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Abstract—Great advances in deep neural networks (DNNs)
have led to state-of-the-art performance on a wide range of tasks.
However, recent studies have shown that DNNs are vulnerable to
adversarial attacks, which have brought great concerns when
deploying these models to safety-critical applications such as
autonomous driving. Different defense approaches have been pro-
posed against adversarial attacks, including: a) empirical defenses,
which can usually be adaptively attacked again without providing
robustness certification; and b) certifiably robust approaches,
which consist of robustness verification providing the lower bound
of robust accuracy against any attacks under certain conditions
and corresponding robust training approaches. In this paper, we
systematize certifiably robust approaches and related practical
and theoretical implications and findings. We also provide the
first comprehensive benchmark on existing robustness verification
and training approaches on different datasets. In particular, we
1) provide a taxonomy for the robustness verification and training
approaches, as well as summarize the methodologies for repre-
sentative algorithms, 2) reveal the characteristics, strengths, lim-
itations, and fundamental connections among these approaches,
3) discuss current research progresses, theoretical barriers, main
challenges, and future directions for certifiably robust approaches
for DNNs, and 4) provide an open-sourced unified platform to
evaluate 20+ representative certifiably robust approaches.

Index Terms—certified robustness, neural networks, verifica-
tion

I. INTRODUCTION

Machine learning (ML) techniques, especially deep neural
networks (DNNs), have been widely adopted in various
applications, such as image classification [1]-[3] and natural
language processing [4]-[6]. However, despite their wide ap-
plications, both traditional ML models [7]-[9] and DNNs [10],
[11] are shown vulnerable to adversarial evasion attacks
where carefully crafted adversarial examples — inputs with
adversarial perturbations — could mislead ML models to make
arbitrarily incorrect predictions [12], [13]. The existence of
adversarial attacks leads to great safety concerns for DNN-
based applications, especially in safety-critical scenarios such
as autonomous driving [14], [15].

To defend against such attacks, there are several works
proposed to empirically improve the robustness of DNNs [8],
[16]-[20]. However, many of such defenses can be adaptively
attacked again by sophisticated attackers [12], [21]. The ever-
lasting competition between attackers and defenders motivates
studies on the certifiably robust approaches for DNNs, which
include both robustness verification and robust training
approaches [22]-[28]. The robustness verification approaches
aim to evaluate DNN robustness by providing a theoretically

certified lower bound of robustness under certain perturbation
constraints; the corresponding robust training approaches aim
to train DNNs to improve such lower bound.

In this paper, we aim to provide a taxonomy for existing
certifiably robust approaches (i.e., robustness verification and
robust training approaches) from the first principle, as well as a
comprehensive benchmark on different datasets and models to
enable the quantitative comparison for the community. Existing
surveys discuss general attacks and defenses for traditional ML
models [29]-[32] and DNNs [33]-[36], but they mainly focus
on empirical defenses without guarantees or some specific
verification approaches. To the best of our knowledge, this is
the first systematic taxonomy for the fast-developing certifiably
robust approaches on DNNs against evasion attacks. The
taxonomy reveals characteristics, strengths, limitations, and
fundamental connections among these approaches.

To provide quantitative analysis for existing certifiably
robust approaches, we develop an open-source unified toolbox
for representative verification and training approaches. We
benchmark over 20 verification and robust training approaches.
As far as we know, it is the first large-scale benchmark for
the certified robustness of DNNs. Based on the taxonomy,
analysis, and benchmark of existing approaches, we further
provide discussion and analysis on current research progresses,
theoretical barriers, and several promising future directions.
We also outline how to extend these approaches to alternative
threat models and system models along with their applications.

This SoK is intended for both ML experts, who aim to
develop and improve certifiably robust ML approaches, as
well as practical users with a focus on applying certifiably
robust approaches to different real-world ML applications.
For ML experts, this SoK provides (1) systematic taxonomy
to contextualize their works, (2) detailed explanation and
analysis/comparison for representative certifiably robust ap-
proaches, and (3) discussion of research implications, including
limitations, challenges, and future directions. For practical
users, the SoK provides (1) formal problem definition of
robustness verification, (2) comprehensive benchmark and
reference implementations of representative approaches to ease
the deployment, and (3) practical implications on how to select
the most suitable defenses and how to evaluate existing defenses
using certifiably robust approaches.

In taxonomizing and analyzing certifiably robust approaches
for DNNs, we make the following contributions:

« We provide a general problem definition for the robustness
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Fig. 1.
verification problem and the first systematic taxonomy of
certifiably robust approaches for DNNs (Sec. III), including
the robustness verification approaches (Sec. IV), and robust
training approaches (Sec. V).

« We conduct extensive quantitative comparisons'for different
state-of-the-art approaches on robustness verification and
robust training, leading to a benchmark and leaderboard, from
which we summarize practical implications for deploying
certifiably robust approaches (Sec. VI).

« We provide an open-source unified evaluation toolbox for
over 20 verification and training approaches, which we
believe will facilitate the development and evaluation of
research on certified robustness for DNNG.!

o We discuss and analyze current research progresses, theoret-
ical barriers, challenges, extensions, and further provide sev-
eral potential future research directions (Secs. VII and VIII).

II. PRELIMINARIES AND PROBLEM SETUP

In this section, we provide the preliminaries and a general
problem definition for robustness verification. We denote [n]
as set {1, 2, , n}. To represent the region of adversarially
perturbed input, when measured by ¢, norm (p € Ny U{+oc})
we use B, ((x¢) to denote the perturbed input which is drawn
from the region centered at zo with e radius, i.e., By (o) 1=
{z : || — zol|p < €}, where € is called perturbation radius.

A. System Model

We focus on the certified robustness of DNNs for classifi-
cation tasks for brevity and ease of exposition. Extensions to
other system models and other tasks are discussed in Sec. VIL

A (classification) DNN model fy is formulated as a function:
X — RY, where the input data © ~ D is in a bounded n-
dimensional subspace X’ C [0, 1]™, and the model provides con-
fidence scores for all C classes. Fy(z) := arg max;c(c) fo()i
is the predicted class of model fy given input x. 6 is the set
of trainable parameters for fy. For brevity, we may omit 6
when there is no ambiguity. There are many different DNN
architectures. One common system model is feed-forward
ReLU networks as defined in Def. 1.

Definition 1 (Feed-Forward ReLU Networks). An [-layer feed-
forward ReLU network fy is defined as such:

The benchmark website with open-source toolbox, including full results
are available at https://sokcertifiedrobustness.github.io.
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z1 = x,

Ziy1 1= Wiz + b, fori=1,2,...,1—1 )

z; := ReLU(%), fori=2,...,1

f&(x) = Zi,
where ReLU(z, 0) = max{z,0}. Each z; and %; is a vector
in R™. In particular, n1 = n and n; = C. The trainable
parameters 0 := {W; b, - i € [l — 1]}.

In Table I, the “System Model” column lists some other
system models which we will define when illustrating their
corresponding verification approaches in Sec. IV.

B. Threat Model

Existing studies on certified robustness [18], [22], [27],
[37], [38] mainly aim to defend against white-box evasion
attacks, which indicate the strongest adversaries who have
full knowledge of the target model, including its parameters
and architecture. In particular, the adversary would carefully
craft a bounded perturbation to the original input, generating
an adversarial example [11] to fool the model into making
incorrect predictions. Formally, we define (£, €)-adversary.

Definition 2 ((¢,, €)-Adversary). For given input (xo,%o),
where xg € X is the input instance and yo € [C] is its
true label, the ({,, €)-adversary will generate a perturbed
input © € By ((x¢), such that Fy(x) # yo. When there is no
ambiguity, we will call it ¢, adversary.

We focus on certifiably robust approaches against (£, €)-
adversary, since approaches for this adversary are well-
developed, and approaches for other threat models can be
extended from those for (¢, €)-adversary. We will discuss other
threat models in Sec. VII. The above definition conforms to
untargeted attack whose goal is to deviate the model prediction
from the ground truth. The targeted attack which aims to
mislead the model to output a specific label 3/, can be defined
similarly. The literature also refers to an (¢,, ¢)-adversary
as an {,-bounded attack (bounded by e€). To the best of
our knowledge, existing ¢,-bounded attacks only consider
p = 1,2,00. The inputs generated by these adversaries are
within e distance to clean input xy measured by ¢; norm (i.e.,
Matthattan distance), 5 norm (i.e., Euclidean distance), and
ls norm (i.e., maximum difference among all dimensions)
respectively. We illustrate the region from which the attacker
picks the perturbed input in Fig. 5 in App. B-A. For 2D input,
the region shapes are diamond, circle, and square for ¢, /o,
and /., adversaries respectively.
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C. Robustness Verification and Robust Training

Robustness verification. A robustness verification approach
certifies the lower bound of model’s performance against any
adversary under certain constraints, e.g., {,-bounded attack.
We can categorize the verification approaches into complete
verification and incomplete verification. When the verification
approach outputs “not verified” for a given x, if it is guaranteed
that an adversarial example x around x( exists we call it
complete verification; and otherwise incomplete verification.
We can also categorize the verification approaches into
deterministic verification and probabilistic verification. When
the given input is non-robust against the attack, deterministic
verification is guaranteed to output “not verified”; and the
probabilistic verification is guaranteed to output “not verified”
with a certain probability (e.g., 99.9%) where the randomness
is independent of the input. Formal definitions are as follows.

Definition 3 (Robustness Verification). An algorithm A is
called a robustness verification, if for any (zo,yo), as long
as there exists v € B, ((x) with Fp(z) # yo (adversarial
example), A(f9, xo, yo, €) = false (deterministic verification)
or Pr[A(fs, 0, yo, €) = false] > 1 — « (probabilistic
verification), where « is a pre-defined small threshold. If
A(fo, 0, y0,€) = true, we call A provides robustness cer-
tification for model fy on (xo,y0) against (£p, €)-adversary.
Whenever A( fo, xo, Yo, €) = false, if there exists x € B, ¢(x¢)
with Fy(x) # yo, A is called complete verification, otherwise
incomplete verification.

If we view “certifying a truly robust instance” as the true
positive, then a robustness verification approach produces false
positives with small (probabilistic) or zero (deterministic) prob-
ability, and complete verification produces no false negatives.
If the verification cannot certify an instance, it is possible that
either the instance is not robust or the verification approach is
too loose to certify it. We can also view robustness verification
from optimization perspective.

Problem 1 (Robustness Verification as Optimization). Given a
neural network fg: X — R, input instance zo € X, ground-
truth label yo € [C), any other label y' € [C] and the radius
€ > 0, we define the following optimization problem:

M(yo,y') = minimize, fo(x)y, — fo(z)y st x € By (x0).

If M(yo,y") > 0,Vy' € [C]\ {yo}, fo is certifiably robust at
xo within radius € w.rt. £, norm.

Intuitively, Problem 1 searches for the minimum margin
between the model confidence for the true class yp and any
other class y'. For any y' # yo, if we can certify M(yo,y’) > 0,
the margin fy(x),, — fo(x), is always positive. Since the
model will predict the class with the highest confidence, this
means for any possible perturbed input x € B, .(zo), the
predicted class is always yg, and therefore the robustness is
certified. Fig. 1b illustrates this process.

The robustness verification then boils down to deciding
whether M (yo,y’) > 0. If a procedure exactly solves Prob-
lem 1, the corresponding verification approach is complete. If
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Fig. 2. Different approaches for evaluating and improving DNN robustness
against evasion attacks.
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a procedure conservatively provides a lower bound of M, the
corresponding verification approach is usually incomplete.

Although complete verification sounds attractive, it is NP-
Complete [23], [39]. This intrinsic barrier, which we identify
as scalability challenge, impedes complete verification ap-
proaches from scaling up to common DNN sizes. To overcome
this scalability challenge, incomplete verification is studied,
aiming to solve the relaxed problem, i.e., computing the
lower bound of M which is more tractable. However, the
relaxations in existing approaches are typically too loose,
which induces another problem identified as the tightness
challenge. For example, the widely-used linear relaxations
are shown significantly looser than complete verification in
practice [40]. Theoretically, if complete verification can certify
robustness radius €g, unless NP = P, there is no polynomial-
time verification that can guarantee a constant fraction between
its certified robustness radius and € [39]. The trade-off between
scalability and tightness, i.e., either scalability or tightness can
be achieved but not both, constitutes the main obstacle for
robustness verification.

Robust training. Given the scalability and tightness chal-
lenges, vanilla DNNs are challenging to verify, where verifica-
tion approaches either need a long running time or output
trivial bounds. To enhance the certifiability, many robust
training approaches are proposed, which are typically related
to or derived from corresponding verification by optimizing
verification-inspired regularization terms or injecting specific
data augmentation during training. In practice, after robust
training, the model usually achieves high certified robustness.
Thus, robust training is a strong complement to robustness
verification approaches.

Relationship with empirical attacks and defenses. Towards
evaluating and improving DNN robustness, another active line
of research is attacks and empirical defenses. Strong white-
box attacks, such as CW attack [103], PGD attack [18], and
AutoAttack [104], are widely used to evaluate DNN robust-
ness (e.g., [105], [106]). To improve model robustness against
these attacks, many empirical defenses are proposed, such as
adversarial training [18], [107]-[109] and TRADES [106]. As
illustrated in Fig. 2, both attacks and verification approaches can
be used to evaluate DNN robustness, but verification approaches
can provide robustness guarantees against any possible future
attacks; both empirical defenses and robust training approaches
can improve DNN robustness, but empirical defenses aim to
improve robustness against existing attacks and robust training
approaches aim to improve robustness guarantees. We note that:
(1) The strongest attack (which always discovers adversarial
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TABLE I
PROPERTIES AND REFERENCES OF ROBUSTNESS VERIFICATION APPROACHES. NOTATIONS ARE EXPLAINED IN SEC. III.

Ii ::;ls;zi D;S::;;H::S:/ System Model Robustness Verification Approaches [OOSUPPCZM épil (Scale up lo)Scalabll%umplexity) Tightness References
Solver-Based SMT-Based v v v MNIST 0(21“’) Complete [41], [42]
for Feed- MILP-Based v CIFAR-10 O(2') Complete [43]-[46]
Complete  Deterministic Forward Extended Simplex Method v MNIST 0(27) Complete [23], [47]
ReLU Nets o [26], [37], [48]-[54]
Branch-and-Bound v v CIFAR-10 o(2'w) Complete [551-[60]
Linear Programming (LP) v ) ) CIFAR-10 O(poly(l,w)) T2 391, [40]
Interval v (v')) (v) Tiny ImageNet O(lw?) Ty [61]
Linear Linear Polyhedra v (v') (v) Tiny ImageNet O(lw?) Ty [38], [39]. [62]-[65]
for General Relaxation Inequality Zonotope M (v) (¥) Tiny ImageNet O(lw?) Ts 25], [66]-[68
L DNNs! Duality v (v) (¥) Tiny ImageNet O(lw?) Ty 271, [691-[71
Deterministic Multi-Neuron Relaxation v V) ) CIFAR-10 O(lw?) - O(2')6 T 241, [72)-[74
Semidefinite Programming (SDP) v CIFAR-10 O(poly(l,w)) Te [751-179]
. ! Lipschitz General Lipschitz v Tiny ImageNet O(lw?) T3 [11], [39], [80]-[84]
Incomplete " for Lip-Bounded Nets ps Smooth Layers M v Tiny ImageNet O(lw?) 3 [851-[891
for Non-ReLU Nets Curvature v CIFAR-10 O(lw?) 1 90
for Smoothed DNNs  Zeroth Order Lipschitz v ImageNet O(Slw?) 5 91
Differential Privacy Inspired v v ImageNet O(Slw?) STy 92
Divergence Based v v ImageNet O(Slw?) ST» (93], [94]
Probabilistic for Smoothed DNNs Zeroth Order Neyman Pcarson( v ImageNet O(Slw?) ST? [22]
Level-Set Analysis W) v v ImageNet O(Slw?) ST [28], [95], [96]
Lipschitz W) v ImageNet O(Slw?) STs [971, [98]
First Order W) v v ImageNet O(Slw?) STy [99], [100]

1. Typical approaches mainly support feed-forward ReLU networks, but extensions to general DNNs are available [38], [101], [102], which are discussed in Sec. VIIL.
. Tightness depends on intermediate layer bounds. If they share the same intermediate layer bounds, the tightness order is Zonotope < Polyhedra = Duality < LP [40].
. Lipschitz bound is loose for typical DNNs, but can be tight for specially regularized DNNs which have small Lipschitz bounds.

. The approach is designed for some specific smoothing distributions that are not supported by other smoothed DNN oriented approaches.

2
3
4. Only available for networks whose activation functions have nonzero second-order derivatives, which exclude ReLU networks. Thus, tightness is incomparable with others.
5
6

. Tunable time complexity dependent on the upper limit of number of linear constraints.
example if exists) is the strongest verification (complete
verification). For robustness evaluation, attack and verification
can be viewed as approaching from two sides (over-estimation
and under-estimation) to the same goal (precise evaluation).
(2) Complete verification approaches can be used to evaluate
and compare empirical defenses on small models (not on
large models due to scalability challenges). In practice, models
trained with strong empirical defenses can be certified to have
high robustness by complete verification [58]. In contrast,
most incomplete verification cannot certify high robustness
for empirically defended models. More discussion is in Sec. V.

III. TAXONOMY OF CERTIFIABLY ROBUST APPROACHES

In this section, we provide a comprehensive taxonomy
of existing robustness verification and robust training ap-
proaches (Fig. 3), and characterize their properties (Table I).
Taxonomy of robustness verification and robust training.
In Fig. 3, we present a taxonomy of existing robustness
verification and robust training approaches. In the taxonomy, the

first-level is “complete vs. incomplete”, and the second-level
is “deterministic vs. probabilistic”. These concepts are as
defined in Sec. II-A. Note that there is no complete and
probabilistic verification approach yet. In the third-level, we
categorize verification approaches based on the system model.
Under the third level, we categorize verification approaches
by their core methodologies. We will illustrate verification
approaches in detail in Sec. IV. The robust training approaches
are shown in orange. Based on their core methodologies, there
are three categories: regularization-based, relaxation-based,
and augmentation-based approaches. We will illustrate robust
training approaches in detail in Sec. V.

Properties of verification approaches. In Table I, we
summarize the key properties of each verification approach,
including the system model, the supported ¢, adversary types,
scalability, and its verification tightness.

For the supported ¢, in Table I, “v"” means well-supported
¢, adversaries, “(v)” means supported adversaries but the
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verification is not as tight as others, and empty means
unsupported adversaries. To measure the scalability, we use
“the largest dataset (in terms of input dimension) that has been
demonstrated feasible to certify by existing work using the
corresponding verification approach under radius € > 1/255”
as the criterion. The threshold 1/255 is the smallest considered
€ we have seen in the literature for these image datasets.
The dataset effectively measures scalability. For example, the
approach scaling up to ImageNet is more scalable than the
one to MNIST. We also provide a quantitative measure: the
best known time complexity for verifying an arbitrary input,
given an arbitrary network with depth /, width w in terms
of neurons, and sampling number S (for smoothed DNNss).
For tightness, the tightest verification approaches are complete
ones. For incomplete approaches, we rank the tightness by our
benchmark results shown in Sec. VI, or empirical observations
and theoretical results from published papers. General DNNs
are ranked by 7, and smoothed DNNs are ranked by ST,
where larger n means tighter approaches. 7,,- and ST},-denoted
approaches are incomparable since their system models are
different. More discussion on the scalability and tightness
measurements are in App. A.

From Table I, we observe that for general DNNs, complete
or tight deterministic approaches (> 75) can only handle
CIFAR-10-sized models, and only looser verification can go
beyond this scale. For large ImageNet-sized models, verification
for general DNNs cannot support such a scale yet; only
approaches for smoothed DNNs can, while they cannot provide
nontrivial verification against /., adversary yet. This reflects
the fundamental trade-off between scalability and tightness
challenge. We will discuss this further in Sec. VI.

IV. ROBUSTNESS VERIFICATION APPROACHES

We illustrate representative verification approaches in
this section: complete verification (Sec. IV-A); incomplete
verification, including linear relaxation-based (Sec. IV-B),
SDP (Sec. IV-C), Lipschitz-/curvature-based (Sec. IV-D), and
probabilistic approaches (Sec. IV-E). We conclude each subsec-
tion by highlighting the implications. We summarize practical
and research implications in Secs. VI-C and VIII respectively.

A. Complete Verification

Here we illustrate complete robustness verification ap-
proaches, which usually consider /., adversary and support
feed-forward ReLLU networks (see Def. 1). All these complete
verification approaches have worst-case exponential time com-
plexity due to the hardness of verification [23], [39], but some
of them perform well in practice, being able to verify DNNs
with several thousands of neurons [46], [58]. Many complete
verification approaches rely on the neuron activation patterns,
so below we first categorize neurons by their activation patterns.

Definition 4 (Stable and Unstable Neurons). Let z = ReLU(2)
be a neuron in a feed-forward ReLU network. For a given
input x, if the input Z < 0, we call z inactive, otherwise active.
Let S be an input region, for any x € S, if we can certify
that input 2 is always > 0 or < 0, we call neuron z stable in
region S; otherwise we call z unstable.

Remark. When a neuron z is stable, it serves as a linear
mapping x — 0 (inactive neuron) or x — x (active neuron).

1) Solver-Based Verification [41]-[46]: By inspecting the
definition of feed-forward neural networks (Def. 1), we can
observe that the DNN fy(z) is defined by the sequential
composition of affine transformations and ReLU operations.
Both affine transformations and ReLU operations can be
encoded by a conjunction of linear inequalities. For example,
zij = ReLU(Z; ;) < ((Zi; <0)A (21, =0))V ((%,; 2
0) A (2;,; = 2; ;)). Thus, general-purpose SMT solvers such as
Z3 [110] can be directly applied to solve the satisfiability prob-
lem of boolean .predi.cate /\y'e[C]:y’;éyo (M(yo,v") > 0) (§ee
Problem 1), which yields a solution to complete verification.
However, SMT-based verification is generally not scalable [41],
[42] and can verify DNNs with only hundreds of neurons,
which is too small even for the simple MNIST dataset.

Another way is to encode the verification problem as a
mixed-integer linear programming (MILP) problem. In MILP,
the constraints are linear inequalities and the objective is a linear
function. However, different from linear programming (LP),
in MILP we can constrain some variables to take only integer
values instead of real numbers. This additional expressive
power allows MILP constraints to encode the non-linear
ReLU operations and the whole DNN model [43], [45]. Thus,
the verification problem can be precisely encoded as an
MILP problem. By leveraging efficient MILP solvers such as
GUROBI [111], MILP-based verification is feasible on medium-
sized CIFAR-10 models if the model is specifically trained
to favor certifiability [61], [71], [112], [113]. However, the
naturally trained or empirically defended DNNs are still hard
to verify by these approaches even on MNIST [46].

2) Extended Simplex Method [23], [47]: The DNN model
is composed of affine transformations and ReLU operations
which correspond to linear constraints and ReLU constraints
respectively. When there are only linear constraints, the
verification problem is a linear programming problem and
can be effectively solved by the simplex method [114]. In
[23], [47], the simplex method is extended to handle ReLU
constraints. The core idea is to iteratively check whether the
ReLU constraints are violated and fix them. If the violation
cannot be easily fixed, we split the neuron into active and
inactive and solve subproblems respectively.

3) Branch-and-Bound [26], [37], [48]-[50], [52]-[55],
[57], [58], [60], [73]: Another line of complete verification
is branch-and-bound. Most competitors in VNN-COMP, an
annual DNN verification competition, build their verification
tools based on branch-and-bound [115], and the winner tool of
VNN-COMP 2021 and 2022, «-3-CROWN [58], [60], is based
on branch-and-bound. The branch-and-bound verification relies
on the piecewise-linear property of DNNs: Since each ReLU
neuron outputs ReLU(z) = max{z, 0}, it is always locally
linear within some region around input x. Since feed-forward
ReLU networks are the composition of these piecewise linear
neurons and (linear) affine mappings, the output is locally linear
w.r.t. input x. This property is formally stated and proved in [55].
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It serves as the foundation for branch-and-bound verification.

Given an input zy with true class label yq and perturbation
radius e, recall that the verification problem can be reduced to
deciding whether M (yo,y’) > 0 for any 3’ € [C]\ {yo} (see
Problem 1). A branch-and-bound verification approach first
applies incomplete verification to derive a lower bound and an
upper bound of M (yo,’): if the lower bound is positive then
terminate with “verified”; if the upper bound is non-positive
then terminate with “not verified”—bounding. Otherwise, the
approach recursively chooses a neuron z;, ; = ReLU(%; ;)
to split into two branches: 2; ; < 0 (inactive branch) and
%;,; > 0 (active branch)—branching. For inactive branch, we
have the constraint 2; ; < 0,2; ; = 0; and for active branch,
we have the constraint 2; ; > 0,2;; = Z; ;. Therefore, for
each branch the neuron brings only linear constraints, and
we again apply incomplete verification to determine whether
M(yo,y’) > 0 for each branch. If for both branches, we
can verify that M(yp,y’) is always positive/negative or the
branching condition is infeasible, the verification terminates;
otherwise, we further split other neurons recursively. When all
neurons are split, the branch will contain only linear constraints,
and thus the approach applies linear programming to compute
the precise M (yo,y’) and verify the branch. The branch-and-
bound framework is formalized in [49], [50], [52], and opens
a wide range of design choices, leading to approaches with
different implementation and scalabilities. Some verification
approaches efficiently traverse the piecewise linear regions
around the clean input x( to exhaustively search adversarial
examples in the region B, .(zo) [48], [54], [55], which
work better under {5 adversary while other branch-and-bound
approaches work better under /., adversary, because under ¢,
adversary input region has special geometric properties that
can be exploited for traversal-based approaches [54].

Practical implications. Though complete verification ap-
proaches have worst-case exponential time complexity, they, es-
pecially branch-and-bound approaches such as a-3-CROWN [58],
[60], can verify DNNs with up to 10° neurons like ResNet [1] in
practice within several minutes, if the model is specifically trained
to favor certifiability. This model size is of moderate level on
CIFAR-10. For models that are not specifically trained, complete
verification can handle DNNs with up to 10* neurons and roughly
6 layers, corresponding to small models on CIFAR-10 and large
models on MNIST. Therefore, for simple tasks and simple DNNs,
such as those for aircraft control systems [23], [25], [26], [47],
[48], [116], [117], it is feasible to deploy complete verification to
verify the robustness. The branch-and-bound approaches are more
scalable than solver-based and extended simplex approaches. A
more comprehensive comparison of existing verifiers can be found
in VNN-COMP 2021 report [115].

Research implications. For complete verification, the primary
research goal is to develop more scalable approaches. For solver-
based verification, it is important to find a more solver-friendly
problem encoding or design specific optimizations tailored for
DNN verification inside the solver [113]. For branch-and-bound
verification, it is a popular direction to find an efficient incomplete
verification heuristic for the bound computation that has a better
trade-off between tightness and efficiency [49], [58], [60], [73]. In
addition, finding a new branching heuristic, either rule-based or

learning-based, is a promising direction to boost the scalability of
complete verification.

Recently, Zombori et al [118] and Jia and Rinard [119] discovered
that some complete verification approaches are unsound under
floating-point arithmetic and such unsoundness can be exploited to
fool the verifier. Thus, future approach developers should consider
floating-point rounding errors.

B. Incomplete Verification via Linear Relaxation

Due to the scalability barrier of complete verification, many
incomplete verification approaches based on relaxations are
proposed. Among them, linear relaxations are well studied.
This category of verification approaches runs much faster and
many can scale up to large ResNet models on Tiny ImageNet,
which contain around 10° neurons [65].

Linear relaxation based approaches rely on ReLU polytope,
which we define below and illustrated in App. B-B.

Definition 5 (Polytope for Unstable ReLU). For neuron z; j =
ReLU(%; ;), let I, ; and w; ; be the lower bound and upper
bound of its output when the input region is By (x0):

min

li,; <
zEBp, (x0)

2;;(z) £  max

?:’i i(x) < U 5. 2
= 2€By,(z0) (@) S iy @

Then, if l;; < 0 < wu,;; the unstable neuron z;;
ReLU(%; ;) can be bounded by following linear constraints:

zij 20, zij 2 Zij, zij <

—lij). 3)

Ui,5 — l@j
These constraints define a region called ReLU polytope.

When both [; ; and u; ; are tight, the polytope is the tightest
convex hull for this neuron. For stable ReLLU, linear constraint
z;5 =0 or z; ; = % ; defines its linear relaxation.

In general, all linear relaxation based approaches require
computing [; ; and u;; (see Def. 5) for each neuron z; ;,
then they compute an over-approximation bound & for the
region fy (Bp.e(z0)) = {fo(x) : @ € By(z0)}, ie., S 2
fo (Bp,e(20)). S is described by linear constraints so that it
is easy to verify whether all points in S lead to the true class
yo. If it is true, the region fy (B, (z0)) is robust.

1) Linear Programming [39], [40]: Based on Def. 5, we
can directly use the polytope shown in Fig. 6a in App. B-B as
the relaxation for verification, which results in the approach
named LP-FULL [39], [40]. In LP-FULL, [ and u are computed
layer by layer, the polytope relaxation (Def. 5) is then applied
for each ReLU neuron, and finally, the verification is performed
by solving the resulting linear programming (LP) problem. Due
to the relaxation, we obtain a lower bound of M (yg,y’) in
Problem 1. Even though LPs can be solved in polynomial time,
in practice, solving LP is still expensive. Applying LP-FULL
on a typical model on CIFAR-10 for verifying a single instance
takes several hours to several days [40]. Moreover, although
LP-FULL is the tightest verification using single neuron linear
relaxations, compared with complete verification, the certified
robustness radius ¢ is usually 1.5 — 5 times smaller, which
indicates the intrinsic tightness barrier of linear relaxations.
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2) Linear Inequality [25], [27], [38], [39], [61]-[67], [69]-
[71]: To circumvent solving expensive LP, further relaxations
are applied, which can be divided into interval bound propa-
gation (IBP), polyhedra abstraction, zonotope abstraction, and
duality-based approaches.

Inteval bound propagation (IBP). A more straightforward
and efficient but much looser approach comes from directly
propagating [ and u defined in Eqn. (2) through the layers of
the given DNN model. Given perturbed input region B, ((x¢),
for the first layer, we have z; = x € [xg — €, ¢ + €]. We let
[11,u1] to represent this numerical interval for the first layer
z1. Then, we derive [l;11, u;y1] for layer z;11 from [l;, u;]:
If I, < 2z, < uyg, based on 2,11 = Wiz + by, 241 can be
bounded by Zk-+1 < Zgy1 < Upy1 Where

lpy1 = Wil + W, uy + by, g1 = Wilug, + W, + by

W T sets negative elements in W to 0; and W ™ sets positive
elements to 0. Then, z41 = ReLU(Z;+1) can be bounded by
lgr1 = max{lg+1, 0} < zpy1 < max{tr41, 0} = upt1-

Through each layer, this bound propagation performs only
four matrix-vector products, which are in the same order of
model inference. As a result, the approach is very scalable for
verifying large models on ImageNet, but on ImageNet it yields
trivial bounds due to its looseness. The approach is called
IBP [61] or interval arithmetic [57].

As we will discuss in Sec. V, though for normal DNNs, IBP
is usually loose. For the models that are specifically trained
with IBP, IBP can verify close-to-best certified robustness
among linear-relaxation-based approaches. Some work [120]
conjectures that IBP bound, though loose, is smoother than
other linear relaxations and thus more suitable for training.

Polyhedra abstraction. The polyhedra abstraction based
verification approaches, such as FAST-LIN [39], CROWN [38],
and DEEPPOLY [64], replace the two lower bounds in the ReLU
polytope shown in Eqn. (3) by a single lower bound, resulting
in one lower and one upper bound for each neuron respectively.
The idea is illustrated in Fig. 6b to 6d in App. B-B. The
advantage of using a single linear lower bound is that: (1) the
linear bounds can be propagated through layers efficiently
instead of solving LP problem—the verification is more scalable
than LP; and (2) linear bounds maintain interactions between
different components to some degree—the verification is
typically tighter than IBP. We call these approaches “polyhedra
abstraction based” approaches since they essentially compute
polyhedra domain abstraction interpretation [37] for DNNs. We
defer technical details along with the illustration of zonotope
abstraction and duality-based approaches to App. C.

For all linear inequality based verification approaches,
Salman et al [40] prove the convex barrier: these approaches
cannot be tighter than linear programming based approaches (in-
troduced in Sec. IV-B1).

3) Multi-Neuron Relaxation [24], [72]-[74]: To circum-
vent the convex barrier mentioned above, Singh et al [24]
and Tjandraatmadja et al [74] found that for ReLU that takes
multiple input variables (e.g., 2 = ReLU(x + y) takes scalars

x and y), if considering multiple input variables together,
the tightest convex polytope is tighter than applying single-
neuron polytope (Def. 5) along the base direction (i.e., (z +y)-
direction for z = ReLU(x +y)). Fig. 7 in App. B-C illustrates
this observation. Multi-neuron relaxation based approaches
are proposed to leverage the multivariate convex relaxations
to tighten the verification. Among them, K-RELU [24] and
PRIMA [72] consider k (k < 5) inputs at once. Tjandraat-
madja et al [74] point out that tightest convex polytope
may contain exponential number of linear constraints, and
propose C2V to heuristically find out and only preserve more
useful constraints. ACTIVE-SET [73] improves upon C2V with
gradient-based optimization and better heuristics on constraint
selection. GCP-CROWN [60] extracts convex constraints
from MILP solvers and integrate them in linear inequality
propagation, which can be viewed as leveraging multi-neuron
relaxations in branch-and-bound complete verification.

Practical implications. When the DNN model is too large to be
verified by complete verification approaches, linear relaxation based
approaches are good options. Among these approaches, IBP is the
most scalable and typically the loosest one [61], yielding trivial
bounds on normal DNNs. However, on models that are specifically
trained for IBP, the IBP certified robustness can be quite satisfactory
on large CIFAR-10 and Tiny ImageNet datasets [65], [112], [121].
Multi-neuron relaxation based approaches are the tightest but least
scalable ones. Effective heuristics enable multi-neuron relaxation
based approaches to significantly improve the scalability at small
tightness loss, so they can verify decent robustness on medium-sized
CIFAR-10 models with around 10° neurons more efficiently than
complete verification [72]. But for very deep neural networks (layers
> 10), due to the amplification of over-approximation, linear
relaxation based approaches cannot certify nontrivial robustness.
Besides those mentioned above, there are linear relaxation based
verification approaches and implementations aiming to efficiently
support specific DNN architectures, including CNN [101], residual
blocks [71], and other activation functions [38], [65], [72].

Research implications. For linear relaxation based approaches,
a tighter and more scalable multi-neuron relaxation based approach
is in need. Due to the worst-case exponential number of linear
constraints in the tightest convex relaxation, it is important to
develop efficient heuristics to synthesize the critical constraints and
solve the verification problem with these constraints. Both rule-
based heuristics performance [38], [72], [74] and learning-based
heuristics [122] are shown effective and are promising directions.
Extracting constraints from existing solvers is effective as well [60].
Furthermore, towards the ultimate goal of improving certified
robustness, it is also an important topic to develop more efficient
robust training approaches for linear relaxation based verification,
which we will discuss more in Sec. V.

C. Incomplete Verification via SDP

Semidefinite programming (SDP) can be applied for in-
complete verification: VERIFY [79] formulates the robustness
verification as an SDP problem, which is a convex optimization
problem, where the decision variable is a symmetric and semi-
positive matrix whose elements can be linearly constrained.
The key formulation in VERIFY is
zij > 0,

T _ 2T

2ij > Zij,

Zij = ReLU(éij) e { (4)
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To handle the quadratic constraint, it defines the vector
v:= (1, z1, ..., z;)" which encodes all ReLU activations, and
considers the matrix P = vv" as the SDP decision variable.
Since we replace the constraint rank(P) = 1 coming from
P = vv" by semidefinite constraint P > 0, it is a relaxation.
Then, the constraints in Eqn. (4) can be directly treated as
linear inequality constraints on P’s elements and thus can
be precisely encoded by the SDP problem along with the
optimization objective for verification (Problem 1). Several
variants of SDP encoding are studied [76]-[78].

Practical implications. SDP-based verification approaches
are incomplete but quite tight—empirically the tightness lies
between linear programming based and multi-neuron relaxation
based approaches. However, the utility of SDP-based verification
approaches is limited by the slow SDP solving process. Even
with the specialized solver as in [75], verifying a thousand-
neuron level DNN model requires several hours to one day, while
complete verification and linear relaxation based approaches can
terminate within minutes. Therefore, complete verification or linear
relaxation based approaches are recommended instead of SDP-based
verification at the current stage.

Research implications. The major challenge of SDP-based
verification is its scalability. The improvements for SDP-based
verification would come from either more efficient and tighter
relaxation [123] or more efficient solvers [75]. For example, the
specialized first-order solver proposed in [75] greatly boosts the
scalability. Further scalability improvements need to be explored.

D. Incomplete Verification via Lipschitz or Curvature Bounds

Some verification approaches use the Lipschitz bound or
curvature bound of DNN function fy to verify its robustness.

Definition 6 (Lipschitz Constant). We say scalar function
g :R"™ O X — R has local Lipschitz constant L w.rt. £, norm
in region By, (o) if Va1,x9 € By (20), loz)—g(z2)l 1,

lz1—w2]lq

We can lower bound fy(x),, — fo(z), for any x € B, ((x¢)
given Lipschitz constant, and thus certify robustness [11].

1) General Lipschitz [11], [39], [80]-[84]: Some verifica-
tion approaches aim at computing a tight Lipschitz bound
for general neural networks, and we call them general
Lipschitz based verification approaches. A commonly-used
approach [11], [81], [83] is to compute a global Lipschitz
constant w.r.t. {5 norm by multiplying the spectral norm of all
weight matrices L = Hi;i ||W;|| of the ReLU neural network,
where the spectral norm can be computed by power iteration
algorithm [124]. Efforts have been made on tightening this
bound [82]. The global Lipschitz constant is usually too loose
to provide nontrivial certified robustness in practice, but it can
be efficiently regularized during training. When this constant
is regularized, this verification can bring non-trivial certified
robustness against /o norm, which we will discuss in detail in
Sec. V. Global Lipschitz constant computation is efficient and
thus scalable to models on Tiny ImageNet dataset [80], [81].

Global Lipschitz bound can be improved by finer-grained
analysis on convolutional layers [80], by computing local
Lipschitz bound [39], [84], [125], or by combining with
IBP [80]. Currently, general Lipschitz based verification can
certify nontrivial robustness against only ¢ adversary.

2) Smooth Layers [85]—[89]: Besides general Lipschitz
based verification, another thread of research proposes specific
layer structures which we call smooth layers and proves
Lipschitz constant for these layer structures. For example, there
are different designs of orthogonal convolutional layers [86],
[88]. They usually use parameterization or transformation
to explicitly construct trainable convolutional layers which
are orthogonal and thus have 1 as the Lipschitz constant.
When this small Lipschitz constant is proved, general Lip-
schitz based verification can provide robustness certification.
However, these approaches are restricted to ¢o adversary.
Recently, Zhang et al [89] propose a novel activation function
x +— ||z — w||s + b which is called {o, neuron and is 1-
Lipschitz w.r.t. £, norm. This design enables general Lipschitz
based verification to certify robustness against /., adversary.
Combined with effective training [126], this approach can
certify state-of-the-art £, certified robustness.

3) Curvature [90]: If a DNN uses activation functions that
have non-zero second-order derivatives, such as sigmoid, Singla
and Feizi [90] propose an efficient algorithm to bound the
DNN’s curvature, i.e., second-order derivatives. Based on the
curvature bound, we can compute a lower bound of Problem 1
and thus certify the model’s robustness. Compared with others,
curvature-based verification cannot be applied to the widely-
used ReLU networks and can only certify against /5 adversary,
so the application scenario is a bit limited. Though on small
dataset like MNIST, this approach can verify high robustness
for some robustly trained models.

Practical implications. When applying Lipschitz- or curvature-
based approaches to general DNN models, the resulting robustness
verification is usually trivial. However, if the model is regularized to
have a small Lipschitz constant or uses smooth layers with effective
training, these approaches can provide nontrivial bounds on both
small and large datasets (MNIST, CIFAR-10, and Tiny ImageNet)
against both /5 and /., adversaries.

Research implications. Among these Lipschitz and curvature
based verification, we believe that the potential of smooth layers
based verification has not been fully explored yet. For example,
many orthogonal training methods can lead to smooth layers (e.g.,
[127]-[129]), and smooth variants may exist for recent architectures
such as transformers [6]. Improving on these directions may lead
to state-of-the-art certified robustness.

E. Incomplete Verification via Probabilistic Approaches

Besides deterministic verification, one recently emerging
branch of studies proposes to add random noise to smooth
the models, and thus derive the certified robustness for these
smoothed models (See Def. 7). We call this line of work
probabilistic robustness verification approaches or randomized
smoothing based approaches since they provide probabilistic
robustness guarantees and all existing probabilistic verification
approaches are designed for smoothed models. Currently, only
these verification approaches are scalable enough to certify
nontrivial robustness on the large-scale ImageNet dataset.

Definition 7 (Smoothed Classifier). Given a smoothing dis-
tribution . whose support is supp(u) and density at point
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0 denoted by p(9). For a given classifier F, the smoothed
classifier Fynooth is defined as:

Fimooth (z) = arg max/ I[F(z+6) =] p(5)ds.
i€[C]  Joesupp(p)

The integral in Def. 7 cannot be exactly solved. Thus, instead,
Monte-Carlo estimation and hypothesis testing [130] are used
to approximate the exact solution. As a result, the certification
is probabilistic rather than deterministic (Def. 3).

1) Approaches with Zeroth-Order Information [22], [28],
[92]-[96], [98], [131]: A majority of verification approaches
only use zeroth-order information of the smoothed classifier,
i.e., the probabilities Prs.,[F(x¢+0) = y| for y € [C] where
the clean input is xg, to compute the robustness certification.
Among these approaches, Neyman-Pearson based approaches
are proved to be the tightest [28].

Given clean input x, when adding noise 6, we suppose
the model F' predicts true class yo with probability Py :=
Prs,[F(zo + 6) = yo] and runner-up class with Pp :=
MaXy (Ol £yo Pro~u[F (20 + 6) = y']. High-confidence
intervals for P4, and Pp can be obtained with Monte-Carlo
sampling. The high-level intuition for Neyman-Pearson based
approaches is: if the attacker’s perturbed input z is close to z,
the distribution of = 4+ § would highly overlap the distribution
of o+ 0 where § ~ (i is the added smoothing noise. Therefore,
the corresponding P/, and Py for perturbed input = will not
change too much from P4 and Pp for clean input zy. That
means, if there is a sufficient margin between P4 and Pp, then
P’, will still be larger than Pj. Thus, the smoothed classifier
will still predict yg for perturbed input x according to Def. 7.

Formally, based on Neyman-Pearson lemma [132], one can
derive a tight lower bound for P/ and upper bound for P
given P4, Pp, and input shift (i.e., x — xg). Then, we solve
the distance lower bound that guarantees P, > P to get
robustness certification.

Against ¢, adversary, Cohen et al [22] consider Gaus-
sian smoothing and derive a tight ¢, robustness radius
based on Neyman-Pearson lemma. Against ¢; adversary,
Lecuyer et al [92] and Teng et al [95] consider Laplacian
smoothing and derive ¢; robustness radius. Against /.,
adversary, Yang et al [28] empirically show and theoretically
justify that it yields the highest /., certified radius by using
Gaussian smoothing and transforming Neyman-Pearson-based
{5 robustness radius to ¢, radius: 7 — —= where d is the input
dimension. However, for dataset where d is large, the certified
{, radius is small. Indeed, certifying robustness against ¢, for
high-dimensional input is proven to be intrinsically challenging
for zeroth-order information approaches [28], [133]-[135].

Using zeroth-order information, the robustness verification
can also be derived from: (1) differential privacy (DP) where
Gaussian and Laplace mechanisms in DP can induce certified
robustness for models smoothed with Gaussian and Laplace dis-
tributions [92]; (2) Lipschitz bound [98]; (3) statistics view [93],
[94]; and (4) level-set method [28]. These approaches derive
looser [92], [93] or equivalently tight [94]-[96], [98], [131]
robustness certification as Neyman-Pearson based approaches.

2) Approaches with First-Order Information [99], [100]:
Since zeroth-order information approaches have tightness
barriers as discussed before, attempts have been made on
querying more information from the smoothed model beyond
only P4 and Pg. One example could be the gradient magnitude
information || 2 Pr‘;w“[ggﬁé):yo] ||, which can be estimated via
sampling with high-confidence error interval [99], [100]. When
using this first-order information together with P4 and Pp, we
can derive a tighter robustness verification for smoothed models.
Currently, the tightness improvements are pronounced against
£1 adversary but not significant against {5 or /., adversaries.

3) Choice of Smoothing Distributions: To achieve satisfac-
tory certified robustness, besides verification approaches, the
choice of smoothing distribution is also important for these
randomized smoothing based approaches.

In general, for /5 adversary, Gaussian smoothing distribution
is most commonly used [22], [28]. Some work argues that
Gaussian may not be the optimal smoothing distribution [96]
but significantly better alternatives have not been found yet.
For ¢, adversary, Yang et al [28] show that uniform distribution
is significantly better than others [92], [93], [95]. Recently,
a specific non-additive discrete smoothing distribution is pro-
posed [91], which enables Lipschitz-bound-based deterministic
certification for smoothed models against ¢; adversary. Since
deterministic verification does not need to consider sampling
error, it provides better robustness certification than [28].

The smoothing distributions can control trade-offs between
certified robustness and accuracy, where distribution with larger
variance can lead to a larger certified radius under the same
P4 and Pg, but hurts the clean accuracy since input signal is
more severely corrupted by noise [134], [135].

Practical implications. The confidence level of probabilistic
verification is usually set to be high (e.g., 99.9%) to maintain the
rigor of robustness certification. Probabilistic verification approaches
are very strong against #; and /2 adversaries, being the only type that
can provide certification on large-scale datasets (e.g., ImageNet) and
achieve the state-of-the-art on almost all other datasets. Moreover,
they support arbitrary model architectures since only black-box
access to final predictions is required. However, they fail to provide
robustness certification that is tight enough against the /o, adversary
on ImageNet. Furthermore, the smoothing procedure adds additional
overhead for inference and requires specific training to ensure good
model performance which usually hurts the clean accuracy [135].

Research implications. For verification approaches for
smoothed DNNSs, promising research directions include: (1) Tighter
verification: though zeroth-order verification fails to certify a
large radius against /., adversary, other information can be
leveraged to tighten it. For example, approaches using first-order
information are visibly tighter than zeroth-order verification against
{1 adversary [100]. However, there is still a visible gap between the
current certified robustness radius and the empirically attackable
radius [136], so improvement rooms exist. Thus, it would be a
promising direction to derive tighter verification by using effective
information in addition to zeroth-order information, especially for
the challenging /> and /. adversaries. A recent work [137] follows
this direction and proposes double sampling randomized smoothing
that achieves tighter verification against ¢, adversary. In App. F,
we extend their method and achieves tighter verification against £
adversary. Researchers can think about what types of information
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from the smoothed models are useful and how to efficiently obtain
them—novel sampling methods are needed. (2) Better smoothing
distributions: suitable smoothing distributions have significantly
improved ¢; certified robustness [28], [91]. The same degree of
improvements may exist against other ¢, adversaries. (3) Better
training approaches for smoothed classifiers. Discussion is in Sec. V.

V. ROBUST TRAINING APPROACHES

Normally-trained DNNs are usually non-robust where effec-
tive attacks can find adversarial examples with almost 100%
probability [11], [18], [19]. To achieve high certified robustness,
DNNs need to be trained with robust training approaches which
aim to improve robustness guarantees, as illustrated in Fig. 2.

Current robustness verification approaches usually favor
certain properties of DNNs to achieve high certified robustness.
For instance: (1) Branch-and-bound verification (Sec. IV-A3)
uses incomplete verification such as linear relaxation to reduce
explored branches and boost the certification efficiency so it
favors DNNs whose linear relaxations are tight and for other
DNNss the certification process is significantly slower [58], [73].
(2) Linear relaxation verification (Sec. IV-B) can certify only
models whose specific linear relaxations are tight. (3) Lipschitz
or curvature verification (Sec. IV-D) can certify only models
where a small Lipschitz or curvature constant can be computed.
(4) Verification for smoothed DNNs (Sec. IV-E) certifies larger
radius for models with higher correct-prediction probability
under noise. These favored properties are not directly promoted
by standard training or empirical defenses. Therefore, to
improve certified robustness, robust training approaches are
proposed to promote these properties during training.

We divide existing robust training approaches into
three categories: regularization-based, relaxation-based, and
augmentation-based. We defer the illustration to App. D.

Discussion. Robust training approaches can improve model
robustness and at the same time remarkably enhance desired
properties of models for corresponding verification approaches.
Thus, models trained with a robust training approach usually
achieve much better certified robustness based on corresponding
verification, as reflected by evaluation in Sec. VI-A.

Models trained by one robust training approach are often
verified to have poor robustness by a mismatched verification
approach (as shown in Sec. VI-A). This is because the models
do not inherit the desired property of the verification. For
example, models trained for randomized smoothing based
approach can predict well for noisy input but may have
many unstable neurons and loose linear relaxations, making
them difficult to be verified by complete or linear relaxation
verification. Models trained for linear relaxation are not
specialized for predicting noisy input and are challenging for
randomized smoothing based verification [22].

As a result, an important research goal is to develop verifi-
cation that does not heavily rely on specific model properties
so it can verify most robustly trained or empirically defended
models. Recently, some complete verification approaches [58],
[73] are shown tractable for verifying empirically defensed (e.g.,
PGD adversarially trained [18]) models though they are still
limited to small models. Thus, proposing more practically

efficient complete verification approaches may be a viable path
towards this goal. Another research goal is to improve certified
robustness for a given task. For this goal, advances on both
verification and robust training are valuable, such as tighter [74]
or more training-friendly relaxation [120], or more effective
training methods [121], [126], [138], which we will discuss
further in Sec. VIIIL.

VI. BENCHMARK, LEADERBOARD, AND IMPLICATIONS

In this section, we introduce an open-source toolbox to
systematically benchmark 20+ certifiably robust approaches.
Based on benchmark results and the leaderboard on represen-
tative datasets, we outline practical implications for deploying
certifiably robust approaches for DNNs.

A. Benchmark Evaluation

We present the following evaluation: (1) for representative
deterministic verification approaches, we compare their cer-
tified robustness over a diverse set of trained models of dif-
ferent scales; (2) for representative probabilistic verification
approaches and their corresponding robust training approaches,
we compare the best certified robustness they jointly achieve.
We do such separation because deterministic and probabilistic
certificates have different semantics and their supported system
models are different. The evaluation is made possible by our
open-source unified toolbox—a first toolkit integrating a wide
range of verification approaches.

We present the findings here and introduce the experiment
protocol and representative results in App. E. Full results are on
our benchmark website: https.://sokcertifiedrobustness.github.io.
In the evaluation, we use certified accuracy to measure certified
robustness, which is the fraction of test set samples verified to
be robust against the corresponding (¢, €)-adversary.

1) Findings from Comparing Deterministic Verification Ap-
proaches: (1) On relatively small models, complete verification
approaches can effectively verify robustness, thus they are the
best choice. (2) On larger models, usually linear relaxation
based verification approaches perform the best since the
complete verification approaches are too slow and other
approaches are too loose, yielding almost 0% certified accuracy.
However, linear relaxation based verification still cannot handle
large DNNs and they are still too loose compared with the
upper bound provided by PGD attack. (3) On robustly trained
models, if the robust training approach is CROWN-IBP
which is tailored for IBP and CROWN (two linear relaxation
verification approaches), IBP and CROWN can certify high
certified accuracy while others fail to certify. Indeed, robust
training approaches can usually boost the certified accuracy but
the models must be verified with corresponding verification
approaches as discussed in Sec. V. (4) SDP approaches usually
take too long and thus are less practical.

2) Findings from Comparing Probabilistic Verification Ap-
proaches: (1) For both ¢; and ¢ adversaries, Neyman-Pearson
based verification achieves the highest certified robustness.
(2) Robust training approaches effectively enhance the models’
certified robustness. Among these existing robust training
approaches, adversarial training usually achieves the best
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TABLE 11
LEADERBOARD: TOP-5 CERTIFIED ACCURACY UNDER EACH SETTING ACHIEVED BY CORRESPONDING ROBUST TRAINING (SHOWN BY REFERENCE
BRACKET) AND VERIFICATION (SHOWN BY NAME). € DENOTES THE ATTACK RADIUS. * INDICATES CERTIFIED ACCURACY BY PROBABILISTIC VERIFICATION,
OTHERWISE BY DETERMINISTIC VERIFICATION. “NYM.-PRSN.” MEANS NEYMAN-PEARSON-BASED OR EQUIVALENTLY TIGHT VERIFICATION.

| £oc Adversary |

£2 Adversary ‘

£ Adversary

e=0.1 e=0.3 e=0.5 € = 1.58
97.95% T1217, Tnterval 93.20%  [126], Smooth Layers | 98.2%" [138], Nym.-Prsn. 70.7%  [138], Nym.-Prsn.(c = 1.75)
MNIST 97.91% [139], Duality 93.10% [121], Interval 98.0%* [140], Nym.-Prsn. 70.5%* [140], Nym.-Prsn.(e = 1.75) Existing approaches for £; are all randomized-smoothing-based,
97.77% [61], Interval 93.09% [89], Smooth Layers 78.45% [90], Curvature 69.79% [90], Curvature which are generally evaluated on CIFAR-10 and ImageNet datasets.
97.76% [112], Polyhedra 92.98% [112], Polyhedra 69.0%* [93], Divergence Based
97.26% [71], Duality 91.95% [61], Interval 62.8% [81], General Lipschitz
€=2/255 €=18/255 €= 36/255 €=10.25 e=1.0 €=20
68.2% [98]. Nym.-Prsn. 40.06% [126], Smooth Layers | 65.6% [93], Divergence Based 81% [98]. Nym.-Prsn. 63.07% [91], Lipschitz 51.33% [91]. Lipschitz
CIFAR.10 | 63-8%" [141], Nym.-Prsn. 35.42% [89], Smooth Layers | 59.16% [88], Smooth Layers 72%* [141], Nym.-Prsn. 63%* [28], Nym.-Prsn. 48%* [28], Nym.-Prsn
- 60.5% [142], Polyhedra 34.97% [121], Interval 58.4% [81], General Lipschitz | 71%* [143], Nym.-Prsn. 39%* [95], Nym.-Prsn. 17%* [96], Nym. .
54.12% [126], Smooth Layers 33.38% [65], Polyhedra 51.96% [71], Duality 68.8%* [140], Nym.-Prsn. 34%* [96], Nym.-Prsn. 16%* [95], Nym.-Prsn.
53.97% [112], Polyhedra 33.06% [112], Polyhedra 51.30% [80], General Lipschitz 67.9%* [138], Nym.-Prsn. 18%* [92], Differential Privacy 5%* [92], Differential Privacy
5:1/255 e=1.0 e=20 e=1.0 €=2.0
38.2% [98], Nym.-Prsn. No work achieves 5% [98], Nym.-Prsn. 30.4% [144], Nym.-Prsn. 55% [28], Nym.-Prsn. 8% [28], Nym.-Prsn.
ImageNet | 28:6%" [22], Nym.-Prsn. > 0% certified accuracy 44.4% [144], Nym.-Prsn. 28%* (98], Nym.-Prsn. 49% [91], Lipschitz 45% [91], Lipschitz
g ’d ) et 44%* [140], Nym.-Prsn. 27%* [143], Nym.-Prsn. 42%* [96], Nym.-Prsn. 30%* [96], Nym.-Prsn.
under farge € yel. 43%* [138], Nym.-Prsn. 26%* [138], Nym.-Prsn. 40%* [95], Nym.-Prsn. 26%* [95], Nym.-Prsn.
43%* [143], Nym.-Prsn. 24%* [140], Nym.-Prsn. 25%* [92], Differential Privacy 16%* [92], Differential Privacy
. . L. . o (@ Regularization-Based + Smooth Layers
performance. (3) The choice of smoothing distribution can Sl Do /Ay (@) Relasation-Based + Lincar Relaxation
i (MNIST) 2 Augmentation-/ Verification for
greatly affect the certified accuracy. Under ¢; adversary, the e <@Regulmmm_Base o gemeaton for
. . . . . s e bed DN
superior result is achieved by uniform smoothing distribution. Trprove Certified . g“eg“‘“"“‘“’“ Based + Smooth Layers
oge L . . . . Robustness " Advc;m Regularization-Based +  Smooth Layers
(4) For probabilistic verification approaches, certifying robust- for Their Tasks {1 Medin Datct . Y® e T
. . 2 . . .
ness under ¢, adversary is challenging, and would become  intendea T Ny | Amomeniitn - Ve
| K i K K Users . Regularization-Based Smoothed DNNs
more challenging when the data dimension increases, which P Advesary N\ @ Regularization-Based +  Smooth Layers
Coincides Wlth theory [28] s [1 33] s [1 34] . - Large Dataset A N\, Augmentation-/  Verification for
(ImageNet) Adversary Regularization-Based ~ Smoothed DNNs
B. Leaderboard on Certified Robustness : e, Ol
Evaluate/Certify (<":3w o e) ® ———
What is the state-of-the-art certified accuracy achieved Robustness for Trained by ©  Branchand-Bound
Their Models Standard Training or Medium Model <

on representative datasets? Table II shows a leaderboard of
certified accuracy under different settings from peer-reviewed
publications till Aug. 1, 2022. The high certified accuracy is
jointly achieved by robust training (shown by reference bracket)
and verification (shown by name).

As we can see, much progress has been made in the certified
robustness field in recent years. On MNIST, the certified
accuracy against /o, adversary with 0.3 radius has reached over
93%. This is remarkable since the limit is 0.5 radius where
any input image can be perturbed to indistinguishable half-gray.
This is achieved by robust training for interval verification [121]
and Lipschitz verification based on smooth layers [§9]. On
more challenging CIFAR-10 and ImageNet datasets, however,
certified accuracy is still low. On CIFAR-10, against /.,
adversary with 2/255 radius, the certified accuracy is only
around 68% [98]; with radius 8/255, it is only 40.06% [126].
These are far from state-of-the-art 90%+ clean accuracy or
65%+ accuracy under strong attacks [145]. On ImageNet, only
approaches for smoothed DNNs can provide non-zero robust
accuracy: 30.4% under {5 radius 2.0 [144]; and around 38%
under /., radius 1/255 [98].

C. Practical Implications

In practice, what are the most suitable certifiably robust
approaches for users to deploy? Based on the benchmark
results and the leaderboard, we present practical implications
in Fig. 4, where we envision two scenarios: 1) users want to
improve certified robustness for their tasks at hand; 2) users
want to evaluate or certify the robustness of given models.

When users want to improve certified robustness for their
tasks, they need to achieve this by choosing a robust training
approach and certifying the robustness with the corresponding
verification approach as discussed in Sec. V. The upper part of
Fig. 4 shows the recommended combinations of verification and

(= 10° Neurons) @ Multi-Neuron Relaxation
*IBP

*Verification for Smoothed DNNs

Empirical Defense

Large Model
(= 10° Neurons)

<

Cor

Trained by Robust

Training Approaches
Fig. 4. Practical implications for users to select certifiably robust approaches.
Gray boxes depict suitable “(verification) + (robust training)” approach

combinations or verification approaches for given scenarios. If exist, “(D)”
and “@” label the most and runner-up suitable ones. Details in Sec. VI-C.

Verification Apy

robust training approaches in light gray boxes. Depending on
the dataset size and the type of £, adversary to defend against,
we recommend the corresponding approach combinations
which achieve high certified accuracy in practice based on our
leaderboard (Table II). When multiple choices are available,
we show the top-2 choices and label them with “()” and “”
respectively. In summary, linear relaxation and smooth layer
based verification and corresponding robust training perform
well on small and medium datasets against ¢, adversary, while
for other datasets and other ¢, adversaries, approaches for
smoothed DNNs are better. In particular, on large datasets like
ImageNet, only approaches for smoothed DNNs can provide
robustness certification at the current stage.

When users want to evaluate or certify the robustness of
certain models, they need to choose a suitable verification
approach. Inspired by our benchmark, we present the impli-
cations in the lower part of Fig. 4. For small and medium
models trained by standard training or empirical defenses,
the branch-and-bound based complete verification [53], [58]
and multi-neuron relaxation verification [73] can certify the
robustness efficiently. Specifically, for small models, the solver-
based (concretely, MILP-based) verification approaches can
certify good robustness. But for large models, none of these
methods cannot finish in a feasible time (one day per input).
Therefore, we must use more efficient but loose verification
such as IBP (Sec. IV-B2) and verification approaches for
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smoothed DNNs (Sec. IV-E), which usually yield trivial
certified robustness radius and it is an active research area
to make tighter verification approaches scalable for these large
models. In addition, we find that the ranking of empirical
defenses for small/medium models based on certified robustness
is consistent with that evaluated by strong empirical attacks
such as PGD [58], [75], [146]. If models are trained by
robust training approaches, as discussed in Sec. V, using the
corresponding verification approaches targeted by the training
approach would be the best choice.

VII. EXTENSIONS AND APPLICATIONS

The methodologies derived from certifiably robust DNNs
have recently been applied to much broader areas.

Extensions to other threat models. Though certifiably robust
approaches mainly focus on the (¢,, €)-adversary, extending
the related techniques to other threat models has drawn
much attention. (1) Local evasion attacks: in local evasion
attacks, the adversary slightly perturbs the in-distribution data
to mislead the model. Our (¢, €)-adversary adds pixelwise
perturbations bounded by ¢, norm within . Now we elaborate
on some other effective local evasion attacks. (a) Semantic
adversary picks an arbitrary but bounded transformation
parameter, such as rotation angle, and applies the transfor-
mation to perturb the input [147]-[149]. Neyman-Pearson
approaches and linear relaxation approaches can be extended
to provide certification [150]-[153]. The core methodology
is to split the low-dimensional parameter space into tiny
intervals and then bound the input changes in each interval.
(b) Generative model based adversary uses generative models
such as GAN [154] to generate input perturbation. Similar to
certification against the semantic adversary, Neyman-Pearson
approaches and linear relaxation approaches can be extended to
provide certification against this adversary [155], [156]. (c) ¢y
adversary picks a bounded number of pixels to arbitrarily
change and patch adversary picks a region of pixels with
a bounded area to arbitrarily change. To defend against ¢
adversary, Neyman-Pearson approaches can be deployed [131],
[157], [158]. To defend against patch adversary, the core
idea of Neyman-Pearson approaches, prediction aggregation
on several noisy inputs which are patched inputs here, is
leveraged to develop customized certification and corresponding
training approaches [65], [159]-[163]. (2) Distributional
evasion attacks: in distributional evasion attacks, the attacker
shifts the whole test data distribution within some bounded
distance to maximize the expected loss. This threat model can
be used to characterize the out-of-distribution generalization
ability of ML models [164]. The certification under this
threat model is an upper bound of the expected loss, which
can be derived from duality under Lipschitz and curvature
assumptions [165] or from extensions of Neyman-Pearson
approaches [166], [167]. (3) Global evasion attacks: global
evasion attacks can perturb any valid input example to mislead
the model, whereas local evasion attacks can only perturb in-
distribution data. Thus, the robustness against global evasion
attacks means that the robustness property holds for the

whole input domain. An example of a robustness property
is that for any high-confident prediction, small perturbations
cannot change the predicted label [81]. In the security domain,
Chen et al [168] recently proposed several domain-specific
robustness properties such as requiring all low-cost features to
be robust. To verify these properties, they propose a specific
solver-based verification (Sec. IV-Al) to verify logic ensemble
models, and then use the found adversarial example as an
augmentation for robust training. The verification and robust
training for DNNs against global evasion attacks can be a
promising direction. (4) Training-time attacks: training-time
attacks can manipulate some training data to reduce the trained
model’s performance or inject some backdoors. Against this
threat model, verification approaches extended from Neyman-
Pearson can provide robustness certification [169]-[172].

Extensions to diverse types of system models. There are
efforts on generalizing existing DNN verification approaches
to deal with more types of system models. For example:
(1) Some approaches that are designed for feed-forward ReLU
networks, such as linear relaxation based approaches, have
been extended to support general DNNs [38], [64], [71],
recurrent networks [173]-[175], transformers [102], [176],
generative models [177], and model ensembles [178]. The
main methodology is to derive the corresponding linear bounds
for activation functions or attention mechanisms in these
system models. Some complete verification approaches, e.g.,
branch-and-bound based ones [58], also support general DNNs.
However, these complete verification approaches become
incomplete when applied on general DNNs. (2) Verification
approaches for Lipschitz-bounded networks and non-ReLU
networks have not been generalized to other system models yet.
(3) Verification approaches for smoothed DNNs typically need
access to only the final prediction label, so they are applicable to
any classification models. However, the model must follow the
corresponding smoothing-based inference protocol. (4) There
are also verification approaches for decision trees [179]-
[181], decision stumps [181], and logic ensembles [168].
However, there is no verification and robust training approach
that supports all these system models yet. This is because
verification and robust training approaches need to exploit
properties (piecewise linearity, Lipschitz bound, smoothness,
etc) of specific system models to achieve certified robustness.

Certified robustness for concrete applications. Beyond
the classification task, the discussed methodologies, such
as linear relaxation and Neyman-Pearson approaches, have
been extended to certify DNNs in many concrete appli-
cations. In natural language processing, extensions include
certification for recurrent neural networks against embedding
perturbations [173]-[175], word substitutions [182], and word
transformations [183]-[185]. Extensions have also been studied
for object detection [186], segmentation [187], and point cloud
models [187]-[189] in computer vision, and speech recogni-
tion [150], [190]. Verification and robust training approaches
have also been proposed for reinforcement learning [146],
[172], [191]-[193].
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VIII. INSIGHTS, CHALLENGES, AND FUTURE DIRECTIONS

In this section, we summarize characteristics, strengths,
limitations, and fundamental connections among certifiably
robust approaches, then discuss barriers, main challenges, and
future directions for DNN certification.

A unified view: characteristics, strengths, limitations, and
connections of certifiably robust approaches. To reveal the
fundamental connections, we adopt a unified view of robustness
verification: all existing verification approaches provide an
abstraction of given DNN models to verify the robustness. For
example, the branch-and-bound verification views the model
as the union of several sub-domains where the model output
in each domain can be bounded, e.g., by linear inequalities.
The branching process is essentially refining the abstraction
by splitting sub-domains whose current abstractions are not
precise enough. The linear relaxation based verification uses
some linear constraints to abstract the possible behavior of
the model in the whole perturbation region. The probabilistic
verification uses the queried information, such as zeroth-order
information, to abstract the model behavior. This view is closely
related to the concept of abstract interpretation in traditional
program analysis [194]. Therefore, the scalability and tightness
trade-off of verification mentioned in Sec. II-C is essentially
the inherent trade-off between preciseness and efficiency of
abstraction: more precise abstraction enables tighter robustness
certification, whereas has higher time and space complexity.
Thus, for a model that is not specifically trained, the most
suitable verification approach is the most precise one that can
be computed for this model size. Concrete approach selection
guidelines are in Sec. VI-C. We note that, under this unified
view, the favored properties of each verification (listed in
Sec. V) are tight conditions of the corresponding abstraction
domain. Thus, robust training approaches that promote these
properties can boost verification tightness for the model to
improve certified robustness. More concrete strengths and
limitations of each verification are discussed in “practical
implications” and “research implications” boxes in Sec. IV.

Challenges and barriers. Although there has been remark-
able progress towards certifiably robust DNNs, scalability
and tightness challenges persist. For example: (1) Complete
verification is NP-complete [23], [39]. (2) Multi-neuron based
linear relaxation needs exponential number of constraints [74].
(3) Probabilistic certification based on zeroth-order information
cannot certify high robustness against ¢, adversary for real-
world high-dimensional inputs [28], [133]-[135]. These theoret-
ical barriers are intrinsic challenges for further improvements
in these verification approaches. There are also practical issues
to solve, such as guaranteeing verification soundness under
floating-point arithmetic [118], [119], [195] and safeguarding
robust training against training-time attacks [196].

Future directions. Despite the challenges and barriers, there
are also several potential future directions: (1) Scalable and
tight verification: There are still hopes for more scalable and
tighter verification for DNNSs in practice despite theoretical
barriers. For example, good heuristics have boosted complete

verification to handle DNNs with over 10° neurons [58]. It
is promising to explore other better heuristics. For instance,
a recent work [53] improves the complete verification by
proposing better bounding heuristics based on multi-neuron
relaxation. For SDP verification, better formulation and solvers
can lead to better verification [75], [123]. For smoothed DNNSs,
although only using zeroth-order information cannot certify
high robustness against ¢, adversary, this barrier may be
circumvented by leveraging more information as in [99],
[100] which improve ¢; and /., certification tightness; or
leveraging non-additive smoothing distribution as in [91] which
improves ¢ certification tightness. More details are discussed
in Sec. IV-E. (2) Effective robust training with theoretical
understanding: Unlike verification where theoretical barriers
exist, robust training can empirically boost the certified
robustness without known theoretical limitations. Indeed, even
the empirically loose interval relaxations (see Sec. IV-B2)
are universal approximators [197], [198] and achieve training
convergence (under some assumptions) [199], which implies
that with effective and generalizable robust training the certified
accuracy could be on par with benign accuracy. However,
theoretical understanding of robust training, such as why robust
training generalizes, is still lacking [120]. Recent work shows
that when an efficient complete verification approach exists,
generalizable robust training is achievable [200]. Extending
this result to broader scenarios, e.g., the generalization of
robust training with incomplete verification, would significantly
advance our understanding of ML robustness. (3) Design
certifiably robust DNN architectures: Based on the model
properties required for different verification approaches, it
is promising to design novel DNN architectures to further
improve the certified robustness. In addition, it is also possible
to design sparse DNNs following the model compression
literature [201] to achieve efficient and certifiably robust
models. (4) Certification for other ML utilities: Techniques
of certified robustness can be extended to certify other ML
utilities such as fairness [202]-[204] and generalization [166],
[167]. It is an emerging trend to provide certification for
generic ML utilities, such as model bias, toxicity, and model
unlearning, or train models to achieve such certifications [205].
(5) Certification for different ML models: Current robustness
certification mainly focuses on classification models, and it
would be critical to extend such certification to other ML
models, such as reinforcement learning, federated learning,
and large language models, which have demonstrated their
real-world usage in safety-critical domains. (6) Integrate
domain knowledge and logic reasoning ability into ML
to improve certified robustness: It has been shown that joint
inference with knowledge rules can improve model benign
accuracy [206]-[208], and therefore it would be promising
to integrate domain knowledge, causal analysis, and security
rules into ML pipeline to further improve and tighten its end-
to-end certified robustness. (7) Bring certified robustness to
real-world applications: Besides achieving higher certified
robustness on standard benchmarks, we believe that adaptation
of verification and robust training approaches for real-world
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applications is also critical. For example, security threats are
found on DNNs in autonomous vehicles [14], [209] which
may lead to severe consequences [148], [210]. Designing a
certifiably robust autonomous driving system would be an
important, timely, and promising direction.

IX. CONCLUSIONS

We presented an SoK for certifiably robust approaches for
DNNS, including both robustness verification approaches and
robust training approaches. We show characteristics, strengths,
limitations, and fundamental connections among these ap-
proaches. Our discussion summarizes the current research
status both theoretically and empirically, reveals limitations,
and highlights future directions.
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APPENDIX A
SCALABILITY AND TIGHTNESS MEASUREMENTS

This appendix contains more discussion on the scalability
and tightness characterization in Sec. III.

Scalability measured by time complexity. Note that the
time complexity for DNN inference is O(lw?). As we can
see in Table I, all complete verification approaches have
exponential time complexity O(2/*’) which coincides with the
theoretical scalability barriers [23], [39]. The poly(l, w) means
a time complexity higher than O(lw?). All approaches for
smoothed DNNs have complexity O(Slw?), which is because
the sampling time cost is much higher than the actual bound
computation whose time complexity is subsumed.

Deails on tightness ranks. For general DNNs, we rank the
tightness from 77 to 7% where T7 is the tightest. T7 < To < T
comes from benchmark results, T3 < Ty < T5 comes from
theoretical analyses [40], and 75 < Tg and 15 < T come
from empirical observations in [75] and [72] respectively. For
smoothed DNNs we rank the tightness from S7T3 to STy based
on existing theoretical analyses: ST < STy comes from [93],
[94], STy < ST3 comes from [28], [94], [98], and ST5 < ST}
comes from [100].

APPENDIX B
OMITTED ILLUSTRATIONS

This appendix includes the omitted figure illustrations.

A. Perturbation Region of {,, Adversary

€ €
o € o Zo €
£1-bounded £,-bounded £ -bounded

Fig. 5. An ({p, €)-adversary crafts perturbed input from ¢;,-bounded region
centered at clean input xg. From left to right are ¢1-, £2-, and ¢oo-bounded
perturbation regions in 2D space with radius e.

B. ReLU Relaxation with Single Input Variable

) Y, )
/ iz
e LB Ll ||
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Fig. 6. Different linear relaxations for ReLU shown as blue region. (a) shows
the tightest single-neuron polytope for ReLU which is used in [27], [46], [52],
[71]; (b) is used in [38], [39], [64]; (c) is used in [38], [64]; (d) shows that
the slope of lower bound can be dynamically adjusted or optimized [38], [59],
[62], [64].

C. ReLU Relaxation with Multiple Input Variables

z 1 3 Y

(a) Single ReLU polytope (shown in (b) Multi-neuron convex relaxation gives
brown) gives looser upper bound for 2 tighter upper bound for z (shown as two
* dark blue facets).

Fig. 7. Comparison of convex relaxation for z = ReLU(x + y) (shown as
bottom blue surface in (a)), where =,y € [—1, 1]. Vertical axis is the z-axis.

APPENDIX C
DETAILS ON LINEAR INEQUALITY BASED VERIFICATION

This appendix entails the omitted details of linear inequality
verification approaches introduced in Sec. IV-B2.

More details on polyhedra abstraction. FAST-LIN [39]
uses a parallel line as the lower bound as shown in Fig. 6b.
CROWN [38] and DEEPPOLY [64] both support adjustable
lower bound. They both use y = Az with adjustable A € [0, 1]
as the lower bound, while their heuristics for determining \ are
slightly different. FROWN [62] and a-CROWN [59] deploy
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gradient-based optimization on lower bound slope A to improve
tightness.

These approaches maintain the linear bound for each layer &
in the form of Lz + bp; < zx(z) < Ugx + by, for any
x € By ¢(x0). From the bound for layer k, we can deduct the
bound after affine mapping 2511 = Wiz + bg:

(W, Ly + W, Up)x + Wbk + W, by + be
<Zpri1(x) )
<(W,f U, + W), L)z + Wi by + Wi, br i + bi.

Then, they compute the activation value bound l;y; and
ug+1 for 2,41, and compute the linear bound for zj41(x) =
ReLU(2;+1(x)) using ReLU lower and upper bound respec-
tively. By repeating the process, they finally bound the last
layer Z;, i.e., the model f itself.

Zonotope abstraction. Zonotope is another type of over-
approximation or abstract interpretation domain that can be
propagated layer by layer efficiently [25], [37], [66]-[68].
Zonotope abstraction has the same efficiency and slightly
inferior tightness compared to polyhedra abstraction [40].

Duality-based approaches. Since the robustness verification
can be viewed as an optimization problem (Problem 1), we
can consider its Lagrangian dual problem. Especially, since
Problem 1 is a minimization problem, any feasible dual solution
provides a valid lower bound of the primal problem and
therefore a valid verification. Moreover, the dual problem is
always convex [211]. Typical duality-based approaches are
WK [27], [71], D-LP [70], PVT [69], and LAGRANGIAN
DECOMPOSITION [212] where WK is proved to share equiva-
lent tightness with polyhedra abstraction approaches, and the
others are proved to share equivalent tightness with linear
programming based approaches [40].

APPENDIX D
ILLUSTRATION OF ROBUST TRAINING APPROACHES

Regularization-based training. For complete verification,
Xiao et al [213] find that the number of branches is upper
bounded by the number of unstable neurons (see Def. 4)
which motivates a regularization term to increase the ReLU
neuron’s stability for training. For complete verification based
on linear region traversal, we can train with a regularization
term maximizing the margin to non-robust regions [214], [215].
The Lipschitz and curvature verification favor small Lipschitz
constant and small curvature bounds respectively. Therefore,
the corresponding robust training approaches explicitly penalize
large Lipschitz or curvature bounds [80], [81], [83], [90].

Relaxation-based training. For linear relaxation based veri-
fication approaches, models with tight linear relaxation bounds
are favored. To train such models, corresponding robust training
approaches usually use the computed bounds from linear
relaxation as the training objective to explicitly improve the
bound tightness. This idea is similar to the powerful empirical
defense named adversarial training [18] which uses effective
attacks to approximately find “most adversarial” example
maX,cp, (z0) £(fo(7),y0) and minimize model weights ¢

w.r.t. it. In relaxation-based training, instead, we compute an
upper bound of max,cp, _(z,) £(fo(),y0) and minimize it.
The bound can be derived from IBP [61], [121], polyhedra-
based [62], [112], [142], zonotope-based [67], or duality-based
verification [27], [69], [139]. Some useful training tricks are:
combining relaxation-based loss with standard loss to improve
benign accuracy [61], [112], [216], applying relaxation on
some layers but not all to balance benign accuracy and certified
robustness [142], specialized weight initialization and training
scheduling [121], and using reference space to guide the
relaxation [139]. An intriguing phenomenon of relaxation-based
training is that tighter relaxation, when used as the training
objective, may not lead to more certifiably robust models [120],
while the loosest IBP relaxation can achieve almost the highest
certified robustness. A conjecture is that tighter relaxation may
lead to a less smooth loss landscape containing discontinuities
or sensitive regions which poses challenges for gradient-based
training [120], [217]. Theoretical understanding of relaxation-
based training is still lacking. Note that solver based and
branch-and-bound based complete verification usually use linear
relaxations for bounding. Therefore, models trained with these
relaxation-based training approaches can usually be efficiently
certified by these complete verification approaches [46], [58].

Augmentation-based training. Since randomized smoothing
based verification favors models to perform well for noisy in-
puts, to obtain high certified robustness, we can train the DNNs
with noisy inputs, resulting in augmentation-based training [22],
[92], [93]. Built upon such augmentation-based training, later
approaches combine augmentation with regularization terms
to encourage the prediction stability/consistency when the
input noise is added [138], [140], [143]. Strategic training
regularization combined with augmentation and ensemble is
effective and achieves the state-of-the-art certified robustness
against {5 adversary [144], [218]. Adversarial training com-
bined with augmentation [98], and training unlabeled data [141]
are also shown effective. Recently, diffusion models [219],
which intrinsically possess the denoising ability, are leveraged
to build models for randomized smoothing [220]. They achieve
competitive performance though require large model size which
results in large inference overhead.

APPENDIX E
BENCHMARK EVALUATION DETAILS

Experiment environment. Our toolkit implementation is
based on PYTORCH [222]. In the toolkit, we tend to integrate
the original implementations released by the authors when it is
available; otherwise, we implement and optimize them to match
the reported performance. We run the evaluation on a 24-core
Intel Xeon Platinum 8259CL CPU running at 2.50 GHz with
a single NVIDIA Tesla T4 GPU.

A. Comparison of Deterministic Verification

We present a thorough comparison of representative deter-
ministic verification approaches in Table III.

We evaluate on 7 different DNNs on CIFAR-10. Among
them, 3 models (FCNNA - FCNNCc) are fully-connected
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TABLE III
Certified accuracy ON CIFAR-10 CERTIFIED BY deterministic verification approaches FOR DNNS. FAILING TO VERIFY OR EXCEEDING 60 s VERIFICATION
TIME LIMIT IS COUNTED AS “NON-ROBUST”. 0% CERTIFIED ACCURACY MEANS TOO LOOSE OR TOO SLOW TO VERIFY ALL INPUT SAMPLES. THE
VERIFICATION IS AGAINST {5 ADVERSARY WITH RADIUS € = 8/255. WE INCLUDE MODEL ACCURACY UNDER PGD ATTACK AS THE UPPER BOUND OF
THE CERTIFIED ACCURACY. THE BOLDED NUMBERS MARK THE HIGHEST ONES AMONG VERIFICATION APPROACHES.

Verification Approach | FCNNa | FCNNB | FCNNc | CNNA | CNNB | CNNc | CNND
Category [ Name | adv [ cadv | adv [ cadv | adv | cadv | adv | cadv | adv | cadv | adv | cadv | adv | cadv
Complete Solver-Based BOUNDED MILP [46] | 19% | 27% 1% 25% 0% 0% 0% 34% 0% 36% 0% 0% 0% 0%
Branch-and-Bound ATZ [37 19% | 27% 7% 23% 0% 22% 8% 34% 0% 20% 0% 14% 0% 0%
Linear Programming LP-FULL [39], [40] 15% [ 2% 6% 25% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Tnterval TBP [61 0% 27% | 0% 25% | 0% 30% | 0% 34% | 0% 35% 0% 38% | 0% 28%
FAST-LIN [39] 15% 25% 1% 18% 0% 19% 3% 26% 0% 5% 0% % 0% 07
CROWN [38] 15% 27% 6% 20% 0% 22% 8% 33% 1% 20% 0% 0% 0% 0%
Linear Linear Polyhedra CNN-CERT [I01] 15% 27% 5% 20% 0% 07 % 33% 0% 20% 0% 07 % 07
Relaxtion | Inequality Y CROWN-IBP [112] 9% 2% 0% 22% 0% 28% 0% 34% 0% 31% 0% 32% 0% 25%
DEEPPOLY [64] 5% | 2% 6% 20% 0% 22% 8% 33% 1% 20% 0% % 0% 0%
Incomplete REFINEZONO [25] 0% 27% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Duality WK [27], [71] 15% 25% 1% 18% 0% 19% 3% 26% 0% 15% 0% % 0% 5%
Multi-Neuron Relaxation K-RELU [24] 15% 27% 2% 23% 0% 09 0% 32% 0% 0% 0% 0% 0% 0%
SDP SDPVERIFY [79] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% (17
LMIVERIFY [77] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0Y
General OP-NORM [11], [83] 0% 0° 0% 0° 0% 0° 0% 0° 0% 0° 0% 0° 0% 0°
Lipschitz Lipschitz FASTLIP [39] 2% | 27% 0% 1% 0% 1% 0% 24% 0% 0% 0% 0% 0% 07
RECURJAC [84] 14% 27% 2% 1% [0 0% 0% 0% 0% 0% 0% 0% 0% 0%
Accuracy under PGD (Upper Bound of Robust Accuracy) 22% | 28% | 23% | 26% | 19% | 34% [ 34% | 34% [ 33% [ 39% | 36% [ 40% | 41% | 31%
Clean Accuracy 33% 31% | 3™% | 30% | 26% | 39% | 44% | 46% | 53% | 48% | 52% | 46% | 66% | 46%
TABLE IV

Certified accuracy ON CIFAR-10 CERTIFIED BY probabilistic approaches FOR SMOOTHED DNNS. THE MODELS ARE TRAINED WITH DIFFERENT “ROBUST
TRAINING” APPROACHES AND SMOOTHED WITH DISTRIBUTIONS LABELLED AS “SMOOTH DIST.”. NUMBERS WITHIN EACH BIG CELL UNDER THE
RIGHTMOST COLUMN ARE COMPARABLE. THE BOLDED NUMBERS MARK THE HIGHEST ONES WITHIN EACH GROUP.

Adversary | Model Structure || Verification Approach | Robust Training | Smooth Dist. || Certified Robust Accuracy under Perturbation Radius €
€= 0.25 0.50 0.75 1.00 1.25 1.50
Differential Privacy Based [92] 34.2% 14.8% 6.8% 2.2% 0.0% 0.0%
Wide ResNet 40-2 Neyman-Pearson [22], [28], [95], [96] Data A ion [22], [28] 68.8% 46.8% 36.0% 25.4% 19.8% 15.6%
f-Divergence [94] 62.2% 41.8% 27.2% 19.2% 14.2% 11.4%
. Data A ion [22], [28] . 61.2% 132% 32.0% 22.4% 17.2% 14.0%
2 Adversarial Training [98] Gaussian 73.0% 57.8%  482% 37.2% 33.6% 28.2%
ResNet-110 Neyman-Pearson [22], [28], [95], [96] | Adversarial + Pretraining [98], [141] 81.8% 62.6% 52.4% 37.2% 34.0% 30.2%
MACER [143] 68.8% 52.6% 40.4% 33.0% 27.8% 25.0%
ADRE [221] 68.0% 50.2% 37.8% 30.2% 23.0% 17.0%
€= 0.5 1.0 1.5 2.0 3.0 4.0
Differential Privacy Based [92] 43.0%  208% 122% 7.2% 1.4% 0.0%
e ol 20 o 9709 o 0 1
o Wide ResNet 40-2 Rényi Divergence [93] Data A ion [22], [28] Laplace 58.2%  39.4%  27.0%  16.8% 9.2% 4.0%
— 58.4%  39.6% 27.0% 172%  9.2%  4.2%
Neyman-Pearson [22], [28], 93], [96] Uniform 69.2% 56.6% 48.0% 39.4% 26.0% 20.4%
c= 1/955 2/255 4/255 8255
. [ Data A ion [22], [28] | . 71.4% 52.0% 29.0% 12.8%
loo Wide ResNet 40-2 Neyman-Pearson [22], [28], [95], [96] ‘ Adversarial Training [98] ‘ Gaussian 83.2% 65.0% 49.6% 254%

networks, and 4 models (CNNA - CNND) are convolu-
tional neural networks. The number of neurons ranges from
50 (FCNNA) to about 200,000 (CNND). For each DNN
structure, we train two sets of weights: adv—PGD adversarial
training with € = 8/255; cadv—CROWN-IBP training with
e = 8/255, where € is the ¢ attack radius. The PGD
adversarial training [18] is a strong empirical defense, and
CROWN-IBP [112] is a strong robust training approach. For
PGD adversarial training, following the literature [18], [21],
we set the attack step size to be ¢/50, attack iterations to be
100 with random initialization, and train for 40 epochs with
0.1 learning rate and SGD optimizer. For CROWN-IBP, we
use the official code release [112] and default hyperparameters:
100 epochs with Adam optimizer and 5 x 10~ learning rate
on MNIST, and 200 epochs with SGD optimizer and 0.001
learning rate on CIFAR-10. More hyperparameters can be
found in our open-source toolbox. We choose these training
configurations to reflect two common types of models on which
verification approaches are used: empirically defended models
and robustly trained models. All models are trained to reach
their expected robustness as reported in the corresponding
papers. We defer the detailed model structure and statistics to
our website.

Evaluation protocol. = We measure the performance of
verification approaches by their certified accuracy w.r.t. £
radius ¢ 8/255. Ly adversary is supported by most

deterministic verification approaches. The certified accuracy,
as a measurement of certified robustness, is defined as

# samples verified to be robust
# number of all samples

certacc 1= 6)
On each dataset, we uniformly sample 100 test samples as the
fixed set for evaluation. We limit the running time to 60s per
instance (so that verifying all 14 benchmark models with each
approach takes about one day) and count timeout instances
as “not verified” to favor efficient and practical verification
approaches. This time limit is aligned with common settings.
For example, the recent competition (VNN-COMP 2021 [200])
for complete verification sets 6-hour as the time limit. For a
fair comparison, we relax this time limit from 6 hours to one
day since we benchmark multiple models together. Moreover,
running tools with the one-day time limit per approach takes
overall around 2.5 months considering around 20 approaches
and all settings. Therefore, for time and energy concerns we
did not benchmark with longer time limits. Practical users can
explore other time limits with our open-source toolkit. We also
report the robust accuracy under empirical attack (PGD attack
with 100 steps, step size €/50, and random starts following
[18], [21]), which upper bounds certified accuracy.

Table IIT shows certified accuracy on CIFAR-10 for deter-
ministic approaches. Each row corresponds to a verification
approach, PGD attack, or clean accuracy. More results such
as average certified robustness radius, average running time,
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TABLE V
f~ CERTIFIED ROBUST ACCURACY W.R.T. DIFFERENT RADII 7’S (OUR METHOD SHOWN IN GRAY).

Dataset Model Certification Clean \ Certified Accuracy under Radius r
Approach Accuracy [ 1/255 27255 3/255 47255 57255 6/255 77255 8/255 97255 10255 117255 12255
Gaussian Neyman-Pearson 99.1% 98.1% 974% 96.6% 958% 952%  92.4% 89.4%  852% 808% 732% 64.0%  50.7%
MNIST Augmentation Our Method i 98.1% 97.5% 96.6% 961% 952% 927% 90.5% 868% 828% 77.6% 688% 60.0%
Consistency Neyman-Pearson 98.5% 983% 982% 97.2% 964% 954% 939% 915% 883% 839% 7187% T12% 62.7%
[140] Our Method i 983% 982% 97.2% 964% 95.6% 943% 92.7% 89.0% 86.0% 81.9% 755% 67.5%
Clean Certified Accuracy under Radius r
Accuracy | 0.5/255 17255 1.5/255 2255 257255  3/255 357255 47255 457255  5/255 551255  6/255
Gaussian Neyman-Pearson 65.6% 520%  453% 411% 363% 32.6% 267%  21.9% 18.1% 15.1% 10.9% 8.9% 6.1%
CIFAR-10 Augmentation Our Method i 523% 45.6% 41.5% 37.6% 338% 288% 237% 195% 172% 139% 10.5% 8.1%
Consistency Neyman-Pearson 52.6% 471%  455% 43.6%  40.6% 38.3% 36.0% 33.4% 305%  285% 252% 22.0% 20.3%
[140] Our Method . 472% 455% 43.6% 409% 389% 369% 345% 319% 295% 281% 249% 22.0%

and results on MNIST are on our website. Findings from our
evaluation are discussed in Sec. VI-A.

B. Comparison of Probabilistic Verification

We present a thorough comparison of representative prob-

abilistic verification approaches for smoothed DNNs with
different smoothing distributions and robust training approaches.
We either fix the robust training part and vary the verification
approaches or the other way around.
Evaluation protocol. We use ResNet-110 and Wide ResNet
40-2 as the model architecture. n = 1,000 samples are used
for selecting the top label; N = 100,000 samples are used
for certification. For all robust training approaches, we adopt
default hyperparameters as reported in corresponding papers.
The failure probability is set to 1 — a = .001. We uniformly
draw 500 samples from the test set for evaluation. All the
above settings follow common practice in [22], [28].

Comparison results and discussion. We show results on
CIFAR-10 in Table IV. Results on ImageNet can be found
on our benchmark website. Findings from our evaluation are
discussed in Sec. VI-A.

APPENDIX F
TIGHTER CERTIFICATION AGAINST /., ADVERSARY

We extend the very recent double sampling randomized
smoothing in [137] to provide robustness certification for
smoothed DNNs by sampling the statistics of the smoothed
DNNSs’ prediction using both the original smoothing distribution
‘P and an additional smoothing distribution Q that shares the
same form but a different variance from P’s variance. Note that
we leverage additional information—the prediction probability
under Q. In contrast, the zeroth-order methods only leverage
the sampling probability information from P. The extension
methodology is listed in Appendix H.3 of [137].

Now we systematically evaluate our extension of the double
sampling method and demonstrate that it achieves tighter
certification than the classical Neyman-Pearson-based certifica-
tion (the tightest zeroth-order information approach) against
{~-bounded perturbations on MNIST and CIFAR-10.
Smoothing Distributions. For a given distribution D, we let
Std(D) be its average component-wise standard deviation:

Std(D) := \/LEs.p[||6]|3] as first used in [28]. We set

Std(P) = 0.75, Std(Q) = 0.6 on both MNIST and CIFAR-
10. We use generalized Gaussian as the smoothing distribution

following [137] where d —k = 8 on MNIST and d—k = 12 on
CIFAR-10. Note that we did not finetune these hyperparameters
and we expect the existence of better hyperparameters.
Models. We train the models using both commonly-used
Gaussian augmentation [22] and state-of-the-art Consistency
training [140]. On all datasets, we use the default model
structures and hyperparameters. All models are trained with
the original smoothing distribution P.

Baselines. We consider the Neyman-Pearson-based certification
method as the baseline. For both baseline and our method, we
set the certification confidence to be 1 — 2 = 99.8%. We
use 10° samples for estimating P4 and Q 4 per instance. Note
that Neyman-Pearson certification does not use the information
from additional distribution and all 10° samples are used to
estimate the interval of P4. In our method, we use 5 x 10*
samples to estimate the interval of P4 and the rest 5 x 10*
samples for Q4.

Metric. We uniformly draw 1000 samples from the test set, and
report the certified accuracy under each radius r as defined in
Eqn. (6). We also report the benign accuracy of the smoothed
classifier. Both settings and the metric follow the standard
evaluation protocol in literature [22], [28].

Main Results. The experimental results for certification against
l~ adversary are shown in Table V. We observe that, for
all evaluated models, our method yields significantly higher
certified accuracy. For example, when r = 12/255 our method
improves the MNIST robust accuracy from 50.7% to 60.0%;
when r = 5/255 our method improves CIFAR-10 robust
accuracy from 25.2% to 28.1%. Thus, leveraging additional
information can indeed provide tighter robustness certification
over zeroth-order certification approaches for smoothed DNN's
not only against ¢; and ¢y adversaries but also against /.,
adversary.
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