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Abstract—The widespread dependency on open-source soft-
ware makes it a fruitful target for malicious actors, as demon-
strated by recurring attacks. The complexity of today’s open-
source supply chains results in a significant attack surface, giving
attackers numerous opportunities to reach the goal of injecting
malicious code into open-source artifacts that is then downloaded
and executed by victims.

This work proposes a general taxonomy for attacks on open-
source supply chains, independent of specific programming
languages or ecosystems, and covering all supply chain stages
from code contributions to package distribution. Taking the form
of an attack tree, it covers 107 unique vectors, linked to 94 real-
world incidents, and mapped to 33 mitigating safeguards.

User surveys conducted with 17 domain experts and 134
software developers positively validated the correctness, compre-
hensiveness and comprehensibility of the taxonomy, as well as its
suitability for various use-cases. Survey participants also assessed
the utility and costs of the identified safeguards, and whether they
are used.

Index Terms—Open Source, Security, Software Supply Chain,
Malware, Attack

I. INTRODUCTION

Software supply chain attacks aim at injecting malicious

code into software components to compromise downstream

users. Recent incidents, like the infection of SolarWind’s

Orion platform [1], downloaded by approx. 18,000 customers,

including government agencies and providers of critical infras-

tructure, demonstrate the reach and potential impact of such

attacks. Accordingly, software supply chain attacks are among

the primary threats in today’s threat landscape, as reported

by ENISA [2] or the US Executive Order on Improving the
Nation’s Cybersecurity [3].

This work focuses on the specific instance of attacks on

Open-Source Software (OSS) supply chains, which exploit the

widespread use of open-source during the software develop-

ment lifecycle as a means for spreading malware. Consider-

ing the dependency of the software industry on open-source

– across the technology stack and throughout the development

lifecycle, from libraries and frameworks to development, test

and build tools, Ken Thompson’s reflections [4] on trust (in

code and its authors) is more relevant than ever. Indeed,

attackers abuse trust relationships existing between the dif-

ferent open-source stakeholders [5], [6]. The appearance and

significant increase of attacks on OSS throughout the last

few years, as reported by Sonatype in their 2021 report [7],

demonstrate that attackers consider them a viable means for

spreading malware.

Recently, industry and government agencies increased their

efforts to improve software supply chain security, both in

general and in regards to open-source. MITRE, for instance,

proposes an end-to-end framework to preserve supply chain

integrity [8], and the OpenSSF develops the SLSA framework,

which groups several security best-practices for open-source

projects [9]. Academia contributes an increasing number of

scientific publications, many of which get broad attention in

the developer community, e.g., [10] or [11].

Nevertheless, we observed that existing works on open-

source supply chain security lack a comprehensive, com-

prehensible, and general description of how attackers inject

malicious code into OSS projects, that is independent of

specific programming languages, ecosystems, technologies,

and stakeholders.

We believe a taxonomy classifying such attacks could be of

value for both academia and industry. Serving as a common

reference and clarifying terminology, it could support several

activities, e.g., developer training, risk assessment, or the

development of new safeguards. As such, we set out to answer

the following research questions:

RQ1 – Taxonomy of attacks on OSS supply chains
• RQ1.1 – What is a comprehensive list of general attack

vectors on OSS supply chains?

• RQ1.2 – How to represent those attack vectors in a

comprehensible and useful fashion?

RQ2 – Safeguards against OSS supply chain attacks
• RQ2.1 – Which general safeguards exist, and which

attack vectors do they address?

• RQ2.2 – What is the utility and cost of those safeguards?

• RQ2.3 – Which safeguards are used by developers?

To answer those questions, we first study both the scientific

and grey literature to compile an extensive list of attack

vectors, including ones that have been exploited, but also non-

exploited vulnerabilities and plausible proofs-of-concept. We

then outline a taxonomy in the form of an attack tree. From the

identified attacks, we list the associated safeguards. Finally,

we conduct two user surveys aiming to validate the attack

taxonomy and to collect qualitative feedback regarding the

utility, costs, awareness, and use of safeguards.

To this extent, the main contributions of our work are as

follows:

• A taxonomy of 107 unique attack vectors related to

OSS supply chains, taking the form of an attack tree and

validated by 17 domain experts in terms of complete-
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ness, comprehensibility, and applicability in different use

cases.

• A set of 33 safeguards geared towards the proposed

taxonomy, and qualitatively assessed regarding utility
and costs by the same 17 domain experts.

• The qualitative assessment of 134 developers on the

awareness of selected high-level attack vectors and the

corresponding level of protection.

Using an interactive visualization of the attack tree, the

taxonomy with descriptions, examples of real-world attacks,

references, and associated safeguards can be explored online1.

The remainder of the paper is organized as follows. Sec-

tion II introduces basic concepts and elements of OSS supply

chains, the assumed attacker model, and the concept of attack

trees. Section III describes the methodology applied, com-

prising the three steps Systematic Literature Review (SLR),

modeling of taxonomy and safeguards, and survey design.

Section IV details the proposed taxonomy and presents the

results of the expert and developer validation. Section V

introduces the safeguards associated with the aforementioned

attack vectors and presents both the experts’ feedback on their

utility and costs, and the developers’ feedback on awareness

and use. Section VI discusses the differences between pro-

gramming languages and highlights the benefits of our work on

research. Section VII provides demographic information about

the survey participants. Section VIII mentions related works,

and Section IX discusses threats to the validity of our work.

Finally, the conclusion and outlook are provided in Section X.

II. BACKGROUND

This section describes, at a high level, the systems and stake-

holders involved in the development, build, and distribution

of OSS artifacts (cf. Figure 1). They are constituting elements

of OSS supply chains and contribute to their attack surface.

They commonly interact in a distributed setting [12], even if

the specifics differ from one OSS project to another.

The section concludes with a description of the attacker

model considered throughout the paper, and a summary of the

concept of attack trees.

PULL DEPENDENCY

CREATE MERGE 
REQUEST

PUSH/REVIEW MERGE 
REQUEST

MANAGE ACCOUNT

CLONE AND BUILD

CONFIGURE AND TRIGGER 
BUILD JOB

CLONE

PUBLISH PACKAGE

INSTALL PRE-BUILT PACKAGES

Fig. 1: Stakeholders, systems and dataflows related to the

development, build and distribution of OSS artifacts.

1https://sap.github.io/risk-explorer-for-software-supply-chains/

A. Systems

The systems considered comprise Version Control System

(VCS), build systems, and package repositories. They do not

necessarily correspond to concrete physical or virtual systems

providing the respective function but should be seen as roles,

multiple of which can be exercised by a single host or 3rd

party service.

Version Control Systems host the source code of the

OSS project, not only program code but also metadata, build

configuration, and other resources. They track and manage

all the changes of the codebase that happen throughout the

development process. Plain VCSs like Git do not require its

users to authenticate, but complementary tools and 3rd party

services offer additional functionalities (e.g., issue trackers) or

security controls (e.g., authentication, fine-grained permissions

or review workflows).

Build Systems take a project’s codebase as input and

produce a binary artifact, e.g., an executable or compressed

archive, which can be distributed to downstream users for easy

consumption. The build commonly involves so-called depen-

dency or package managers [13], [14], e.g., pip for Python,

which determine and download all dependencies necessary for

the build to succeed, e.g., test frameworks or OSS libraries

integrated into the project at hand. Continuous Integration

(CI)/Continuous Delivery (CD) pipelines, running on build

automation tools like Jenkins, automate the test, build, and

deployment of project artifacts.

Distribution Platforms distribute pre-built OSS artifacts

to downstream users, e.g., upon the execution of package

managers or through manual download. Our definition does

not only cover well-known public package repositories like

PyPI or Maven Central but also internal and external mirrors,

Content Delivery Network (CDN) or proxies.

Workstations of OSS Maintainers and Administrators.
OSS project maintainers and administrators of the abovemen-

tioned systems have privileged access to sensitive resources,

e.g., the codebase, a build system’s web interface, or a package

repository’s database. Therefore, their workstations are in the

scope of the attack scenario.

B. Stakeholders

The stakeholders considered comprise OSS project main-

tainers, contributors, and consumers – as well as administrators

of various systems or services involved. Again, they should be

understood as roles [15], multiple of which can be assumed

by a given individual. For example, maintainers of an OSS

project typically consume artifacts of other projects.

Contributors contribute code to an OSS project, with

limited (read-only) access to project resources. They typically

submit contributions to the VCS via merge requests, which

are reviewed by project maintainers prior to being integrated.

OSS Project Maintainers have privileged access to project

resources, e.g., to review and integrate contributors’ merge

requests, configure build systems and trigger build jobs, or

deploy ready-made artifacts on package repositories. The

real names of project collaborators, both contributors and

maintainers, are not necessarily known. Accounts, including
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anonymous ones, gain trust through continued contributions of

quality, thanks to which they may be promoted to maintainers

(known as a meritocracy).

System and Service Administrators have the responsi-

bility to configure, maintain, and operate any of the above-

mentioned systems or services, e.g., employees of 3rd-party

Git hosting providers, members of OSS foundations that

operate own build systems for their projects, or employees

of companies running package repositories like npm.

Downstream Users consume OSS project artifacts, e.g., its

source code from the project’s VCSs (e.g., through cloning), or

pre-built packages from distribution platforms. In the context

of downstream development projects, the download is typically

automated by package managers like pip or npm, which

identify and obtain dozens or hundreds [16], [17] of the

project’s direct and transitive dependencies.

C. Risks of Open-Source Software Supply Chains

OSS is widely used by organizations and individuals across

the technology stack and throughout the software develop-

ment lifecycle. Package managers automate its download and

installation to a great extent, e.g., when resolving transitive

dependencies or updating versions.

The above-described systems are inherently distributed, and

the stakeholders are partly unknown or anonymous. They

exist for every single open-source component used, which

multiplies an attack surface having both technical and social

facets. Moreover, even heavily used open-source projects

receive only little funding and contributions [18], making it

difficult for maintainers to securely run projects and increasing

their susceptibility to social-engineering attacks, e.g., when

reviewing contributions.

Downstream consumers have no control over and limited

visibility into given projects’ security practices. The sheer

number of dependencies [16] makes rigorous reviews imprac-

tical for a given consumer, forcing them to trust the community

for a timely detection of vulnerabilities and attacks.

Attackers’ primary objectives are data exfiltration, droppers,

denial of service, or financial gain [19]. Hence, the larger the

user base, direct and indirect, the more attractive an open-

source project becomes for attackers. As in other adversarial

contexts, attackers require finding single weaknesses, while

defenders needs to cover the whole attack surface, which in

this case spans the whole supply chain.

D. Attack Tree

Attack trees [20], [21] are intuitive and systematic represen-

tations of attacker goals and techniques, and support organi-

zations in risk assessment, esp. with regards to understanding

exposure and identifying countermeasures.

The root node of an attack tree represents the attacker’s

top-level goal, which is iteratively refined by its children into

subgoals. Depending on the degree of refinement, the leaves

correspond to more or less concrete and actionable tasks.

As taxonomies require assigning instances to exactly one

class, we only consider disjunctive refinement, where child

nodes represent alternatives to reach the parent goal.

E. Attacker Model

The development of the taxonomy was based on the follow-

ing assumptions and attacker model.

The attacker’s top-level goal is to place malicious code in

open-source artifacts such that it is executed in the context of

downstream projects, e.g., during its development or runtime.

Such malware can exfiltrate data, represent or open a backdoor,

as well as download and execute second-stage payload (e.g.,

cryptominers [19]). Targeted assets can belong both to de-

velopers of downstream software projects, or their end-users,

depending on the attacker’s specific intention. However, the

focus of the taxonomy is not on what malicious code does,

but how attackers place it in upstream projects.

Insider attacks are out of scope, i.e., adversaries are neither

maintainers of the attacked open-source project nor members

or employees of 3rd party service providers involved in the

development, build, or distribution of project artifacts. As such,

attackers do not have any privileged access to project resources

like build jobs or infrastructure like the server or database

underlying code repositories.

Initially, they only have access to publicly available in-

formation and publicly accessible resources, which they can

collect and analyze following the Open Source Intelligence

(OSINT) [22] approach. Of course, due to the nature of open-

source projects, many project details are freely accessible,

e.g., project dependencies, build information, or commit and

merge request histories. Attackers can interact with any of

the stakeholders and resources depicted in Figure 1, e.g., to

communicate with maintainers using merge requests or issue

trackers or to create fake accounts and projects.

III. METHODOLOGY

The methodology adopted to answer the above-mentioned

research questions comprises three phases (cf. Figure 2).

First, we review scientific and grey literature to collect an

extensive list of attack vectors on OSS supply chains.

Second, starting from the vectors described in the literature

and the OSS supply chain elements introduced in Section II,

we abstract from specific programming languages or ecosys-

tems, perform threat modeling, and create a taxonomy that

takes the form of an attack tree. Also, we identify and classify

safeguards mitigating those vectors.

Third, to validate the proposed taxonomy and the list of

safeguards, we design and run two user surveys: with experts

in the domain of OSS supply chain security, and with software

developers, which are heavy consumers of OSS.

A. Systematic Literature Review

The SLR accomplishes two goals. First, through exploring

the state-of-the-art of OSS supply chain security, we identify

and specify the abovementioned research questions. Second,

it supports identifying and collecting relevant attack vectors

and suitable safeguards. The SLR itself follows a three step

methodoloy comprising planning, conducting, and report-
ing [23] [24] depicted in Figure 2 and described hereafter.
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Fig. 2: Our methodology comprises a literature review, the

modeling of taxonomy & safeguards, and the validation.

Search Strategy: This step defines the search terms, the

query used on the identified resources, and the inclusion

criteria. For our purpose, we used the following query to search

for the terms anywhere in the documents:

("open source" OR "open-source" OR "OSS" OR "free"
OR "free/libre" OR "FLOSS) AND "software" AND
("supply chain" OR "supply-chain") AND ("security"
OR "insecurity" OR "attack" OR "threat"
OR "vulnerability")

The four digital libraries used to collect the primary studies

are2: Google Scholar (980 results), arXiv (6), IEEExplore (25)

and ACM Digital Library (160). After removing duplicates

from the total of 1171 search results, 1025 papers remained.

We only included peer-reviewed articles in journals and

conferences, technical reports, and Ph.D./Master theses written

in English and published before March 2022. Also, we only

2Their URLs can be found in Appendix B

included studies related to security aspects, threats and mal-

ware in the areas of OSS development, VCS, build systems and

package repositories, as well as malware detection and soft-

ware supply chain security. The application of those inclusion

criteria reduced the 1025 results obtained in the previous phase

to 99 papers. Discarded documents concern security aspects

in physical or hardware supply chains, or general discussions

about emerging technologies (of which OSS security is an

example).

We then applied the snowballing technique on all the

remaining works to find resources missed during the initial

search, thereby applying the same inclusion criteria. This

resulted in the addition of another 84 new studies.

Fig. 3: No. selected scientific articles per year of publication.

Data Extraction: The selection process resulted in a total of

183 scientific works, mostly from the last few years (cf. Fig-

ure 3), which were carefully reviewed to extract information

about common threats, attack vectors, and related safeguards.

The complete list of the selected works is accessible online 3.

B. Grey Literature

In addition to scientific literature, especially to cover as

many real-world attacks and vulnerabilities as possible, we

looked at grey literature like blog posts, whitepapers, or

incident reports. To this end, we periodically reviewed several

news aggregators and blogs (cf. Appendix B). Also, we used

the same search query as in Section III-A for searching on

Google. All results were filtered using the selection criteria

from Section III-A, and the snowballing technique was applied

to further extend the set of sources.

C. Analysis and Modeling of the Attack Scenario

We perform the analysis of the OSS supply chain depicted

in Figure 1 to classify the identified attack vectors during the

SLR. Then we model such attacks using the semantic of attack

trees. The goal of these two steps is to answer to RQ1.2, i.e.,

propose a taxonomy of OSS supply chain attacks.

The analysis of the attack scenario in the context of OSS

development started from the identification of the stakehold-

ers (i.e., actors), systems, as well as their relationship (i.e.,

channels). We have described such elements in Section II

and depicted in Figure 1. This analysis was useful to identify

potential categories to structure the identified attack vectors.

During the modeling phase, we adopted an attack-centric
methodology whose purpose is to characterize the hostility of

3https://doi.org/10.5281/zenodo.6395965
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the environment and the attack complexity for exploiting a

system vulnerability [25]. In particular, we performed closed

card-sorting in the form of a tree-test intending to build a

taxonomy of OSS supply chain attacks as an attack tree.

Closed card-sorting is an information architecture technique

taken from User eXperience (UX) design, in which the partic-

ipants are asked to structure a given set of information [26]. A

tree-test is a particular case of a card-sorting problem, where

the information is structured in a tree.

For the attack tree modeling, we used as a starting point

the attack tree proposed by Ohm et al. [19], whose root node

is Injection of Malicious Code (into dependency tree). Thanks

to a rigorous structure, deeper refinement and the SLR, we

identified many additional attack vectors (107 instead of 19).

The main criteria to structure the attack tree were: degree of

interference with existing ecosystems (1st-level nodes), stages

of the software supply chain (i.e., source, build, distribute),

and the system and stakeholders involved in each stage.

The initial naming and arrangement have been changed to

reflect the expert feedback described in Section IV-B. The

refined version of our initial attack tree is depicted in Figure 4.

D. Identification and Classification of Safeguards

To identify general safeguards, also in this case we reviewed

the scientific and grey literature described in Section III-B.

Then, each safeguard is classified according to control type,

stakeholder involvement, and mitigated attack vector(s).

Control type classification follows the well-known distinc-

tion of directive, preventive, detective, corrective, and recovery

controls [27]. However, since our focus is on how malicious

code – no matter its actual intent – can be injected into open-

source and corresponding safeguards explains why recovery

controls were out of scope.

Stakeholder involvement reflects which role(s), maintain-

ers, system administrators or consumers, can or must become

active to effectively implement a given control.

Finally, each safeguard has been assigned to those node(s)

of the attack tree that it mitigates (partially or fully). To reflect

the broader or narrower scope, they were assigned to the tree

node with the least possible depth.

E. Survey Methodology

We conducted two online surveys targeting two different

audiences. First, we addressed experts in the domain of soft-

ware supply chain security to validate the proposed taxonomy

of attack vectors (RQ1) and to collect feedback regarding the

utility and costs of safeguards (RQ2.2). Second, we addressed

developers to rate their use of attack vectors and perceived

protection level. Optionally, they could additionally assess the

taxonomy and the use and awareness of safeguards from the

perspective of open-source consumers (RQ2.3).

Questionnaire Design and Development: We conducted a

cross-sectional survey [28] consisting of the following four

parts.

Demographics: This part collects background informa-

tion about survey participants, especially their skillset to

check whether our objectives to address security experts and

developers are met, but also programming languages used, or

whether they actively participate in OSS projects. The results

are discussed in Section VII.

Taxonomy: In the expert survey, this part was meant to

validate and assess the proposed taxonomy. Before displaying

our proposed taxonomy in its entirety, we used tree-testing [29]

to capture how easily users find tree nodes. This helped

validate the nodes’ parent-child relationships. Afterwards, par-

ticipants were asked to explore an interactive visualization of

the complete taxonomy, and then to rate its structure, node

names, coverage, and its usefulness (to support different use-

cases) on a Likert scale from 1 (low) to 5 (high).

In the developer survey, this part started with a presentation

of the taxonomy’s first-level nodes, including attack vector

names and descriptions. Participants were asked whether they

are aware of such attacks and whether they – or their organiza-

tion – use any mitigating safeguards. Optionally, participants

could continue this part to explore the taxonomy and rate its

comprehensibility and usefulness.

Safeguards: In the expert survey, the participants assessed

the utility and costs of the selected safeguards. To this end,

they were grouped by and presented according to the stake-

holder roles involved in their implementation.

This entire part was optional in the developer survey.

When opting-in, respondents only rated safeguards relevant

according to their role in open-source projects (if any). When

shown, survey participants provided feedback whether they use

a given safeguard and its perceived costs (Likert scale).

Pilot Survey and Pretest: Interviews with two experts in

user research and UX provided us feedback on the suitability

and understandability of the survey. Their main suggestions

were to shorten texts and improve content presentation, esp.

of the tree-testing content. After implementing their feedback,

we performed a pretest of the expert survey with 37 re-

searchers from academia (i.e., Ph.D. students, researchers, and

professors), and the developer survey with 14 master students.

The feedback received from this pretest suggested further

shortening texts, improving some questions, and adjusting the

appearance of buttons.

Sampling: For the selection of participants in both ques-

tionnaires, we adopted the snowball sampling [30] technique.

It consisted of inviting an initial group of participants, which

were asked to further share the invitation in their appropriate

network of knowledge. Due to this sampling technique, it is

not possible to compute the response rate.

The initial list of domain experts was composed of authors

of works analyzed during the SLR, as well as experts from

industry and academia from our network. We included experts

who performed relevant works in the context of OSS supply

chain security (e.g, scientific publications, initiatives/projects

of software foundations or industry). Similarly, the initial list

of software developers has been created starting from our

network of knowledge of practicioners.

The channels used to reach the participants have been

emails, Linkedin, and direct recruitment during presentations.
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The expert survey campaign began on 22 July 2021, the one

for developers on 19 October 2021. Both questionnaires were

closed for analysis on 24 November 2021, and reached a total

of 17 and 134 respondents respectively.

Survey Procedure and Data Protection: Rather than using

existing survey tools or services, we developed a custom

solution. SurveyJS4 was used to design the survey structure

and content, which we exported as JSON file. This file was

hosted using GitHub Pages, together with SurveyJS’ runtime

library and other resources. Participant answers were sent to

a custom Google AppScript, which stored them in a Google

spreadsheet. Answers were sent after each survey page and

grouped using a random number generated in the beginning.

Applying the principle of data minimization, we did not

collect IP addresses, names or other Personally Identifiable

Information (PII). We also did not have access to 3rd party

server logs. Moreover, the decoupling of survey frontend and

backend made that the first 3rd party service provider only

knows survey structure and content, while the second only sees

(encoded) answers without understanding their semantics.

IV. ATTACK TAXONOMY AND ITS VALIDATION

This section presents the taxonomy built from 107 unique

attack vectors collected through the review of scientific and

grey literature. Following, it summarizes the results of its

validation by domain experts, and the responses of software

developers regarding problem awareness, understandability,

and usefulness of our taxonomy.

A. Taxonomy of Attacks on OSS Supply Chains

The attackers’ high-level goal is to conduct a supply chain

attack by injecting malicious code5 into an OSS project such

that it is downloaded by downstream consumers, and executed

upon installation or at runtime. They can target any kind of

project (e.g., libraries or word processors), direct or indirect

downstream consumers, as many as possible, or very specific

ones. The latter is possible by conditioning the execution

of malicious code, e.g., on the lifecycle phase (install, test,

etc.), application state, operating system, or properties of the

downstream component it has been integrated into [19].

The entire taxonomy unfolding below this high-level goal is

depicted in Figure 4 and summarized hereafter, whereby the

1st-level child nodes of the tree reflect different degrees of

interference with existing packages.

Develop and Advertise Distinct Malicious Package from
Scratch covers the creation of a new OSS project, with the

intention to use it for spreading malicious code from the

beginning or at a later point in time. Besides creating the

project, the attacker is required to advertise the project to

attract victims. Real-world examples affect PyPI, npm, Docker

Hub or NuGet [19], [59]–[65].

Create Name Confusion with Legitimate Package covers

attacks that consist of creating project or artifact names that

4https://surveyjs.io/
5This does not only cover the addition of program code but malicious

changes in general, e.g., the introduction of new malicious dependencies or the
(re)introduction of vulnerabilities, e.g., the removal of authorization checks.

resemble legitimate ones, suggest trustworthy authors, or play

with common naming patterns. Once a suitable name is found,

the malicious artifact is deployed, e.g., in a source or package

repository, in the hope of being consumed by downstream

users. As the deployment does not interfere with the resources

of the project that inspired the name (e.g., legitimate code

repository, maintainer accounts) the attack is relatively cheap.

Child nodes of this attack vector relate to sub-techniques

applying different modifications to the legitimate project name:

Combosquatting [74] adds pre or post-fixes, e.g., to indi-

cate project maturity (dev or rc) or platform compatibility

(i386). Altering Word Order [74] re-arranges the word order

(test-vision-client vs. client-vision-test).

Manipulating Word Separators [74] alters or adds word sep-

arators like hyphens (setup-tools vs. setuptools).

Typosquatting [5], [15], [19], [71], [74], [75] exploits ty-

pographical errors (dajngo vs. django). Built-In Pack-
age [74] replicates well-known names from other contexts,

e.g., built-in packages or modules of a programming lan-

guage (subprocess for Python). Brandjacking [164] creates

the impression a package comes from a trustworthy author

(twilio-npm). Similarity Attack [165] creates a mislead-

ing name in a way different from the previous categories

(request vs. requests).

Subvert Legitimate Package covers all attacks aiming to

corrupt an existing, legitimate project, which requires com-

promising one or more of its numerous resources depicted in

Figure 1. As a result, this subtree is much larger compared

to the previous ones, esp. because subtrees related to user

and system compromises occur multiple times in the different

supply chain stages. The remainder of this section is dedicated

to sub-techniques of this first-level node.

Inject into Sources of Legitimate Package: It relates to the

injection of malicious code into a project’s codebase. For the

attacker, this has the advantage to affect all downstream users,

no matter whether they consume sources or pre-built binary

artifacts (as part of the codebase, the malicious code will be

included during project builds and binary artifact distribution).

This vector has several sub-techniques. Taking the role of

contributors, attackers can use hypocrite merge requests to

turn immature vulnerabilities into exploitable ones [11], or

exploit IDE rendering weaknesses to hide malicious code,

e.g., through the use of Unicode homoglyphs and control

characters [10], or the hiding and suppression of code dif-

ferences [166]. To contribute as maintainer requires to obtain

the privileges necessary for altering the legitimate project’s

codebase, which can be achieved in different ways. Using So-

cial Engineering (SE) techniques on legitimate project main-

tainers [167], [168], by taking over legitimate accounts (e.g.,

reusing compromised credentials [169]), or by compromising
the maintainer system (e.g., exploiting vulnerabilities [113]).

The latter can also be achieved through a malicious (OSS)

component, e.g., IDE plugin, which is reflected through a

recursive reference to the root node.

The legitimate project’s codebase can also be altered by

tampering with its VCS, thus, bypassing a project’s established

contribution workflows. For instance, by compromising system

user accounts [115], [116], or by exploiting configuration/-
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Fig. 4: Refined version of the taxonomy for OSS supply chain attacks. It takes the form of an attack tree with the attacker’s

top-level goal to inject malicious code into open-source project artifacts consumed and executed by downstream users. This

version reflects the feedback of 17 domain experts on the initial version, collected through an online survey. Subtrees for

user and system compromises exist multiple times, only their first occurrence is expanded. The grey, numbered rectangles

illustrate the different criteria used for structuring the tree. Each node has references to both Scientific Literature (SL) and

Gray Literature (GL).

1515



software vulnerabilities [118], [170], [171], an attacker could

access the codebase in insecure ways.

Inject During the Build of Legitimate Package: Greatly

facilitated by language-specific package managers like Maven

or Gradle for Java, it became common to download pre-

built components from package repositories rather than OSS

project’s source code from its VCS. Therefore, the injection

of malicious code can happen during the build of such com-

ponents before their publication [6], [119], [120]. Though the

spread is limited compared to injecting into sources, the ad-

vantage for the attacker is that the detection of malicious code

inside pre-built packages is typically more difficult, especially

for compiled programming languages. One sub-technique is

running a malicious build job to tamper with system resources

shared between build jobs of multiple projects [123] (e.g., the

infection of Java archives in NetBeans projects [125]). An

attacker can also tamper the build job as maintainer, e.g.,

by taking over legitimate maintainer accounts, becoming a

maintainer, or compromising their systems (cf. XCodeGhost

malware [127]). Similarly, the attacker could comprise build

systems, esp. online accessible ones, e.g., by compromis-

ing administrator accounts [126] or exploiting vulnerabili-

ties [129], [172].

Distribute Malicious Version of Legitimate Package: Pre-

built components are often hosted on well-known package

repositories like PyPI or npm, but also on less popular reposi-

tories with a narrower scope. In addition, the components can

be mirrored remotely or locally, made available through CDNs

(e.g., in the case of JavaScript libraries), or cached in proxies.

This attack vector and its sub-techniques cover all cases where

attackers tamper with mechanisms and systems involved in the

hosting, distribution, and download of pre-built packages.

Dangling references (re)uses resource identifiers of or-

phaned projects [144]–[146], e.g., names or URLs. Mask legit-
imate package [147] targets package name or URL resolution

mechanisms and download connections. Their goal is the

download of malicious packages by compromising resources

external to the legitimate project. This includes Man-In-The-

Middle (MITM) attacks, DNS cache poisoning, or tampering

with legitimate URLs directly at the client [173]. Particularly,

package managers follow a (configurable) resolution strategy

to decide which package version to download, from where,

and the order of precedence when contacting multiple repos-

itories. Attackers can abuse such resolution mechanisms and

their configurations [152], [174]. Attackers can also prevent
updates to non-vulnerable versions by manipulating package

metadata [154], e.g., by indicating an unsatisfiable depen-

dency for newer versions of a legitimate package. Finally,

the involvement of systems and users in package distribution

results in attack vectors similar to previous ones. Attackers

can take the role of legitimate maintainers, thus, distribute as
maintainer, e.g., by taking over package maintainer accounts

(e.g., eslint [156]), the second most common attack vector

after typosquatting [19]. They can also compromise maintainer

systems, or directly inject into the hosting system, e.g., by

compromising administrator accounts [175] or exploiting vul-

nerabilities [160]–[162], [176].

Response to RQ1.1: Through the review of 183

scientific papers as well as grey literature, we identified

and generalized 107 unique attack vectors on OSS

supply chains, supported by 94 real-world attacks or

vulnerabilities.

B. Validation and Assessment by Domain Experts
The initial version of the taxonomy was validated and

assessed by 17 domain experts. Their feedback has been

retrofitted resulting in the taxonomy depicted in Figure 4.
Validation: This section reports expert feedback on the

comprehensiveness of attack vectors, and the correctness,

comprehensibility, and usefulness of the taxonomy.
Before having seen the taxonomy in its entirety, the tree-

testing required experts to assign attack vectors to the first level

nodes of the initial taxonomy. Over a total of 311 assignments

by all experts, 234 (75%) matched the structure of the initial

taxonomy, while 77 (25%) did not, which shows an overall

agreement on the structure.
Following, the experts were presented with the initial ver-

sion of the entire taxonomy, and asked to assess different

qualities using a Likert scale ranging from 1 (low) to 5 (high).
14 (82%) experts agreed to the overall structure with a rating

of 4 or 5, slightly higher compared to the results of the tree-

test. This could be due to some node names not being self-

explanatory enough when shown with too little context.
Experts were further asked to rate the correctness of the

taxonomy’s 1st-level nodes in regards to naming, tree location,

and sub-tree structure. All the first-level nodes received an

overall good agreement with naming, categorization, and sub-

tree structure, except Develop and Advertise Distinct Mali-
cious Package from Scratch. The latter only received neutral

feedback on its sub-tree, a light agreement with its categoriza-

tion, and a clear disagreement with its initial naming.
12 (71%) of the experts agreed with the completeness of

the attack tree.
Usefulness and Use-Cases: In this part of the questionnaire,

experts rated the usefulness and possible use cases of the

proposed taxonomy.
15 (88%) rated the usefulness of the taxonomy to under-

stand the attack surface of the OSS supply chain with a 4 or 5.

Fewer experts considered it being useful to understand attacker
tactics and techniques (12 (71%)) or attackers’ cost/benefits
considerations (5 (29%)).

Regarding the expert options about possible uses of the

proposed taxonomy, the Top-3 use-cases are threat modeling,

awareness and training and risk assessment. Another possible

use-case, though not included in the survey, is to scope

penetration tests.

C. Validation and Assessment by Developers
The initial version of the taxonomy has also been validated

and assessed by 134 software developers in regards to the

awareness of main attack vectors (1st-level taxonomy nodes),

whether those are mitigated (by themselves or their organiza-

tion), and – optionally – the understandability and utility of

the taxonomy.
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Awareness about Attack Vectors: The awareness of main

attack vectors ranged from 120 (90%) for Develop and Ad-
vertise Distinct Malicious Package from Scratch to 86 (64%)

for Inject During the Build of Legitimate Package.

For all but one vector, the majority of respondents answered

not to know whether they are protected. Only for Develop
and Advertise Distinct Malicious Package from Scratch, the

majority believes in being protected (52%). For both vectors

Inject During the Build and Distribute Malicious Version, 19

(14%) respondents were sure that no protection exists.

Taxonomy Understandability and Utility Assessment:
Among the 134 participants, 53 (40%) decided to perform

the optional assessment of the taxonomy’s understandability

and utility to understand the supply chain’s attack surface.

Considering a rating of 4 or 5, 41 (77%) found the taxonomy

understandable and 46 (87%) recognized it as a useful means

to create awareness.

Response to RQ1.2: The proposed taxonomy of at-

tacks on OSS supply chains takes the form of an attack

tree covering all 107 vectors identified beforehand.

Its validation by 17 domain experts and 134 software

developers showed overall agreement with structure

and naming, comprehensiveness, comprehensibility,

and suitability for use-cases like threat modeling,

awareness, training, or risk assessment.

V. SAFEGUARDS AND THEIR ASSESSMENTS

Subsection V-A starts with a short overview about safe-

guards against OSS supply chain attacks, which were identified

through literature review and generalized to become agnostic

of specific prg. languages or ecosystems. Subsections V-B and

V-C report the results of the two surveys conducted with

domain experts and software developers to validate and assess

the safeguards regarding different qualities, e.g., utility or cost.

A. List of Safeguards

In total, we identified 33 safeguards that partially or com-

pletely mitigate the before-mentioned attack vectors. Both

implementation and use of those safeguards can incur non-

negligible costs, also depending on the specifics of prg. lan-

guages and ecosystems at hand. Thus, the selection, combina-

tion and implementation of safeguards require careful planning

and design, to balance required security levels and costs.

The complete list of safeguards can be found in Table II

of Appendix A, including a classification after control type.

All safeguards are mapped to the vector(s) they mitigate,

some to the top-level goal due to (partially) addressing all

vectors (e.g., establishing a vetting process), others to more

specific subgoals. Some safeguards can be implemented by

one or more stakeholders, while others require the involvement

of multiple ones to be effective (e.g., signature creation and

verification).

Common Safeguards comprises 4 countermeasures that

require all stakeholders to become active, i.e., project main-

tainers, open-source consumers, and administrators (service

providers). For example, a detailed Software Bill of Materials

(SBOM) has to be produced and maintained by the project

maintainer [8], ideally using automated Software Composition

Analysis (SCA) tools. Following, the SBOM must be securely

hosted and distributed by package repositories, and carefully

checked by downstream users in regards to their security,

quality, and license requirements.

Safeguards for Project Maintainers and Administra-
tors comprises eight safeguards. Secure authentication, for

instance, suggests service providers to offer Multi-Factor

Authentication (MFA) or enforce strong password policies,

while project maintainers should follow authentication best-

practices, e.g., use MFA where available, avoid password

reuse, or protect sensitive tokens.

Safeguards for Project Maintainers includes seven coun-

termeasures. Generally, OSS projects use hosted, publicly ac-

cessible VCSs. Maintainers should then, e.g., conduct careful

merge request reviews or enable branch protection rules for

sensitive project branches to avoid malicious code contribu-

tions. As project builds may still happen on maintainers’ work-

stations, they are advised to use dedicated build services, esp.

ephemeral environments [9]. Additionally, they may isolate
build steps [123] such that they cannot tamper with the output

of other build steps.

Safeguards for Administrators and Consumers com-

prises five countermeasures. For example, both package repos-

itory administrators and consumers can opt for building pack-
ages directly from source code [177], rather than accepting

pre-built artifacts. If implemented by package repositories,

this would reduce the risk of subverted project builds. If

implemented by consumers, this would eliminate all risks

related to the compromise of 3rd-party build services and

package repositories, as they are taken out of the picture.

Safeguards for Consumers includes nine countermeasures

that may be employed by the downstream users. The con-

sumers of OSS packages may reduce the impact of malicious

code execution when consuming by isolating the code and/or
sandboxing it. Another example is the establishment of inter-
nal repository mirrors [178] of vetted components.

Response to RQ2.1: We identified 33 general safe-

guards to be used by the different stakeholders, mostly

detective or preventive ones, and mapped them to the

node(s) of the attack tree they mitigate partially or

fully.

B. Experts Validation and Assessment

This section presents the feedback of 17 experts regarding

the safeguards’ utility to mitigate risks, and their associated

costs for implementation and continued use.

In summary, almost all the safeguards received medium to

high utility ratings, while the cost ratings range from low (i.e.,

minimum mean value of 2.0) to very high (i.e., maximum

mean value of 4.8).

Table I provides all feedback collected for the 33 safeguards,

following a discussion of safeguards with the highest, re-
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spectively lowest Utility-to-Cost (U/C) ratios, and some other

interesting cases.

High U/C ratio. Both Protect production branch, Remove
un-used dependencies and Version pinning show the highest

U/C ratio, thus, are considered to be useful and cheap controls.

The use of Resolution Rules also shows a good U/C ratio,

even though one expert highlighted that ”very few projects”

use them, and that the implementation would require the

modification of all package managers. On average, Preventive
Squatting only received neutral ratings (3.1 for utility and 2.9

for cost) and also raised some concerns: two of the experts

highlighted that it could be good to ”try to prevent name

squatting, but hard to fully enforce” also due to legitimate

reasons for similar names (e.g., to help consumers identify

package relationships).

Low U/C ratio. Build Dependencies from Sources, report-

edly used by Google [177], received a very low utility rating

(mean and median of 3.0) and overall the lowest U/C ratio.

Considering that its use would prune the subtrees of both vec-

tors Inject During the Build and Distribute Malicious Version,

we expected a higher utility rating. One expert claimed that

”building from source only helps if someone scans and reviews

the code”. Possibly referring to flaky builds [179], another

expert highlighted that ”rebuilding software from source can

sometimes introduce problems”.

Merge Request Reviews received the highest average utility

rating (4.6), which could be because if malicious code is in-

jected into the sources, it is guaranteed to arrive at consumers,

no matter how they consume it.

Reproducible Builds received a very high utility rating (5)

from 10 participants (58.8%), but also a high-cost rating

(4 or 5) from 12 (70.6%). One expert commented that a

”reproducible build like used by Solarwinds now, is a good

measure against tampering with a single build system” and

another claimed this ”is going to be the single, biggest barrier”.

Scoped Packages, proposed as an effective safeguard against

Abuse of Dependency Resolution mechanisms [178], [180],

mostly received neutral ratings (3) for both utility and cost.

Response to RQ2.2: We have qualitatively assessed

the utility and costs of the 33 safeguards by surveying

17 experts. The three safeguards Protect production
branch, Remove un-used dependencies and Version
pinning showed the best U/C ratio while Build depen-
dencies from sources showed the worst.

C. Developers Validation and Assessment

In this optional part of the survey, developers were asked to

assess the usage and costs of a subset of safeguards that were

selected according to the stakeholders’ roles exercised in their

daily work (collected in the demographic part). Among the

total of 134 respondents, 30 assessed the Common Safeguards,

5 the Safeguards for Project Maintainers, 4 the Safeguards
for Maintainers and Administrators, 24 the Safeguards for
Administrators and Consumers, and 22 the Safeguards for
Consumers. Complete results are shown in Table I

Remove un-used dependencies is frequently used by devel-

opers, which contrasts with the observations of Soto-Valerio et

al. [181], who found that many Java projects had bloated (un-

used) dependencies. Other countermeasures that appear to be

widely used among the respondents are Version pinning and

Open-source vulnerability scanners, the latter of which does

not only address attacks, but also the use of dependencies with

known vulnerabilities.

Concerning the attack vector Create Name Confusion, where

70% of the developers claimed to be aware of the problem, we

can observe that corresponding safeguards Typo guard/Typo
detection and Preventive squatting the released package are

only used by a minority of respondents.

It is also noteworthy to mention that developers’ cost

ratings generally coincide with those of the domain expert.

Surprising exceptions are Application Security Testing and

Enstablish vetting process for Open-Source components hosted
in internal/public repositories, both having a median of 3 from

developers, compared to a median of 5 from experts.

Response to RQ2.3: 134 software developers provided

feedback on the use of safeguards. The three most-used

ones are Remove un-used dependencies, Version pin-
ning and Integrate Open-Source vulnerability scanner
into CI/CD pipeline.

VI. DISCUSSION

While the taxonomy presented in Section IV is largely

agnostic to ecosystems, this section discusses differences be-

tween ecosystems and highlights possible future research on

the basis of our work.

1) Differences between Ecosystems: As mentioned in Sec-

tion II-E, the attacker’s high-level goal is to inject malicious
code into open-source artifacts such that it is executed down-

stream. Several techniques to this end are indeed independent

of specific ecosystems/languages, e.g., Take-over Legitimate
Account or Become Maintainer.

Other attack vectors, however, are specific: Abuse Depen-
dency Resolution Mechanism attacks depend on the approach

and strategy used by the respective package manager to

resolve and download declared dependencies from internal and

external repositories. For instance, Maven, npm, pip, NuGet or

Composer were affected by the dependency confusion attack,

while Go and Cargo were not [180]. Several attacks below

Exploit Rendering Weakness depend on the interpretation and

visualization of (Unicode) characters by user interfaces and

compiler/interpreters [10]. Also name confusion attacks need

to consider ecosystem specificities, esp. Built-In Packages.

More differences exist when it comes to the execution or
trigger of malicious code, which is beyond the taxonomy’s

primary focus on code injection. For Python and Node.js,

this is commonly achieved through installation hooks, which

trigger the execution of code provided in the downloaded

package (e.g., in setup.py for Python or package.json
for JavaScript). A comparable feature is not present in most
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Protect production branch [85], [86] 4.2 4.0 2.0 2.0 2.10 Y N 1.8 2.0

Remove un-used dependencies [181] 4.3 5.0 2.1 2.0 2.05 Y N 2.0 2.0

Version pinning [15], [178], [180] 3.7 3.0 2.2 2.0 1.68 Y N 2.1 2.0

Dependency resolution rules 4.1 4.0 2.6 3.0 1.58 Y N 2.7 3.0

User account management [135] 3.9 4.0 2.6 3.0 1.50 Y N 2.3 2.5

Secure authentication (e.g., MFA, password recycle, ses-
sion timeout, token protection) [15], [66]

4.3 5.0 2.9 3.0 1.48 Y N 2.5 3.0

Use of security, quality and health metrics [40] 3.5 4.0 2.6 3.0 1.35 Y N 2.7 3.0

Typo guard/Typo detection [15], [182] 3.9 4.0 2.9 4.0 1.34 Y N 3.1 3.0

Use minimal set of trusted build dependencies in the
release job [123]

4.1 4.0 3.1 3.0 1.32 Y N 3.8 4.0

Integrity check of dependencies through cryptographic
hashes [9], [36], [83], [109], [131], [135], [138]

3.3 3.0 2.5 2.0 1.32 Y N 2.3 2.0

Maintain detailed SBOM [5], [8], [53], [183], [184] and
perform SCA [8], [31], [43], [48], [51], [53], [55], [56]

4.2 5.0 3.4 4.0 1.24 Y N 2.9 3.0

Ephemeral build environment [9], [123] 3.6 3.0 2.9 3.0 1.24 Y N 2.8 2.5

Prevent script execution 3.7 3.0 3.0 3.0 1.23 Y N 2.4 2.0

Pull/Merge request review [86] 4.6 5.0 3.8 4.0 1.21 Y N 3.6 4.0

Restrict access to system resources of code executed
during each build steps [42], [123], [185]

4.0 4.0 3.3 3.0 1.21 Y N 3.8 3.5

Code signing [47], [83], [109], [135], [138], [141], [155] 3.7 4.0 3.1 3.0 1.19 Y N 3.1 3.0

Integrate Open-Source vulnerability scanner into CI/CD
pipeline

3.8 4.0 3.3 3.0 1.15 Y N 3.1 3.0

Use of dedicated build service [9] 3.6 4.0 3.3 3.0 1.09 Y N 3.0 3.0

Preventive squatting the released packages 3.1 3.0 2.9 3.0 1.07 Y N 3.8 3.5

Audit, security assessment, vulnerability assessment, pen-
etration testing

4.3 4.0 4.1 4.0 1.05 Y N 3.8 3.5

Reproducible builds [121], [136], [186] 4.2 5.0 4.1 4.0 1.02 Y N 3.5 4.0

Isolation of build steps [123] 3.1 3.0 3.1 3.0 1.00 Y N 3.2 3.0

Scoped packages [178], [180] 2.9 3.0 2.9 3.0 1.00 Y N 2.8 2.0

Establish internal repository mirrors and reference one
private feed, not multiple [178]

3.6 3.0 3.7 4.0 0.97 Y N 2.7 3.0

Application Security Testing [34], [39], [41], [46], [55],
[56], [58], [66], [80], [122], [134], [187]

4.1 4.0 4.3 5.0 0.95 Y N 3.7 3.0

Establish vetting process for Open-Source components
hosted in internal/public repositories [15], [16], [32],
[134], [188]

4.1 4.0 4.3 5.0 0.95 Y N 3.8 3.5

Code isolation and sandboxing [42], [57], [185] 3.9 4.0 4.2 4.0 0.93 Y N 3.2 3.0

Runtime Application Self-Protection 3.7 4.0 4.2 4.0 0.88 Y N 3.8 4.0

Manual source code review [66] 4.1 4.0 4.8 5.0 0.85 Y N 4.4 5.0

Build dependencies from sources 3.0 3.0 4.1 4.0 0.73 Y N 3.8 4.0

TABLE I: Assessment of safeguards by 17 domain experts (left) and 134 developers (right). Utility and cost assessments were

given on a Likert scale, the numbers are shown with bar plots, from 1 (low) to 5 (high). The background of mean and median

values are determined by the intervals [1, 2.5] , (2.5, 3.5] and (3.5, 5.0] . Safeguards are shown in the order of the mean of

their Utility-to-Cost Ratio (U/C) (descending). Developer feedback on safeguard use was collected with yes/no questions, the

number of respective answers are shown using a bar plot.
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compiled languages, like Java or C/C++. In such cases, exe-

cution is achieved either at runtime, e.g., by embedding the

payload in a specific function or initializer, or by poisoning

test routines [19].

Differences also exist in regards to code obfuscation and
malware detection. In case of interpreted languages, down-

loaded packages contain the malware’s source code, which

makes it more accessible to analysts compared to compiled

languages. The presence of encoded or encrypted code in such

packages proofed being a good indicator of compromise [58],

as there are few legimitate use-cases for open-source packages.

Minification is one of them, however, matters primarily for

frontend JavaScript libraries. Indeed, many existing attacks did

not employ obfuscation or encryption [19] techniques. Still,

the quantity of open-source packages and versions makes man-

ual inspection very difficult, even if source code is accessible.

When it comes to compiled code, well-known techniques

like packing, dead-code insertion or subroutine reorder-

ing [189] make reverse engineering and analysis more com-

plex. It is also noteworthy that ecosystems for interpreted

languages ship compiled code. For instance, many Python

libraries for ML/AI use-cases include and wrap platform-

specific C/C++ binaries.

For what concerns safeguards, several of them are spe-

cific to selected package managers, namely Scoped packages
(Node.js) and Prevent script execution (Python and Node.js).

All others are relevant no matter the ecosystem, however,

control implementations and technology choices differ, e.g., in

case of Application Security Testing. Duan et al. [15] present

a comparative framework for security features of package

repositories (exemplified with PyPI, npm and RubyGems).

2) Benefits of the Taxonomy for Future Research and Open
Challenges: Our work systematizes knowledge about OSS

supply chain security by abstracting, contextualizing and clas-

sifying existing works. The proposed taxonomy can benefit

future research by offering a central point of reference and a

common terminology. The comprehensive list of attack vectors

and safeguards can support assessing the security level of

open-source projects, e.g., to conduct comparative empiric

studies across projects and ecosystems and over time.

An open challenge in OSS supply chain attacks is the

detection of malicious code. The availability of source code

in ecosystems for interpreted languages suggests that malware

analysis is more straight-forward. Still, recent publications

focus on those ecosystems, esp. JavaScript and Python [15],

[16], [57], [58], [74], partly due to their popularity, but also

because existing malware analysis techniques cannot be easily

applied. More subtle attacks, such as intentional insertion

of vulnerabilities, complicate detection since they require

analysis of the context of the change to distinguish it from an

accidentally introduced vulnerability [80]. Additionally, code

generation and the difficulty in identifying VCS commits that

correspond to pre-built components, as highlighted in [132],

[133], make malware analyis of source code difficult. The

safeguard Reproducible builds [121], [136], [186] addresses

this problem, however, it is not commonly applied, consid-

ered costly (cf. Table I) and more complex projects require

significant implementation efforts.

VII. USER SURVEY DEMOGRAPHICS

This section provides demographic information about the

respondents of the two online surveys. In summary, the re-

spondents to the expert survey meet the requirement of being

experts in the domain and participate actively in OSS projects.

The respondents to the developer survey regularly consume

OSS and have little knowledge of supply chain security.
Domain Experts: 17 respondents participated in the online

survey designed for experts in the domain of software supply
chain security. According to the self-assessment of their skills,

12 respondents consider themselves knowledgeable in the
domain of supply chain security, but also in software security

(14) and development (12). Considering their acquaintance

with 11 popular languages [190], the respondents cover 9 out

of them, whereby Python, Java and JavaScript are covered

best, while nobody had a background in .NET and Objective-

C. 14 out of the 17 respondents are active participants in OSS

projects, and were asked about their respective role (multiple

choice): all 14 are contributors, 7 are project maintainers, and

3 exercise other roles. 9 experts work in the private sector,

compared to 5 working in the public sector (e.g., government,

academia) and 3 in the not-for-profit sector. They cover the

industry sectors information industry (8), computer industry

(2), telecommunications (2), entertainment industry (1), mass

media (1), defense (1) and others (2).
Developers: 134 respondents participated in the online

survey designed for software developers, who were assumed

to exercise the role of downstream consumers in OSS supply

chains. This assumption was confirmed given that 121 (90%)

responded to using open-source components in their daily job.

Moreover, 37 (28%) actively participate in OSS projects: 31

as contributors and 22 as maintainers (multiple choice). 74

are also maintainers of code repositories, and 21 administer

package repositories. The self-assessment of their skills shows

that they are knowledgeable in software development (113),

and less so in supply chain security (22) and software security

(44). They cover all of the 11 programming languages (multi-

ple choice), whereby Java, JavaScript and Python are the most

popular ones. The majority of the respondents (120) work in

the private sector. In terms of industry sectors, computer and

information industry (55 and 54) outweigh other sectors.

VIII. RELATED WORKS

In the following, we distinguish existing works related to

specific aspects of OSS supply chains, e.g., technologies,

systems, or stakeholder interactions, from more general ones

covering the entire supply chain.
Specific Works. Giovanini et al. [167] leverage patterns

in team dynamics to predict the susceptibility of OSS de-

velopment teams to social engineering attacks. Gonzalez et

al. [80] describe attacks aiming to inject malicious code

in VCSs via commits. They propose a rule-based anomaly

detector that uses commit logs and repository metadata to

detect potentially malicious commits. In the same direction,

Goyal et al. [191] analyze collaborative OSS development and

highlight the problem of overwhelming information that po-

tentially results in maintainers accepting malicious merge re-

quests. Wheeler [192] describes the problem of code injection
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into software by subverted compilers, and proposes Diverse

Double-Compiling (DDC) to detect such attack. Within this

context, Lamb et al. [186] propose an approach to determine

the correspondence between binaries and the related source

code through bit-for-bit checks of build processes, while Ly et

al. [132] analyzed the discrepancies between Python code in a

projects’ VCS and its distributed artifacts. Gruhn et al. [123]

analyze the security of CI systems, and identify web User

Interface (UI)s and build processes as the main sources of ma-

licious data. They propose a secure build server architecture,

based on the isolation of build processes through virtualization.

Multiple works address common threats to package managers

of different ecosystems. Cappos et al. [14], [154] identify

possible attack vectors related to a lack of proper signature

management at the level of packages and their metadata,

some of which we considered below Distribute malicious
version of legitimate package. Zimmerman et al. [16] analyze

security threats and associated risks in the npm ecosystem,

and define several metrics describing the downstream reach

of packages and maintainers, which allows identifying critical

elements. Inversely, they also measure the number of implicitly

trusted upstream packages and maintainers. Bagmar et al. [74]

performed similar work for the PyPI ecosystem, and several

of their vectors are subsumed below Create name confusion
with legit. package. Duan et al. [15] propose a framework to

qualitatively assess functional and security aspects of package

managers for interpreted languages (i.e., Python, JavaScript,

and Ruby). They provide an overview of stakeholders (and

their relationships) in those package manager ecosystems, but

do not specifically cover VCS and build systems. Also Kaplan

et al. [66] present the state of the art of threats in package

repositories and describe – also experimental – countermea-

sures from the scientific literature.

General works. Ohm et al. [19] manually inspect malicious

npm, PyPi, and Ruby packages. They propose an attack tree

– based on a graph of Pfretzschner et al. [46] – describing

how to inject malicious code into dependency trees. The

attack tree proposed in Section IV follows a more rigorous

structure (degrees of interference with existing packages,

supply chain stages, stakeholders and systems involved) and

our SLR resulted in the addition of 89 attack vectors. Our

results have been validated through two user surveys. Du et

al. [184] describe a wide range of high-level software supply

chain risks, both external (e.g., natural disaster, political factor)

and internal ones (e.g., participants, software components).

ENISA [193] proposes a taxonomy of supply chain attacks

describing the techniques used by attackers and the targeted

assets, both from the supplier and customer perspective. How-

ever, they only mention few high-level techniques. Torres-

Arias et al. [83] propose in-toto, a framework based on the

concepts of delegations and roles to cryptographically ensure

the integrity of software supply chains through an end-to-end

verification of each step and actors involved. Samuel et al.

[155] propose The Update Framework (TUF) to overcome in-

toto’s main limitations regarding secure distribution, revoca-

tion and replacement of keys.

IX. THREATS TO VALIDITY

The taxonomy was modeled using the semantics of attack

trees and several of its nodes reflect the characterizing stages

of OSS supply chains, with code from project contributors

and maintainers flowing to downstream consumers. Though

its comprehensiveness, comprehensibility, and usefulness have

been positively assessed by the survey participants, the taxon-

omy reflects the current state of the art. As the supply chain

technologies evolve, it is expected that the proposed attack

tree will evolve too.

We systematically reviewed the literature and continuously

monitor aggregators of security news to create a comprehen-

sive list of attack vectors, and collected feedback from domain

experts to assess its completeness. Still, the complexity of OSS

supply chains makes it very likely that new attack vectors and

techniques will be discovered. The quality of the taxonomy

will correspond to the degree of changes required to reflect

such new attacks.

The feedback collected from survey participants could have

been biased if we only considered experts that we directly

know. Instead, thanks to the snowball sampling we have

reached also people outside of our network. Considering

authors of relevant scientific works, experts from academia and

industry, all working in the specific area of software supply-

chain security, allowed us to reach the intended audience

(cf. Section VII): the 17 respondents of the expert survey

were knowledgeable in supply chain security and actively

participate in OSS projects, the 134 participants of the de-

veloper survey have knowledge in software development and

use OSS regularly, and both groups cover a diverse range of

prg. languages, incl. those subject to frequent attacks.

X. CONCLUSION

As validated by domain experts, the proposed taxonomy

of attacks on OSS supply chains is comprehensive, compre-

hensible, and serves different use-cases. It can benefit future

research serving as a central reference point and setting a

common terminology.

The listing of safeguards and their mapping to attack tree

nodes helps to determine the exposure of given stakeholders to

supply chain attacks. Their assessment in terms of utility and

costs can serve to optimize the spending of limited security

budgets. Future empiric studies may investigate the prevalence

of the identified countermeasures, e.g. their use by given open-

source projects. On our side, we aim at developing techniques

for the detection of malicious code in compiled Java open-

source components. Going forward, to raise awareness for

threats to OSS supply chains, we will publish the interactive

visualization of the taxonomy online. References to literature

and real-world incidents will be kept up-to-date by using the

open-source approach to help the taxonomy itself stay relevant.

Finally, we would also like to put the taxonomy into practice

for other use-cases, esp. risk assessment.
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[82] C. Paule, T. F. Düllmann, and A. Van Hoorn, “Vulnerabilities in con-
tinuous delivery pipelines? a case study,” in 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), pp. 102–
108, 2019.

[83] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and
J. Cappos, “in-toto: Providing farm-to-table guarantees for bits and
bytes,” in 28th USENIX Security Symposium (USENIX Security 19),
(Santa Clara, CA), pp. 1393–1410, USENIX Association, Aug. 2019.

[84] A. Fass, M. Backes, and B. Stock, “Hidenoseek: Camouflaging ma-
licious javascript in benign asts,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’19, (New York, NY, USA), p. 1899–1913, Association for Computing
Machinery, 2019.

[85] S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos, “On
omitting commits and committing omissions: Preventing git metadata
tampering that (re)introduces software vulnerabilities,” in 25th USENIX
Security Symposium (USENIX Security 16), (Austin, TX), pp. 379–395,
USENIX Association, Aug. 2016.
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APPENDIX A

SAFEGUARDS AGAINST OSS SUPPLY CHAIN ATTACKS

Table II shows the identified safeguards mitigating attacks

on OSS Supply Chain.

APPENDIX B

SCIENTIFIC AND GREY LITERATURE RESOURCES

The four digital libraries queried during the SLR are:

Google Scholar6, arXiv7, IEEExplore8 and ACM Digital Li-

brary9. The main sources used during the grey literature review

are the following:

• IQT Lab’s Software Supply Chain Compromises

dataset 10;

6https://scholar.google.com/
7https://arxiv.org/
8https://ieeexplore.ieee.org/
9https://dl.acm.org/
10https://github.com/IQTLabs/software-supply-chain-compromises
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Control Type Stakeholders Involved
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Attack-Vector Addressed

Maintain detailed SBOM and perform SCA � � • • • AV-000
Code signing � • • • AV-200, AV-500
Use of security, quality and health metrics � � • • • AV-000
Reproducible builds � • • • AV-400, AV-500
Secure authentication (e.g., MFA, password re-
cycle, session timeout, token protection)

� • • AV-*00 → AV-602

User account management � � • • AV-302,AV-402,AV-504,AV-600
Audit � � • • AV-000
Security assessment � • • AV-000
Vulnerability assessment � • • AV-000
Penetration testing � • • AV-000
Scoped packages � • • AV-509
Preventive squatting the released packages � • • AV-200
Pull/Merge request review � • AV-301, AV-302
Protect production branch � � • AV-301, AV-302
Isolation of build steps � • AV-400
Ephemeral build environment � • AV-400
Use minimal set of trusted build dependencies
in the release job

� • AV-400

Restrict access to system resources of code
executed during each build steps

� • AV-400

Use of dedicated build service � • AV-400 → AV-700
Manual source code review � • • AV-300
Application Security Testing � • • AV-000
Build dependencies from sources � • • AV-400, AV-500
Typo guard/Typo detection � � • • AV-200
Establish vetting process for Open-Source com-
ponents hosted in internal/public repositories

� • • AV-000

Runtime Application Self-Protection (RASP) � � • AV-000
Remove un-used dependencies � • AV-001
Prevent script execution � • AV-000
Code isolation and sandboxing � • AV-000
Version pinning � • AV-001
Dependency resolution rules � • AV-501, AV-508, AV-509
Establish internal repository mirrors and refer-
ence one private feed, not multiple

� • AV-501,AV-502, AV-504, AV-505

Integrate Open-Source vulnerability scanner
into CI/CD pipeline

� • AV-000

Integrity check of dependencies through cryp-
tographic hashes

� • AV-400, AV-500

TABLE II: Safeguards against OSS supply chain attacks, incl. control type, stakeholder(s) involved in their implementation,

and a mapping to mitigated attack vectors (cf. Figure 4 to resolve their identifiers).

• Backstabber’s Knife Dataset 11 [19];

• Whitepapers from Microsoft [178] and Google [194];

• Whitepapers of projects for securing the software supply

chain, like Supply-chain Levels for Software Artifacts

(SLSA) [9], sigstore 12, TUF 13, in-toto 14 and OSSF

Scorecard 15;

• News aggregator (e.g., The Hacker News 16, Bleeping-

computer 17, heise Security 18);

• Blogs of package repositories and security vendors (e.g.,

11https://dasfreak.github.io/Backstabbers-Knife-Collection/
12https://www.sigstore.dev/
13https://theupdateframework.io
14https://in-toto.io
15https://github.com/ossf/scorecard
16https://thehackernews.com
17https://www.bleepingcomputer.com
18hhttps://www.heise.de/security/

Snyk 19, Sonatype 20) and security researchers;

• Keynotes from cyber-security conferences (e.g., Black-

hat [147]);

• MITRE’s Common Attack Pattern Enumeration and Clas-

sification (CAPEC)21;

• MITRE’s ATT&CK22.

19https://snyk.io/blog/
20https://blog.sonatype.com
21https://capec.mitre.org/
22https://attack.mitre.org
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