and
assist the victims of violence, famines, and disaster. One of
their main operations is the distribution of physical goods,
such as food or blankets, in emergency scenarios [27].

Traditionally, humanitarian organizations use paper-
based systems to support aid-distribution, e.g., a list with
recipients’ information and allocation of goods, or paper
vouchers valid for particular aid items. These approaches,
while practical, have important shortcomings: searching for
information on a paper list does not scale beyond a few
hundred recipients, vouchers are easily faked, etc.

To address these shortcomings, humanitarian organi-
zations are looking into easy-to-scale digital solutions to
support their aid-distribution programs. They are also aware
that digitalization should be handled with care, as it brings
new risks to the vulnerable populations they serve [36].

Building a digital aid-distribution system that preserves
the safety, rights, and dignity of humanitarian aid recipients

requires a deep understanding of the humanitarian context.
We partner with the ICRC to learn the requirements and
constraints associated with distributing aid in emergencies.
Our interactions reveal the following challenges:

1) Secure household-oriented aid. Aid-distribution systems
must permit aid allocation per household (i.e., a domestic
unit of several members sharing meals and income), yet
they must ensure that households can only request aid
once per distribution round (e.g., per month).

2) Avoid reliance on powerful hardware and connectiv-
ity. Most aid-distribution programs take place in crisis-
affected settings where we cannot assume the existence
of last-generation hardware or internet connectivity.

3) Auditability. For accountability reasons, humanitarian or-
ganizations need to prove that aid is distributed in an
honest manner, i.e., only to legitimate recipients.

4) Strong privacy. Aid-distribution systems must avoid
causing digital harm to the individuals [10]. The system
must avoid generating databases with recipients’ data and
creating digital traces related to recipients’ actions.

Existing digital aid-distribution solutions can address the
first three challenges. Often, they achieve this by integrating
an Identity Management System into their solution [58].
This creates (central) databases with the personal data of
recipients – and even more sensitive information if the pro-
gram requires strong authentication, such as the UN Refugee
Agency’s biometric identification system for refugees [53],
or Pakistan’s biometric-based Watan Card [43].

These solutions’ reliance on data, however, conflicts with
the strong need for privacy (challenge 4) and makes them
ill-suited for the highly-sensitive humanitarian context [25].
Not only can they jeopardize the safety of recipients [20],
[26], but they may also complicate the relationship of
humanitarian organizations with local authorities, which
shades the neutrality of the humanitarian actors [50]. For
example, in Yemen, the World Food Program clashed with
Houthi authorities because of the disagreement over the
usage and control of biometric data [14]. Finally, from an
ethical perspective, it is questionable whether gathering per-
sonal information of vulnerable people is acceptable given
the risks that it entails for them [23], [50].

645

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Boya Wang. Under license to IEEE.
DOI 10.1109/SP46215.2023.00174

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

30
6

The reliance of data in existing systems is inherent to
their approach to prevent distribution to illegitimate recipi-
ents and to ensure accountability, mainly based on central-
izing the collection of logs. Privacy risks in such centralized
solutions can only be avoided by using expensive, complex
cryptography. To be able to address the four challenges
simultaneously in a more efficient manner, we design an aid-
distribution system that does not require centralizing data to
achieve the desired properties. Concretely, our contributions
are the following:

• We propose a token-based aid-distribution system that
is secure, privacy-preserving, auditable, and that can
operate with little to no connectivity.

• We instantiate this system into two solutions that ad-
dress the four challenges. Both solutions (i) ensure that
even if multiple tokens have been assigned to the same
household, a household can receive aid only once per
distribution round (challenge 1) (ii) do not need to
reveal any other information about households beyond
their entitlement to request aid (challenge 4); and (iii)
produce privacy-preserving audit proofs to guarantee
auditability (challenge 3). The first solution addresses
challenge 2 by using smart cards as tokens, and the
second solution reduces cost by using recipients’ smart-
phones as tokens when aid is distributed in areas where
such devices are available.

• For each solution, we prove that the protocols we
propose fulfill the security and privacy requirements
of the ICRC, and we empirically demonstrate that they
can operate at scale.

• We discuss deployment considerations required to bring
secure and privacy-preserving digital solutions to the
humanitarian setting.

2. Aid Distribution in Humanitarian Context

In this section, we describe how aid distribution works
within the ICRC and elicit the requirements that a digitally
supported aid-distribution system must fulfill.

2.1. Requirements Gathering

To understand the needs of the ICRC, we worked closely
with staff from the ICRC Data Protection Office. We also
organized two dedicated workshops with staff who are expe-
rienced in field operations, and held meetings with the staff
in charge of organizing and coordinating aid-distribution
programs. We refined the requirements in weekly meetings
held with the Data Protection Office for more than a year.
Functional requirements. Humanitarian organizations re-
quire the following functionality for an aid-distribution sys-
tem to be suitable in their context:
F1household: Distribution per household. In some programs,
humanitarian aid is allocated to individuals. However, we
find that often the entitlement to aid is decided based on
the needs of households [27]. To this end, at least one
member of the household must register with the ICRC to

collect aid (see requirement D3robust below). In this paper,
we focus on per-household distribution, as any household-
oriented solution can be trivially adapted to per-individual
entitlement by equating households with individuals.
F2modify: Entitlement modification after registration. In gen-
eral, the ICRC expects the allocation to a household to
not change during the aid-distribution program. Yet, aid
recipients’ needs may change through time, e.g., due to
births, deaths, migration, or marriages. The ICRC must be
able to modify the allocation to a household at any moment.
F3periodic: Periodic distribution. In many cases, one-time
distribution is enough to respond to an emergency. However,
some aid-distribution programs are long-term, and the distri-
bution of aid is divided into several distribution periods [33].
Recipients receive aid once per period (e.g., getting five
bags of rice per month). In this situation, it is desirable
that a household, through their representative(s), can get aid
periodically without having to register every time.
Deployment requirements. Humanitarian organizations op-
erate in extreme settings. These conditions constrain the aid-
distribution system design space, as well as the technologies
that can be used.
D1low: Low-end hardware and sparse connectivity. The
ICRC may operate in areas where neither high-end hardware
nor stable connectivity is available. For example, recipients
may not be able to afford high-end hardware, or the weather
conditions may prevent the use of hardware that may be seen
as a commodity in Western societies (e.g., in some locations
the temperature or humidity can be too high for the latest
models of smartphones). Therefore, aid-distribution systems
should require only low-end hardware that is available in
developing countries, be functional with little connectivity
to the internet, and be reliable in austere environments.
D2scale: Efficiency at medium scale. The ICRC distributes
goods in unstable regions [27]. Letting a lot of recipients
wait for a long time in such areas may put at risk these
recipients, as well as the ICRC staff and collaborators,
e.g., creating a high-value target for terrorism. In addi-
tion, queuing for basic human needs such as food may
be questionable with respect to human dignity. Therefore,
it is vital for the distribution system to be efficient even
for numerous recipients. From our conversation with the
ICRC, aid-distribution programs tend to involve thousands
of recipients and, in some occasions, can involve more than
300,000 households per year.
D3robust: Robust distribution. Getting aid is critical for the
people in need, so the system must guarantee distribution
even when unexpected events occur. The ICRC staff reports
two common situations in which robustness is needed. First,
some recipients lose or accidentally damage the proof of
registration and entitlement (e.g., a voucher or an aid-
distribution card). Second, registered recipients may not be
able to attend the distribution (e.g., in case of sickness or
travel). The system should provide means for recipients to
receive a new proof or registration, and it is desirable that
more than one household member can collect the goods.
D4usability: Usability. Aid distribution programs often take
place in locations where there is a lack of digital literacy.

646

This limits the type of solutions that humanitarian organiza-
tions can deploy, as not all technologies can be understood
and used by the recipients.

We do not directly address this challenge in this work,
but we choose smart cards and smartphone as platforms to
develop our solution since both kind of devices have already
been used by humanitarian organizations in the field.
Security requirements. Humanitarian organizations are
funded by voluntary contributions and there is no guarantee
that such contributions will continue long-term [34]. To
ensure the continuity and the stability of fundraising, donors
must trust the distribution system. To promote trust, aid-
distribution systems must include mechanisms to ensure that
aid is only distributed to their legitimate recipients in the
allocated quantity.
S1limit: Recipients should not be able to request more goods
than they are entitled to. Legitimate recipients may try to
get more aid than their household is entitled to (e.g., by
requesting their entitlement more than once). To ensure that
the limited resources of the ICRC can be used to aid as
many people as possible, the aid-distribution system should
guarantee that recipients cannot request more goods than
those established by the criteria. We note that no technolog-
ical solution can ensure that recipients do not request less
goods (e.g., they may not attend the distribution).
S2legitimate: Only legitimate recipients should be able to obtain
aid. Illegitimate recipients may try to get aid, e.g., by trying
to impersonate a legitimate recipient.
S3auditS: Distribution must be auditable. To promote account-
ability of aid distribution programs, humanitarian organiza-
tions often keep track of their assistance activities by sys-
tematically collecting proof-of-delivery documents showing
that goods are actually transferred from the organization to
the recipient. Distribution tracking must enable auditors to
find inconsistencies between the amounts distributed and the
amounts delivered to eligible recipients in the field.
Privacy requirements. In the humanitarian context, recip-
ients of aid rarely have any control or choice over which
distribution system they use to get aid. Any leakage of
recipient’s personal information, during operation of the
program, or afterwards if the humanitarian organization is
forced to leave the area without cleaning up the distribution
system, can can put the recipients in danger. For example,
systems built by Western actors in Afghanistan collected
sensitive biometric data. In August 2021, when those actors
had to leave the country, these sensitive data were left in the
hands of the Taliban, raising concerns that these biometrics
could be used to target political opponents [26]. Hence,
distribution systems in humanitarian settings must protect
recipients’ sensitive data to prevent any harm that could
result from leaking these data.
P1registration: Privacy at registration. Registration stations un-
avoidably learn some information about recipients to de-
termine their eligibility to receive aid. Such information
could include place of residence, household demographics,
economic situations as well as identities. These necessary
data cannot be hidden during registration. Yet, registration

stations do not need to know transactional data of which
recipients receive aid when and where.
P2distribution: Privacy at distribution. Distribution stations must
learn the eligibility and entitlement of a recipient in order
to provide a recipient with the correct items. Yet, because
distribution stations are often run by third parties, the sta-
tions should not learn any other information about recipients
beyond what is required to provide the assistance.
P3auditP: Privacy at auditing. Auditors receive audit logs to
verify the correct functioning of distribution stations. Such
logs may contain sensitive information about recipients (e.g.,
when or how often a specific recipient received their goods).
To avoid endangering recipients, the system should ensure
minimal disclosure of recipients’ sensitive information to
auditors. In most cases, it suffices to provide the total
amount of distributed aid over a given time window and
a proof that this aid was given to legitimate recipients.
P4biometrics: Privacy of biometrics. Some aid-distribution sys-
tems use biometrics to ensure non-transferrability of aid.
Biometric data are extremely privacy-sensitive. Because of
privacy concerns, the ICRC’s biometrics policy specifies that
biometric templates must be stored on a device held by the
data subject (i.e., aid recipient) whenever possible [31]. In
particular, storing biometrics in central database held by
the ICRC or service provider (e.g., registration or distri-
bution stations) is considered as highly risky and must be
avoided [31].

2.2. Humanitarian Aid Distribution Workflow

In this section, we provide a high-level description of a
typical aid distribution workflow. We consider four actors
whose interactions we illustrate in Fig. 1:

• Recipients. Recipients are those individuals that re-
ceive aid. We assume that recipients belong to one (and
only one) household. We say an individual is a legit-
imate recipient for a household if they are registered
for getting aid of that household; and we say they are
illegitimate recipients if they are not registered in the
system, or not associated to the household for which
they receive aid.

• Registration Station. The registration station is in
charge of enrolling legitimate recipients and deter-
mining their entitlement. Registration data are usually
handled directly by the ICRC, or other trusted local
parties. As such, the registration stations usually rely on
the privileges and immunities afforded to the ICRC [6].

• Distribution Station. Distribution stations are in
charge of distributing aid to legitimate recipients. Dis-
tribution stations are often operated by third parties.

• Auditors. Auditors are potentially external parties that
use audit records produced by distribution station to
verify the honest behavior of these stations.

Given an emergency situation, the ICRC works with
local communities to set the criteria for selecting households
that are eligible for receiving aid. Then, the organization reg-
isters the legitimate recipients for those households together

647

7
4

Registration Station

Distribution Station

Registration Oracle

Recipient

Auditor

2

1

3

5

6

6

Figure 1. Workflow of humanitarian aid-distribution. Recipients interact
with the registration station. The registration station relies on a registration
oracle to assess correctness of the information. Recipients then request aid
from the distribution station. The auditor can ask the distribution station for
transaction records. The humanitarian organization controls the registration
station, while the distribution station and the auditor can be under the
control of third parties.

with their entitlement (e.g., five bags rice per month) [28]
(Fig. 1, step 1). Registration can happen, among others,
by setting up a registration desk in the emergency area, or
by having the ICRC staff visit households and register their
entitlement. Regardless of where registration happens, we
will refer to the process as happening at the registration
station. During registration, the registration station may need
to validate the eligibility of households and their aid request,
and that recipients are only registered for one household.
This is typically done with the help of local communities
(e.g., consulting with village elders) [27], [29], [32], [49],
[52]. In this paper, we abstract the validation process as
a registration oracle that can assign recipients to house-
holds and transfers this knowledge to the registration station
(Fig. 1, step 2). After consulting the oracle, the registration
station returns the result (e.g., a voucher, a card) to the
recipient (Fig. 1, step 3).

Distribution of aid happens at distribution stations.
These may share the same location as the registration
station. In practice, there can be several registration and
distribution stations. For simplicity, in this paper we abstract
them as a single station and discuss how to extend our
solution to multiple sites in Sect. 8.

Recipients request aid on behalf of the household at the
distribution station (Fig. 1, steps 4 and 5). The distribution
station verifies that recipients are legitimate and hands over
the goods according to the recipient’s entitlement.

When necessary, auditors can use information from the
registration and distribution stations to verify that the aid
distribution was done honestly (Fig. 1, steps 6 and 7).
Threat model. With respect to security of aid distribution
(S1limit, S2legitimate) we assume that the registration and distri-
bution stations are honest. This assumption is essential. A
malicious registration station can simply register illegitimate
recipients and change their entitlement, and a malicious
distribution station could distribute however much aid to
whomever it chooses. We assume (potentially illegitimate)
recipients are malicious and aim to violate these security
properties. For auditability (S3auditS) we assume a malicious
distribution station that tries to pass the audit check, but

assume the registration station is honest.
With respect to privacy of registration data, we must

trust the registration station (recall, these data are needed to
verify eligibility). All other parties – distribution stations,
auditors, and other recipients – are considered malicious. For
privacy of transaction records and privacy of biometric data
(P4biometrics) we assume that all parties (except the recipient
themselves) are malicious.

2.3. Existing Systems and Limitations

We review existing aid-distribution systems and evaluate
to what extent they fulfill the above requirements.
Paper-based. The ICRC reports that, currently, most aid-
distribution systems are paper-based. We identify two kinds
of paper-based systems which differ in how the information
used at distribution is stored.

In pen-and-list solutions, the information about eligible
households, their members, and their entitlement, is stored
in one centralized paper list during registration, and this list
is passed to the distribution station. When recipients show
up at the distribution station to claim their goods, the staff
checks their identity to find them on the list. Recipients can
sign their names as the evidence of distribution, producing
a proof-of-delivery to be used for auditing purposes.

Pen-and-list solutions satisfy the functionality require-
ments (F1household, F2modify, F3periodic). However, the verification of
recipients at the distribution station does not scale (D2scale).
It can take long time to find a name among many others,
especially when names are in languages for which the distri-
bution staff are not native or when names are handwritten. In
addition, if the list is acquired by third parties at registration,
or during or after the distribution, all information about
all registered participants would be revealed, breaching the
privacy requirements (P2distribution, P3auditP).

In pen-and-voucher solutions, the information about el-
igibility, household membership, and entitlement is decen-
tralized in vouchers given to the recipients. The distribution
station takes as input the information from recipients and,
upon verification, it delivers the goods. The staff at the
distribution station can mark the voucher (e.g., by punching
a hole) to show that the aid has been given in the corre-
sponding month.

Compared to using the pen-and-list approach, which
enables easy modification of entitlement, the decentralized
nature of the pen-and-voucher solution means modification
needs the assistance from recipients who may not be willing
to cooperate (F2modify). Moreover, because information about
distribution is only recorded on the voucher, auditing would
require to physically gather vouchers that would act as
proof-of-delivery (S3auditS). Gathering voucher for auditing
can be difficult, e.g., when using punch-cards that are carried
by recipients. Even when vouchers can be easily collected,
there may be personal information written or printed on the
voucher, e.g., to make sure only legitimate recipients can
use them (S2legitimate). This information may breach privacy at
auditing (P3auditP).

648

Digital solutions. Aiming to improve scalability and au-
ditability of paper-based systems, humanitarian organiza-
tions are exploring digital solutions. Digital solutions are
easy to scale and can easily provide detailed logs for au-
diting. Depending on their implementation they can have
different drawbacks. Solutions that digitalize vouchers in
a straightforward manner suffer from the same problem:
anyone with a (digital) voucher can request the goods
even though the voucher does not belong to this person
(S2legitimate). To solve this problem, the distribution station
needs to authenticate the recipient. For this purpose, a lot
of aid-distribution systems integrate Identity Management
systems (IdM) [25] and strong authentication solutions such
as biometrics. In this way, the distribution station can verify
ownership before providing the goods. While this resolves
the legitimacy requirement, IdM-based solutions do not
fulfill the privacy requirements (P1registration, P2distribution, P3auditP,
P4biometrics): recipients’ behavior is linkable, the distribution
station can identify recipients, auditing records can leak
personal information, and the central biometric database
becomes a single point of failure for privacy.

3. A Token-based Aid-distribution System

Next, we outline our proposal for a digital humanitarian
aid-distribution system that fulfills the requirements from
the ICRC as shown in Sect. 2.1.

3.1. Design choices

Decentralization of information into digital tokens. To
avoid requiring high levels of trust on a single entity that col-
lects all recipients’ information, we store recipients’ eligibil-
ity, entitlement information, and potentially authentication-
oriented data on digital tokens that stay with the recipient.
We trust tokens to keep this information private.

Using a token enables us to decentralize recipients’
information. This in turn enables the design of a system
in which the distribution station does not obtain informa-
tion that allows to re-identify, or track the movements of,
recipients (P2distribution); and in which we can create auditing
information without the need to trust the distribution station
(S3auditS). If the system requires the use of authentication
information such as biometrics, these can be stored on
the token, avoiding the creation of a centralized database
(P4biometrics). We discuss the use of biometrics in Sect. 8.

The use of digital tokens removes the need to manually
check eligibility at distribution (e.g., finding names on a list
or checking information on a paper voucher), increasing the
efficiency of the system (D2scale).
Enabling offline use of tokens. To fulfill D1low, we designed
our protocols to work offline. Tokens communicate locally
with registration and distribution stations and do not require
Internet access. Throughout this paper, we assume that the
communication between tokens and stations is encrypted
and authenticated. As this can be achieved using standard

techniques on top of our protocols, e.g., during session es-
tablishment, we omit channel encryption and authentication
from the description of our systems.

Modifying information via revocation and re-issuance.
Modification of information in a decentralized system is
cumbersome, as once information is stored on a recipient’s
token the registration station has no access to it. Since
modifications are rare (F2modify), we solve this problem by
revoking tokens and re-issuing new ones with up-to-date
information. We choose to implement blocklist-based revo-
cation rather than allowlist-based revocation [11] because
an allowlist-based method requires the knowledge of all the
valid credentials, which may not be feasible in the field.
In our design, the token receives the blocklist from the
distribution station.

Preventing double dipping using household tags. A
household must not be able to obtain aid more than once per
round (S1limit). At first thought, the use of strong authentica-
tion at distribution to detect recipients requesting aid more
than once may seem to address this requirement. However,
this does not prevent different members of the household
from requesting the household-allocated aid. To ensure that
different members of the same household can not obtain aid
more than once per round, tokens output a household- and
round-specific pseudorandom tag which they provide to the
distribution station upon aid collection. The distribution sta-
tion stores these tags. If another household member attempts
to collect aid they must reveal their household tag for the
round. Thus, the distribution station can easily detect the
double-dipping attempt. We note that this mechanism does
not require identifying recipients.

Non-forgeable auditing combined with crosschecking.
Recall that to detect whether there have been goods not ac-
tually transferred from the organization to the recipient, the
auditor should be able to find inconsistencies between the
audit records and the warehouse storage. We model this by
enabling the distribution station to prove the total amount of
goods it was authorized to deliver to legitimate recipients. To
prove this, we require tokens to output non-forgeable records
at distribution that can be seen as proofs-of-delivery. These
records can be aggregated, becoming a proof-of-delivery
of the total amount of goods given out by the station. By
comparing the aggregated total to the warehouse records,
auditors can detect when the station distributes more goods
than those that recipients asked for in the round (e.g., the
station distributed also to illegitimate recipients or gave extra
goods to legitimate recipients). When doing this comparison,
auditors need to consider that numbers may not coincide for
legitimate reasons (e.g., goods get broken before delivery, or
some goods need to be distributed in an emergency with no
time for proof collection). These cases cannot be addressed
by technology and need to be resolved using analog means
(e.g., with manual annotations) as in the current system. We
also note that our auditing solution cannot detect the transfer
of goods between legitimate recipients.

649

RS T DS A

Setup

Registration

Distribution

Audit

Figure 2. Overview of the token-based scheme omitting the global setup GlobalSetup. From left to right, there are four parties: Registration Station (RS),
Token (T), Distribution Station (DS), and Auditor (A). The boxes from top to bottom represent four phases: setup phase, registration phase, distribution
phase, and auditing phase. The circled numbers match steps from Fig. 1 to the scheme. Actions happening outside the scheme are marked in gray.

3.2. A Token-based Scheme

Our token-based scheme proceeds in four phases – setup,
registration, distribution, and auditing – each consisting of
several algorithms, whose syntax we describe below. Fig. 2
shows how parties use these algorithms in an aid-distribution
system. If a party aborts while running an algorithm, every
field of the output is set to ⊥.
Setup Phase. To set up the system, a trusted party generates
cryptographic parameters that are shared by all parties. The
registration station generates a key pair (sk, pk). Tokens are
stateful, and token-specific algorithms update an explicit
state stT that is initialized during setup. The algorithms
satisfy the following syntax.

• param ← GlobalSetup(1ℓ). A trusted party takes as
input the security parameter 1ℓ, and returns the public
parameters param. The public parameters param are
implicit inputs to all other algorithms. In practice,
these parameters would be obtained from well-known
recommendations by experts.

• sk, pk← SetupRS(1ℓ). The registration station takes as
input the security parameter 1ℓ, and outputs a private-
public key pair (sk, pk). The public key pk is known to
all parties.

• stT ← SetupT(1ℓ, pk). The token takes as input the
security parameter 1ℓ and the public key pk. The token
returns an initial state stT .

Registration Phase. Recipients use a token to register in
the system. This token can either be provided to them (e.g.,
a smart card) or be brought by the recipient (e.g., a smart-
phone). To start registration, the token sends a registration

request to the registration station together with a description
of the household (Fig. 2, step 1). If the registration oracle
agrees that this household is eligible and the recipient is a
member of the household, the oracle outputs an entitlement
entH (Fig. 2, step 2). The registration station computes the
response and sends it back to the token (Fig. 2, step 3).
The algorithms satisfy the following syntax.

• request, stT ← PrepareRegT(stT). The token takes as
input the internal state stT and outputs request infor-
mation request with a new state stT .

• response, vH ← ProcessRegRS(sk, entH , request).
The registration station takes as input a private key sk,
the entitlement entH of the household, and the request
request. It outputs a response response, which includes
information about entitlement, and a revocation value
vH for this household.

• stT , entH , vH ← FinishRegT(stT , response). The token
finishes registration by taking as input the token state
stT and the registration response response. It returns a
new state stT , the entitlement entH , and the revocation
value vH . For simplicity, we assume that entH is a
scalar, but our scheme can trivially extend to vectors
to support different types of goods.

The registration station stores the mapping between
households and corresponding revocation values vH . To
revoke a household’s tokens, the registration station adds
vH to a public blocklist BL.
Distribution Phase. To receive aid, recipients go to the
distribution station and start a request using their token. The
station sends the current period ϵ and blocklist BL to the
token (Fig. 2, step 4). The token ensures the period ϵ is

650

not in the past and verifies that its own revocation value
is not in BL. Then, the token sends the entitlement entH , a
period-specific tag τH , and a proof of entitlement πent to the
distribution station (Fig. 2, step 5). The station checks the
proof of entitlement to verify that entH is correct and that the
token has not been blocked (VerifyEntDS); and checks that
the tag τH has not been seen before. If everything is correct,
the station staff hands over the goods to the recipient, and the
distribution station stores the tuple (entH , τH , πent) for au-
diting purposes. The algorithms satisfy the following syntax.

• stT , (entH , τH , πent)← ShowupT(stT , ϵ,BL). The token
takes as input its own state stT , the distribution period
ϵ, and a blocklist BL. The algorithm outputs an updated
state stT , the entitlement entH , a tag τH that is unique
for this household in this period, and a proof of the
entitlement πent.

• ⊤/⊥ ← VerifyEntDS(pk, ϵ, (entH , τH , πent),BL). The
distribution station takes as input the public key pk,
the period ϵ, the tuple (entH , τH , πent) from the token,
and the blocklist BL. The algorithm outputs ⊤ if πent
verifies, ⊥ otherwise.

Audit Phase. To audit transactions, the auditor requests an
audit proof. The distribution station computes the transaction
total entsum as well as a proof πaud and sends it to the
auditor (GenAudPiDS and Fig. 2, step 7). The auditor uses
the corresponding blocklist BL to verify the proof πaud
(VerifyAudA). The algorithms satisfy the following syntax.

• entsum, πaud ← GenAudPiDS(ϵ, (ent(i)H , τ
(i)
H , π

(i)
ent)i,BL).

The distribution station takes as input the period ϵ,
tuples (ent(i)H , τ

(i)
H , π

(i)
ent)i, and a blocklist BL. It outputs

the total entitlement entsum and an audit proof πaud.
• ⊤/⊥ ← VerifyAudA(pk, ϵ, entsum, πaud,BL). The auditor

takes as input the period ϵ, the total entitlement entsum,
the audit proof πaud, and the blocklist BL that was
used for these records. The algorithm outputs ⊤ if πaud
verifies, ⊥ otherwise.

4. Smart-card-based Aid Distribution

We propose the first instantiation of the design in Sect. 3
which uses smart cards as tokens.
Cheap, trustworthy tokens. Smart cards are low-cost
enough that humanitarian organizations can give one or
multiple cards to a household (F1household, D1low, D3robust). Yet,
smart cards have enough storage and computation capacity
to perform the cryptographic operations we need. And they
can be treated as trusted execution environments (TEEs),
leading to a simple design. Specifically, we assume attackers
cannot modify or observe computations inside the card.
Enabling privacy-friendly auditing. Yet, the trusted nature
of smart cards does not directly translate into privacy-
friendly auditability (S3auditS): The distribution station must
be able to convince the auditor that it only interacted with
cards of legitimate receivers without violating recipient pri-
vacy. The key idea in our design is that during distribu-
tion the smart card signs a homomorphic commitment to
the entitlement, and reveals its opening to the distribution

station. The distribution station can compute a commitment
to the total entitlement obtained by homomorphic addition
of all individual commitments. The auditor can validate the
signatures on the individual commitments, and check that
the total entitlement matches the combined commitment,
given an opening produced by the distribution station.
Enabling multiple cards per household. Preventing double
dipping (S1limit) with a single card per household is easy – the
(trusted) card can remember which periods it successfully
completed. However, for D3robust our system requires multiple
cards per household. To enable the detection of double
dipping, cards output a per-household per-round tag τH that
they compute using a household secret kH and the current
round ϵ. This household secret needs to be present in all
the cards of the household. We propose a card-whispering
protocol that enables “cloning” of cards.

4.1. Preliminaries

We use a digital signature scheme given by the al-
gorithms (Gen,Sign,Verify). The key-generation algorithm
Gen(1ℓ) takes as input a security parameter 1ℓ and outputs
a privacy-public key-pair (sk, pk). The signing algorithm
Sign(sk,m) takes as input the private key sk, a message
m, and outputs a signature σ. The verification algorithm
Verify(pk,m, σ) outputs ⊤ if σ is a valid signature on m
and ⊥ otherwise.

We denote by PRFk : {0, 1}n → {0, 1}n a pseudoran-
dom function with key k ∈ {0, 1}n. We assume the output
of this function is indistinguishable from a random function.

We use the additively-homomorphic Pedersen commit-
ment scheme [46], defined by the algorithms Com.Gen
and Commit. The function Com.Gen(1ℓ) takes as input the
security parameter 1ℓ and outputs parameters paramPC =
(G, q, g, h), where G is a cyclic group of prime order q
generated by g, and h is another generator of G obtained
by hashing a public string to a group element (this ensures
that the discrete logarithm of h with respect to g is unknown
to all parties). The function Commit(m, r) takes as input a
message m ∈ Zq and randomizer r ∈ Zq and outputs a
commitment c = gmhr. This commitment scheme is ad-
ditively homomorphic: Commit(m1, r1) · Commit(m2, r2) =
Commit(m1 +m2, r1 + r2).

4.2. Smartcard-based Aid Distribution Protocol

We define the smart card system by instantiating the
scheme from Sect. 3.2.
Setup. In the smart card system, the global setup
(GlobalSetup) outputs public parameters for the Pedersen
commitment scheme and a hash function H . The registration
station generates a key pair (sk, pk). The card initiates a last-
seen-period counter necessary for P2distribution (see distribution
phase below). The algorithms are implemented as follows:

• param ← GlobalSetup(1ℓ). The global setup function
runs paramPC ← Com.Gen(1ℓ) to obtain Pedersen
commitment parameters and picks a cryptographic hash

651

function H : {0, 1}∗ → {0, 1}ℓ. It returns returns
param = (paramPC , H).

• sk, pk ← SetupRS(1ℓ). The registration station takes
as input 1ℓ and runs (sk, pk) ← Gen(1ℓ) to obtain a
signing key pair.

• stT ← SetupT(1ℓ, pk). The token takes as input the
security parameter 1ℓ and the public key pk. Let the
last-seen-period counter ϵlast = 0. The function returns
the state stT = (ϵlast, pk).

Registration. To register the first recipient of a household,
the registration station collaborates with the registration
oracle to check eligibility and determine the household’s
entitlement. (To register additional members for a household
see the card-whispering section below.) The smart card does
not send an initial request message, so we omit the definition
of PrepareRegT.

• response, vH ← ProcessRegRS(sk, entH , request). On
input of the private key sk and the entitlement entH
(request is null), the registration station creates a ran-
dom revocation value vH ∈R {0, 1}2ℓ. It returns the
response response = (sk, entH , vH).

• stT , entH , vH ← FinishRegT(stT , response). On input
of its state stT = (ϵlast, pk) and the response response
from the registration station, the card parses the re-
sponse as response = (sk, entH , vH) and checks that
the private key sk corresponds to the public key pk (as
set during SetupT). The card generates a random house-
hold secret kH ∈R {0, 1}ℓ and returns the updated state
stT = (ϵlast, pk, sk, kH , entH , vH).

Card-whispering. Recall that all cards assigned to the same
household should be able to request aid (D3robust). To pre-
vent double-dipping, all these cards must produce the same
double-dipping tags (see distribution below). Thus, when
registering members of an already registered household we
clone a previous registered household member’s card.

To preserve recipient privacy (P1registration, P2distribution), the
system must limit when, and by whom this protocol can
be run. Otherwise, an attacker with a cloned card can
simply reproduce double-dipping tags τH and thus track a
household’s activities. We recommend that cloning can only
happen after the card to be cloned successfully authenticates
its owner (e.g., using biometrics, see Sect. 8) and before
distribution starts. See Appendix D for the full protocol.
Distribution. We now describe how smart cards request aid,
and how the distribution station verifies this request. Smart
cards use the ϵlast variable in their state to protect against
malicious distribution stations by ensuring that they do not
answer requests for past epochs (P2distribution).

• stT , (entH , τH , πent) ← ShowupT(stT , ϵ,BL). The card
takes as input its own state stT , the period ϵ, and the
latest blocklist BL provided by the distribution station.
It parses stT as (ϵlast, pk, sk, kH , entH , vH). The card
checks that it has not been blocked and that the period
ϵ is not in the past, i.e., vH ̸∈ BL ∧ ϵlast < ϵ. If either
of the checks fails, the card aborts. Otherwise, the
card computes a tag τH , a commitment Coment, and

a signature σaud,

τH = PRFkH (ϵ)

Coment = Commit(entH , r), r ∈R Zq

σaud = Sign(sk, τH ∥ ϵ ∥ Coment ∥ hBL),

where hBL = H(BL). Let πent = (σaud,Coment, r). It
returns a new state stT by updating ϵlast to ϵ, and (entH ,
τH , πent).

• ⊤/⊥ ← VerifyEntDS(pk, ϵ, (entH , τH , πent),BL). The
distribution station parses the proof πent = (σaud,
Coment, r) and checks the signature σaud by checking
that Verify(pk, σaud, τH ∥ ϵ ∥ Coment ∥ hBL) = ⊤
where hBL = H(BL). It also verifies the commitment
by checking that Coment = Commit(entH , r). If both
checks pass, it returns ⊤, and ⊥ otherwise.

The station additionally checks that it has not seen τH before
handing out the goods (S1limit).
Auditing. The distribution station can use the recorded
transactions (entH , τH , πent) to create audit proofs for the
auditor. We assume all records are valid for ϵ and BL.

• entsum, , πaud ← GenAudPiDS(ϵ, (ent(i)H , τ
(i)
H , π

(i)
ent)i,BL)

The distribution station takes as input all the entries
(ent(i)H , τ

(i)
H , π

(i)
ent) in a distribution period ϵ and lets

π
(i)
ent = (σ

(i)
aud, ϵ,Com(i)

ent , r
(i)).

The distribution station computes the sum of entitle-
ment and the sum of random values

entsum =

nϵ∑
i=1

ent(i)H , rsum =

nϵ∑
i=1

r(i).

The station returns entsum together with an audit proof

πaud = (rsum, (σ
(i)
aud, τ

(i)
H ,Com(i)

ent)i, hBL).

where hBL = H(BL).
• ⊤/⊥ ← VerifyAudA(pk, ϵ, entsum, πaud,BL). The au-

ditor takes as input the public key pk, the pe-
riod ϵ, the total entitlement entsum, the auditing
proof πaud, and the blocklist BL. Let πaud =

(rsum, (σ
(i)
aud, τ

(i)
H ,Com(i)

ent)i, hBL). The auditor checks:
– the validity of all signatures in the proof πaud

⊤ = Verify(pk, σ(i)
aud, τ

(i)
H ∥ ϵ ∥ Com(i)

ent ∥ hBL),

– the uniqueness of all tags τ
(i)
H

– the sum of entitlement and the sum of random num-
bers match the commitment

nϵ∏
i=1

Com(i)
ent = Commit(entsum, rsum)

– that BL corresponds to hBL, i.e., hBL = H(BL).
If all four checks pass, it outputs ⊤ and ⊥ otherwise.

652

5. Smartphone Solution

In some areas where humanitarian organizations operate,
smartphones are available (at least one per household). To
take advantage of this fact, we propose a second instantiation
of the design in Sect. 3 using smartphones as tokens.
Existing devices as tokens. Using smartphones as tokens
reduces deployment costs associated with token distribution.
And smartphones have much more computation and storage
capacity than smart cards. However, unlike a smart card,
smartphones can run arbitrary software. Thus, their output
cannot be trusted. We address this by using advanced cryp-
tography in three ways.
Proving eligibility. We use attribute-based credentials
(ABCs) to enable the phone to prove the recipient’s eli-
gibility and entitlement to the distribution station. The use
of ABCs lets us satisfy S2legitimate while, at the same time,
ensuring privacy P2distribution

We opt for the pairing-based ABC scheme by
Pointcheval and Sanders (PS) [47]. We considered the use
of other ABC schemes, but found them to be less suited for
our purposes. Some schemes can only be shown once while
maintaining unlinkability, and would thus require issuing
one credential per distribution round [3], [8]; others require
the issuer and the verifier to share keys, which would
harm auditability in our setting [13]. There are alternatives
offering the same functionality as PS credentials with no
less complexity [2], [11].

Other technologies in previous research, e.g., FIDO [19]
and PrivacyPass [16], are not suitable in our use case.
To be more specific, FIDO does not provide unlinkability
towards the same relying party (the distribution station),
i.e., whenever the recipient shows up twice at the same
distribution station, the actions are linkable. PrivacyPass
could be used instead of ABCs by encoding entitlement
into PrivacyPass tokens that are provided to the distribution
station. However, it is hard to see how privacy pass tokens
can support privacy-friendly auditability (which requires
proving how many tokens were redeemed); or revocation
(which requires privacy-friendly blocklisting).
Double-dipping tags. Instead of using a PRF to compute a
double-dipping tag, we use a trick from direct anonymous
attestation [9]: we compute τH = H(ϵ)kH where kH is the
household secret and H : {0, 1}∗ → G is a cryptographic
hash function mapping strings to group elements. We extend
the zero-knowledge proof of having a credential to prove the
correct computation of τH .
Proving non-revocation. Finally, we rely on cryptography
to let smartphones prove that their credential has not been
revoked. Since we aim to provide privacy during distribution
against malicious registration and distribution stations, not
all revocation mechanisms are appropriate (see, e.g., Lapon
et al. [39] for an overview). Because the revoking party,
i.e., the registration station, is not trusted, phones should be
able to detect whether they have been revoked. This rules
out approaches such as verifier local revocation [7] as well
as any approach based on verifiable encryption.

Instead, we use anonymous blocklisting [24], [54] to let
the phone prove that it is not currently revoked. These proofs
are linear in the size of the blocklist. We considered dynamic
accumulators [15], [40], [44] – whose non-revocation proofs
are constant size – but decided against them due to their
increased cryptographic complexity and the need to handle
witness updates in a privacy-friendly manner.

5.1. Preliminaries: Attribute-based Credentials

We use ABCs as a building block, and describe them
only at a high level. During the issuance protocol, between a
user and an issuer, the issuer provides a signed credential to
the user. A credential contains one or more attributes, some
of which can be hidden from the issuer during the signing
process. We use C(kH , entH , rH) to denote a credential with
the three attributes kH , entH and rH . Users can create a
zero-knowledge proof of possessing a valid credential. For
simplicity, we slightly abuse the notation and write:

NIZK {(C, kH , entH , rH) : C(kH , entH , rH)}
to denote the non-interactive zero-knowledge proof of know-
ing a valid credential C with attributes kH , entH , rH . We
refer to Appendix B.3 for more details about ABCs.

5.2. Smartphone-based Aid Distribution Protocol

We define the smartphone-based system by instantiating
the scheme from Sect. 3.2.
Setup. The GlobalSetup function determines global param-
eters, including those for the ABC scheme. The registration
station acts as the issuer in the ABC scheme, and thus,
creates a key pair for it.

• param ← GlobalSetup(1ℓ). The GlobalSetup algo-
rithm takes as input the security parameter 1ℓ. It
computes three types of parameters. First, it gener-
ates for the ABC scheme a type-III bilinear group
pair given by paramPS = (e(·, ·),G1,G2,GT , q, g1,
g2, gT) where g1, g2, gT are generators of the groups
G1,G2,GT of order q respectively. Second, it sets up
the Pedersen commitment scheme in G1 with param-
eters paramPC = (G1, q, g1, h). Third, it picks a hash
function H : {0, 1}∗ → G1 that maps strings onto the
group G1. The application provider publishes all the
global parameters param = (paramPS, paramPC , H).

• sk, pk ← SetupRS(1ℓ). The registration station gener-
ates a signing key pair (sk, pk) for the ABC scheme.

• stT ← SetupT(1ℓ, pk). The phone takes as input 1ℓ and
pk from the registration station. It initiates the last-seen-
period counter ϵlast and phone state stT = (ϵlast, pk).

It is essential for privacy that all phones receive the same
public key pk. In the following, we assume this is the case.
Registration. Recipients take their smartphones when reg-
istering at the registration station. The station associates
legitimate recipients to the household with the help from
the registration oracle. The station runs the ABC issuance
protocol jointly with the phone to issue a credential.

653

• request, stT ← PrepareRegT(stT). The phone takes as
input the initial state stT which it parses as (ϵlast, pk).
It generates a household secret kH ∈R Zq. To enable
revocation using anonymous blocklisting, the phone
picks rH ∈R Zq and computes the revocation value
vH = (g1, g

rH
1). The phone creates the first message

requestabc in the ABC issuance protocol where kH
and rH are phone-defined attributes. We assume that
requestabc includes a proof that vH is well formed
(see Section B.3.2). The attribute kH and rH will
be hidden from the registration station (i.e., the is-
suer). Let stiss be the phone’s private issuance state,
stT = (ϵlast, pk, kH , rH , stiss) the updated token state.
The phone returns request = (requestabc, vH) and stT .

• response, vH ← ProcessRegRS(sk, entH , request). On
input of its private key sk, the entitlement entH and
the issue request request = (requestabc, vH) from the
phone, the registration station checks the validity of the
request and that vH has been correctly formed. Then it
uses sk and the phone’s request requestabc to create a
preliminary credential on the attributes (kH , entH , rH)
(without learning either kH or rH) which it packs into
response. It returns response and vH .

• stT , entH , vH ← FinishRegT(stT , response). On input
of its internal state stT = (ϵlast, pk, kH , rH , stiss) and
the registration station’s response response, the phone
completes the credential issuance protocol to obtain
a credential C on the attributes (kH , entH , rH) using
its issuance state stiss and response. Then, it veri-
fies that C is a valid credential under pk, and aborts
otherwise. The phone returns the new state stT =
(ϵlast, pk, C, kH , entH , rH), entH , and vH = (g1, g

rH
1).

Distribution. We next describe the algorithms used during
aid collection.

• stT , (entH , τH , πent) ← ShowupT(stT , ϵ,BL). The
phone takes as input stT , the period ϵ, and the blocklist
BL. Let stT = (ϵlast, pk, C, kH , entH , rH). The phone
verifies that ϵ is not in the past, and that it has not
made a distribution request in this epoch before, i.e., it
checks that ϵlast < ϵ. Then, the phone checks that it is
not blocked, i.e., that for all (h,H) ∈ BL, H ̸= hrH .
If any check fails, the phone aborts. To continue, the
phone computes a tag τH and a commitment Coment:

τH = H(ϵ)kH ,

Coment = Commit(paramPC , entH , r), r ∈R Zq.

Finally, the phone constructs the proof

πs = NIZK
{
(C, kH , entH , rH , r) : τH = H(ϵ)kH∧

C(kH , entH , rH) ∧ Coment = Commit(entH , r)

∧ ∀(h,H) ∈ BL : H ̸= hrH
}
,

to show that it knows a valid credential C on
kH , entH , rH , that τH is correctly constructed, that
Coment is correctly computed, and that it is not re-
voked (using the blocklisting protocol [24]). Let stT =

(ϵ, pk, C, kH , entH , rH) be the new state and πent =
(πs,Coment, r). It returns stT and (entH , τH , πent).

• ⊤/⊥ ← VerifyEntDS(pk, ϵ, (entH , τH , πent),BL). On
input of the public key pk, the period ϵ, the tuple
(entH , τH , πent), and the blocklist BL, the distribution
station proceeds as follows. First, it parses πent as
(πs,Coment, r). Then, it verifies the proof πs using the
public key pk and the provided blocklist BL. If the proof
verifies, it returns ⊤, and ⊥ otherwise.

Auditing. Auditing proceeds similarly to the smart card sys-
tem, except that the auditor checks zero-knowledge proofs.
Again, we assume the records are valid for ϵ and BL.

• entsum, πaud ← GenAudPiDS(ϵ, (ent(i)H , τ
(i)
H , π

(i)
ent)i,BL).

The distribution station takes as input all the entries
(ent(i)H , τ

(i)
H , π

(i)
ent) in a distribution period ϵ and lets

π
(i)
ent = (π(i)

s ,Com(i)
ent , r

(i)).

The distribution station computes the sum of enti-
tlement entsum =

∑nϵ

i=1 ent(i)H and the randomizer
rsum =

∑nϵ

i=1 r
(i). It returns entsum and an audit proof

πaud = (rsum, (π
(i)
s , τ

(i)
H ,Com(i)

ent)i).

• ⊤/⊥ ← VerifyAudA(pk, ϵ, entsum, πaud,BL). The auditor
takes as input the period ϵ, the total entitlement entsum,
the auditing proof πaud, and the blocklist BL that was
used in ϵ. Let πaud = (rsum, (π

(i)
s , τ

(i)
H ,Com(i)

ent)i). The
auditor checks the validity of all the proofs π

(i)
s with

respect to τ
(i)
H , Com(i)

ent and the blocklist BL; checks the
uniqueness of all tags τ

(i)
H ; and checks that the sum of

entitlement and the sum of random numbers match the
commitment:

∏
i Com(i)

ent = Commit(entsum, rsum). If all
checks pass, it outputs ⊤, and ⊥ otherwise.

6. Properties and Proofs

We formalize the security and privacy properties needed
to fulfill the requirements described in Sect. 2.1 using
cryptographic games. In the games, the adversary interacts
with users and parties in the system using oracles. See
Algorithms 1 and 2 for an overview of the oracles we
use. Oracles track information, e.g., the entitlement and
revocation values assigned to recipients (in Ent,Rev), the
honest and malicious recipients (in H,M), as well as the
last epoch in which an honest recipient sent information to a
distribution station (using ϵlast). We use these to define win
conditions.

In this section, we use proof sketches to show our two
solutions fulfill the properties and refer to the full version
of the paper for the complete proofs [57].

6.1. Privacy of Distribution

An aid-distribution system should preserve the privacy
of recipients at distribution against (potentially malicious)
registration and distribution stations (P1registration, P2distribution).

654

Algorithm 1 Registration Oracles
1: function OHONESTREG(id, vH , entH)
2: if id ∈ H ∪M then return ⊥
3: st(id)

T ← SetupT(1ℓ, pk)
4: request, st(id)

T ← PrepareRegT(st(id)
T)

5: response, vH ← ProcessRegRS(sk, entH , request)
6: st(id)

T , entH , vH ← FinishRegT(st(id)
T , response)

7: H ← H∪ {id}, Ent[id]← entH , Rev[id]← vH
8: return vH
9: function OMALUSERREG(id, entH , request)

10: if id ∈ H ∪M then return ⊥
11: response, vH ← ProcessRegRS(sk, entH , request)
12: M←M∪ {id}, Ent[id]← entH , Rev[id]← vH
13: return response

14: function OPREPAREREG(id)
15: if id ∈ Hpre ∪H then return ⊥
16: st(id)

T ← SetupT(1ℓ, pk)
17: request, st(id)

T ← PrepareRegT(st(id)
T)

18: Hpre ← Hpre ∪ {id}
19: return request

20: function OFINISHREG(id, response)
21: if id /∈ Hpre ∨ id ∈ H return ⊥
22: st(id)

T , entH , vH ← FinishRegT(st(id)
T , response)

23: H ← H∪ {id}, Ent[id]← entH , Rev[id]← vH

Algorithm 2 Distribution Oracles
1: function OSHOWUP(id, ϵ,BL)
2: if id /∈ H return ⊥
3: if Rev[id] ̸∈ BL then entsum[ϵ,BL]← entsum[ϵ,BL]+Ent[id]
4: ϵlast[id]← max(ϵlast[id], ϵ)
5: st(id)

T , (entH , τH , πent)← ShowupT(st(id)
T , ϵ,BL)

6: return entH , τH , πent

7: function OSHOWUPTWO(id0, id1, ϵ, BL)
8: if id0, id1 /∈ H return ⊥
9: BlockLists[ϵ]← BlockLists[ϵ] ∪ {BL}

10: st(id0)
T , (ent(0)H , τ

(0)
H , π

(0)
ent)← ShowupT(st(id0)

T , ϵ,BL)
11: if VerifyEntDS(pk, ϵ, (ent(0)H , τ

(0)
H , π

(0)
ent),BL) ∧ τ

(0)
H ̸∈ log0

then
12: log0[ϵ]← log0[ϵ] ∪ {(ent(0)H , τ

(0)
H , π

(0)
ent)}

13: st(id1)
T , (ent(1)H , τ

(1)
H , π

(1)
ent)← ShowupT(st(id1)

T , ϵ,BL)
14: if VerifyEntDS(pk, ϵ, (ent(1)H , τ

(1)
H , π

(1)
ent),BL) ∧ τ

(1)
H ̸∈ log1

then
15: log1[ϵ]← log1[ϵ] ∪ {(ent(1)H , τ

(1)
H , π

(1)
ent)}

We model this using the indistinguishability experiment in
Algorithm 3. Adversary A plays the role of a malicious
registration station and produces the corresponding public
key pk (line 3). The adversary can use the oracles OPrepareReg

and OFinishReg to interact as a (malicious) registration station
with honest users (line 4). It can also act as a (malicious)
distribution station and use OShowup to request that an honest
user runs ShowupT. The oracle keeps track of the last epoch
for which OShowup has been called for each user (line 4, Al-
gorithm 2). The modeling assumes that all tokens receive the
same public key during SetupT. In a real deployment, this
assumption must be realized, e.g., by a trusted manufacturer
(for cards) or application provider (for phones).

Algorithm 3 Indistinguishability experiment
1: function EXPIND

A,b (1ℓ)
2: param← GlobalSetup(1ℓ)
3: pk← A(param)
4: id0, id1, ϵ

∗,BL∗ ← AOPrepareReg(·),OFinishReg(·),OShowup(·)()
5: ϵl0 = ϵlast[id0], ϵl1 = ϵlast[id1]
6: if id0, id1 /∈ H then return ⊥
7: if Ent[id0] ̸= Ent[id1] or

|{Rev[id0],Rev[id1]} ∩ BL∗| = 1 or
(ϵ∗ > min(ϵl0, ϵ

l
1) ∧ ϵ∗ ≤ max(ϵl0, ϵ

l
1)) then

8: return ⊥
9: entbH , τ b

H , πb
ent ← OShowup(idb, ϵ

∗,BL∗)
10: b′ ← A(entbH , τ b

H , πb
ent)

11: return b′ = b

Eventually the adversary outputs two honest challenge
users id0, id1, a challenge epoch ϵ∗ and a challenge blocklist
BL∗ (line 4). The adversary’s goal is to recognize one of
these users during distribution. We rule out 3 trivial win
conditions (line 7): (1) the selected recipients have different
entitlements, (2) exactly one of the recipients is revoked, (3)
exactly one of the tokens will run ShowupT in the selected
period ϵ∗. If the adversary can determine the challenge bit
b (line 11), it wins the game.

Definition 1. An aid-distribution system provides indistin-
guishability if the following advantage is negligible:

AdvIND
A =

∣∣Pr
[
ExpIND

A,0(1
ℓ)
]
− Pr

[
ExpIND

A,1(1
ℓ)
]∣∣ .

Theorem 1. The smart card system has indistinguishability
provided that PRF is a pseudo-random function.

Proof sketch. We focus on the interesting case where both
tokens produce a real output (i.e., they are not blocked
and have not been in this epoch before). The response
of the challenge user consists of (entH , τH , πent) where
πent = (σaud,Coment, r). Because the entitlements of the
challenge users are the same, we focus our attention on τH
and σaud. Since all tokens share the same signing key, the
signature σaud does not help in distinguishing tokens. Finally,
since PRF is a pseudo-random function the adversary cannot
use observations for challenge users in earlier epochs to
recognize users.

Theorem 2. The smartphone system has indistinguishabil-
ity in the random oracle model provided that the DDH
assumption holds, the ABC scheme is unlinkable, and the
blocklisting scheme is anonymous.

Proof sketch. We focus on the interesting case where there
is a response: (entH , τH , πent), with πent = (πs,Coment, r).
As the entitlements of the challenge users are the same, we
focus on τH and πS . First, by unlinkability of the ABC
scheme and anonymity of the blocklisting scheme, we can
simulate the proof πs for the challenge users. What remains
to show is that τH = H(ϵ)kH does not make households
distinguishable. However, one can show that under the ran-
dom oracle model and the DDH assumption, no adversary
can distinguish τ0H = H(ϵ∗)k0H from τ1H = H(ϵ∗)k1H

655

Algorithm 4 Auditability experiment
1: function EXPAUD

A (1ℓ)
2: param← GlobalSetup(1ℓ)
3: sk, pk← SetupRS(1ℓ)
4: ϵ∗, ent∗sum, π

∗
aud,BL∗ ← AOHonestReg(·),OMalUserReg(·),OShowup(·)(pk)

5: valid← VerifyAudA(pk, ϵ∗, ent∗sum, π
∗
aud,BL∗)

6: Rmal = {id | Rev[id] ∈ BL∗ ∧ id ∈M}
7: entmax ← entsum[ϵ

∗,BL∗] +
∑

id∈M\Rmal
Ent[id]

8: return valid ∧ (ent∗sum > entmax)

6.2. Auditability

Aid-distribution systems should be auditable (S3auditS): a
malicious distribution station should not be able to convince
an auditor that it provided more aid than what corresponds to
the legitimate recipients that showed up. Since a malicious
registration station could simply enroll more recipients as le-
gitimate, making auditing moot, we assume the registration
station is honest. We model auditability using the experiment
in Algorithm 4. The adversary can register honest recipients
using OHonestReg. The oracle returns recipients’ revocation
value to enable blocklisting of those recipients. To regis-
ter malicious recipients, the adversary uses OMalUserReg. We
model the fact that smart cards are TEEs by making the
OMalUserReg oracle unavailable to smart card attackers.

At the end, the adversary produces a target epoch ϵ∗,
entitlement ent∗sum, proof π∗

aud, and blocklist BL∗ (line 4).
The game checks if the produced proof is valid (line 5) and
determines the maximum explainable entitlement entmax.
The maximum consists of two terms (line 7): (1) the non-
revoked honest users for which the adversary called OShowup

for epoch ϵ∗ and blocklist BL∗, and (2) the non-revoked
malicious users the adversary controls. The adversary wins
if the proof verifies, and the total entitlement exceeds entmax.

Definition 2. An aid-distribution system is auditable if the
following probability is negligible:

SuccAUD(A) = Pr
[
ExpAUD

A (1ℓ) = 1
]
.

Theorem 3. The smart card system is auditable provided
that the digital signature scheme is unforgeable and the
discrete logarithm assumption holds in G.

Proof sketch. By design, each card will output exactly one
valid signature per epoch. Because the audit proof verified,
only one record per household was included in the proof
(otherwise there would be repeated τHs). The adversary can-
not forge signatures, so all entries in the proof, including the
commitments Coment must be produced by honest tokens.
Under the discrete logarithm assumption, Pedersen commit-
ments are computationally binding, so the adversary cannot
find another opening to the product of commitments.

Theorem 4. The smartphone system is auditable provided
that the ABC scheme is unforgeable and the discrete loga-
rithm holds in G1.

Algorithm 5 Entitlement privacy
1: function EXPENT

A,b (1ℓ)
2: param← GlobalSetup(1ℓ)
3: sk, pk,← SetupRS(1ℓ)
4: ϵ∗ ← AOHonestReg(·),OShowupTwo(·)(pk)
5: ent0sum, π

0
aud ← GenAudPiDS(ϵ∗, log0,BlockLists[ϵ]∗)

6: ent1sum, π
1
aud ← GenAudPiDS(ϵ∗, log1,BlockLists[ϵ]∗)

7: if ent0sum ̸= ent1sum or |π0
aud| ̸= |π1

aud| or
|BlockLists[ϵ∗]| > 1 then

8: return ⊥
9: b′ ← A(πb

aud)
10: return b′ = b

Proof sketch. By definition the audit proof verifies. There-
fore, all contained proofs πent must be valid and the corre-
sponding tags must be unique. Since the distribution station
cannot forge credentials, it cannot create valid proofs πent (or
rather, the proof πs inside it) except by interacting with an
honest or malicious recipient. Thus, all commitments Coment
in the audit proof must correspond to legitimate (honest or
malicious) recipients. The proof follows as before.

6.3. Entitlement Privacy Game

An aid-distribution system should not unnecessarily dis-
close sensitive information of recipients to auditors (P3auditP).
By design, the auditor learns the sum of entitlements and the
number of legitimate recipients. We model that the auditor
does not learn more using a two-world game inspired by
Benaloh’s ballot privacy game [5], see Algorithm 5.

In this game, the registration station and distribution
station are honest. As before, the adversary can request
the creation of honest recipients using OHonestReg. The key
difference is that the game models two (parallel) distribution
stations. The adversary can request that honest recipients
show up to these stations using the oracle OShowupTwo, which
takes as input two recipient identifiers, who interact with the
respective distribution stations. The OShowupTwo oracle tracks
which blocklist the adversary uses in each epoch.

In the entitlement privacy experiment, the adversary
outputs a challenge epoch ϵ∗ (line 4). The two distribution
stations will produce their audit proofs for ϵ∗ (lines 5–6).
Recall that the auditor always learns the total entitlement,
the number of recipients and the blocklist used. Therefore,
the adversary loses if these are not the same in the two
worlds (lines 7–8). (Note that requiring that BL is the same
in each call to OShowupTwo is not sufficient to prevent trivial
wins because a call to ShowupT could fail in only one of the
two worlds. This difference would be detectable.) Finally,
the auditor receives one of the proofs and needs to guess
which of the two it is (lines 9–10). Any extra leakage will
let the adversary win the game.

Definition 3. Aid-distribution systems provide entitlement
privacy if the following advantage is negligible:

AdvENT
A =

∣∣Pr
[
ExpENT

A,0 (1
ℓ)
]
− Pr

[
ExpENT

A,1 (1
ℓ)
]∣∣ .

656

Theorem 5. The systems provide entitlement privacy
against a malicious auditor assuming the commitment
scheme is hiding (and, for the phone solution, the ABC
disclosure proofs are simulatable).

Proof sketch. For each audit entry, only Coment relates to
the recipient’s entitlement. This is clear by inspection for
the smart card approach. For the smartphone approach, this
follows from the privacy of the ABC scheme. Finally, be-
cause Pedersen’s commitments are information-theoretically
hiding, the auditor only learns the total entitlement and the
number of entries. It therefore cannot win the game.

6.4. Security of Aid Distribution

Aid-distribution systems should ensure that illegitimate
recipients cannot receive aid (S2legitimate), and that legitimate
recipients cannot receive more aid than entitled (S1limit). The
security game, the theorems and proofs are very similar to
the auditability proofs (Sect. 6.2), except that the distribution
station is honest. We therefore defer them to Appendix C.

7. Performance Evaluation

In this section, we evaluate the suitability of the in-
stantiations in Sections 4 and 5 for real deployment. We
focus on the performance of the registration and the dis-
tribution phases. In particular, we focus on the computa-
tion and the communication operations that happen on the
token and may affect user experience. We omit the setup
and audit phases, because they can be done offline, and
thus, are not a bottleneck. Our code can be found here:
https://github.com/spring-epfl/not-yet-another-id-code.

Smart-card-based Solution. We implemented a prototype
of the smart-card-based solution on a NXP J3H145 dual
144k Java Card [45]. We focus on the functions running on
the smart card at registration and distribution, as the station
can run on powerful hardware. The measurements include
communication cost between card and reader. We report the
mean over at least 5 runs. In all cases, the standard error of
mean (SEM) is below 1%.

At registration, the card receives (entH , vH), of 32 bytes
each. Then, it runs FinishRegT and generates a 32-byte secret
kH . In total, computation and communication at registration
runs in under 100 ms.

We determine the cost of running ShowupT by measuring
the cost of the individual operations and the transfer cost.
First, the card downloads the period ϵ (8 bytes) and the
blocklist BL. Assuming 512 entries of 32 bytes, transferring,
checking, and hashing the blocklist take 3.3 s. The time
scales linearly in the length of the blocklist. Second, the card
updates the counter ϵlast and computes a 32-byte tag τH . We
implement the PRF for computing τH using AES in ECB
mode. This step takes 113 ms. Third, the card computes the
Pedersen commitment on the entitlement. Since the NXP
J3H145 dual 144k card does not expose a direct elliptic-
curve API, we use JCMathLib [42] and the card’s Diffie-
Hellman key exchange functionality to compute the commit-

22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

Number of elements in the blocklist

10−3

10−2

10−1

100

101

102

Ti
m

e
[s

]

ShowupT
VerifyEntDS

10−2

10−1

100

101

102

103

Tr
an

sf
er

co
st

[k
B

]

From station to phone
From phone to station

Figure 3. Smartphone solution: Performance at distribution. The compu-
tation cost of ShowupT (red), computation cost of VerifyEntDS (green),
the transfer cost of station→phone (blue), and the transfer cost of
phone→station (light blue). All are linear in the length of the blocklist.

ment. Computing Coment takes 500 ms. Finally, signing takes
166 ms. Adding these together (except the first one), we
estimate the baseline cost of ShowupT to be around 779 ms.

With 512 entries on the blocklist, the distribution proto-
col takes less than 5 seconds in total. This running time is
smaller than any physical interaction happening at distribu-
tion time, and hence our protocol can fulfill D2scale.

Smartphone-based Solution. We implemented a Rust [51]
prototype of the smartphone solution. Our prototype in-
cludes the Pedersen Commitment scheme [46] and the
Pointcheval-Sanders scheme [47] using SHA-256 as the
hash function. In our experiments we use a Samsung Galaxy
a40 smartphone with a Samsung Exynos 7 Octa 7904 chipset
for recipients, and a computer with an Intel(R) Core(TM)
i7-7600U CPU 2.80GHz as the stations. We report running
times (averaged over 16 runs) and transfer costs. Transfer
times will depend on the communication channel. For ex-
ample, Bluetooth can achieve 1 Mb/s. Appendix A discusses
other channels.

At registration the phone runs PrepareRegT and
FinishRegT which take 4.6 ms and 0.6 ms respectively. The
registration station runs ProcessRegRS which takes 0.8 ms.
The request sent from the phone to the station and the
response from the station to the phone are both less than
a few hundred bytes.

Figure 3 shows the computation cost of running
ShowupT on the phone, the computation cost of verifying the
proof (VerifyEntDS) on the station, as well as the communi-
cation costs. Even with 1024 blocked households, the whole
distribution protocol can still finish within seconds, making
this solution efficient enough for supporting aid distribution
at scale (D2scale).

8. Practical Considerations

Multiple Registration and Distribution Stations. While
our design focuses on cases where there is only one regis-

657

tration and distribution station, humanitarian organizations
may need to set up multiple registration and distribution
sites for large-scale operations [27]. For example, having
multiple sites reduces the waiting time and therefore lowers
the risk of attack for staff and recipients [27]. But having
multiple sites can also affect the security and privacy offered
of the system.

When there are multiple registration stations, recipients
from the same household can register several times and get
goods multiple times per period. To avoid this problem,
registration stations need access to the validation means
of other registration stations (e.g., communication with the
elders of another village).

When there are multiple distribution sites, recipients can
ask for goods in more than one of them. To avoid this
problem, distribution stations need to synchronize their lists
of seen tags τH to learn which households already requested
goods in a period. Synchronization requires communication,
e.g., Internet connectivity or transportation of digital copies
(e.g., in a USB stick) from one site to the other. Communica-
tion may not be possible, or be difficult in some emergency
scenarios where aid distribution takes place.

In absence of connectivity, assigning each household to
a fixed station would prevent multiple-station-based double
dipping at the cost of flexibility for recipients.
Preventing Delegation of Tokens. One of the problems
that the ICRC staff finds in the field is that recipients
may willingly or unwillingly, give their entitlement proofs
to others. When this happens, illegitimate recipients gain
access to goods. To avoid this issue, the distribution station
needs to authenticate recipients to ensure that the recipient
is indeed registered at the registration station.

The most popular authentication methods are not suit-
able in our case. For example, (graphical) passwords or
tokens can be delegated and thus do not solve the problem.
Due to the ease of use and the inherent protection against
delegation, biometrics are perceived by the humanitarian
sector as a very advantageous solution.

Biometric-based authentication, while desirable, also
raises concerns. Biometrics contain private information
about individuals, and they are not renewable. Once they
are leaked or shared, those having the biometric data can
use them to re-identify their owners forever. Humanitarian
organizations are already under pressure from state and
non-state actors to share or disclose biometric data they
have [23]. This is why, to reduce risks for recipients, the
ICRC has a strict policy for the usage of biometrics [31]
which recommends avoiding the creation of biometrics
databases. Such biometrics policy is in line with other
relevant legal frameworks under which humanitarian orga-
nizations may have to operate, e.g., the EU General Data
Protection Regulation [17] or the African Union Convention
on Cybersecurity and Personal Data Protection [1].

Our design can be easily adapted to support biometric
authentication while respecting the ICRC policies. It suffices
to store the biometrics on the tokens at registration and
implementing the biometric authentication inside the token.
At the distribution station, the user can use the token to

prove their identity. To keep the system properties, it is
necessary that the biometric sensors and devices realizing
the computation (smart cards or smartphones) are trusted.
Limits of technological solutions against delegation.
While biometrics (and other strong authentication mech-
anisms) can prevent delegation, they cannot fully prevent
illegitimate recipients from getting access to aid. For exam-
ple, recipients may be coerced to give out their aid. This
problem is hard to solve with technology, as digital systems
can check the authenticity or eligibility of the recipient, but
not their willingness.

9. Conclusion

Humanitarian organizations see digitalization as an op-
portunity to increase their operations’ efficiency and there-
fore increase their capability to help people in need. How-
ever, they also recognize that the introduction of technology
may bring new risks for the populations they serve [36].

In this paper we tackled the case of digitalization of
aid-distribution programs. In collaboration with the ICRC
we have identified the requirements that a digital aid-
distribution solution must fulfill to guarantee that it pre-
serves the safety, rights, and dignity of aid recipients. Then,
we propose a decentralized aid-distribution system that
enables humanitarian organizations to distribute physical
goods at scale in a secure and privacy-preserving manner,
while providing strong accountability.

We provide two instantiations of our design on two kinds
of digital tokens already used in humanitarian contexts:
smart cards and smartphones. We formally prove that our
schemes provide the required security and privacy proper-
ties, and we empirically demonstrate that, despite the use of
advanced cryptography, they are efficient enough to support
mass aid-distribution.

Our interactions with the ICRC reveal that, due to them
dealing with the most vulnerable populations, the needs of
humanitarian organizations often cannot be satisfied with
off-the-shelf commercial solutions. Their requirements often
bring up challenging research questions and open new de-
sign spaces rarely explored by our community. We hope that
our work fosters new collaborations between researchers and
humanitarian organizations to explore this space so research
innovations can directly benefit those most in need of help.

Acknowledgements

We thank Laurent Girod for implementing the Java
Card prototype and Nathan Duchesne for implementing the
smartphone prototype.

This work was partially funded by the Science and
Technology for Humanitarian Action Challenges (HAC)
programme from the Engineering for Humanitarian Ac-
tion initiative, a partnership between the ICRC, EPFL and
ETHZ.

658

References

[1] African Union, “African Union Convention on Cyber Security
and Personal Data Protection,” https://au.int/en/treaties/
african-union-convention-cyber-security-and-personal-data-protection,
2014, accessed: April 8, 2023.

[2] M. H. Au, W. Susilo, Y. Mu, and S. S. M. Chow, “Constant-size
dynamic k-times anonymous authentication,” IEEE Syst. J., 2013.

[3] F. Baldimtsi and A. Lysyanskaya, “Anonymous credentials light,” in
CCS, 2013, pp. 1087–1098.

[4] A. Barua, M. A. A. Alamin, M. S. Hossain, and E. Hossain, “Security
and Privacy Threats for Bluetooth Low Energy in IoT and Wearable
Devices: A Comprehensive Survey,” IEEE Open J. Commun. Soc.,
2022.

[5] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi,
“SoK: A Comprehensive Analysis of Game-Based Ballot Privacy
Definitions,” in S&P, 2015.

[6] S. L. Blond, A. Cuevas, J. R. Troncoso-Pastoriza, P. Jovanovic,
B. Ford, and J. Hubaux, “On Enforcing the Digital Immunity of a
Large Humanitarian Organization,” in S&P, 2018.

[7] D. Boneh and H. Shacham, “Group signatures with verifier-local
revocation,” in CCS, 2004.

[8] S. A. Brands, Rethinking Public Key Infrastructures and Digital
Certificates: Building in Privacy. MIT Press, 2000.

[9] E. F. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attes-
tation,” in CCS, 2004.

[10] J. Burton, ““Doing no harm” in the digital age: What the
digitalization of cash means for humanitarian action,” https:
//international-review.icrc.org/sites/default/files/reviews-pdf/2021-03/
doing-no-harm-digitalization-of-cash-humanitarian-action-913.pdf,
2020, accessed: April 8, 2023.

[11] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient
protocols,” in SCN, 2002.

[12] M. Cäsar, T. Pawelke, J. Steffan, and G. Terhorst, “A survey on
Bluetooth Low Energy security and privacy,” Comput. Networks,
2022.

[13] M. Chase, S. Meiklejohn, and G. Zaverucha, “Algebraic MACs and
Keyed-Verification Anonymous Credentials,” in CCS, 2014.

[14] M.-L. Clausen and B. O. Martins, “Humanitarian
Biometrics in Yemen: The complex politics of hu-
manitarian technology,” https://blogs.prio.org/2021/07/
humanitarian-biometrics-in-yemen-the-complex-politics-of{-}
humanitarian-technology/, 2021, accessed: April 8, 2023.

[15] I. Damgård and N. Triandopoulos, “Supporting Non-membership
Proofs with Bilinear-map Accumulators,” IACR Cryptol. ePrint Arch.,
2008.

[16] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Val-
sorda, “Privacy Pass: Bypassing Internet Challenges Anonymously,”
PoPETS, 2018.

[17] European Union, “General Data Protection Regulation (EU)
(GDPR),” https://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016, ac-
cessed: April 8, 2023.

[18] E. Fenske, D. Brown, J. Martin, T. Mayberry, P. Ryan, and E. C.
Rye, “Three Years Later: A Study of MAC Address Randomization
In Mobile Devices And When It Succeeds,” PoPETS, 2021.

[19] FIDO Alliance, “FIDO 2.0: Overview,” https://fidoalliance.org/specs/
fido-v2.0-rd-20170927/fido-overview-v2.0-rd-20170927.html, 2017.

[20] J. Fussell, “Group Classification on National ID Cards as a Factor
in Genocide and Ethnic Cleansing,” http://www.preventgenocide.org/
prevent/removing-facilitating-factors/IDcards/, 2001, accessed: April
8, 2023.

[21] D. Gao, H. Lin, Z. Li, F. Qian, Q. A. Chen, Z. Qian, W. Liu, L. Gong,
and Y. Liu, “A nationwide census on wifi security threats: prevalence,
riskiness, and the economics,” in ACM MobiCom, 2021.

[22] D. Gentry and A. Pennarun, “Passive Taxonomy of Wifi Clients Using
MLME Frame Contents,” CoRR, 2016.

[23] B. Hayes and M. Marelli, “Facilitating innova-
tion, ensuring protection: the ICRC Biometrics Pol-
icy,” https://blogs.icrc.org/law-and-policy/2019/10/18/
innovation-protection-icrc-biometrics-policy/, 2019, accessed:
April 8, 2023.

[24] R. Henry and I. Goldberg, “Thinking inside the BLAC box: smarter
protocols for faster anonymous blacklisting,” in WPES, 2013.

[25] G. Hosein and C. Nyst, “Aiding Surveillance,” Privacy International,
Tech. Rep., 20013.

[26] Human Rights Watch, “New Evidence that Biometric Data
Systems Imperil Afghans,” https://www.hrw.org/news/2022/03/
30/new-evidence-biometric-data-systems-imperil-afghans, 2022,
accessed: April 8, 2023.

[27] ICRC, “EcoSec Response,” https://shop.icrc.org/
ecosec-response-en-pdf.html, accessed: April 8, 2023.

[28] ——, “Targeting, Selection, and Prioritization Methods for Eco-
nomic Security Programmes,” https://shop.icrc.org/download/ebook?
sku=4567/002-ebook, accessed: April 8, 2023.

[29] ——, “Guidelines for Cash Transfer Programming,” https://www.icrc.
org/en/doc/assets/files/other/icrc 002 mouvement-guidelines.pdf,
2007, accessed: April 8, 2023.

[30] ——, “The ICRC: Its Mission and Work,” https://shop.icrc.org/
download/ebook?sku=0963/002-ebook, 2009, accessed: April 8,
2023.

[31] ——, “Policy on the Processing of Biometric Data by the ICRC,”
https://www.icrc.org/en/download/file/106620/icrc biometrics
policy adopted 29 august 2019 .pdf, 2019, accessed: April 8,
2023.

[32] ——, “Evidence-based Decision-making in Delegations: Analysis and
Evidence Planning Guidance,” https://www.icrc.org/en/publication/
4525-strengthening-evidence-based-decision-making-delegations\
protect\penalty\z@-analysis-and-evidence, 2021, accessed: April 8,
2023.

[33] ——, “ICRC Annual Report Africa 2021,” https://www.icrc.org/
en/download/file/247666/icrc-annual-report-africa 2021 forweb.pdf,
2021, accessed: April 8, 2023.

[34] ——, “The ICRC’s funding and spending,” https://www.icrc.org/en/
faq/icrcs-funding-and-spending, 2022, accessed: April 8, 2023.

[35] ISO/IEC 18004:2015, “Information technology — Automatic identi-
fication and data capture techniques — QR Code bar code symbology
specification,” 2015.

[36] A. Kaspersen and C. Lindsey-Curtet, “The digital transformation of
the humanitarian sector,” https://blogs.icrc.org/law-and-policy/2016/
12/05/digital-transformation-humanitarian-sector/, 2016, accessed:
April 8, 2023.

[37] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

[38] K. Krombholz, P. Frühwirt, P. Kieseberg, I. Kapsalis, M. Huber,
and E. R. Weippl, “QR Code Security: A Survey of Attacks and
Challenges for Usable Security,” in HAS, 2014.

[39] J. Lapon, M. Kohlweiss, B. D. Decker, and V. Naessens, “Analysis
of revocation strategies for anonymous idemix credentials,” in Com-
munications and Multimedia Security, 2011.

[40] J. Li, N. Li, and R. Xue, “Universal Accumulators with Efficient
Nonmembership Proofs,” in ACNS, 2007.

[41] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown, C. Riggins,
E. C. Rye, and D. Brown, “A Study of MAC Address Randomization
in Mobile Devices and When it Fails,” PoPETS, 2017.

659

[42] V. Mavroudis and P. Svenda, “JCMathLib: Wrapper Cryptographic
Library for Transparent and Certifiable JavaCard Applets,” in SPW,
2020.

[43] NADRA, “National Database and Registration Authority - ESCAP,”
https://www.unescap.org/sites/default/d8files/event-documents/
National Database Registration Authority Inception ws Pakistan
11Feb2022.pdf, 2022, accessed: April 8, 2023.

[44] L. Nguyen, “Accumulators from Bilinear Pairings and Applications,”
in CT-RSA, 2005.

[45] Oracle, “Java Card Development Kit User Guide,” https://docs.oracle.
com/en/java/javacard/3.1/guide/, 2021, accessed: April 8, 2023.

[46] T. P. Pedersen, “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing,” in CRYPTO, 1991.

[47] D. Pointcheval and O. Sanders, “Short Randomizable Signatures,” in
CT-RSA, 2016.

[48] D. Rupprecht, A. Dabrowski, T. Holz, E. R. Weippl, and C. Pöpper,
“On Security Research Towards Future Mobile Network Genera-
tions,” IEEE Commun. Surv. Tutorials, 2018.

[49] T. Schwartz, “A Model for Humanitarian Aid Ben-
eficiary Targeting,” https://timothyschwartzhaiti.com/
a-model-for-humanitarian-aid-beneficiary-targeting/, 2019, accessed:
April 8, 2023.

[50] L. Taylor and D. Broeders, “In the Name of Development: Power,
Profit and the Datafication of the Global South,” Geoforum, 2015.

[51] The Rust Foundation, “Rust,” https://github.com/rust-lang/rust, 2022,
accessed: April 8, 2023.

[52] The World Bank Group, “Beneficiary Assessment,”
http://web.worldbank.org/archive/website00519/WEB/OTHER/
BENEFICI.HTM, 2004, accessed: April 8, 2023.

[53] Trilateral Research & Consulting, “Privacy Impact
Assessment of UNHCR Cash Based Interventions,”
https://www.calpnetwork.org/wp-content/uploads/2020/01/
privacy-impact-assessment-of-unhcr-cash-based-interventions.pdf,
2015, accessed: April 8, 2023.

[54] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith, “BLAC: Re-
voking Repeatedly Misbehaving Anonymous Users without Relying
on TTPs,” ACM Trans. Inf. Syst. Secur., 2010.

[55] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens,
“Why MAC Address Randomization is not Enough: An Analysis of
Wi-Fi Network Discovery Mechanisms,” in AsiaCCS, 2016.

[56] H. A. M. Wahsheh and F. L. Luccio, “Security and Privacy of QR
Code Applications: A Comprehensive Study, General Guidelines and
Solutions,” Inf., 2020.

[57] B. Wang, W. Lueks, J. Sukaitis, V. Graf Narbel, and C. Troncoso,
“Not Yet Another Digital ID: Privacy-preserving Humanitarian Aid
Distribution,” CoRR, vol. abs/2303.17343, 2023.

[58] World Food Programme, UNHCR, “Joint Inspection of the
Biometrics Identification System for Food Distribution in Kenya,”
https://documents.wfp.org/stellent/groups/public/documents/reports/
wfp277842.pdf, 2015, accessed: April 8, 2023.

[59] L. Yu, B. Luo, J. Ma, Z. Zhou, and Q. Liu, “You Are What You
Broadcast: Identification of Mobile and IoT Devices from (Public)
WiFi,” in USENIX Security, 2020.

Appendix A.
Privacy-friendly Smartphone-Station Channel

When using a smart card as a token, the communication
between the token and the stations happens through a card
reader. Such a communication channel is hard to eavesdrop,
and as long as the card reader is honest, hard to compromise.

When using a smartphone as a token, the communication
becomes wireless. Wireless communications are is easy
to eavesdrop on and, depending on the protocol, are also
susceptible to person-in-the-middle attacks. This new attack
surface can have a strong impact on privacy.

We discuss four widely used communication channels
suitable for connecting the smartphone to the station when
deploying the system: cellular network, local Wi-Fi, Blue-
tooth, and QR-code scanning. We compare them in terms of
(1) ease of integration into a humanitarian aid-distribution
system and (2) the privacy risks they introduce.
Cellular Network. Smartphones can use cellular networks
to connect to the Internet. If the stations also have Internet
connection, the phone can communicate with the station via
this channel. Using cellular networks has the advantage that
it does not require the installation of dedicated hardware
to support the communication. However, one cannot always
assume that the areas where humanitarian aid distribution
takes place have reliable and high-bandwidth cellular con-
nection system.

The use of cellular networks extends the threat model of
the system to include the mobile service provider, as well as
eavesdroppers with adequate equipment [48]. These adver-
saries can link recipients, and hence, breach their privacy.
Local Wi-Fi. An alternative for connecting smartphones
and stations is to use a local Wi-Fi network to which
both devices connect. This method requires the deployment
and maintenance of Wi-Fi routers. Once these routers are
deployed, quality of connection is easy to achieve.

Using a Wi-Fi eliminates the need to trust a mobile
service provider. Instead, trust is put on the entity setting up
the router to not track users [21], [59]. If this entity is not
trustworthy, users need to have unlinkable MAC addresses,
which are not available in all commercial devices [41], and
prevent fingerprinting of other information contained in the
probe request [18], [22], [55].
Bluetooth. A third option is to use the Bluetooth Low
Energy (BLE) technology [4], [12]. It enables smartphones
to connect to the station without intermediaries that could
be adversarial. Compared to Wi-Fi, BLE provides less band-
width, but is still enough to run our protocols. On the
negative side, BLE does not have the same prevalence on
phones as Wi-Fi.

With regard to privacy, the BLE specification contains
provisions to randomize the MAC address of the devices.
However, enabling full randomization to ensure anonymity
from the receiving end comes at the cost of having to
pair the devices every time. Whether frequent re-pairing is
acceptable depends on the periodicity of the distribution.
QR-code Scanning. QR codes are two-dimensional bar
codes containing data [35]. Users can access the encoded
data by scanning the QR code with the camera of their
smartphones [38]. Due to their ease of deployment, QR
codes are increasingly popular in smartphone settings [56],
e.g., to provide links to social media accounts, to show
vaccination certificates, or to share files.

Because it requires the adversary to have direct line of
sight to the QR code to capture the encoded data [56], QR-

660

TABLE 1. COMPARING SMARTPHONE-STATION CHANNEL

Cellular Local BLE QR-code
Network Wi-Fi

Privacy low medium medium high
Throughput high high medium low
Infrastructure ✗ ✓ ✗ ✓

User-friendliness ✓ ✓ ✓ ✗

code scanning provides a high level of privacy. However,
the storage capacity of a QR code is limited (a maximum
of 3 kB [35]). Thus, more than one QR code may be
needed to transmit all data necessary in our protocols. Even
though we can rotate QR codes to transfer more data, the
throughout is still low due to other constraints, e.g, the
recognition delay of the phone, people unlocking the phone
to point the camera to the code, etc. This may slow down
the protocol’s execution rendering this method impractical
in reality (D2scale).

Table 1 summarizes the performance of the four chan-
nels. If the blocklist is short and only requires low through-
put of the channel, QR-code scanning can be a good option
because of better privacy. If the blocklist is longer and
requires larger throughput, BLE or local Wi-Fi would be a
more desirable solution, depending on the ability of setting
up Wi-Fi device. BLE has an advantage over Wi-Fi if
devices can enable fully randomization of MAC addresses.
Cellular network should be the last alternative due to the
large privacy risk. In the case where the privacy risk is
unacceptable, one option is to move to smart-card-based
solution, another option is to shorten the distribution period
to encourage having a shorter blocklist.

Appendix B.
Cryptography Details

B.1. Digital Signatures

Let Π = (Gen,Sign,Verify) be a signature scheme. We
restate the existential unforgeability game Sig-forgeA,Π(ℓ)
for adversary A and security parameter ℓ:

1) The challenger runs Gen(1ℓ) to obtain a signing-
verification key-pair (sk, pk).

2) The adversary A is given pk and has access to the
signing oracle Sign(sk, ·).

3) Eventually A outputs a forgery (σ,m). Let Q de-
note the set of all message queries that A asked
its oracle. The adversary succeeds if and only if (1)
Verify(pk, σ,m) = ⊤ and (2) m /∈ Q.

4) The experiment outputs 1 if the adversary wins.
A signature scheme Π = (Gen,Sign,Verify) is unforge-

able if for all probabilistic polynomial-time adversaries A,
there is a negligible function negl such that:

Pr
[
Sig-forgeA,Π(n) = 1

]
⩽ negl(n).

B.2. Pseudorandom Functions

Pseudorandom functions (PRFs) are “random-looking
functions” which refer to the pseudorandomness of a dis-
tribution on functions [37]. The set Funcn are all functions
mapping n-bit strings to n-bit strings.

Definition 4. An efficient, length-preserving, keyed function
F : {0, 1}n × {0, 1}n → {0, 1}n is a pseudorandom
function if no probabilistic polynomial-time distinguisher D
can differentiate F from f such that f ∈ Funcn, i.e.,

|Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]| ⩽ negl(n),

where the first probability is taken over uniform choice of
k ∈R {0, 1}n and the randomness of D.

B.3. Pointcheval-Sanders Credentials

There are three parties in an ABC scheme: the issuer,
the user, and the verifier. The issuer sets up the system and
issues credentials to users. The process by which a user
obtains a credential is called issuance. The user holds cre-
dentials and shows them to the verifier. The user can choose
to reveal some attributes from any number of the credentials
to the verifier. The verifier checks the credential is valid,
and the revealed attributes fulfill the requirements of the
application. The process by which the user shows possession
of a credential to the verifier is called verification.

A secure ABC scheme has the following properties:
• Unforgeability: It is not possible for any party in the

system to forge a credential without the help of the
issuer.

• Unlinkability: It is not possible for the verifier (even
when colluding with the issuer) to distinguish between
two users who disclose the same attributes in the ver-
ification process.

B.3.1. Setup. The issuer runs ABC.Gen to set up global
parameters and generate keys. It proceeds as follows:

1) The algorithm takes as input the security parameter 1ℓ
and the number of attributes L.

2) It generates public parameters containing a type-III
bilinear group pair given by paramPS = (e(·, ·),G1,G2,
GT , q, g1, g2, gT) where g1, g2, gT are generators of the
groups G1,G2,GT of order q respectively.

3) It generate signing and verification keys. It picks
x, y1, . . . , yL ∈R Zq, g ∈R G1 and g̃ ∈R G2, then
computes:

X = gx, X̃ = g̃x, Yi = gyi , Ỹi = g̃yi

for i = 1, . . . , L. It publishes the public key pkPS and
returns the private key skPS, where

pkPS = (g, Y1, . . . , YL, g̃, X̃, Ỹ1, . . . , ỸL)

skPS = (x,X, y1, . . . , yL).

661

B.3.2. Issuance. The user and the issuer jointly run
ABC.issue protocol to create signatures as credentials. The
issuer acts as a signer without knowing all the attributes it
is signing. The protocol proceeds as follows:

1) Input agreement. The user and the issuer agree on
the set of attribute indices I ⊂ {1, . . . , L} that are
determined by the issuer and the set of attribute indices
U ⊂ {1, . . . , L} that are determined by the user, where
I ∪U = {1, . . . , L}. The user takes as input the public
key pkPS and the attributes ai,∀i ∈ U . The issuer takes
as input the public key pkPS, the private key skPS, and
the attributes ai,∀i ∈ I.

2) User commitment. The user commits to the attributes
they want to include in the credential by picking t ∈R
Zq at random and computing the credential C as well
as a non-interactive zero-knowledge proof (NIZK) π
that proves C has been computed correctly:

C = gt
∏
i∈U

Y ai
i ,

π = NIZK

{
(t, (ai)i∈U) : C = gt

∏
i∈U

Y ai
i

}
.

The user sends an issuance request requestabc = (C, π)
to the issuer.

3) Issuer signing. The issuer receives the issuance request
requestabc = (C, π), verifies the validity of proof π
with respect to commitment C, and aborts if the proof
is not correct. Otherwise, the issuer picks u ∈R Zq at
random and creates the signature

σ′ =

(
gu,

(
XC

∏
i∈I

Y ai
i

)u)
.

The issuer sends σ′ and the attributes chosen by the
issuer ai,∀i ∈ I to the user.

4) Unblinding signature. The user receives the signature
σ′ = (σ′

1, σ
′
2) and attributes. The user computes the

“unblinding” signature

σ =

(
σ′
1,

σ′
2

(σ′
1)

t

)
,

and uses the public key pk to validate that σ is a valid
signature on the attributes. If valid, the user stores both
σ and the attributes.

When using the ABC scheme in our protocols for the
smartphone solution, the phone additionally proves that the
revocation value vH = (g1, g

rH
1) = (g1, vH) has been

correctly formed. The issuer can trivially check that the
first component equals the generator of G1. The token
extends the proof of correctness π above to show that the
second component is correct. Instantiating the user-defined
attributes at positions 1 and 3, it instead proves:

π = NIZK
{
(t, kH , rH) : C = gtY kH

1 Y rH
3 ∧ vH = grH1

}

B.3.3. Verification. The user can run ABC.show to convince
the verifier that the user possesses a valid credential over
a set of attributes using a zero-knowledge proof. As part
of this proof, the user can choose to reveal some of the
attributes while hiding others from the verifier. The verifier
checks and accepts the proof if all the checks succeed. The
showing protocol proceeds as follows:

1) Input agreement. The user and the verifier agree on
the public key of the issuer and the set of attributes
D that should be disclosed to the verifier. Let H =
{1, . . . , L} \ D be the set of attributes that are hidden
from the verifier.

2) Proof creation. The user takes as input a signature
σ = (σ1, σ2) over the attributes a1, . . . , aL and picks
random values rs, ts ∈R Zq. The user computes a
randomized signature σs and a non-interactive zero-
knowledge proof that proves the signature σs is a valid
signature:

σs = (σs1 , σs2) = (σrs
1 , (σ2σ

ts
1)rs),

πs = NIZK{(ts, (ai)i∈H) :
e(σs2 , g̃)

∏
i∈D e(σs1 , Ỹi)

−ai

e(σs1 , X̃)

= e(σs1 , g̃)
ts
∏
i∈H

e(σs1 , Ỹi)
ai .}

The user sends (σs, (ai)i∈D, πs) to the verifier.
3) Proof verification. The verifier receives the signature

σs = (σs1 , σs2), the disclosed attributes (ai)i∈D, and
the proof πs from the user. First, the verifier checks
that σs1 ̸= 1G1

, i.e., σs1 is not the unity element in
G1. Second, the verifier checks the user has a valid
signature under the public key pkPS over the disclosed
attributes (ai)i∈D by verifying the proof πs. The verifier
accepts the disclosure proof only if both checks pass.

Appendix C.
Security of Aid Distribution

We model security in the sense of S1limit and S2legitimate

in a very similar manner to the auditabilty game, but with
more restrictions on the adversary’s power. In the security
game, the adversary controls only users, and must convince
an honest distribution station to hand out more aid than
permitted. Because the adversary no longer controls the
distribution station, we give it access to an explicit OVerifyEnt

oracle in the security game in Algorithm 6 through which it
can simulate users (honest or malicious) showing up at the
distribution station.

The adversary can, as before, create malicious users
(using OMalUserReg) as well as honest users (using OHonestReg).
It can use OShowup to obtain show up data of honest users,
which it could then feed into OVerifyEnt. See line 7. We model
the fact that smart cards are TEEs, by making the OMalUserReg

and OShowup oracles unavailable to smart card attackers.
The oracle OVerifyEnt tracks show-up events that the dis-

tribution station would accept in log. The adversary’s goal is
to convince the distribution station to, for a given round and

662

Algorithm 6 Security experiment
1: function OVERIFYENT(ϵ, entH , τH , πent,BL)
2: if VerifyEntDS(pk, ϵ, (entH , τH , πent),BL)∧ τH ̸∈ log then
3: log[ϵ]← log[ϵ] ∪ {(entH , τH , πent,BL)}

4: function EXPSEC
A (1ℓ)

5: param← GlobalSetup(1ℓ)
6: sk, pk,← SetupRS(1ℓ)
7: ϵ∗,BL∗ ← AOHonestReg(·),OMalUserReg(·),OShowup(·),OVerifyEnt(·)(pk)
8: entseen ←

∑
{entH | (entH , ·, ·,BL∗) ∈ log[ϵ∗]}

9: Rmal = {id | Rev[id] ∈ BL∗ ∧ id ∈M}
10: entmax ← entsum[ϵ

∗,BL∗] +
∑

id∈M\Rmal
Ent[id]

11: return entseen > entmax

blocklist, to hand out more aid than the joint entitlement of
all non-revoked malicious users controlled by the adversary
and non-revoked honest users that showed up. This model
then covers: illegitimate recipients receiving aid; legitimate
recipients receiving more aid than entitled; a group of col-
luding users receiving more aid than they are jointly entitled
to; and revoked users receiving aid.

After interacting with oracles, the adversary outputs a
target epoch ϵ∗ and a blocklist BL∗. First, the challenger
computes the total amount of aid handed out in terms of suc-
cessful calls to OVerifyEnt for this choice of blocklist (line 8).
Then, as in the indistinguishability game, we compute the
maximum allowable entitlement entmax in two parts (see
line 10). The entsum term captures the aid requested by
non-revoked honest users using OShowup. The second term
accounts for the non-revoked malicious users (see line 9).
If the accepted aid is larger than entmax, the adversary wins.

Definition 5. An aid-distribution system is secure if the
following probability is negligible:

SuccSEC(A) = Pr
[
ExpSEC

A (1ℓ) = 1
]
.

We prove the security of distribution in both solutions
using a reduction to auditability.

Theorem 6. If a scheme is auditable, this scheme also
provides security of distribution.

Proof. Assuming there exists an adversary A that breaks
the security of distribution, i.e., A can win ExpSEC

A in Al-
gorithm 6 with non-negligible advantage, we construct an
adversary B that breaks auditability by winning ExpAUD

A in
Algorithm 4 with at least the same advantage.

At the start of the auditability game, B receives param
and the public key pk. It relays these to the security adver-
sary A. Whenever A calls the three oracles, i.e., OHonestReg,
OMalUserReg, and OShowup, B will relay the query to its
challenger and send the response back to A. Whenever B
receives a call to OVerifyEnt from A, it executes this oracle as
stated, and stores the result in log[ϵ].

After the oracle queries, A outputs a chosen pe-
riod ϵ∗ and a target blocklist BL∗. Auditability adver-
sary B uses all recorded responses in log[ϵ∗] to compute
ent∗sum, π

∗
aud ← GenAudPiDS(ϵ, log[ϵ∗]) and finally outputs

(ϵ∗, ent∗sum, π
∗
aud,BL∗). Assuming this audit proof is valid, B

wins the audit game because entseen > entmax, and hence,
ent∗sum > entmax.

Finally, we show that π∗
aud is valid. The verification

oracle OVerifyEnt and the verification function VerifyAudA run-
ning by auditors do the same check on the output tuple of
ShowupT functions. Hence, the winning condition for A and
for B are essentially the same.

Appendix D.
Card-whispering Protocol

Recall that to provide robust distribution (D3robust) it is
necessary to enable more than one member of a household
to retrieve their entitlement. This is needed to support house-
hold members losing their cards or unable to attend the dis-
tribution due to sickness. Our solution achieves robustness
by permitting that members of a household have “cloned”
cards, i.e., cards that share the same state.

To create a card clone, registered household members
need to bring their card to the registration station. Then,
they run the following card-whispering protocol between a
parent card – the card that the household member wants
to clone, which contains the household secret and current
state, and a child card – the card that will become a clone,
which is initialized in the setup with the built-in shared
keys and public parameters but does not contain any secret.
The parent card and child card are inserted into dedicated
devices. The protocol goes as follows:

• CardWhispering() The card whispering protocol is be-
tween a parent and a child card. The parent card takes
as input its state stPT = (ϵlast, pk, sk, kH , entH , vH), the
client card has no input. The parent card sends stPT to
the client. The client sets its own state stCT to equal stPT .
The parent card does not modify its state.

After running the protocol, the child card will have the
same state as the parent card (including the same secret of
the household). We have described the protocol between two
cards, but it can be run among any number of cards.

As explained in Section 4.2, to maintain privacy and
security this protocol must be conducted in a controlled
environment where the owner of the parent card can be
authenticated and requires (1) that only the child card learns
the household secret (otherwise privacy is at risk, see Sec-
tion 4.2), and (2) that the child card is given to a member of
the household (otherwise security is at risk, as illegitimate
recipients may get the entitlement of the household).

663

