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Abstract—This paper studies the problem of cross-version
exploitability assessment for Linux kernels. Specifically, given
an exploit demonstrating the exploitability of a vulnerability on a
specific kernel version, we aim to understand the exploitability of
the same vulnerability on other kernel versions. To tackle cross-
version exploitability assessment, automated exploit generation
(AEG), a recently popular topic, is the only existing, applicable
solution. However, AEG is not well-suited due to its template-
driven nature and ignorance of the capabilities offered by the
available exploit.

In this work, we introduce a new method, automated exploit mi-
gration (AEM), to facilitate cross-version exploitability assessment
for Linux kernels. The key insight of AEM is the observation
that the strategy adopted by the exploit is often applicable to
other exploitable kernel versions. Technically, we consider the
kernel version where the exploit works as a reference and adjust
the exploit to force the other kernel versions to align with the
reference. This way, we can reproduce the exploiting behaviors on
the other versions. To reduce the cost and increase the feasibility,
we strategically identify execution points that truly affect the
exploitation and only enforce alignment at those points. We
have designed and implemented a prototype of AEM. In our
evaluation of 67 cases where exploit migration is needed, our
prototype successfully migrates the exploit for 56 cases, producing
a success rate of 83.5%.

I. INTRODUCTION

Understanding the exploitability of a vulnerability is a stan-

dard method to assess its severity, which can benefit many

downstream applications such as scheduling of patching. As of

today, the primary approach to exploitability understanding is

to craft an exploit against the target vulnerability manually. A

common issue of manually-crafted exploits is that they often

target specific software versions, failing to provide information

about the other but also buggy versions.

Take the Linux kernel as an example. There are thousands

of versions and derivatives of Linux kernel [1]. However,

according to our preliminary study on Linux kernel exploits

released in the past five years, around 80% of the exploits

were designed for one particular version. This lack of cross-

version capability can lead to many security consequences.

For instance, downstream kernel vendors may turn down or

delay the patch if the exploit cannot prove the exploitability

on their customized kernels [2], [3], [4]. Motivated by such

observations, this paper concerns cross-version exploitability

assessment for Linux kernels: given an exploit working on a
specific kernel version, how to understand the exploitability on
other versions?

To tackle the problem of cross-version exploitability assess-

ment, an existing line of solutions, automatic exploit generation

(AEG) [5], [2], [3], [6], [7], [8], [4], [9], [10], is in principle

applicable. Given a proof-of-concept (PoC) that can trigger

a vulnerability, AEG attempts to extend the PoC to perform

exploiting operations. In essence, AEG aims to solve a search

problem: finding an execution context where the PoC turns the

program into a controlled state. However, the searching space is

often enormous, incurring a high computational complexity. To

reduce the searching space, existing AEG solutions primarily

follow templates summarized from historical attacks. For

instance, AEG against use-after-free (UAF) [2], [8], [11]

typically attempts to spray data after the free such that the

use leads the execution to malicious behaviors like hijacked

control flow.

To be applied to cross-version exploitability assessment,

AEG can consider the available exploit as a PoC and convert

it to a working exploit on the non-targeted versions. However,

AEG, at its current stage, is probably not the best methodology

for cross-version exploitability assessment because of two

limitations. First, AEG solutions tend to only reuse the pieces

in the exploit that are essential to activate the vulnerability and

then generate all other pieces required for exploitation from

scratch. This is undesired. On the one hand, generating the other

pieces is not always feasible in particular when they require

certain human intelligence. On the other hand, the generation of

those pieces can involve highly complex operations, incurring a

high cost. Second, due to its template-driven nature, whenever

the vulnerability cannot be exploited following the expected

templates, AEG fails. This is a crucial drawback for cross-

version exploitability assessment because it entirely overlooks

the exploitation strategies carried by the available exploit.

In this paper, we propose a new methodology, automated
exploit migration (AEM), to support cross-version exploitability

assessment for Linux kernels. The key insight of AEM is

the observation that the strategy adopted by an exploit is

generally applicable to various exploitable versions. Following

this insight, AEM works by adjusting the exploit to migrate

its exploitation capabilities to non-targeted versions. To realize

the idea of AEM, we proposed a set of techniques driven by

alignment-based analysis. Specifically, we consider the kernel

version where the exploit succeeds as a reference, and adjust

the exploit to force the execution on other kernel versions to

align with the execution from reference. Once successful, the

exploitation behaviors shall also emerge in those kernel versions.
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To reduce the cost and increase the feasibility, we identify

execution points pertaining to the exploitation goals and only

enforce alignment at those points. Moreover, instead of aligning

the identified execution points altogether, we recursively handle

them one by one.

We have designed and implemented a prototype of AEM.

In our evaluation with 90 cases where the original exploit fails

to prove the exploitability, AEM can successfully migrate the

exploit in 56 cases. Among the 34 failed cases, 23 are because

the given exploit is in principle non-migratable. Excluding

those cases, AEM achieves a success rate of 83.5%. On

average, AEM only needs a few hours to migrate an exploit,

presenting an efficiency comparable to or higher than human

analysts. Moreover, AEM shows a qualitatively higher utility

than existing AEG tools (which cannot handle any of the cases

without human efforts).

In summary, we make the following contributions.

• We introduce the problem of cross-version exploitability

assessment and propose the AEM methodology for Linux

kernels. Compared to AEG, the principle of AEM is more

suited for cross-version exploitability assessment.

• We design a set of new techniques to enable AEM for

Linux kernels. The techniques are elaborately designed to

accommodate AEM with high accuracy and low cost.

• We develop a prototype of AEM and our evaluation shows

that the prototype is highly effective and efficient in migrating

real-world Linux kernel exploits.

II. OVERVIEW

A. Motivation

As the most widely used open-source OS kernel, Linux kernel

has evolved into various versions [12] and derivatives (e.g.,

Ubuntu and Android). Meanwhile, due to its rapid development

and large codebase, thousands of vulnerabilities have been

unveiled in the Linux kernel each year [13], [14]. Given limited

resources, exploitability assessment plays a central role in

prioritizing patch development and deployment for the more

severe vulnerabilities.

When a vulnerability is assessed to be exploitable or not

for Linux kernel, it is beneficial to test its exploitability on all

affected versions and derivatives. However, due to the nature

that the exploitation process heavily relies on knowledge about

the kernel internals (e.g., structures of kernel objects, control

flows of kernel functions), an exploit that succeeds on one

kernel may not always succeed on other kernels. According

to our preliminary study on Linux kernel exploits released

in the past five years, around 80% of the exploits were only

designed for one particular version (see §VI-A). This calls for

automatic techniques to facilitate the exploitability assessment

of vulnerabilities on cross-version kernels.

Target Users. Motivated by the above observation, this paper

presents the first study on the cross-version exploitability

assessment problem for Linux kernel. We believe our research

shall benefit broad users in our community. First, with cross-

version exploitability assessment, the defenders could check

whether a reported exploit also works on other kernel ver-

sions/variants and alert the end-users of exploitable kernels to

mitigate emerging attacks. Furthermore, based on the migrated

exploits, defenders could leverage the migrated exploits to

defend against attacks (e.g., synthesizing firewall signatures to

stop exploit propagation). Moreover, no matter the users are

security experts or not, they both benefit from our work. �
For security researchers who have kernel exploitation expertise,

they could be benefited by saving their time in assessing

the exploitability of different kernel versions. On the one

hand, it is a time-consuming and labor-intensive process to

manually craft exploits for different versions even with a

working exploit for one version as reference. On the other

hand, there are usually a lot of kernel versions to assess when

a new exploit is reported. � For those people lacking the

expertise in kernel exploitation (e.g., security administrators,

end-users), our techniques could enable them to assess the

cross-version exploitability of a vulnerability on their target

kernel versions. For example, downstream kernel vendors could

prioritize the patch deployment based on the exploitability of

a vulnerability on their kernel.

B. Running Example
We use a running example to illustrate how an exploit that

succeeds on a kernel version but fails on another version and

explain why existing works are ill-suited for cross-version

exploitability assessment.

The Vulnerability: The vulnerability, shown in Figure 1(a), is

a UAF affecting Linux no later than version 4.11. After the

execution of line 19, a newly created netlink socket, sock, shall

carry a reference counter of 2. If the follow-up attaching oper-

ation by netlink attachskb fails, sock’s reference counter

will be decreased twice by functions netlink attachskb
(line 21) and netlink detachskb (line 26). This leads sock
to be freed in netlink detachskb. However, sock can still

be accessed via invoking sys setsockopt (line 8), causing

a UAF. Specifically, the linked list with wait in sock as the

head is dereferenced to pick the next node, and fields in that

node are then used. For instance, the func field is called as a

function pointer at line 14.

The Exploit for v4.1: Figure 1(b) demonstrates an exploit

against the above vulnerability, targeting Linux v4.1. The

exploit first invokes a free of sock (line 4) and then sprays the

heap with data to override sock (line 6). After these operations,

the next field in the wait member of sock points to a fake

wait queue object where the function pointer func is

picked by the adversary. Finally, the exploit activates the reuse

of sock and hijacks the control flow to the address specified

by the adversary in func (line 14).

Replay the Exploit on v4.4: We use the above exploit to

test Linux v4.4 which is also affected by the vulnerability.

However, we find that the exploit fails on v4.4. In particular,

we observe the following two common causes for the failure of

the exploitation that is prevalent among cross-version kernels.

• Changes in Code: Code changes happen frequently from

version to version. When these changes get involved in
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3
4
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6
7
8
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11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27

struct netlink_sock {..., wait_queue_head_t wait;}
struct wait_queue_head_t {spinlock_t lock; list_head task_list;}
struct __wait_queue { wait_queue_func_t func; struct list_head task_list;}
typedef int (*wait_queue_func_t)(...);
// heap spray
int sys_sendmsg(...) {...}
// dangerous use function
int sys_setsockopt(int fd, ...) {
    sock = sockfd_lookup_light(fd, ...);
    // sock is an alias to the sock freed at line 26, nlk is an occupied object by heap spray
    struct netlink_sock *nlk = nlk_sk(sock->sk);
    spin_lock_irqsave(&nlk->wait.lock, flags); 
    struct wait_queue_t *curr = container_of(
             nlk->wait.task_list.next, __wait_queue, task_list);
    curr->func(curr, ..); // dangerous use => control flow hijack
}
// vulnerable function
void sys_mq_notify(... , const struct sigevent *notification) {
    f =  fdget(notification->sigev_signo);
    sock = netlink_getsockbyfilp(f.file); //inc. refcount of sock  
    // attach skb to sock, if failed dec. refcount of sock  
    ret = netlink_attachskb(sock, ...);   
    if (ret == 1) goto out; // if failed, goto out
    ...
out:
    // dec. refcount of sock, sock->sk becomes a dangling pointer
    if (sock) netlink_detachskb(sock, ...);
}

(a) Illustration of CVE-2017-11176 (affecting Linux no later than v4.11).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

int main(){
    fd = sys_socket(AF_NETLINK, SOCK_RAW, 2);
    // trigger the vulnerability => create a dangling pointer
    sys_mq_notify((mqd_t)0x666, fd);
    // occupy the freed netlink_sock object
    heap_spray();
    // trigger the use of dangling pointer => control flow hijack
    sys_setsockopt(fd, ...);
}
void heap_spray(){
    int sfd = sys_socket(AF_UNIX, SOCK_DGRAM, 0);
    // forge a __wait_queue object in userland
    struct u_wait_queue_t uwq;
    uwq.func = 0xdeadbeef; // assign the code pointer
    uwq.next = &(uwq.next);
    uwq.prev = &(uwq.next);

    char buf[1024]; // to occupy a netlink_sock object
    memset(buf, 0x41, 1024);
    // modify netlink_sock->wait.tasklist.next 
    *(unsigned long*)((char*)buf+0x308) = &(uwq.next); 

    struct msghdr msg;
    msg.msg_control = buf;
    // spray to occupy the freed netlink_sock object
    for(i=0; i<10; i++) 
        sys_sendmsg(sfd, &msg, 0);
}

(b) Exploit against CVE-2017-11176 [15] (designed for Linux v4.1).

Fig. 1. A running example of Linux kernel vulnerability and its exploit. Both the vulnerability and the exploit are simplified for the ease of understanding.

the exploitation process, the kernel can present inconsis-

tent behaviors on different versions and the exploitation

on some versions fails. Considering the above exploit

on v4.1, spin lock irqsave won’t block the execu-

tion since there is only one assignment for slock field,

as shown in Figure 2(a). Thus, when the exploit over-

rides nlk->wait.lock.slock to 0x41 during heap spray,

spin lock irqsave at line 12 of Figure 1(a) will return

and the execution will activate the UAF at line 14. In contrast,

as illustrated in Figure 2(a), spin lock irqsave on v4.4

hangs, given a non-zero value for the slock field. As a

result, running the exploit against Linux v4.4, the execution

won’t even reach line 14 of Figure 1(a).

• Changes in Data: Going beyond code, the data used can also

vary across kernel versions. In particular, the data structures

often experience redefinition or adjustment. However, the

exploit often assumes a specific memory layout that may

only appear in the given kernel, which impedes the exploit

from working on other kernel versions. As shown in

Figure 1(a), the exploit needs to spray data to occupy the

freed netlink sock object such that the nested field next
is overridden by a controlled value (see the heap spray
function in Figure 1(b)). On v4.1, next has an offset of

0x308 from the beginning of the freed netlink sock
object, guiding the exploit to place the fake next at that

location. However, the offset on v4.4 becomes 0x2f8 due

to the redefinition of netlink sock. This leads the exploit

to fail on v4.4 even the aforementioned lock is fixed.

Apply AEG: Automatic exploit generation (AEG) is the

traditional theme for exploitability assessment. To assess the

exploitability of the above vulnerability on v4.4, AEG could be

1
2
3
4
5

unsigned long spin_lock_irqsave(raw_spinlock_t *lock, ...) {
    ...
    lock->slock = 0;
    ...
}

(a) spin lock irqsave in Linux v4.1

1
2
3
4
5
6
7
8
9
10

unsigned long spin_lock_irqsave(raw_spinlock_t *lock, ...) {
    ...
    if (virt_spin_lock(lock)) // lock->val == 0 ?
        return;

    while((val = smp_load_acquire(&lock->val.counter)) & 0xff)
        // if &lock->val.counter != 0, the kernel pauses here
        cpu_relax(); 
    ...
}

(b) spin lock irqsave in Linux v4.4.

Fig. 2. Code changes affecting the exploit in Figure 1.

applied by using the exploit on v4.1 as input to generate a new

working exploit for v4.4. However, we find that AEG is ill-

suited for the cross-version exploitability assessment problem.

Using the above vulnerability as an example, FUZE [2] is

the only AEG solution targeting UAF in Linux kernels. To

work properly, FUZE needs to take the given exploit on v4.1 as

a PoC and needs the PoC to follow a template where the use of

the freed memory directly leads to exploiting primitives (e.g.,

using a piece of freed memory as a function pointer). Running

the above exploit on Linux v4.4., the first use after free occurs

on the nested field lock at line 12 of Figure 1(a). Internally, the

use is only to check whether lock equals zero, which cannot

work as a FUZE template to gain primitives. In addition, as the

exploit overrides lock to all 0x41, spin lock irqsave
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will block the execution at line 12, preventing FUZE from

catching the other uses at line 13 and line 14. As a result,

FUZE will consider the PoC (the working exploit on v4.1)

unusable and abandon it.

The example above demonstrates the first reason why AEG is

ill-suited for cross-version exploitability assessment: the exploit

may not offer the desired template. Going beyond, AEG can

overlook the utilities of the exploit and incurs unessential, high

complexity. Referring back to the above example, FUZE will

search for proper objects to spray the heap, despite the exploit

already carrying one (i.e., msghdr). This inevitably reduces the

success rate while increasing the computational complexity.

C. Our Philosophy: AEM
In this paper, we propose a new philosophy to tackle cross-

version exploitability assessment: automated exploit migration
(AEM). Instead of “generating” a brand new exploit, AEM

endeavors to migrate the given exploit to kernel versions where

the exploit fails to work. Our key insight is that the strategy
employed by one working exploit shall generally apply to
different kernel versions. This insight is empirically validated

in an evaluation of real-world exploits. Detailed setup of the

study can be found in §VI-B. In summary, on 90 kernels

where the given exploit does not work, 67 (74.4%) of them

can actually be exploited in the same way as that exploit.

The major cause behind the failures of the original exploits is

implementation changes across kernel versions (see the two

categories of changes summarized in §II-B) instead of the

infeasibility of the exploitation strategy. More specifically, the

implementation changes introduce disparity in the execution

context desired by the exploit and interrupt the exploitation

process. This inspires the core technical theme of AEM: by
adjusting the exploit to fit its desired execution context, AEM
will enable the same exploiting primitives in other kernel
versions.

D. Problem Scope
With the same goal for exploitability assessment, AEG and

AEM significantly differ in the methodology of creating a

working exploit: AEG searches for an exploit from scratch,

while AEM migrates a working exploit by reusing its exploita-

tion strategy. In theory, AEG could be applied to all kinds

of exploitability assessments. However, in practice, AEG is

still far from perfect due to the large search space. In the

context of cross-version exploitability assessment, AEM is

more appropriate than AEG. Nevertheless, our AEM is not

designed to be a silver bullet. Instead, it also has a bounded

application scope, which we describe below.

Exploiting Primitive and Exploitation Strategy: In order to

illustrate the problem scope, we first introduce the definition

of exploiting primitive and exploitation strategy. In general,

an exploiting primitive is an adversary-desired program state

which provides extra capabilities beyond the original program

functionality (e.g., hijacking control flows) [4], [16], [17].

Technically, the exploiting primitive usually results from

security violations, e.g., memory corruption. The exploitation

strategy generally represents the process of how a vulnerability

is exploited to gain an exploiting primitive. In practice, the

exploitation strategy usually binds to a specific exploit and

consists of multiple separated techniques/steps. For example,

an exploitation strategy of a UAF vulnerability includes finding

the victim object to spray and finding a malicious use on the

victim object to gain the primitive.

Migratable and Non-migratable Exploits: The success of

AEM is built upon reusing the exploitation strategy of an

exploit on a specific version and migrating it to a new version.

If the strategy can be successfully reused on target kernel,

we regard the exploit is migratable for this kernel. However,

the implementation changes between two versions can be

significant, making the original exploitation strategy infeasible.

For example, when the data or the code that is necessary

for reusing the exploitation strategy has been removed, the

original exploitation strategy cannot be reused. In such cases,

we call the given exploit as non-migratable on target kernel.

Instead, a new exploitation strategy is required, which often

involves new code state exploration, such as finding a new heap

layout and expanding vulnerability capability. The exploitability

assessment of such non-migratable cases is beyond the scope

of AEM. In other words, AEM only focuses on migratable

exploits.

Assumptions: This work targets cross-version exploitability

assessment in the context of Linux kernels. First, we assume

an exploit against one kernel version is available. Given the

desired configurations, the exploit can accomplish the following

stages: � triggering the vulnerability; � achieving exploiting

primitives (e.g., control-flow hijacking and exploit-controlled

memory access) that prepare the kernel to an adversary-

controlled state; and � performing attack behaviors (e.g.,

arbitrary code execution, mitigation bypass) with the primitives.

Our second assumption is that the given exploit can trigger

the vulnerability on a target kernel version. According to our

study in §VI-B, we find that the collected 28 exploits can

successfully trigger the vulnerabilities in all the affected 210

kernel versions. Besides, even if the vulnerability has not been

triggered, it can be handled as an orthogonal problem [18].

To further bound our research, we focus on exploits enabled

by memory corruptions, but we have no restrictions on the

root causes. That is, the memory corruptions can be directly

caused by memory errors like buffer overflow or indirectly

caused by other issues like logic bugs. To be specific, we target

the most two common memory corruption-enabled primitives,

i.e., controllable memory access and control-flow hijacking.

Besides, we only aim to migrate the exploit primitive, rather

than the whole exploit, as triggering the exploiting primitive

is already strong evidence of exploitability.

III. APPROACH

A. Challenges and Insights

The high-level idea of AEM — adjusting the exploit to create its

desired execution context on a new kernel — is straightforward.

However, realizing this idea is quite challenging. The first key

design consideration is the perspective of adjusting the exploit.
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In practice, kernel exploits are mostly C programs. As shown

in our evaluation (see Table I), real-world exploits usually have

hundreds of lines of C code or even over 1,000 lines. It is

undesirable to consider all code lines for adjustment as many

of them are exploitation irrelevant. In this paper, we consider

syscalls and their arguments as the perspective to adjust the

given exploit. The rationale is that syscalls are how an exploit

interacts with the kernel towards exploitation.

Technical Challenges: By leveraging the syscalls as the

perspective to adjust the exploit, there still remains two

fundamental challenges in AEM, which are described below.

Challenge-I: Which syscalls to adjust? Real-world kernel

exploits usually perform a large number of syscalls. As shown

in our collected exploit dataset (see Table I), there are on

average 1,800 syscalls during the exploitation flow. Moreover,

a syscall may take several arguments which have complex

data structures, especially for those syscalls that have rich

functionalities (e.g., ioctl). Simply considering all syscalls

and arguments to adjust will lead to enormous search space,

incurring a high complexity.

Challenge-II: How to adjust these syscalls? Kernel ex-

ploitation usually requires accurate memory layout and code

execution context. Hence, blind attempts to modify the ar-

guments of target syscalls are hard to guarantee the success

rate. An intuitive idea is to leverage the exploitation process

on the successful kernel as guidance to run the adjustment.

However, it remains unclear what guidance should be used

and how such guidance can overcome the disparity incurred

by implementation changes across kernel versions.

Insights: Recall that we focus on memory-related exploiting

primitives and the key idea of AEM is to reuse the successful

exploitation strategy on a kernel. This brings us the following

insights. In principle, the exploiting primitives are an accumula-

tive result of the sequence of memory operations leading to the

primitive site. Therefore, by adjusting the memory operations

in a target kernel (where the exploit does not work) to align

with the reference kernel (where the exploit works), we shall

trigger the same primitives in the target kernel. Inspired by this

idea, we propose primitive-centric, alignment-guided exploit

adjustment, which incorporates the following two more insights.

First, as described in Challenge-I, naively considering all

memory operations can again cause complexity and infeasibility

issues. Therefore, we propose to focus on primitive-centric

memory operations for alignment based on two observations. �
Not every memory operation affects the exploiting primitives.

Given a memory operation carrying no dependency, directly

or indirectly, with the primitives, any adjustment on it won’t

influence the success (or not) of the primitives. Thus, we will

identify and exclude such memory operations. � Many memory

operations are independent of user-space data, which cannot

be adjusted by any means. Hence, we will also pinpoint and

rule out this type of memory operation.

Second, as mentioned in Challenge-II, the guidance to align

two memory operations from different kernels has to account for

implementation disparities. Strict guidance, such as requiring

the two operations to be identical (same address and same

value), evidently does not work. We observe that the execution

context can often sufficiently align two memory operations

(i.e., verify that the two operations are the same one in different

kernels). For better accuracy, we will consider both code context

(e.g., the source code location) and data context (e.g., the type

of the accessed data) of a memory operation.

B. Key Techniques
Following the insights, we design the first AEM method on

the market. Our method is driven by two key techniques.

Technique-I: Primitive-centric Memory Abstraction: Given

the reference kernel, we gather the memory accesses incurred

by the exploit in the kernel space, followed by pruning

those irrelevant to the exploiting primitives or independent

of user-space data. The remaining memory operations are then

organized as an EXPGRAPH where each vertex encodes a

unique memory operation with annotated context information

and the edges represent the dependency relations among

different memory operations. Detailed definitions of the context

information and the dependency are given in §IV-A.

Technique-II: Alignment-guided Exploit Adjustment: Once

the EXPGRAPH is ready, we rerun the exploit on the target

kernel and gather memory operations again. These memory

operations are then traversed to identify those aligned ones

to the topologically-sorted vertices of EXPGRAPH with the

help of the context information. If no memory operation exists

to align with an EXPGRAPH vertex, we consider the first

unaligned node as the migration target and will adjust the

exploit to achieve re-alignment. Technically, the exploit will

first be concolically executed on the target kernel up to the

memory operation matching the last aligned EXPGRAPH node.

Then, symbolic execution will be started under the context

(i.e. the data stored in memory and registers from previous

execution) of the previous execution until a memory operation

aligned with the migration target appears or the alignment

is proven impossible. In the former case, the alignment

and adjustment process will repeat all the way towards the

exploiting primitives. In the latter case, we will conclude the

migration is not doable and stop the exploration. To ensure

fidelity of the alignment, we consider a conservative set of

conditions when determining whether a memory operation and

an EXPGRAPH vertex are aligned. More details are presented

in §IV-B.

IV. DESIGN

The design of AEM incorporates our two key techniques and

follows the workflow presented in Figure 3. Given an exploit

and a reference kernel, AEM derives a new exploit to activate

the same exploiting primitives in the target kernel. The rest of

this section elaborates on the designs.

A. Primitive-centric Memory Abstraction
AEM starts with creating a primitive-centric memory abstrac-

tion for the reference kernel in the form of EXPGRAPH.

Instruction-level Full-system Tracing: Launching the exploit

against the reference kernel, AEM records the sequence of
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Phase-II: Alignment-guided Exploit Adjustment

Phase-I: Primitive-centric Memory Abstraction

Full-system 
Tracing

Memory Operation
Alignment

EXPGraphEXPGraph

Modified ExploitModified Exploit

Reference ExploitReference Exploit

Exploit 
Adjustment

Primitive 
Identification

EXPGraph 
Construction

Fig. 3. The workflow of AEM consists of two phases. First, AEM analyzes
the given reference exploit to summarize the key exploitation strategies into a
EXPGRAPH. Second, AEM iteratively adjusts the given exploit to force its
execution on the target kernel to align with the EXPGRAPH.

instructions executed in both the kernel space and the user space.

To facilitate later analysis, the recorded information includes the

address and the operands of each instruction. Given a memory-

based operand, both the address and the value are logged.

Further, the allocation and deallocation of kernel objects by

standard functions (e.g., kmalloc, kfree) are annotated

at the entry and exit of the responsible functions. Instructions

executed by different threads are separately recorded with

their scheduling information. Once the recording is done, each

instruction is further labeled with its affiliated event: which

syscall, which interrupt, or user-space execution.

Exploiting Primitive Identification: On the recorded instruc-

tion trace, AEM runs a scan from the beginning. The goal is to

identify instructions that represent exploiting primitives. In this

paper, we focus on the two most common exploiting primitives

enabled by memory corruptions: control-flow hijacking and

exploit-controlled memory access.

Control-flow hijacking typically happens at an indirect

control transfer whose target is obtained from a memory cell. To

demonstrate the harm of the exploitation, the target often points

to code capable of conducting malicious behaviors, commonly

including stack pivoting gadget, payload in user space, and priv-

ilege manipulation functions like prepare kernel cred.

Accordingly, AEM visits all indirect control transfer instruc-

tions in the trace and pinpoint those carrying a target falling

into the above categories.

Exploit-controlled memory access has two general forms:

reading from arbitrary addresses and writing arbitrary/con-

strained values to arbitrary addresses. When exploit-controlled

memory access occurs, the data often has an inconsistent static

type and run-time type. Precisely, the data type expected by

the source code (static type) does not match the data type

specified at the allocation site (run-time type). Details of how

to obtain run-time type will be explained shortly. Inspired

by the observation, AEM inspects each memory access and

reports those with discrepant static type and run-time type as

exploit-controlled memory accesses.

In general, an exploit may assemble multiple exploiting

primitives. If detecting more than one primitive, AEM only

considers the last one as it represents deeper execution

and thus, more complete exploitation behaviors. Once the

exploiting primitive is identified, AEM trims all the succeeding

instructions.

EXPGRAPH Construction: From the instruction trace ending

at the exploiting primitive, AEM extracts memory opera-

tions incurred by the kernel code and organizes them as an

EXPGRAPH.

First, each memory operation is represented as a vertex with

annotated context information. In the later exploit adjustment

phase, the context information is used by AEM to identify

aligned memory operations in the target kernel. To ensure

fidelity of the alignment, we conservatively consider both code-

level and data-level properties of a memory operation in the

context information.

• SYSCALL (/code) records the syscall where the memory

operation occurs, including both the syscall’s number and

order. Interrupts are considered special syscalls without

arguments and handled in the same way.

• Access class (/code) indicates whether the memory operation

is a read or a write.

• Static type (/code) refers to the object type of the accessed

memory specified in the source code (e.g., int or pointer).

• Address source (/data) describes the source of the address

to access. Possible sources include the result of an object

allocation, constant, other memory operation, and user-space

data (passed via syscall arguments).

• Data source (/data) describes the source of the data being

accessed. Possible data sources are similar to address sources.

• Address space (/data) shows whether the memory operation

falls into the kernel space or the user space.

• Data value (/data) is the value of the accessed data.

• Runtime type (/data) means the actual, runtime type of the

accessed data. This is determined by the type specified to

allocate the data.

• Aliased access (/data) tracks other memory operations that

use the same address, including those happening in other

syscalls.

Second, the vertices are connected with edges representing

their dependency relations, which can be generally classified

into data dependency and address dependency. Data depen-

dency happens when the value loaded by a read operation

propagates to the data stored by a write operation or the other

way around. In contrast, address dependency arises when the

value loaded by a read operation is used to form the address of

another memory operation. One thing worthy of noting is that

we ignore data dependency to a memory operation accessing the

user space, since the data operated can be arbitrarily adjusted

by the exploit without respecting any dependencies.

EXPGRAPH Pruning: Directly using the initial EXPGRAPH

for alignment is often problematic as it involves many irrelevant

memory operations. Accordingly, AEM further prunes two

types of vertices and removes the edges from/to them.

First, many memory operations have zero effect on the ex-

ploiting primitive, which shall be excluded from consideration

for later alignment. We pinpoint those memory operations by

leveraging the initial EXPGRAPH. Specifically, we identify

the vertices that cannot reach the exploiting primitive on the

EXPGRAPH. In principle, such vertices carry no dependency
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Operation
t9=[t8] [t7]=t6 t1=[t0] t3=[t2] t5=[t4]

SYSCALL sendmsg sendmsg setsockopt setsockopt setsockopt

Static Type __u64 __u64 socket(sk) netlink_sock
(wait.task_list.
next)

__wait_queue
(func)

Address Source argument allocation global t1=[t0] t3=[t2]

Data Source user t9=[t8] allocation [t7]=t6 user

Address Space user kernel kernel kernel user

Data Value 0x10850 0x10850 0xffff88023
5d77b00

0x10850 0xdeadbeef

Runtime Type __u64 __u64,
netlink_sock
(wait.task_lis
t.next)

socket (sk) netlink_sock
(wait.task_list.
next)

u_wait_queue_t 
(func)

Aliased Access - t3=[t2] - [t7]=t6 -

t9=[t8] [t7]=t6 t1=[t0] t3=[t2] t5=[t4]

d

aliased access

Line# in Fig.1(a) line 6 line 6 line 11 line 14line 13

Properties

data dependency

address dependency

d

Fig. 4. An example to show the EXPGRAPH for the exploit in Figure 1(b).

with the exploiting primitive, thus presenting no impact on the

primitive.

Second, memory operations independent of user-space data

cannot be adjusted in any way. Hence, they should also be

ruled out for alignment. On the initial EXPGRAPH, this type

of memory operation cannot be reached from any vertices

representing user-space data, which gives us a straightforward

approach to spot them.

EXPGRAPH for Running Example: To better illustrate

the idea of EXPGRAPH, we construct the EXPGRAPH for

our running example (see Figure 1) and show the simplified

EXPGRAPH in Figure 4. The EXPGRAPH includes five key

memory operations and encodes how the exploiting primitive

is achieved. Specifically, the first two operations, t9=[t8]
and [t7]=t6, are incurred when performing heap spray with

syscall sendmsg (which is called by the exploit at line 27 of

Figure 1(b)) and begins execution in the kernel at line 6 of

Figure 1(a). The other three operations, t1=[t0], t3=[t2],

and t5=[t4], are activated by syscall setsockopt after the

spray, which correspond to the kernel code execution at line 11,
13-14 of Figure 1(a) respectively. Due to the UAF vulnerability,

[t7]=t6 and t3=[t2] access the same address, represented

by their data dependency. The value written by [t7]=t6,

propagated from and controlled by the user space, is later read

by t3=[t2] and eventually used as the address of t5=[t4]
to load the control transfer target. This way, the EXPGRAPH

describes the exploiting trajectory until the primitive.

B. Alignment-guided Exploit Adjustment

Using the pruned EXPGRAPH as a reference, AEM then

adjusts the exploit to reproduce the exploiting primitives in the

target kernel. At the high level, AEM follows three steps.

• Step-1: AEM runs the exploit again on the target kernel and

collects the instruction trace, using the full-system tracing

described in §IV-A. Memory operations are then extracted

from the trace and sorted based on their execution time.

• Step-2: AEM attempts to align the vertices on the

EXPGRAPH with memory operations in the target kernel.

After topologically sorting the EXPGRAPH, AEM picks the

first vertex and scans the target kernel’s memory operations

to find an aligned point. For accuracy, the determination of an

aligned point follows a conservative group of constraints on

their context information (which will be explained shortly).

If an aligned point is found, AEM moves to another vertex.

Otherwise, it switches to the next step.

• Step-3: Given an unaligned EXPGRAPH vertex, AEM

identifies the syscalls and their arguments in the exploit that

affect the execution between the previous aligned point and

the current unaligned vertex. This is followed by adjusting

the arguments via symbolic execution to incur a memory

operation in the target kernel to realign with the vertex. If

the realignment fails, AEM quits and reports no successful

migration. Otherwise, AEM checks whether the primitive

emerges in the target kernel, and if not, AEM jumps back

to Step-2 to continue the alignment process.

1) Memory Operation Alignment

Given a vertex on the EXPGRAPH, AEM seeks an aligned

memory operation in the target kernel. The idea is to visit each

memory operation starting from the previous aligned point.

If a memory operation satisfies the following constraints, we

consider it as a new aligned point.

• Constraint-1: The memory operation and the vertex locate

in the same syscall.

• Constraint-2: The memory operation and the vertex carry

the same access class (both read or both write).

• Constraint-3: The memory operation and the vertex have

identical static type and runtime type. In principle, two

aligned memory operations should access the same piece of

data. Using the concrete address to measure this property is

intuitive but undesired because of the disparity in memory

layout on different kernel versions. Alternatively, we consider

runtime type as the indicator, which is more abstract and

shall be stable across kernel versions.

• Constraint-4: The memory operation and the vertex share

the same address source and data source. In the case where

the address/data source is other memory operations, those

memory operations must be also aligned. This constraint

essentially implies that the dependency relations are aligned.

2) Exploit Adjustment

Given an EXPGRAPH vertex for which we cannot identify

the aligned point in the target kernel, AEM first determines

why the alignment fails. In the broad sense, there are two

reasons:

• R1: the same memory operation happened in the target kernel

but carried slightly different data-level properties;

• R2: the same memory operation is never executed in the

target kernel.

To figure out the exact reason, AEM visits each memory

operation succeeding the last aligned point in the target

kernel. If a memory operation satisfies all the above alignment

72128



constraints except for the runtime type in Constraint-3, we

conclude reason R1 and otherwise R2. The rationale is that this

set of constraints is in general conservative to tracking down

the same memory operation. The exclusion of runtime type

reflects the observation that the failure of alignment under R1

is typically a result of accessing unintended memory locations.

R1 Exploit Adjustment: This type of adjustment handles an

unaligned EXPGRAPH vertex due to reason R1 (where the

associated memory operation is executed in the target kernel).

For simplicity of presentation, we denote the memory operation

tied to the EXPGRAPH vertex as opref and the counterpart in

the target kernel as optar. Technically, AEM needs to adjust

the exploit such that optar carries the same runtime type as

opref , which is completed in two phases.

Phase-I: Syscalls and arguments that affect optar are

identified. This is done by backward and recursively tracing the

data/address sources of optar until the entry points of syscalls.

The syscalls and their arguments captured during the tracing

are considered as targets.

Phase-II: The target syscall arguments, including the user-

space data which the pointer arguments point to, are symbolized

to support the concolic execution of the exploit on the target

kernel. During this concolic execution, the runtime type of

opref is encoded as an extra constraint on optar. Specifically,

AEM first identifies all the alive objects by tracing the object

allocations and deallocations. Then, the alive objects with the

same runtime type as opref are selected, and the constraint

requires that optar accesses one such object. Moreover, if opref
represents the exploiting primitive, we add another constraint

mandating the data read/written by optar and opref to have

the same value. If the concolic execution can arrive at optar
with the extra constraint(s) solved, it will derive a new exploit

which can align optar and opref , and AEM will continue with

the alignment process. Otherwise, AEM will report that the

alignment cannot be completed.

R2 Exploit Adjustment: The second type of adjustment deals

with an unaligned EXPGRAPH vertex due to reason R2 (where

opref was never executed in the target kernel). The idea is

to adjust the exploit to incur opref in the target kernel with

all the alignment constraints satisfied, spanning three phases

below.

Phase-I: AEM determines the counterpart of opref in the

target kernel, notated as optar, by finding memory operations

that share similar properties with opref . Specifically, it consid-

ers any memory operation carrying the following features as

a candidate optar: (i) the memory operation appears after the

previous aligned point on the control flow; (ii) the memory

operation has the same access class and static type as opref ;

(iii) the source code corresponding to the memory operation is

similar to that of opref .1 Each of the candidate optar will be

then processed in the next phase. For efficiency, we start with

the candidate optar with the maximal source-code similarity to

1Given two memory operations, we locate their source code lines from the
debug information. We use edit distance to measure their similarity and set a
threshold of 0.9 to identify potentially aligned memory operations.

opref and stop once a candidate optar is successfully aligned.

If no candidate could be aligned, the migration fails.

Phase-II: Given a candidate optar, AEM concolically exe-

cutes the exploit on the target kernel until reaching the aligned

point right before the optar. In this process, AEM fixes the

syscalls and their arguments that are needed to satisfy the

constraints on the execution path. Afterward, AEM symbolizes

all the remaining arguments and switches to the last phase.

Phase-III: Under the context prepared by the above step,

AEM continues executing the exploit on the target kernel in

a symbolic manner. Once a path reaching the candidate optar
is found, AEM stops the symbolic execution and concretizes

the symbolized syscall arguments. At this point, AEM creates

an exploit matching the need of R1 Exploit Adjustment, which

can be done as described above.

Exploit Adjustment for Running Example: To clearly

illustrate how the two types of adjustment facilitate exploit

migration, we apply them to our running example in Figure 1.

Referring back to the EXPGRAPH presented in Figure 4,

the reference kernel (v4.1) and target kernel (v4.4) have two

unaligned memory operations: t3=[t2] and t5=[t4]. AEM

will align them in turn as follows.

Step-1: realigning t3=[t2] with R2 Exploit Adjustment: As

pointed out in §II-B, t3=[t2] is not incurred in the target ker-

nel. To align this operation, AEM first identifies the counterpart

of t3=[t2] by locating all memory operations that (i) appear

after t1=[t0]; (ii) access the func field of wait queue
object; (iii) have source code similar to line 14 in Figure 1(a).

Eventually, AEM picks the memory operation at line 14. In

the follow-up step, AEM concolically executes the exploit until

t1=[t0] (line 11), during which it fixes the arguments of

all syscalls except for sendmsg to maintain the encountered

conditions. Finally, AEM symbolizes the arguments of syscall

sendmsg and enumerates the paths from line 11 to line 12.

Once finding the path where spin lock irqsave returns,

AEM concretizes the symbolic arguments to make the exploit

reach line 14.

Step-2: realigning t5=[t4] with R1 Exploit Adjustment:
After the realignment of t3=[t2], AEM will still have to

align t5=[t4]. In this case, AEM could locate operation

t5=[t4] in the execution trace of the target kernel, but

the data-level properties carried by it do not match the

ones from EXPGRAPH. Though backward and recursively

tracing the data/address source of t5=[t4], AEM figures

out that t5=[t4] is affected by syscall sendmsg and its

arguments. Thus, AEM will symbolize those arguments to

concolically execute the exploit on the target kernel. In this

process, AEM adds two more constraints when t5=[t4] is

exercised: (i) t4 points to the func field of an alive, user-

provided u wait queue t object, and (ii) the data read by

t5=[t4] equals to the one read in the reference kernel (i.e.,

0xdeadbeef). Solving those two constraints, AEM will adjust

the exploit to load a hijacked control-flow-transfer target at

t5=[t4].
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TABLE I
DETAILED INFORMATION OF 28 EXPS FROM 2016 TO 2021.

CVE EXP
ID

Vulerability
Type

Exploiting
Primitive

Malicious
Behaviour

CVSS
Score

C
LoC

Syscall
Count

Ref.
Ver.

CVE-2016-4557 exp1 [19] UAF Control Flow Hijacking ROP 7.8 154 195* v4.4
CVE-2016-4557 exp2 [20] UAF Control Flow Hijacking ROP 7.8 136 272 v4.5
CVE-2016-6187 exp1 [21] Heap OOB Write Control Flow Hijacking - 7.8 259 353 v4.5
CVE-2016-8655 exp1 [22] Race Condition Control Flow Hijacking SYSCTL hijacking 7.8 1,043 14,344 v4.4
CVE-2016-9793 exp1 [23] Heap OOB Write Control Flow Hijacking Ret2User 7.8 176 76 v4.8

CVE-2017-2636 exp1 [24] Race Condition Arbitrary Address Read/Write Write Cred 7.8 722 2,935* v4.10
CVE-2017-5123 exp1 [25] Logic Bug Control Flow Hijacking Ret2User 8.8 124 35 v4.13
CVE-2017-6074 exp1 [26] Double Free Control Flow Hijacking - 7.8 747 604 v4.8
CVE-2017-6074 exp2 [27] Double Free Control Flow Hijacking ROP 7.8 744 756 v4.4

CVE-2017-7184 exp1 [28] Heap OOB Write Restricted Address Write Restricted Value Write Cred 7.8 394 37* v4.10
CVE-2017-7184 exp2 [29] Heap OOB Write Restricted Address Write Restricted Value Write Cred 7.8 342 41 v4.10
CVE-2017-7308 exp1 [30] Heap OOB Write Control Flow Hijacking ROP 7.8 545 675 v4.10
CVE-2017-7308 exp2 [31] Heap OOB Write Control Flow Hijacking JOP 7.8 592 958 v4.8
CVE-2017-7308 exp3 [32] Heap OOB Write Control Flow Hijacking ROP 7.8 545 689 v4.10
CVE-2017-8824 exp1 [33] UAF Control Flow Hijacking Ret2User 7.8 92 13 v4.10
CVE-2017-8890 exp1 [34] Double Free Control Flow Hijacking Ret2User 7.8 547 1,084 v4.10

CVE-2017-10661 exp1 [35] UAF Control Flow Hijacking - 7.0 242 64* v4.10
CVE-2017-11176 exp1 [15] UAF Control Flow Hijacking ROP 7.8 271 676 v4.1

CVE-2017-15649 exp1 [36] UAF Control Flow Hijacking Ret2User 7.8 405 414* v4.13
CVE-2017-16995 exp1 [37] Logic Bug Arbitrary Address Write Arbitrary Value Write Cred 7.8 454 541 v4.10
CVE-2017-16995 exp2 [38] Logic Bug Arbitrary Address Write Arbitrary Value Write Cred 7.8 260 59 v4.4
CVE-2017-18344 exp1 [39] Global OOB Read Arbitrary Address Read Dump physmap Memory 5.5 1,692 9,645 v4.14
CVE-2017-1000112 exp1 [40] Heap OOB Write Control Flow Hijacking ROP 7.0 672 59 v4.8
CVE-2018-5333 exp1 [41] NULL Ptr. Dereference Control Flow Hijacking ROP 5.5 574 138 v4.4
CVE-2018-6555 exp1 [42] UAF Control Flow Hijacking - 7.8 276 189 v4.8

CVE-2018-9568 exp1 [43] Type Confusion Control Flow Hijacking - 7.8 243 731* v4.8
CVE-2019-15666 exp1 [44] Heap OOB Write Restricted Address Write Restricted Value Write Cred 4.4 545 18,529 v4.10
syzbot#6a039858 exp1 [45] UAF Control Flow Hijacking - - 598 1,105 v4.14

* For the infinite loops in the exploit, number of SYSCALLs in the loop is only calculated once.

V. IMPLEMENTATION

We implemented a prototype of AEM on top of Angr [46]

and S2E [47]. It consists of (i) 4,698 lines of C++ code

to enhance S2E for tracing the execution of an exploit

and performing the exploit adjustment with its capability

of symbolic execution and (ii) 6,141 lines of Python code

which use Angr to build an efficient instruction trace analysis,

including context information extraction for memory operations,

EXPGRAPH construction from the reference exploit, unaligned

points identification in the target kernel, etc. We describe some

important implementation details below.

Strategies to Ease Exploit Adjustment: During exploit adjust-

ment, AEM often needs to symbolize syscall arguments which

are essentially user-space data. However, due to randomness

introduced by the runtime and ASLR, the arguments can locate

at a different place every time the exploit is executed, making

it inconvenient to identify the data to be symbolized. We adopt

the following strategies to force the exploit to use a fixed layout

for the user-space memory. First, we mmap a large region of

memory at a fixed place and pivot the user-space stack to that

region. Second, we replace the Glibc heap allocator with a

linear allocator to fix the locations of heap objects. Finally, we

disable PIE. Note that these strategies are only used to ease

the exploit adjustment process and do no modify the kernel.

Thus, they do not hurt the capability and the generality of the

migrated exploit.

Extraction of Static/Runtime Type Information: The static

type information is obtained from the debug information.

Specifically, given an instruction that accesses a memory unit,

AEM first decides which variable this memory unit corresponds

to by using the information in the .debug loc section and

the .debug info section. Then, AEM gets the type of the

variable according to information in the .debug info section.

To obtain the runtime type of a memory unit, AEM relies on

the data type specified at the memory allocation site. This is

done by a self-crafted S2E plugin which tracks all allocations

and deallocations and determines which memory belongs to

which allocation site.

VI. EVALUATION

A. Experimental Setup
To facilitate the evaluation, we gather a set of real-world

exploits and a group of diverse Linux kernels.

Exploit Dataset: We considered all Linux kernel vulnerabilities

released on CVE database [48] and syzbot [14] (a Syzkaller-

based fuzzing system for Linux kernel) between 2016 and 2021.

For each vulnerability, we exhaustively searched for memory

corruption enabled exploits included in public databases [49],

[50], [51], technical articles [52], [53], [30], [15], and existing

AEG projects [2], [3]. In total, we collected 78 exploits,

among which only 6 exploits are not enabled through memory

corruptions.

To understand the target versions of these exploits, we

performed a study on the collected 78 Linux kernel exploits.

Specifically, we manually inspected the technical articles, and

the comments in the source code of these exploits to check

how many target versions have the authors explicitly declared.

If no target version is declared in an exploit, we regard it only

targets one kernel version. The results show that around 80%

of the exploits are only designed for one particular version,

which calls for cross-version exploitability assessment.
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TABLE II
MIGRATION RESULTS OF AEM.

CVE EXP ID Vul. Type Reference Results of Exploit Migration on Target Versions1

v4.1 v4.4 v4.5 v4.6 v4.8 v4.10 v4.13 v4.14 v4.16 A4.4.0 A4.9.44 U4.4.0-21 U4.8.0-34

N
o

M
ig

ra
tio

n
N

ee
de

d

CVE-2016-4557 exp1 UAF v4.4 � � � - - - - - - - - - -
CVE-2016-6187 exp1 Heap OOB Write v4.5 - - � � - - - - - - - - -
CVE-2016-9793 exp1 Heap OOB Write v4.8 � � � � � - - - - - - � -
CVE-2017-5123 exp1 Logic Bug v4.13 - - - - - - � - - - - - -
CVE-2017-6074 exp2 Double Free v4.4 - � � � � - - - - - - � �
CVE-2017-7184 exp1 Heap OOB Write v4.10 � � � � � � - - - - - � �
CVE-2017-7184 exp2 Heap OOB Write v4.10 � � � � � � - - - - - � �
CVE-2017-8824 exp1 UAF v4.10 � � � � � � - - - - - � �
CVE-2017-8890 exp1 Double Free v4.10 � � � � � � - - - - - - �
CVE-2017-15649 exp1 UAF v4.13 - - - - - � � - - - - - -
CVE-2017-16995 exp1 Logic Bug v4.10 � � � � � � � � - � � � �
CVE-2017-1000112 exp1 Heap OOB Write v4.8 - - � � � � - - - - - � �
CVE-2019-15666 exp1 Heap OOB Write v4.10 - - - - � � � � � - - - �

M
ig

ra
tio

n
N

ee
de

d

CVE-2016-4557 exp2 UAF v4.5 � � � - - - - - - � - � -

CVE-2016-8655* exp1 Race Condition v4.4 × � � � � - - - - - - × -

CVE-2017-2636* exp1 Race Condition v4.10 × × × × × � - - - - - × ×
CVE-2017-6074 exp1 Double Free v4.8 - � � � � - - - - - - � �
CVE-2017-7308 exp1 Heap OOB Write v4.10 � � � � � � - - - - - � �
CVE-2017-7308 exp2 Heap OOB Write v4.8 × � � � � � - - - - - � �
CVE-2017-7308 exp3 Heap OOB Write v4.10 × � � � � � - - - - - � �
CVE-2017-10661* exp1 UAF v4.10 × × � � � � - - - - - � �
CVE-2017-11176 exp1 UAF v4.1 � � � � � × - - - � - � �
CVE-2017-16995 exp2 Logic Bug v4.4 � � � � � × × × - � × � �
CVE-2017-18344 exp1 Global OOB Read v4.14 � � � � � � � � - � � � �
CVE-2018-5333 exp1 NULL Ptr. Dereference v4.4 � � � � � � � � - � × � �
CVE-2018-6555 exp1 UAF v4.8 × � � � � × × × × � × � �
CVE-2018-9568 exp1 Type Confusion v4.8 × � � � � × × - - - - � �
syzbot#6a039858 exp1 UAF v4.14 × × × × � � � � × - - × �

1 - means vulnerability is patched or the vulnerable code does not exist; �represents reference version; � indicates the exploit can natively work on the target version;
� and × respectively show that AEM succeeds or fails when migrating the exploit to the target version.

* AEM cannot work on the exploits because S2E does not support booting kernel with symmetric multiprocessing (smp>2), which is required by those EXPs.

After analysis for at least 24 total human-hours on each case,

we reproduced 28 exploits against 22 kernel vulnerabilities in

the provided/suggested environment, as summarized in Table I.

The vulnerabilities span various types, including UAF, race

condition, heap overflows, global out-of-bound access, null

pointer dereferences, and logic bugs. On average, the exploits

contain over 400 lines of C code and issue about 2,000 system

calls in the exploiting process. To our knowledge, our dataset

represents the largest corpus of exploits considered by research

on Linux kernel exploitability assessment.

Kernel Dataset: For each vulnerability, we gathered a group of

Linux kernels, including both versions targeted by the exploit

and versions reported as affected by the vulnerability. As

summarized in Table V (in Appendix), the entire set consists

of 13 kernels, ranging from mainstream versions between v4.1

and v4.16 to downstream variants supporting Android/Ubuntu.

Evaluation Environment: All our evaluations are performed

on a machine with Intel Xeon Gold CPU 6242 2.80GHz and

192 GB RAM, running Ubuntu 18.04.5 LTS.

B. Native Cross-Version Capability of Exploits

Our evaluation starts with understanding the capability of wild

exploits in supporting multiple kernel versions. Given an exploit,

we first exclude kernel versions that are not affected by the

vulnerability. The approach is to manually verify whether the

vulnerable code is absent or the patch is present in a kernel.

Either condition being true leads us to consider the kernel

unaffected. Initially, our dataset includes 364 <exploit, kernel>
pairs. 154 of them are excluded in this step and 210 remain.

In the follow-up step, we run each exploit on all affected

kernels and observe the exploitation result. Technically, manual

analysis is performed to learn the primitives that the exploit

can achieve in the reference kernel. Given a target kernel, we

consider the exploit successful if the same primitives arise.

Take exp1 of CVE-2017-8824 as an example. This exploit

creates a control-flow hijacking primitive which redirects the

control flow to a user-space address. By checking whether

such control-flow hijacking occurs or not, we can determine

the success status of the exploit on a target version. Note that

the manual analysis here is just to confirm whether an exploit

succeeds on a target kernel and the primitive identification step

is still automated.

Among the 210 <exploit, kernel> pairs, 28 correspond

to the reference version (i.e., the target version specified by

the exploit) and the remaining 182 represent cross-version

exploitation. The wild exploits succeed in 92 of the cross-

version pairs and fail in the other 90 (spanning 15 exploits

and 13 CVEs). This demonstrates that real-world exploits have

imperfect built-in support for different versions.

C. Effectiveness of AEM
Applied on the 90 cross-version <exploit, kernel> pairs, AEM

successfully migrates the exploit for 56 pairs. As we will point

out shortly, in 23 out of the failed 34 pairs, the primitives

carried by the exploit are infeasible to achieve in the target

kernels (aka non-migratable exploits). Excluding the 23 cases,

AEM achieves a success rate of 83.5%. Detailed results are

presented in Table II.
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void rds_atomic_free_op(struct rm_atomic_op *ao){
    struct page *page = sg_page(ao->op_sg);
    struct address_space *mapping = page_mapping(page);
    if (likely(mapping)) {
        int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;   
        ...
        return (*spd)(page);
    }
}
struct address_space *page_mapping(struct page *page){
    unsigned long mapping;
    if (unlikely(PageSlab(page)))
        return NULL;
    if (unlikely(PageSwapCache(page))) {
        ...
        return swap_address_space(entry);
    }
    return page->mapping;
}
#define TESTPAGEFLAG(uname, lname)                                    \
static inline int Page##uname(const struct page *page)        \
     { return test_bit(PG_##lname, &page->flags); }

Fig. 5. Code related to the exploitation of CVE-2018-5333.

1) How AEM Succeeds

To understand how AEM “migrates” the exploits exactly,

we inspected the 56 successful cases. These cases can be

classified into two categories, respectively corresponding to

the two types of changes described in §II-B. In 7 cases, the

migration encounters both types of changes and thus, they are

double-counted in both categories.

Category-1: Amending Effects of Code Changes (10 cases).
Target kernels in this category carry code changes compared to

their reference counterparts, which impedes the exploit from

working. The EXPGRAPH constructed by AEM captures the

discrepancy created by the code changes in the execution

context and guides AEM to adjust the exploit.

Figure 5 shows an example in this category. The vul-

nerability, CVE-2018-5333, is a null-pointer dereference

that occurred in function rds atomic free op. At line 2,

sg page can return a null pointer to page, which is passed

to page mapping at line 3. If the flags field in the data

structure pointed to by page dissatisfies all the checks in

lines 12-17, page mapping returns the mapping field in

that data structure at line 17. Afterward, the field mapping is

dereferenced at line 5 to retrieve a function pointer, which is

called at line 7. Given a kernel where mmap min addr2 is

set to 0, the exploit can map and dereference the null address

to fill the memory with arbitrary data. Thus, by writing the

memory at the null address with a fake page whose flags
does not satisfy any checks in lines 12-17, the exploit will be

able to control the retrieval of the function pointer at line 5
and eventually hijack the function call at line 7.

In the above example, the control-flow hijacking primitive

depends on the context that flags in page invalidates the

checks enforced by PageSlab and PageSwapCache (line

12-17). However, the code changes across kernel versions

and the semantic of flags evolves. The flag PG Slab and

2https://wiki.debian.org/mmap min addr

PG SwapCache are defined at the 8th bit and 16th bit in Linux

v4.4, which change to the 9th bit and the 28th bit in v4.10.

The exploit, designed for v4.4, does not set the desired bits

for v4.10, failing to incur the execution of line 18 towards the

primitive.

When migrating the exploit for Linux v4.10, AEM

builds the EXPGRAPH on top of v4.4 (the refer-

ence version), which catches the dependency chain of

spd←mapping←page←op sg. In contrast, execution on

v4.10 only presents page←op sg. This inspires AEM to

realign the dependency of mapping←page. The first thing

to do so is to activate the retrieval of mapping on v4.10, for

which line 18 is the candidate code picked by AEM. Comparing

the EXPGRAPH and the execution trace of v4.10, AEM finds

that the last aligned point locates at line 2. Thus, it runs

symbolic execution from there, setting unrestricted user-space

data, including page->flags as symbolic values. Through

constraint solving, AEM can easily find a feasible path to line

18, which automatically enables the exploit primitive.

Category-2: Amending Effects of Data Changes (53 cases).
Kernels in this category use different definitions/structures for

data objects, when compared with the reference versions. This

often leads to disparity in the memory layout and makes the

exploit unsuccessful. The EXPGRAPH built by AEM illustrates

the layout disparity and how that affects the exploit, intelligently

guiding AEM on making the desired adjustment.

Figure 6 demonstrates an example in this category.

The vulnerability, CVE-2017-7308, is an out-of-bound

write. Upon a new network packet, tpacket rcv calls

packet current rx frame (line 14) to get an active block

at pkc->nxt offset, followed by saving the packet data

to that block through skb copy bits (line 16). However,

the birth of pkc->nxt offset (line 4) involves a user-

controlled component pkc1->blk sizeof priv. As a result,

pkc->nxt offset can be modified to an address out of

the block. The exploit against the vulnerability first sprays

a packet sock object to occupy the memory that can be

overflown. It then activates the overflow to manipulate the

xmit field (line 1), a function pointer, in the packet sock
to a desired code location. By eventually triggering a call to

xmit, the exploit can hijack the control flow.

The exploit is designed for Linux v4.10, where xmit has an

offset of 1,296 to the start of packet sock. Switching to v4.4,

the offset is 1,304. Thus, the exploit cannot properly locate

xmit, failing to create the control-flow hijacking primitive.

When migrating the exploit to v4.4, AEM finds that all memory

operations on EXPGRAPH are aligned on v4.4. The only

exception happens at the final reading of the hijacked control-

flow-transfer target. On the EXPGRAPH, the memory has

runtime type of xmit and is manipulated to an adversary-

desired value by the overflow, which differs on v4.4. This

inspires AEM to set the constraint that the address of the final

reading on v4.4 should point to the location of a xmit and the

data read from xmit should be the same as v4.10. By solving

this constraint, AEM adjusts the exploit to amend the final
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struct packet_sock {..., int (*xmit)(struct sk_buff *skb);}
static void prb_open_block(struct tpacket_kbdq_core *pkc1, ...){
    ...
    pkc1->nxt_offset = pkc1->pkblk_start +
                 BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
    ...
}
static void *packet_current_rx_frame(struct packet_sock *po, ...){
    ...
    pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
    return pkc->nxt_offset;
    ...
}
static int tpacket_rcv(struct sk_buff *skb, ...){
    ... 
    h.raw = packet_current_rx_frame(po, ...);
    ... 
    skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
}

Fig. 6. Code related to the exploitation of CVE-2017-7308.

reading to load the desired value stored in the sprayed xmit,

thus achieving the exploiting primitive.

2) Why AEM Fails

To understand the capability boundary of AEM, we further

inspected the 34 cases where AEM failed. In general, the cases

also belong to two categories.

Category-1: Engineering Issues (11 cases). AEM cannot run

on 3 exploits (see Table II), corresponding to 11 cases in need

of cross-version migration. This is because the S2E engine does

not support booting kernel with symmetric multiprocessing

(smp>2), which is, however, required by the exploits.

Category-2: Non-migratable Ones (23 cases). AEM aims to

migrate the primitives carried by the available exploit. However,

the primitives are often infeasible on the target versions.

• Barriers in configuration (6 cases): Many exploits require

the presence/absence of certain configurations to work. The

conditions for such configurations may not hold in the

target versions, which in principle prevents the exploits from

succeeding. For example, exp1 on CVE-2018-6555 gains

a control-flow-hijack primitive by manipulating a global

function pointer ptmx fops. However, on Linux after v4.9,

ptmx fops is marked read-only after initialization. Thus,

the primitive is infeasible.

• Barriers in functionality (2 cases): A group of exploits

leverages special functionality in the reference version to

create primitives. Unquestionably, the primitives can never be

fulfilled in target versions where the functionality is unavail-

able. Consider the previously discussed CVE-2018-5333
as an example. It requires the functionality of mapping the

null address to be exploited. However, kernel A4.9.44 does

not enable this functionality.

• Barriers in data structures (5 cases): The success of exploits

also often depends on particular data structures (or sub-

structures). For target versions without the needed data

structures, the exploits certainly won’t work. When exploiting

CVE-2017-16995, exp2 creates a privilege-escalation

primitive by manipulating the cred in the task struct
field of a thread info object. However, thread info

TABLE III
AVERAGE TIME NEEDED BY AEM TO MIGRATE AN EXPLOIT.

CVE EXP Time Cost (min)

Tracing EXPGraph Alignment Adjustment Total1

CVE-2016-4557 exp2 40.75 5.00 6.17 0.80 93.47
CVE-2017-6074 exp1 67.97 6.07 9.47 0.88 152.35
CVE-2017-7308 exp1 141.33 7.74 10.69 1.28 302.37
CVE-2017-7308 exp2 160.73 2.00 - - -
CVE-2017-7308 exp3 160.85 22.95 26.60 2.70 373.95
CVE-2017-11176 exp1 51.24 9.24 14.26 5.48 211.70
CVE-2017-16995 exp2 14.14 3.68 5.37 2.05 39.38
CVE-2017-18344 exp1 1,242.02 53.37 79.29 3.97 5,377.97
CVE-2018-5333 exp1 53.72 8.75 12.05 0.72 128.95
CVE-2018-6555 exp1 31.17 15.15 18.32 3.17 98.98
CVE-2018-9568 exp1 122.67 1.28 1.48 2.73 379.00
syzbot#6a039858 exp1 51.18 2.97 4.32 4.77 114.42

Avg. - 178.15 11.52 17.09 2.60 661.14

1 Total is the time cost of adjusting the exploit for n times, calculated as Ttotal =
(n+1) ∗ tTracing + tEXPGraph +n ∗ (tClassification + tAdjustment).

no longer maintains a task struct field after Linux v4.9,

making the exploit unusable.

• Barriers in memory management (10 cases): Heap-spray-

based exploits need compliance with memory management.

Target kernels using different memory management are

inevitably incompatible with those exploits. In the case of

syzbot#6a039858, a UAF occurs on a route4 filter
object. To exploit the UAF vulnerability, exp1 sprays

the heap with a msg msg object to override the freed

route4 filter. This works on Linux v4.6-4.14 because

route4 filter and msg msg are placed in the same

cache (kmalloc-96). On other versions, route4 filter
is managed in cache kmalloc-128 or kmalloc-192. As

a result, the spray does not work. Unlike the other three

scenarios, the primitives in the scenario can be re-enabled

by finding another object to spray and use. This, however,

requires generation capabilities like those offered by AEG [2],

[7], which is beyond the migration AEM aims to provide.

D. Efficiency of AEM

The analysis of AEM involves complex operations to identify

migration targets and adjust the exploit, which can lead to

high time cost. Accordingly, we also measure the efficiency of

AEM when handling the testcases. As shown in Table III, AEM

needs an average time of 661 minutes to migrate an exploit. In

cases like the migration of exp2 on CVE-2016-4557, the

needed time is only 1.5 hours. We envision the efficiency of

AEM is comparable to, if not higher than, human analysis.

Where the Cost Comes From: To better understand the

sources of the time cost, we break down the operations of

AEM and separately measure their efficiency. The results in

Table III illustrate that AEM only needs a few minutes to

generate the EXPGRAPH (< 12m), identify aligned point

(< 18m), and adjust the EXP (< 3m). In contrast, most of the

time (84.15%+) AEM spends is on tracing the execution. The

reason is that S2E, used by AEM for tracing, runs expensive

dynamic binary translation, whose cost dramatically increases

with the number of instructions. In this regard, the majority of

AEM’s cost is rooted in the tool we use, instead of its designs.

How Our Design Improves Efficiency: To migrate an exploit,
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TABLE IV
DETAILED STATISTICS FOR EXPLOIT UNDERSTANDING AND EXPLOIT

MIGRATION FOR THE 12 EXPLOITS WHERE AEM WORKS.

CVE EXP
Name

# of vertices
on EXPGRAPH

Adjustment
Times

Adjustment
Type

CVE-2016-4557 exp1 11 1 I
CVE-2017-6074 exp1 15 1 I
CVE-2017-7308 exp1 13 1 I
CVE-2017-7308 exp2 9 - -
CVE-2017-7308 exp3 29 1 I
CVE-2017-11176 exp1 21 2 II, I
CVE-2017-16995 exp2 28 1 I
CVE-2017-18344 exp1 83 3 I, I, I
CVE-2018-5333 exp1 5 1 II
CVE-2018-6555 exp1 11 1 I
CVE-2018-9568 exp1 9 2 I, I
syzbot#6a039858 exp1 7 1 I

Avg. - 19.36 1.36 -

the key is to reason the failure and properly adjust an exploit.

However, the search space is in general large. AEM introduces

EXPGRAPH to reduce the search space and thus, improve

the overall efficiency. We run two experiments to evaluate

this matter. First, we measure the utility of EXPGRAPH in

identifying memory operations to align. As summarized in

Table IV, EXPGRAPH, after filtering out irrelevant memory

operations, only involves less than 20 vertices on average. In

contrast, a single system call can incur over 3,400 memory

operations. This demonstrates AEM’s capability in identifying

memory operations tied to the exploit. Second, we inspect

the complexity of EXPGRAPH on adjusting the exploit. On

average, AEM only needs to adjust the given exploit 1.36 times

to make it work on the target kernel. This further illustrates

that AEM’s design facilitate the efficiency.

E. Comparison with AEG

In the last evaluation, we performed an experiment to compare

AEM with existing AEG solutions. To the best of our knowl-

edge, only two solutions (FUZE [2] and KOOBE [3]) support

vulnerabilities covered by our dataset.

FUZE: We experimented with the public version of FUZE [54]

on the UAF vulnerabilities included in our dataset. However,

FUZE could not work on these cases because the released

source code is incomplete. Specifically, as confirmed with

the developers, the released source code of FUZE does not

include two critical components: (1) a dynamic tracing module

to extract required information (e.g., spatial and temporal

metadata) of a vulnerability on the target kernel and (2) an

under-context kernel fuzzing module to find sensitive operations

on a vulnerable object.

KOOBE: In our evaluation dataset, three exploits work against

kernel OOB vulnerabilities, which were considered as PoCs

to test KOOBE. In summary, KOOBE cannot generate working

exploits for any of them. The generation even broke at the first

step of understanding the capability of the OOB vulnerabilities.

More specifically, the OOB behaviors were not detected by

either standard detection tools (e.g., KASAN [55]) or KOOBE’s

built-in detector. In contrast, AEM neither relies on such

external tools nor needs to build an understanding of the vul-

nerabilities. We further manually adjusted the exploit such that

KOOBE can understand the vulnerability’s capability. However,

KOOBE still failed to automatically generate a working exploit

for the target kernels. First, KOOBE requires manual annotations

of the syscalls and arguments needed for exploration, preventing

the tests from being completed automatically. Second, KOOBE

involves a large number of constraints, including many of

those irrelevant to the exploitation process. The solvers often

fell short of solving those constraints. In comparison, AEM

requires no manual annotations and it simplifies the constraints

by focusing on the ones connected to the exploiting primitives.

VII. DISCUSSION

Generality of AEM: Though AEM is designed to facilitate

cross-version exploitability assessment for Linux kernels, the

basic idea of AEM, including its core designs (e.g., the memory

operation alignment algorithm and the exploit adjustment

methodology), is also applicable to user-space applications.

To support user-space applications, AEM needs to be extended

from two aspects. First, AEM adopts syscalls as the perspective

to adjust the kernel exploit. However, the exploit for user-space

programs is usually raw bytes from program input (e.g., files

or standard input). Thus, their exploit payloads require a new

perspective to adjust. Second, the instruction tracing system

needs to be adapted to capture user-space behaviors needed by

our analysis (e.g., allocations and deallocations of user-space

heap objects).

Limitations of AEM: As described in §II-B, the major obsta-

cles in cross-version exploitability assessment are the implemen-

tation changes across different kernels. AEM mitigates these

obstacles by designing a primitive-centric, alignment-guided

exploit migration approach. However, our approach cannot

adapt to all degrees of change. First of all, we acknowledge

that AEM only applies to migratable cases, as defined in

§II-D. To support those non-migratable but exploitable cases,

AEM could be extended with AEG to incorporate certain state

exploration capability. Second, our alignment-guided design

may meet difficulties in some migratable cases when there

are excessive implementation changes. For example, we rely

on the type information of the accessed memory to align

memory operations. However, when the type is redesigned or

re-organized, our current design may fail to align them. Besides,

we rely on source code similarity to search a candidate optar in

R2 Exploit Adjustment, which may have false positives. When a

wrong optar is selected, our current design can fail to migrate

the exploit. In theory, there would be many other cases that

make AEM fail. However, we do not encounter such cases

in our evaluation. We envision the failures will not happen a

lot in general as cross-version code changes of a long-term

maintenance project such as Linux kernel are typically less

significant. Third, our prototype of AEM does not support

booting kernels with symmetric multiprocessing, which we

hope to address in our future work.

VIII. RELATED WORK

Automatic Exploit Generation: Starting around 15 years ago,

a series of works have been proposed to automate the generation

132134



of exploits. Brumley et al. [56] first introduce automatic patch-

based exploit generation (APEG), which automatically creates

an exploit for an unpatched program based on patch changes.

In the follow-up development, Thanassis et al. [5] model the

AEG problem as a program-verification task and develop a

pioneering, end-to-end AEG system based on preconditioned

symbolic execution. Later on, Mayhem [57] and Revery [11]

are created to leverage concolic execution, memory modeling,

and layout-oriented fuzzing to improve the scalability of AEG.

Despite the above efforts, the community gradually realizes

that general, full AEG for modern software is less feasible. As

a result, recent research narrows down the scope. One common

strategy is to focus AEG on a specific family of vulnerabilities.

To date, there have been AEG solutions designated for user-

after-free [2], [8], out-of-bound heap access [3], uninitialized

variables [6], [58], and data races [59]. The other popular

strategy opts to facilitate specific tasks in creating exploits.

[60], [61], [62], [63], [64], [7] propose to identify desired

objects and create correct memory layouts to help exploitation

of memory corruptions; [10], [65] explore new forms of

primitives to expand the possibility of the exploitation; [66],

[67], [68] present solutions for enabling exploits to bypass

mitigation mechanisms (e.g., ASLR and CFI).

As we have pointed out in §II, AEG at the current stage is

not a well-suited methodology for cross-version exploitability

assessment. On the one hand, AEG prevalently relies on

templates to create exploits. However, not every vulnerability

can be exploited following those templates. On the other

hand, AEG builds every component from scratch, although

the existing exploit already carries many reusable components.

Thus, AEG can incur an unnecessarily high burden and present

a lower-than-expected success rate when applied to cross-

version exploitability assessment.

Cross-Version Assessment of Vulnerabilities: This line of

research understands whether a disclosed vulnerability affects

different software versions. In principle, two approaches are

applicable. The first approach detects the presence of affected

code [69], [70], [71] or available patches [72], [73], [74], [75],

[76]. Most solutions using this approach are based on features

obtained via static code analysis (e.g., code syntax [69], [73],

data constants [70], and normalized code [71]). While offering

scalability and coverage, these solutions cannot guarantee the

validity of vulnerabilities even their detection shows a positive

result, considering that they cannot provide proof showing the

vulnerabilities can be indeed triggered. The second approach,

which is more intuitive, aims to produce testcases to trigger

the vulnerabilities [77], [78], [79], [80], [18], [81], [82], [83].

AFLGo [77] and Hawkeye [78] propose directed fuzzing, which

derives inputs to gradually approach the target code and activate

the vulnerabilities. Savior [79] follows a similar philosophy

but uses more intelligent techniques like concolic execution.

Our work aims to understand the cross-version exploitability

of vulnerabilities, which can be deemed as a follow-up step to

complement the above research.

IX. CONCLUSION

This paper introduces a new methodology, AEM, to tackle the

problem of cross-version exploitability assessment for Linux

kernels. The philosophy of AEM is to force the strategy adopted

by a given exploit to work on all applicable kernel versions.

Technically, AEM leverages the successful exploitation on

the reference kernel as guidance and adjusts the exploit to

reproduce the same exploiting behaviors on other kernels. Our

evaluation with real-world datasets shows a success rate of

83.5%, demonstrating the validity of our philosophy and the

utility of AEM.

X. ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful com-

ments. This work was supported in part by the National Natural

Science Foundation of China (U1836210, U1836213, 62172105,

61972099, 62172104, 62102091, 62102093), the National Key

R&D Program of China (2021YFB3101200), and the Natural

Science Foundation of Shanghai (19ZR1404800). Yuan Zhang

was supported in part by the Shanghai Rising-Star Program

21QA1400700 and the Shanghai Pilot Program for Basic

Research-Fudan University 21TQ1400100 (21TQ012). Min

Yang is the corresponding author, and a faculty of Shanghai

Institute of Intelligent Electronics & Systems, Shanghai In-

stitute for Advanced Communication and Data Science, and

Engineering Research Center of Cyber Security Auditing and

Monitoring, Ministry of Education, China.

REFERENCES

[1] Q. Wu, Y. Xiao, X. Liao, and K. Lu, “OS-Aware Vulnerability Priori-
tization via Differential Severity Analysis,” in Proceedings of the 31st
USENIX Security Symposium (USENIX Security), 2022.

[2] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “FUZE: Towards
Facilitating Exploit Generation for Kernel Use-After-Free Vulnerabilities,”
in Proceedings of the 27th USENIX Security Symposium (USENIX
Security), 2018.

[3] W. Chen, X. Zou, G. Li, and Z. Qian, “KOOBE: Towards Facilitating
Exploit Generation of Kernel Out-Of-Bounds Write Vulnerabilities,” in
Proceedings of the 29th USENIX Security Symposium (USENIX Security),
2020.

[4] W. Wu, Y. Chen, X. Xing, and W. Zou, “KEPLER: Facilitating Control-
flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities,” in
Proceedings of the 28th USENIX Security Symposium (USENIX Security),
2019.

[5] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic Exploit Generation,” Communications of the
ACM, vol. 57, no. 2, 2014.

[6] K. Lu, M. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes,
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XI. APPENDIX

A. Kernel Dataset
Table V shows the details of the 13 Linux kernels that we used

to evaluate AEM. These kernels are from three vendors (Linux

mainstream, Android and Ubuntu) and run on different kinds

of devices, e.g., desktops, servers, and mobile phones.

TABLE V
DETAILED INFORMATION OF LINUX KERNEL DATASET.

Kernel Tag Vendor1 Commit Id

v4.1 Torvalds b953c0d234bc72e8489d3bf51a276c5c4ec85345
v4.4 Torvalds afd2ff9b7e1b367172f18ba7f693dfb62bdcb2dc
v4.5 Torvalds b562e44f507e863c6792946e4e1b1449fbbac85d
v4.6 Torvalds 2dcd0af568b0cf583645c8a317dd12e344b1c72a
v4.8 Torvalds c8d2bc9bc39ebea8437fd974fdbc21847bb897a3
v4.10 Torvalds c470abd4fde40ea6a0846a2beab642a578c0b8cd
v4.13 Torvalds 569dbb88e80deb68974ef6fdd6a13edb9d686261
v4.14 Torvalds bebc6082da0a9f5d47a1ea2edc099bf671058bd4
v4.16 Torvalds f8bae1feaa568b165612f0c5073268671f3a11ba
A4.4.0 Android d9b927362a860ba48984913600cec51c09cbac47
A4.9.44 Android 34803e7c1c92f53603f6aa11235915afc2589290
U4.4.0-21 Ubuntu linux-source-4.4.0 4.4.0-21.37
U4.8.0-34 Ubuntu linux-source-4.8.0 4.8.0-34.36

1 Torvalds kernel is collected from [12]. Android kernel is collected from [84].
Ubuntu kernel is collected from [85].
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