
TEEzz: Fuzzing Trusted Applications on COTS
Android Devices

Marcel Busch
EPFL

Aravind Machiry
Purdue University

Chad Spensky
Allthenticate

Giovanni Vigna
UC Santa Barbara

Christopher Kruegel
UC Santa Barbara

Mathias Payer
EPFL

Abstract—Security and privacy-sensitive smartphone appli-
cations use trusted execution environments (TEEs) to protect
sensitive operations from malicious code. By design, TEEs have
privileged access to the entire system but expose little to no insight
into their inner workings. Moreover, real-world TEEs enforce
strict format and protocol interactions when communicating with
trusted applications (TAs), which prohibits effective automated
testing.

TEEzz is the first TEE-aware fuzzing framework capable of
effectively fuzzing TAs in situ on production smartphones, i.e.,
the TA runs in the encrypted and protected TEE and the fuzzer
may only observe interactions with the TA but has no control
over the TA’s code or data. Unlike traditional fuzzing techniques,
which monitor the execution of a program being fuzzed and view
its memory after a crash, TEEzz only requires a limited view
of the target. TEEzz overcomes key limitations of TEE fuzzing
(e.g., lack of visibility into the executed TAs, proprietary exchange
formats, and value dependencies of interactions) by automatically
attempting to infer the field types and message dependencies of
the TA API through its interactions, designing state- and type-
aware fuzzing mutators, and creating an in situ, on-device fuzzer.

Due to the limited availability of systematic fuzzing research
for TAs on commercial-off-the-shelf (COTS) Android devices, we
extensively examine existing solutions, explore their limitations,
and demonstrate how TEEzz improves the state-of-the-art. First,
we show that general-purpose kernel driver fuzzers are ineffective
for fuzzing TAs. Then, we establish a baseline for fuzzing TAs
using a ground-truth experiment. We show that TEEzz outper-
forms other blackbox fuzzers, can improve greybox approaches
(if TAs source code is available), and even outperforms greybox
approaches for stateful targets. We found 13 previously unknown
bugs in the latest versions of OPTEE TAs in total, out of which
TEEzz is the only fuzzer to trigger three. We also ran TEEzz on
popular phones and found 40 unique bugs for which one CVE
was assigned so far.

Index Terms—Fuzzing, Android, TEE, ARM TrustZone

I. INTRODUCTION

Smartphones operate on private user data and perform
sensitive functionality, e.g., financial transactions [31], user
authentication [76], or handling digital rights management
(DRM) protected media [30]. To defend against various
application- and kernel-level exploits [21], [70], [84] appli-
cations leverage TEEs [24] (e.g., ARM TrustZone (TZ) [7])
as an additional hardware-based defense. TEEs enforce the
integrity and confidentiality of their applications. Partially due
to recent research that demonstrated the usefulness of TEE
applications [25], [36], [42], [56], [87], [89], called TAs, their
number, as well as their complexity, is steadily increasing,
leading to more TA-based vulnerabilities [15], [16], [34].
Unlike regular applications, where the vulnerability affects

only the application, a vulnerability in a TA compromises the
security of the entire system [88], potentially even the secure
boot process [66].

While the security of these TAs is foundational to the secu-
rity of the device, performing effective testing (e.g., fuzzing)
remains an open challenge. Smartphones ship with the trusted
OS (tOS) and numerous pre-installed TAs, prohibiting the
normal world (e.g., Android) from inspecting their code at
runtime. TA interactions are stateful and use complex propri-
etary message formats [39]. The entities in the secure world
(TEE and TAs) are often encrypted and get decrypted in secure
memory at runtime, prohibiting the use of static analysis-
based vulnerability detection techniques. Dynamic analysis,
i.e., fuzzing, is an effective alternative.

There are two principled approaches for fuzzing TAs: re-
hosting through emulation or on-device instrumentation.

Rehosting the TEE in an emulated environment overcomes
the inaccessibility of the TEE’s internal state. PartEmu [39]
rehosts Samsung’s proprietary TEE software stacks. They
rehost the tOS and its TAs, to an emulated system-on-a-chip
(SoC), gaining unrestricted access to the TEE’s internal state.
Limitations to this approach are (1) the reverse engineering
and implementation effort for emulated software and hard-
ware components, (2) the inaccuracy of these implementa-
tions, (3) the lack of public data sheets, and (4) industry
involvement leading to non-disclosure agreements for exist-
ing solutions. Especially the last limitation deserves further
emphasis. PartEmu is the only existing rehosting solution
targeting multiple TEEs. The prototype validates the feasibility
of rehosting proprietary software stacks deployed on Samsung
devices and is not publicly available.

The second approach, on-device fuzzing, mitigates these
limitations and inaccuracies of emulation approaches. How-
ever, it lacks access to the TEE’s internal state and must fall
back to blackbox fuzzing techniques. Unlike typical fuzzing
techniques, which can analyze the binary, system memory, and
executed instructions, an on-device TEE fuzzer must infer bugs
from a far more limited view of the execution. Interactions
with TAs happen through a vendor-provided interface (e.g., a
driver [1], [3], [74]) in the rich OS (rOS), which ultimately
generates an secure monitor call (SMC) to communicate with
the secure world. The only observable execution effects are
returned data (e.g., return values) and the status of the TA.

The gateway to the TEE is usually a TEE-specific ker-
nel driver. While kernel fuzzers like Syzkaller [32] or DI-
FUZE [20] are capable of fuzzing kernel drivers, these tools

1204

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Marcel Busch. Under license to IEEE.
DOI 10.1109/SP46215.2023.00013

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

30
2

fail to capture the message semantics required to interact with
TAs, rendering them ineffective when targeting TEEs. Thus,
novel techniques are required to find and fix bugs in these
security-critical applications.

We present TEEzz, a fuzzing framework for TAs running
on commercial smartphones. TEEzz targets three popular TEE
implementations: the Qualcomm Secure Execution Environ-
ment (QSEE) [62], used on many phones including the popular
Nexus and Pixel series; TrustedCore (TC) [79], found on
Huawei devices; and the Open Portable Trusted Execution
Environment (OPTEE) [51], the de-facto reference implemen-
tation for TZ-based TEEs. The analysis first identifies the TAs
within the TEE and then manually triggers interactions with
them. During these interactions, TEEzz records the data passed
both into and out of the TEE to automatically reconstruct the
message format and complex message and value dependencies.
Lastly, this message format, along with the dependencies of
the interaction (i.e., generating a cryptographic key before it
is used for encryption), are fed into our fuzzer. The fuzzer
explores the TA while continuously checking for liveness and
monitoring for crashes.

TEEzz necessitates diverse contributions. First, the complex
and proprietary data structures of TAs require fuzzed inputs
to be well-formed, or else the parsing logic in the tOS will
reject them. Thus, we designed TEEzz as a mutation-based
fuzzer that operates on type- and state-aware seeds generated
from legitimate interactions with TAs. To infer the necessary
knowledge of the API, we design an inference mechanism
that maps high-level abstractions to low-level messages used
to communicate with the TA. TEEzz automatically generates
memory introspection logic for each parameter type of the
exposed interface and then abstracts the interaction proto-
col from the recorded traces. At runtime, we dynamically
instrument this interface, parse the values corresponding to
each type on-the-fly from memory, and save the type-aware
token sequence to disk. The observed type- and state-aware
interactions become the specification for efficient mutation.

Second, we automatically generate type-aware mutators for
the enriched seeds. We convert the type definitions used
by TA-facing interfaces into type-aware mutator plugins for
TEEzz’s mutator engine. While fuzzing, TEEzz leverages
these type-specific mutators to manipulate input tokens.

Third, many TAs are stateful, and value dependencies be-
tween invocations need to be resolved, i.e., a value returned
from one invocation must be used as an input for a future
invocation. Leveraging the previously recorded type-enriched
interaction sequences, which include ingoing and outgoing
data, TEEzz employs a novel value dependency inference
technique to add state-awareness to its seeds.

Finally, TEEzz is the first end-to-end solution capable of
continuously fuzzing TAs on COTS Android devices. Al-
though we use known techniques such as dynamic binary
instrumentation-based introspection (DBII) and semantic re-
construction, the novelty of TEEzz stems in solving tech-
nical challenges (Section IV) to apply these techniques to
a restricted environment of a COTS device with no direct

access to secure world entities. In addition, TEEzz features an
extensible type-aware mutation engine, a state-aware fuzzing
paradigm that considers entire interaction sequences as seeds
and resolves interaction dependencies during runtime. Further,
it supports state reset mechanisms to deterministically build up
TA state to facilitate the reproduction of crashes.

We evaluated TEEzz’s performance in terms of coverage
and bug-finding capabilities in a ground-truth experiment.
For this purpose, we extended the OPTEE platform with (1)
permanently shared memory between client applications (CAs)
and TAs, (2) TA instrumentation to populate the coverage
bitmap, (3) TA instrumentation to collect program counters
during post-processing, and (4) support for TA constructors
to initialize the instrumentation. Due to the non-availability
of related fuzzers, we truthfully replicate the state-of-the-art
based on AFL++ and compare TEEzz against three TA-aware
AFL++ variants. Our results show that TEEzz finds bugs that
are unreachable for existing fuzzers. In fact, TEEzz was the
only fuzzer capable of finding three previously unknown bugs
in OPTEE TAs. Further, we tested TEEzz on 18 TAs covering
four popular Google and Huawei phones. TEEzz successfully
generated enriched seeds, inferred interaction dependencies,
and fuzzed each TA. Across these proprietary targets, TEEzz
successfully found 40 unique bugs that we responsibly re-
ported to the corresponding vendors. One CVE (CVE-2019-
10561) was assigned so far, and we await further replies. Some
of these crashes force the phone into a factory reset—wiping
all user data— to resume normal functionality. In contrast,
others allowed us to extract protected cryptographic keys from
the TEE, a stepping stone to launch brute-force attacks against
a device’s disk encryption.

In summary, our contributions are as follows:
• We developed TEEzz, available at https://github.com/

HexHive/teezz-fuzzer, the first end-to-end automated
fuzzing framework capable of fuzzing TAs on commer-
cially available smartphones;

• an automated, dynamic-analysis-based technique for in-
ferring field types of messages, as well as their depen-
dencies, to facilitate type-aware fuzzing of stateful TAs;

• type and state-aware fuzzing mutators that leverage the
message and dependency information inferred from ana-
lyzing the interactions with the TAs; and

• a thorough evaluation of TEEzz against other state-of-
the-art fuzzing techniques on production TAs.

II. BACKGROUND

In this section, we present the relevant background for ARM
TrustZone and its usage on the Android platform. Then, we
cover the fuzzing concepts necessary for our research. These
concepts include type-awareness and state-awareness.

a) TEEs on the Android Platform: The vast majority of
smartphones uses modern ARMv8-based SoCs that leverage
TZ to provide a hardware-supported TEE for security-critical
functionality. Figure 1 shows the privilege levels (i.e., excep-
tion levels) of ARMv8 TrustZone and the location of the com-
plex feature-rich code (e.g., Android) in the “normal” world,

1205

App

System Service

Android Kernel
(Rich OS)

Driver Interface

Binder Interface

TEE Lib (proprietary)

CA Lib (proprietary)
CA Interface

S
M

C

Interface

1

Trusted OS

Secure Monitor

Trusted
Application

(TA)

3

2

Normal World (Android) Secure World

N-EL1
N-EL0 S-EL0

S-EL1 / S-EL3

CA Loaded Unloaded

Session
Opened

Session
Closed

Accepting
Commands

Fig. 1. Communication flow between a CA and a TA in Android. For
simplicity, we combine the app that performs the request to the TA and the
service that marshals and dispatches the request and refer to them as CA.

and the sensitive code (e.g., the management of authentication
keys or DRM media) in the “secure” world. Software in each
of these worlds is referred to as either untrusted in case of
the normal world (i.e., the rOS on N-EL1 and its CAs on N-
EL0), or trusted in case of the secure world (i.e., the tOS
on S-EL1 and its TAs on S-EL0). The secure monitor on
the highest privilege level (EL3) is responsible for switching
a central processing unit (CPU) core from one world to the
other; therefore, both OSes have to call into the secure monitor
to interact with the respective other world.

The security-critical features in TEEs are usually imple-
mented through dynamically loadable TAs. On Android, the
interaction with TAs is primarily initiated by system services
that expose their functionality to regular apps via the Android
Framework application program interface (API) (i.e., Binder-
based inter-process communication (IPC)). Figure 1 depicts a
simplified but typical communication paradigm between CAs
and TAs on the Android platform.

An Android app uses system services to access hardware
features (e.g., microphones, cameras, and sensors). Many of
these system services leverage the capabilities provided by a
TEE in the background (e.g., keystore, gatekeeperd,
and fingerprintd). Thus, a TEE is treated as a hardware
device in Android’s architecture. To have common abstractions
across vendors and their hardware-specific implementations,
Android defines hardware abstraction layers (HALs) [33] for
all system services dealing with hardware. Regarding the TEE,
each system service uses a proprietary CA library (CAlib),
which exposes the common HAL interface and implements the
TA-specific marshaling of the request. Additionally, this CAlib
usually invokes a further proprietary TEE library that imple-
ments abstractions for interacting with the vendor-specific TEE
driver (1 in Figure 1).

The TEE driver, usually invoked using an ioctl [20]

system call, is responsible for forwarding the request to the
tOS (we use the terms driver interface and ioctl interface
interchangeably). Since the rOS and tOS have different virtual
address spaces (i.e., they use separate page tables), the rOS
needs to provide the request in a coordinated shared memory
region before it calls the privileged SMC instruction (2 in
Figure 1) to switch worlds. Once the message is received by
the tOS, the tOS forwards the message to the correspond-
ing TA (3 in Figure 1).

b) Type-Awareness: Naı̈ve mutation primitives consist of
random modifications, appending data, and removing data.
Other mutations may depend on the type of the data. For
example, an enum type with a set of possible values could
be mutated to ensure that it will have one of the possible
values with high probability. The mutations aim to reduce the
range of interesting values for a mutation to trim the search
space for inputs overall. We refer to this principle’s extension
from primitive to complex data types as type-awareness.

Automated type-aware fuzzers such as DIFUZE [20] and
HFL [44] require source code for the generation of their
fuzzing templates. They thus cannot be effectively applied
to TAs as they are available only in binary form and often
encrypted (e.g., Huawei).

c) State-Awareness: Many applications and libraries
have internal finite state machines. For instance, a file cannot
be read from or written to without first opening it. This
dependency is enforced programmatically by requiring that
a valid file descriptor be passed to the read and write
function. This descriptor can be obtained by opening a file
through open. We say that these functions have a value
dependency and a consumer of this API needs to be state-
aware [35], i.e., use functions in an expected order and resolve
value dependencies, e.g., open before read and correctly
passing the file descriptor.

Fuzzers that have an automated approach to state-awareness
either require source code (FuzzGen [40] and HFL [44]), or
fine-grained logs (IMF [38] and MoonShine [59]), both of
which are hard or rather impossible to get on COTS devices
with a proprietary TEE.

III. INTERACTING WITH TAS

One of the fundamental requirements to fuzz TAs is the
ability to execute them by providing interesting inputs. This
section discusses different ways to interact with TAs along
with their tradeoffs, thereby providing the rationale for choices
made in TEEzz.

A. Executing TAs

TAs require the corresponding TEE, whose execution in
turn requires the specific hardware (see Section II). The two
straightforward choices are executing the TAs on-device or
rehosting the TAs [37], i.e., executing a hardware-dependent
program in an emulated environment.

1206

a) On-device execution: Executing a TA directly on the
original (or at least compatible) hardware along with the
corresponding TEE is the most precise way to capture the
runtime behavior of TAs. In cases like Huawei, where the TEE
firmware is encrypted, on-device execution is the only way to
execute corresponding TAs.

No Introspection: For the majority of available devices,
the original equipment manufacturer (OEM) restricts modifica-
tions to the TEE. 1 This prevents the analyst from introspecting
the TA on the device as it requires modifying or instrumenting
the TEE. TEE software exploits or hardware attacks to gain
code execution within the TEE are out of scope. These options
would enable more powerful introspection capabilities but are
challenging to carry out and not universally available.

b) Rehosting: These techniques enable the execution of
a hardware-dependent program, such as a TEE, in an emulated
environment. Samsung’s not-publicly-available PartEmu [39]
rehosts proprietary TEE software stacks, consisting of the tOS
and TAs, to an emulated environment based on QEMU [10]
and Panda [23].

Incompleteness: Existing approaches suffer from inaccu-
racy of emulated hardware and software. Chip designs and cor-
responding data sheets are often unavailable publicly, and ac-
curately emulating hardware without this information requires
non-trivial reverse-engineering. Although PartEmu emulates
peripherals such as the TrustZone address-space controllers
(TZASC) and protection controllers (TZPC), chip manufac-
turers add custom components that are difficult to emulate.
For example, Qualcomm chips contain a proprietary eXtended
Protection Unit “XPU” enforcing dynamic memory protection
of shared buffers between the secure world and the normal
world, making it an interesting fuzzing target. Furthermore,
PartEmu does not model certain proprietary and necessary
peripherals like the fingerprint sensor, ARM CryptoCell [91],
or face identification hardware. This lack of perfect emulation
results in a lack of fuzzing accuracy causing false positives
and negatives. For an emulator, practically feasible emulation
often involves sacrificing some hardware accuracy.

B. Input Injection

Due to restrictions placed on the secure world (i.e., the
inability to modify or debug code), inputs to TAs must nec-
essarily originate from the normal world. Within the normal
world, fuzzing inputs can be injected into the system (with
the intent of reaching TAs) at several locations, each having
accompanying tradeoffs:

Client Application (CA): Requests to TAs typically orig-
inate from a CA. Thus, directly exercising the CA generates
valid requests to the corresponding TAs. However, the input
to the CA has little or no control over the values that are
ultimately sent to the TAs. As the vendor-specific proprietary
TEE client library (see Figure 1) sanitizes the forwarded input,
this interface is ineffective for fuzzing.

1Note that bootloader unlocking allows deploying custom software in N-
EL1 and N-EL0 (see Figure 1) but the TEE is off limits.

Driver Interface (1 in Figure 1): There are already
techniques, specifically Syzkaller [32] and DIFUZE [20], that
can provide fuzz inputs at the driver interface. However, they
fail to generate valid requests through the SMC interface (2

in Figure 1) since they are neither aware of the input format
accepted by TAs nor their internal finite state machines.

SMC Interface (2 in Figure 1): While it is straightforward
to fuzz at the SMC call interface, the generated inputs are
likely to fail to reach the TA since they most probably do not
adhere to the TA-specific protocol or data format.

This multi-interface invocation of a TA presents a tension
between the high-fidelity, low-control interface of the CA and
the low-fidelity, raw interface of the SMC call.

As fuzzed input injection moves farther away from the tOS,
the amount of control over the fuzzed data decreases while
the likelihood of the data ultimately reaching the targeted TA
increases. For example, the SMC interface permits complete
control over the data but requires an accurate reconstruction
of the entire communication protocol. On the contrary, the
CA provides limited ability to modify the handled data, as
numerous checks and mutations are performed, but creates
valid packets for the TA.

C. Interaction with TAs in TEEzz

To prevent inaccuracies introduced by software and hard-
ware emulation, we interact by executing TAs on the device.
We handle the lack of introspection by using a coarse-grained
feedback mechanism, as explained in Section VI, to determine
the state of TAs.

We inject fuzzed inputs through the driver interface, as
it gives sufficient control over the data sent to a TA and
makes our input injection mechanism independent of the SMC
calling convention (as determined by the SoC). However, as
mentioned before, generating valid requests to a TA through
the driver interface requires us to know the input format
expected by the TA, along with the status of its internal
finite state machine. We will discuss these challenges and
how TEEzz handles them in the next section.

IV. CHALLENGES AND TEEZZ’S APPROACH

Effectively sending arbitrary but well-formatted data to a
TA through the driver interface requires (i) Type Awareness,
an understanding of the structure and type of data accepted
by the TA; and (ii) API State-Awareness, an understanding
of the interdependencies between the data sent to a TA
across multiple requests. For instance, a sign request to
the keymaster TA has to contain information about the
key to be used, which has been generated or imported by a
preceding request.

A. Challenge #1: Structure Recovery (Type-Awareness)

The data expected by TAs through the TEE driver interface
(3 in Figure 1) is proprietary and specific to the TA. But,
the structured and typed data from the upper layers (i.e., the
CAlib) enter the driver interface (1 in Figure 1) in a serialized
and untyped format.

1207

To effectively send input to a TA, the format of the expected
input and the marshaling method expected by the driver
interface must be known. We cannot analyze the entities in
the secure world (right half of Figure 1) as the firmware is
mostly encrypted with device keys. Even in the normal world,
recovering the structure and type of data expected by a TA
has the following two sub-challenges:

Java Native Interface (JNI): As shown in Figure 1, in
the normal world, the data from the app to the TA goes
through various layers before reaching the driver interface.
Each layer marshals the incoming data in a specific format
before sending it to the next layer. We need to track the
data flow to understand which parts of the data sent to the
driver interface are needed by the TA. However, transitions
between these layers are complex, such as the app calling
from a Java context into a native library using JNI [50] and
the inter-process communication with the system service using
Binder [69]. But, precise static tracking of information flow
across the JNI layer and process boundaries is still an open
research problem [5], [83].

Type and structure recovery on binaries: Few of these
layers involved in the data flow from the app to the driver
interface contain potentially closed-source, stripped, and ob-
fuscated binary code, e.g., CAlib. These libraries contain
essential information about the structure and type of the data
accepted by TAs. Recovering this information requires precise
structure and type inference at the binary level, which is also
an open research problem [47], [57].

TEEzz’s Approach: TEEzz recovers formats expected by
TAs using a novel combination of dynamic binary instrumen-
tation (DBI), multi-interface message recording, and semantic
deduction [45] (i.e., automatically bridging the semantic gap
between the low-level interface and high-level API). As we
will explain in Section V-C, TEEzz exploits the availability of
types from the CAlib layer interfacing the proprietary vendor
code to reconstruct the format carried within the messages
crossing the driver interface.

B. Challenge #2: API Statefulness (State-Awareness)

As mentioned before, interactions with TAs are stateful [39],
[52], [88]. Existing techniques, such as PartEmu [39], reset (or
restart) the state of TAs after each request and hence do not
account for the accumulation of state and fail to explore the
state machine of TAs.

An effective fuzzer must account for the TEE
implementation-specific state machine for loading TAs
and establishing sessions as depicted in Figure 1. Moreover,
it also has to account for the TA-specific state machine. Any
fuzzing technique must adhere to the proper TA-specific
protocol to go beyond shallow bugs.

TEEzz’s Approach: As mentioned before, we use DBI to
record the messages exchanged with TAs. In addition, we
also preserve the order of these recorded messages. Using this
ordered list of messages and their corresponding data, TEEzz
attempts to infer the API model of TAs for a given message
sequence (i.e., the appropriate fields and invocation order) by

analyzing data dependencies between messages (as explained
in Section V-C).

V. SYSTEM DESIGN

TEEzz is designed as a pluggable framework to ensure
its portability and extensibility as existing TEEs continue
to evolve, and new TEE vendors enter the landscape. For
each platform, TEEzz must be initialized to ensure effec-
tive fuzzing. Figure 2 provides a high-level overview of the
workflow of our system. The first step is to identify the
CAlibs interacting with TAs that are installed within a given
TEE, obtain their interfaces, and create CAlib consumers,
if none exist, to trigger interactions (Section V-A). Next,
TEEzz automatically generates DBII recorders and type-aware
mutators from these CAlib interfaces (Section V-B). Then,
TEEzz leverages these recorders to carry out a multi-interface
interaction capturing. Having the same interaction recordings
on a semantically-rich high-level interface and a semantically-
poor low-level interface serves us to propagate types to the
lower level where we have more flexibility to inject mutated
inputs for fuzzing. Further, based on the recordings of entire
interaction sequences, TEEzz attempts to infer value depen-
dencies between interactions, resulting in type- and state-aware
TA interactions that can be used as seeds by the fuzzing engine
(Section V-C). Finally, TEEzz employs these enriched seeds
and the previously generated CA-specific mutators to fuzz TAs
on COTS Android devices (Section V-D).

A. CA Identification

CAs are built to interact with TAs, and they are part of the
normal world execution context that we fully control. TEEzz
is based on the idea of extracting the knowledge of CAs about
the protocol and message formats needed to interact with TAs.
We chose a dynamic approach to capture this knowledge by
recording interactions (Section V-C) and therefore need a way
to trigger these interactions.

From our observation, we can find four usage scenarios for
CAlibs on COTS Android devices.

• Android Open Source Project (AOSP) System Ser-
vice. These are services usually present on all Android
devices, and Google specifies the open source CAlib in-
terface. The well-known keystored, gatekeeperd,
fingerprintd, and mediaserver are examples for
these services.

• Vendor System Service. These are vendor-specific ser-
vices, and the CAlib interface is not publicly available.
CAs for secure storage or anti theft features
are examples for these services.

• Unused CA. Some vendors deploy CAlibs to their de-
vices that are not used by any component. In this case,
the corresponding TAs are present and fully functional.
They are just not used.

• Non-Existent CA. This scenario applies to the situation
where a TA exists without having a corresponding CA
deployed on the device. Since TEEzz’s approach requires
CAs, this scenario is out of scope.

1208

Type- and
State-Aware

Seeds

Client Application
Identification

Fuzzing EngineCA Interface
Processing

Seed Recording

CAlib1 CAlib2 CAlib3

libteec

AOSP
System
Service

App

Vendor
System
Service

App

CAlib
consumer

TU

iface
def AST

Type-Aware
Mutators

ifacehigh

in

011101011111…

outin

Fuzz Runner

Run interaction

Corpus Database

CAlib
consumer

CAlib
consumer

iface
def
iface
def

DBII
Recorder

ifacelow

11101010011…
in

out

out Mutation
Engine

CAlib
consumer

Fetch
Mutate

Fig. 2. The TEEzz approach. First, TEEzz identifies the CAlibs capable of communicating with their corresponding TAs and the consumers of this library.
Then, it automatically generates DBII recorders and type-aware mutators from the interface definitions of these CAlibs. Next, the interactions are simultaneously
recorded at two interfaces, (1) the high-level CA interface and (2) the low-level TEE driver interface. This recording approach allows TEEzz to propagate
types and inter-interaction dependencies to the high-control driver interface resulting in type- and state-aware fuzzing seeds. Finally, TEEzz employs these
enriched seeds and the type-aware mutators to fuzz TAs running on COTS Android devices.

TEEzz identifies CAs based on our observation that
all vendors use a single TEE client library that serves
as an abstraction to interact with the TEE driver (e.g.,
libQSEEComAPI.so on Qualcomm, libteec.so on
Huawei, libmcclient.so on Samsung). By generating
the dependency tree using a static analysis that recursively
traverses all dependent objects, we identify all CAs and, if
applicable, their corresponding services.

We obtain the CAlib interface for all CAlibs used in AOSP
system services from the AOSP repository. For CAlibs used
in vendor system services and unused CAlibs an analyst has
to manually spend the effort to obtain interface definitions and
trigger interactions with TAs.

The automatic extraction of these interface definitions and
automatic unit-test generation are open research problems.
For example, FUDGE [8] and FuzzGen [41] deal with this
problem. Both approaches rely on source code and the exis-
tence of library consumers. These prerequisites are not given
regarding the problem of fuzzing TAs on COTS devices. Thus,
we consider the automation of this step as an orthogonal
research problem and opted for a manual approach. From our
experience, the CA layer is usually designed for interaction,
meaning that the affected libraries have exported symbols.
Furthermore, we did not encounter any obfuscation techniques.
For vendor system services, we can trigger interactions and
have a dynamic component for the interface analysis.

B. CA Interface Processing

Given a CA interface definition in C or C++, TEEzz auto-
matically generates DBII recorders and type-aware mutators
from the abstract syntax tree (AST) representation of the
interface.

DBII Hook Type-Aware Mutator

int func(struct S* s) {

// complex logic

}

onenter

enum E { x, y, z };

struct S {
 int a;
 enum E e;
 char b[64];
}

int func(struct S* s);

TU RecordDecl
struct S

FieldDecl int a

FieldDecl char b[64]

FuncDecl
func (int)(struct S*)

ParmVarDecl
struct S *

EnumDecl
enum E

EnumConstantDecl x int

EnumConstantDecl y int

EnumConstantDecl z int

FieldDecl enum E e

def mutate_enum(enum_decl):

return random.choice(enum_decl)

Interface Definition AST

x0

Memory

struct S

int a
enum E e

char b[64]

followstruct S* s

co
py
 s

onleave

Recordings

enum_decl
enum E

x = 0

y = 1

z = 2

Fig. 3. TEEzz’s CA interface processing. TEEzz automatically generates DBII
hooks and type-aware mutators from the AST of the CA’s interface definition.

a) DBII Recorder Generation: Memory introspection
is a well-known technique used in the context of virtual
machines. Virtual machine introspection describes the process
of a host that reads and parses raw bytes of a guest to
reconstruct the meaning of values. For TEEzz, we leverage this
technique to record each incoming and outgoing parameter of
the CAlib interface according to its type using DBI. For some
predefined data types, this technique might be known from
the commonly known strace tool. strace can parse and
print information about parameter types of system calls while
tracing. The parsing logic for these types is hard-coded and
limited to a few widely used complex types.

TEEzz, similar to strace, is capable of parsing primitive
types, like char, short, and int. In contrast to strace,
TEEzz can automatically generate the parsing logic for com-
plex types from the definition of this type. Consider the
function func() in Figure 3. It accepts the parameter s

1209

of type struct S*. TEEzz generates an onenter and
an onleave hook for each function of a given interface.
These hooks, triggered on function entry (onenter) and exit
(onleave), contain the parsing logic to retrieve the complete
parameter from memory according to its type. For the struct
S* type, this logic would dereference the pointer passed as the
first parameter and read three chunks of memory: four bytes
for int a, four bytes for enum E e, and 64 bytes for char
b[64].

Our approach misses to accurately figure out the size of
particular objects, e.g., void* and the size of buffers pointed
to by an int* parameter. In these cases, we use specific
heuristics similar to the prior work [53].

For interaction recording, the onenter hook is responsible
for recording all incoming parameters, and the onleave hook
is responsible for recording all outgoing parameters and the
function’s return value.

b) Type-Aware Mutator Generation: From the CAlib
interface, we know which types are passed to the lower layers
and eventually to the TA. The intuition for the generation of
type-aware mutators is that during fuzzing, we want to create
semi-valid inputs, and the knowledge of types helps to reduce
mutations that likely lead to invalid inputs.

TEEzz converts the type definitions known from the CAlib
interface into type-aware mutators. Given the token sequence
of an enriched seed, TEEzz can choose from several type-
specific mutations. In Figure 3, we illustrate a mutator for an
enum. For example, the constants of the enumeration enum
E { x, y, z }; are encoded using four bytes in C/C++.
A naive mutator would flip random bits of these four bytes
and disregard the fact that the type already indicates that only
x=0, y=1, and z=2 are valid values. This mutation usually
leads to many wasted cycles because the parsing component
immediately rejects the input. Using the mutators generated by
TEEzz, mutations on this enumeration take the value space of
these four bytes into account and assign the values indicated
by the type with a higher probability.

C. Seed Recording

In this stage of TEEzz, we obtain type- and state-aware
interaction sequences for each TA. We capture TA interactions
at two interfaces, the semantically-rich and low-control CA in-
terface and the semantically-poor and high-control TEE driver
interface. This multi-interface interaction recording allows us
to propagate the types observed at the CA interface to the TEE
driver interface. This lower-level interface is more appropriate
for fuzzing because we have more control over the inputs
eventually passed to TAs and can bypass the sanitization
logic of the CA layer. The seed preprocessing is finalized
by inferring the inter-interaction value dependencies. We can
identify outgoing data utilized as input in a later interaction
using the interaction recordings. The availability of types
facilitates this inference.

The recording of seeds is a TA-specific process, meaning
that each TA has its command handlers, expected parameters,
and interaction sequences. The corresponding CA knows about

these specific internals. Given a component that exercises the
CA interface (i.e., an AOSP system service, a vendor system
service, or a manually crafted CA driver), we can capture valid
interaction sequences that can be used as seeds for fuzzing.

a) Multi-Interface Recording: Interaction recording can
be carried out on several levels of abstraction. The CA layer
exposes a semantically rich interface containing API calls
that map directly to TA-implemented command handlers.
Unfortunately, the CA layer also implements sanitization logic
to reject invalid inputs early before they even reach the TEE.

The TEE driver layer exposes an interface that is primarily
designed as a transport layer to pass serialized interactions
back and forth between the rOS and the tOS. This interface
allows for arbitrary manipulations of the inputs passed to TAs
but does not give us any high-level semantics about types or
dependencies between interactions.

Based on this observation, we decided for a multi-interface
interaction recording to get the best of both worlds. Using DBI,
we record input and output messages at the CA interface and
the driver interface to correlate fields and type information
later. Once a variety of messages have been recorded (e.g.,
every exposed function is exercised), TEEzz automatically
generates type- and state-aware TA interaction seeds.

b) Type Propagation: TEEzz leverages the types and pa-
rameters for each function, which are automatically extracted
from the interface definition (i.e., C- and C++-header files), to
map the high-level semantic information to the raw values that
were recorded in memory. Consider Figure 4, which shows the
data recorded for the parameter P and K at a representative
CAlib interface method, f1(). By also recording the input
and output buffers at the low-level driver interface, TEEzz
identifies matching subsequences and similarly maps the high-
level semantic information. A linear scan yields the offsets of
recorded CAlib parameters within the data sent to (and from)
the driver interface. For example, the four byte size_t field
len is easily observed at the beginning of the driver input
buffer.

In addition to the CAlib parameter identification, TEEzz
applies further structure reconstruction heuristics to also iden-
tify length fields, offsets, and strings (e.g., off_t the 0x10
offset to the uint8_t[] k at the beginning of the buffer).
Each pair of recordings at the CAlib and driver layer results
in a model for an enriched seed that TEEzz later uses for
type-aware fuzzing.

c) Interaction Dependency Inference: TEEzz is also ca-
pable of stateful fuzzing. The function, f1(), in Figure 4
has an output parameter Kout of type keyblob_t**. Note
that in order for the subsequent function, f2(), to succeed,
this return value, Kout, which is an output parameter to f1(),
must be correctly generated and passed as the input parameter.
To meet this stateful requirement, TEEzz tracks multiple calls
and automatically identifies output parameters of a call that
are used as input parameters in subsequent calls. With the
raw buffer from the driver recorder and the recorded type-
annotated parameters from the CAlib interface, TEEzz can
infer the structure used at the driver interface. This type of

1210

f1(param_set_t* Pin, keyblob_t** Kout)

Type Magic B
1 0xCAFE 0xAAAA
2 0xCAFE 0xBBBB
1 0xCAFE 0xABAB

len: 03 00 00 00
p[0]: 01 00 00 00 CA FE AA AA
p[1]: 02 00 00 00 CA FE BB BB
p[2]: 01 00 00 00 CA FE AB AB

CAlib Recorder

param_t {enum Type, short Magic, blob B}

CAlib Interface

TEE Driver Recorder

TEE Driver Interface
03 00 00 00 01 00 00 00
CA FE AA AA 02 00 00 00
CA FE BB BB 01 00 00 00
CA FE AB AB 00 00 00 00
66 75 7A 7A 74 68 69 73

Type Recovery

size_t
{enum, short, blob}
{enum, short, blob}
{enum, short, blob}
UNKNOWN(12)

p=0x1234,
len=3

Pin

p[] = 0x1234

f2(keyblob_t* Kin, ...)

param_set_t {param_t[] p, size_t len}

Fuzzing Template

10 00 00 00 00 02 00 00
00 00 00 00 00 00 00 00
4d 4b 49 48 b4 6c 22 4a
...

Type Recovery

off_t
size_t
pad[8]
uint8_t[]

Fuzzing Template

len: 00 02 00 00
k: 4d 4b 49 48 b4 6c 22 4a
 ...

keyblob_t {uint8_t[] k, size_t len}

Fig. 4. An indicative function call sequence of a crypto API as exposed by the keystore system service. Our recorders (green) log the incoming (left) and
outgoing (right) parameters of the CAlib and the driver interfaces (yellow). After recording, we match the typed data logged by the CAlib recorder with the
raw buffers from the driver recorder using our type recovery (purple) to generate fuzzing enriched seeds for fuzzing. Beyond that, we recognize K being an
output parameter of f1() and an input parameter of f2(), thus, accounting for the TA internal stateful API.

interaction is quite common in real-world TEE interactions.
For example, to perform cryptographic operations using a key
inside the TEE, the key must be generated first, with a known
reference value.

Furthermore, we replay a recorded sequence multiple times
to eliminate false positives and disable the resolution of indi-
vidual value dependencies. If the dependent call still succeeds,
we remove the value dependency.

Identifying these value dependencies is crucial to be later
able to fuzz stateful APIs. Overall, performing type-aware and
stateful fuzzing of TAs is an essential contribution of TEEzz.

D. Target Fuzzing

The actual fuzzing is carried out by a host component, called
TEEzzH, and a target component, called TEEzzT. TEEzzH

selects the call sequences to be fuzzed according to the API
model and performs type-aware mutation based on the types
inferred in the type-aware model generation step. Then, it
sends the mutated call sequence to TEEzzT and evaluates the
response. TEEzzT is a proxy that forwards the inputs to the
TEE driver and returns its responses.

VI. IMPLEMENTATION

In this section, we present the implementation details
of TEEzz.

A. Hook-based Requests Recording

TEEzz is able to automatically inject hooks using dynamic
binary instrumentation (DBI) by leveraging Frida [58], a
popular and stable DBI framework. By specifying a function
to be hooked (e.g., the ioctl-wrapper function within libc
or functions of the CAlib), Frida allows for the injection of
logic at the very beginning (onenter) and the very end

(onleave) of a function. This technique allows TEEzz to
record input and output parameters, as well as the return value,
without corrupting the hooked function’s logic.

Frida expects the recording logic executed by these hooks
to be specified in JavaScript. The complexity of this logic is
directly dependent on the complexity of the data structures
to be recorded. For the TEE driver interface, the recording
logic is relatively simple because the data structures are flat
and consist primarily of length fields and their corresponding
buffers (i.e., uint8 t[]). Since it is a one-time effort, we
manually implemented simple cases like this for each targeted
TEE driver interface.

However, consider the parameter P of type
param_set_t* from our request recording illustration
in Figure 4. The recording logic for this parameter needs to
traverse a nested struct, and also account for the runtime
value of len that indicates how many elements (not bytes) of
type param_t are referenced by p. In reality, the structure
of the CAlib interface parameter types is often complex. For
complex cases like these, TEEzz implements a DBII recorder
generator capable of generating complex introspection logic
for Frida hooks based on an interface definition. This
generator is written in Python and uses Python’s libclang
bindings to parse the header files describing the CAlib
interfaces. After the parsing step, TEEzz emits Frida-hooks
in JavaScript for each CAlib function containing proper
introspection logic for parameters according to their types.

By using the AST, TEEzz’s DBII recorder generator pro-
duces hooks that can traverse each parameter node of the AST
down to its leaf nodes (primitive types) potentially following
pointers through memory. We record the corresponding value
from memory for each leaf node and annotate it with its
respective type. A simplified example of this process is illus-

1211

trated in Figure 3 where the leaf nodes of func’s parameter
struct S* s are recorded.

In cases where explicit information about the relation of
parameters or structure members is unavailable, TEEzz uses
heuristics. For example, given a struct that encodes a buffer’s
length (i.e., one parameter being a buffer and the other
one being its size), it may not be explicit from the header
files that the second parameter describes the first parameter’s
size. Thus, TEEzz recognizes that there probably is a size
associated to the first parameter and looks one parameter
ahead to see if the current parameter name is a substring of
the neighboring parameter suffixed with a size indicator (e.g.,
buf and buf_{len,sz,length,size}). If so, the size
parameter’s value is read from memory and used to record the
buffer. This heuristic is implemented conservatively to prevent
reading random memory content; we do not record the buffer
if our heuristic does not succeed.

B. Type Recovery

To perform type recovery of the buffers recorded at the
ioctl interface, TEEzz first matches parameters from the
CAlib interface with byte sequences of the recorded buffers at
the ioctl interface.

The implementation of the matching algorithm originates
from the intuitive way of implementing serializers. Given a
nested data structure, it is common to apply a depth-first
traversal and store the data of neighboring AST leaf nodes
next to each other. Thus, our matching algorithm traverses the
recorded leaf node values of the high-level interface using a
depth-first approach and tries to find identical values within
the byte sequences captured from the low-level interface. If we
encounter collisions, we apply a greedy strategy and prioritize
the match with a higher number of bytes.

In the second stage, TEEzz applies heuristics to identify
offset, size, and constant fields. TEEzz assumes that the size
and offset fields will be four or eight bytes depending on the
bitness of the targeted TA. For offset fields, TEEzz scans for
any offset-sized byte sequence that points to data from the
beginning of the buffer (alignments of 4, 8, or 16 bytes are
considered). When an offset candidate points to the beginning
of an already identified type from the previous step, it is a
good indicator that our heuristic identified the offset correctly.
For size fields, TEEzz scans for any size-sized byte sequence
that matches the size of an already identified type from the
previous step. Size fields are not only identified in terms of
their number of bytes (i.e., a buffer length) but also by the
number of elements in a list (i.e., structures stored in an array).
If a value is identified that does not change across all observed
recordings, we consider it a constant.

C. API Model Inference

Our recorded interaction sequences keep the chronological
order of calls to the ioctl interface of the TEE driver to
ensure that our fuzzed inputs satisfy the state and protocol
requirements of the underlying TA. Furthermore, TEEzz iden-
tifies value dependencies between outputs and inputs. For

example, one interaction produces a value consumed by a
later interaction. To identify these dependencies, we scan
through the typed fields of the output for each interaction and
search for a matching typed field within the inputs of later
interactions. Our current heuristic creates a value dependency
if the type and value of a field in the output and input match.
This approach allows TEEzz to satisfy dependencies from a
request to a prior response, indicating which bytes from a
given response need to be replayed verbatim in future requests,
permitting the fuzzing of stateful TA APIs.

To eliminate false positives, we replay each sequence and
systematically remove value dependencies while comparing
the output behavior to the output of the original recording. If
we can remove the dependency and achieve the same behavior,
we find a false positive and do not consider this dependency
for fuzzing.

D. Fuzzing

TEEzz’s fuzzer is implemented in two parts: a program
running on a machine connected to the phone that generates
inputs and logs results, called TEEzzH, and a stub that runs
on the phone and works as a proxy to pass the fuzzed inputs
to the appropriate interface, called TEEzzT.

TEEzzH orchestrates TEEzzT to load/unload TAs and
open/close sessions which is necessary to reach the core logic
of any TA (see Figure 1). Given an opened session, TEEzzT

accepts inputs that it forwards to the TA and sends the output
(the TA’s response) back to TEEzzH. TEEzzT uses the TEE-
specific API to interface the TEE driver, establish shared
memory with the TEE, and send commands to TAs.

TEEzzH observes the output behavior of the TA and initiates
reboots via Android Debug Bridge (ADB) if necessary. TAs
potentially accumulate state over time which is why we reboot
the device after a configurable number n (n = 500, by default)
of inputs sent to the target to reset the TA’s state.

TEEzz’s mutations are composed of type-aware mutations,
bit-flips, and well-known mutations. For the type-aware mu-
tators, TEEzz compiles all types used in the CAlib header
files into Google’s Protobuf interface description format. This
translation is again based on traversing the AST of all type
definitions leveraging Python and libclang. Given all avail-
able types specified in the Protobuf format, we use Google’s
Protobuf compiler for Python to access the AST types from our
mutators. An example for a mutator for an enum declaration
is illustrated in Figure 3. These type-aware mutators can be
combined with the bit-flip and well-known mutators. The
well-known mutations include edge cases for various width
signed and unsigned integers, null-byte insertion for strings,
increment and decrement operations, and the population with
random data.

After mutating an input, TEEzzH resolves value dependen-
cies by propagating values from prior TA outputs to the current
input. Figure 5 illustrates these value dependencies for the
keymaster TA. We store these dependencies in a DAG-like
data structure to resolve them while fuzzing.

1212

generateKey
KEY_SIZE: 4096

EXPONENT: 65537

begin
PURPOSE: SIGN

update
"message to

sign"

finish
K

deleteKey
K

getKeyCharacteristics
K K O O O

K: key material
O: operation handle

Fig. 5. Value dependencies of the keymaster TA API. TEEzz identifies
these dependencies and stores them in a DAG-like data structure to resolve
them while fuzzing.

TA crashes come in two flavors. TEEzz recognizes crashes
that immediately reboot the phone and uses return codes from
the TEE to evaluate target-specific crash conditions. When a
potential crash is detected, a message is propagated to the
runner, which persists the entire sequence of mutants. All
the recorded seeds and mutants can later be checked for
reproducibility using TEEzz.

VII. EVALUATION

In this section, we perform a comprehensive evaluation
of TEEzz and show the effectiveness of each of our tech-
niques. First, we conduct ground-truth experiments exploring
different fuzzers’ capabilities to achieve coverage within TAs
based on OPTEE (Sec VII-A). Second, we examine TEEzz’s
type-recovery and value-dependency identification capabilities
(Section VII-B). Third, we evaluate TEEzz and its various
techniques on COTS TAs (Sec VII-C). As a bonus, we include
our unsuccessful attempt to use Kernel driver fuzzers to
fuzz TAs in Section A and a comparative evaluation with
the closed-source PartEmu [39] system in Section B of our
appendix.

A. State-of-the-Art Ground-Truth Comparison

To the best of our knowledge, PartEmu [39] is the only
fuzzer that targets TAs of COTS devices. Unfortunately,
neither the PartEmu prototype nor the datasets used for its
evaluation are publicly available.

Due to the lack of availability, a first-order comparison with
PartEmu is impossible. Therefore, we chose to reimplement
PartEmu’s fuzzing approach as truthfully as possible and eval-
uate it on the available software. PartEmu’s fuzzing module
is based on AFL, TriforceAFL in particular. After reviewing
this project and corresponding with the PartEmu authors, we
integrated AFL++ into OPTEE (hence optee-afl) to establish
a baseline for fuzzing TAs. For this purpose, we extended
the OPTEE platform with (1) permanently shared memory
between CAs and TAs, (2) source-code-based instrumentation
for TAs to populate the AFL coverage bitmap during fuzzing
and collect program counters during post-processing, and (3)
support for TA constructors to initialize the instrumentation.
For our evaluation, we run optee-afl with three different
configurations against four OPTEE TAs within the QEMU
emulator and compare the coverage and bugs found against
our TEEzz:

Instrumented+noseed mode. This mode uses an instru-
mented target TA and follows the typical AFL fuzzing model
using no seeds. This mode mimics the AFL PartEmu module

and resembles the experiment carried out by Harrison et
al. [39]. We consider this configuration to be our baseline.

Instrumented mode. This mode uses the same setup as in
the previous configuration, but initializes the fuzzer with the
seeds obtained through TEEzz’s seed recording.

Multi-interaction mode. This mode goes one step further
than the AFL PartEmu module due to its ability to fire multiple
inputs against a target TA and therefore allows for building up
state. We also initialize this configuration with seeds obtained
through TEEzz.

Our dataset consists of four TAs available for OPTEE:
keymaster, gatekeeper, secure storage, and
acipher. For keymaster and gatekeeper, we
recorded the seeds from the vendor test suite (VTS) binaries
available from the AOSP. For secure storage and
acipher, we recorded the seeds from the CA command-line
executables which are part of the OPTEE project. We use
the keymaster and gatekeeper TAs from tag 3.8.0
to leverage the known vulnerabilities from the publicly
available security advisory. The two important metrics we
experimentally evaluate are each fuzzer’s coverage and
capability to find bugs.

For the coverage experiment, we run each fuzzer ten times
for 24 hours in a dockerized Ubuntu 20.04 setup on a machine
featuring a Xeon Gold 5218 and 64GB of RAM. The coverage
results from this experiment are shown in Figure 6.

TEEzz achieves a higher initial coverage compared to the
other fuzzers for keymaster and gatekeeper due to its
ability to resolve value dependencies between interactions. The
API of keymaster contains calls that only succeed when a
transitive value dependency across multiple calls is resolved.
This property is also indicated by TEEzz’s coverage, which
is the only fuzzer that reaches 52% coverage in the best
case. Compared to the second best coverage of 25% in the
multi-interaction mode configuration, TEEzz covers more than
double the code in this target.

For gatekeeper, the seeds provided by TEEzz signifi-
cantly support the exploration of the instrumented and multi-
interaction modes. The configuration without proper seeding,
as carried out in PartEmu’s evaluation [39] reaches a maximum
coverage of 12% after 24h while the multi-interaction mode
already starts at 38% and finishes at 58%.

From our experience, the keymaster and gatekeeper
TAs of our dataset are similar to TAs found on production
devices in terms of their complexity and interaction patterns.
acipher and secure storage are example TAs of the
OPTEE project and would likely not be used on produc-
tion phones in their current implementation. For example,
OPTEE’s secure storage TA differs significantly from
the secure storage TA found on Huawei devices in
terms of its missing session management to hold a session-
specific state. Furthermore, acipher only implements two
static cryptographic operations that do not require complex
input formats, as seen for TAs on COTS devices. Hence, it is
not surprising that the instrumented mode, even without proper

1213

seeding, can significantly increase coverage and cover 69% of
acipher and 74% of secure storage, respectively.

We found 13 previously unknown bugs in our OPTEE
TA dataset. The AFL-based fuzzers combined could detect
ten, and TEEzz was the only fuzzer that detected all 13 of
these bugs. The three additional bugs found by our system
required the target TA to build up state before they could be
triggered. Thus TEEzz’s state-aware seeds facilitate finding
state-dependent bugs.

In summary, TEEzz’s capability to resolve value depen-
dencies across multiple interactions significantly improves the
capabilities of modern fuzzers. Given that our coverage exper-
iment featured coverage-guided fuzzer configurations that are
commonly unavailable, whereas TEEzz is a blackbox fuzzer, it
is a notable result that our fuzzer outperforms the competitors
in realistic scenarios.

B. Accuracy of Type Recovery and State Awareness

In this section, we present an evaluation of TEEzz’s type
recovery and state awareness. For the presented experiments,
we leverage the Google VTS for the keymaster subsystem
and execute it on a HiKey620 development board featuring an
Android/OPTEE deployment setup. The vast set of test cases
included in the Google VTS allows us to measure TEEzz’s
type-recovery capabilities on many interactions and provides
us with the ground truth for the behavior of sequences of
interactions with the target. We use the latter to examine the
accuracy of identified value dependencies (i.e., output values
required as input values by later interactions).

a) Type Recovery: In TEEzz’s seed recording stage, we
record all inputs and outputs propagating through the high-
level and low-level interface. Due to the DBII recorders
targeting the high-level interface, we obtain the AST for every
single parameter passed to a function and have the run-time
values (associated with the AST’s leaf nodes) readily available.
This process allows us to map these leaf nodes of the high-
level interface to the untyped byte sequences recorded from
the low-level interface to recover types.

After executing and recording the entire Google VTS
consisting of 102 sequences and 1,874 interactions with the
keymaster, we map the input and output AST leaf nodes of
the high-level interface to the untyped buffers of the low-level
interfaces.

For the input, we were able to uniquely map 8, 059 out of
20, 676 AST leaf nodes. Our heuristics discarded 9, 090 leaf
nodes since they consisted of all-zero byte sequences and are
indistinguishable from padding in buffers. We could not map
3, 527 (17%) leaf nodes.

For the output, we uniquely mapped 14, 821 leaf nodes
out of 33, 614 AST leaf nodes in total. 13, 686 nodes were
discarded because of our all-zero byte sequence heuristic, and
5, 107 (15%) nodes could not be mapped automatically.

Besides uniquely mapped AST nodes, the coverage of the
low-level buffers with types is an interesting accuracy metric.
Table I shows the type coverage of low-level input and output
buffers grouped by their high-level function and indicates

TABLE I
TYPE COVERAGE OF INPUT AND OUTPUT LOW-LEVEL BYTE SEQUENCES.

Function Avg Cov Input Avg Cov Output

addRngEntropy 100.00% (1,029.50) 0.00% (4.00)
abort 100.00% (8.00) 0.00% (4.00)
deleteKey 100.00% (1,269.24) 0.00% (4.00)
getKeyCharacteristics 99.75% (4,480.00) 58.06% (124.00)
exportKey 98.90% (1,424.65) 3.99% (11.50)
begin 97.48% (1,949.78) 30.07% (22.14)
finish 79.18% (203.26) 41.67% (61.38)
importKey 71.83% (195.53) 78.24% (582.78)
update 69.17% (55.14) 28.57% (36.57)
attestKey 65.43% (2,139.00) 0.00% (5.33)
generateKey 30.28% (75.67) 65.42% (1,062.00)

the typical size of these buffers. For the eleven functions
implemented by the keymaster TA, we can almost perfectly
recover the types of inputs provided to six functions (97-100%
recovery), perform well on another four functions (65-79%
recovery), and only miss some of the types for one function
(∼30% recovery).

b) State Awareness: Our seed recording stage
(Section V-C) also tries to infer the value dependencies
of interactions occurring in a recorded interaction sequence.

To assess the accuracy of identified value dependencies,
we leverage Google’s VTS for the keymaster TA and,
in contrast to the other experiments, filter the tests for in-
teractions that result in successful status codes to facilitate
the creation of the ground truth for value dependencies. The
keymaster target is representative due to the availability
of many test cases and its stateful API. Figure 5 illustrates
a typical value dependency graph of this target. In total, we
obtain 95 sequences consisting of 728 interactions. Replaying
all sequences, we manually mark dependent interactions and
monitor if these interactions return successfully. If they return
with an error code, we did not manage to identify and resolve
the correct value dependencies.

Out of the 728 interactions in our dataset, we manually iden-
tified 565 as dependent on prior interactions’ output values. In
comparison to this time-consuming manual approach, TEEzz
automatically resolved 457 (81%) correctly and only failed to
resolve 108 (19%).

Regarding false positives, we replay a recorded sequence
several times and disable the resolution of individual value
dependencies. If the dependent call succeeds, we remove the
value dependency and effectively eliminate false positives.

C. Fuzzing COTS TAs

Using TEEzz, we fuzzed 18 TAs that can be found on COTS
Android devices. The detailed TAs are listed in Table II.

First, we prepared all devices by rooting them. Then, we
obtained the dependency graph to the respective TEE client
library (e.g., libteec.so and libQSEEComAPI.so).
Based on each dependency graph, we decided for a subset of
CAs to fuzz their corresponding TAs. We excluded TAs that
require human interaction during their usage (i.e., TAs related

1214

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

0%

20%

40%

60%

80%

100%

BB
 C

ov
er

ag
e

KEYMASTER

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

GATEKEEPER

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

SECURE STORAGE

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

ACIPHER

instrumented+noseed instrumented multi-interaction teezz

Fig. 6. Coverage of TEEzz and optee-afl (in instrumented+noseed, intrumented, and multi-interaction mode). The target TAs are keymaster, gatekeeper,
secure storage, and acipher. Due to TEEzz’s TA-awareness, it can mutate inputs in a type-aware way and resolve inter-interaction value dependencies,
resulting in an up-to two times higher coverage than other state-of-the-art fuzzers.

to fingerprint authentication or face identification) since there
is no appropriate way to fuzz them.

For each non-AOSP CA, an analyst reverse engineered the
CA-layer interface and wrote a small CA driver program that
correctly uses the interface. On average, the analyst spent five
hours recovering the interface and writing a CA driver. Given
that the analyst will realistically spend many more hours on
triaging crashes anyway, we argue that writing these drivers
is a reasonable engineering trade-off and a great practice to
familiarize with the interface.

Having a driver and the CA interface definitions for all
of our targeted TAs, we first generated the DBII recorders
and type-aware mutators. Then, we installed TEEzz’s multi-
interface interaction recorders and triggered the TA interaction
either via the user interface of the phone or our manually
developed CA drivers. Based on the interaction recordings, we
propagated the types to the low-level high-control TEE driver
interface recordings and performed the dependency inference.
Finally, we were able to fuzz each of the TAs listed in Table II.

We ran TEEzz for 24 hours for each TA and analyzed
all found crashes regarding reproducibility and uniqueness.
In total, TEEzz detected 1, 541 crashes of which we could
reproduce 1, 387. We deduplicated the crashes on QSEE man-
ually and used the /dev/hisi_teelog device on Huawei
devices to obtain stack traces of crashing TAs. In total, we
found 40 unique crashing inputs. We reported these bugs to
the corresponding vendors and already got CVE-2019-10561
assigned.

We reset the target’s state during this experiment by re-
booting the device after n = 500 interactions. On average,
this mechanism resulted in 1, 517, 1, 073, 956, and 756 resets
during our 24h experiment for the P9 Lite, P20 Lite, Nexus 5X,
and Pixel 2XL devices, respectively.

Fuzzing the keymaster and gatekeeper TAs on the
Nexus 5X resulted in unstable ADB connections and corrupted
data partitions. These states did not occur on the other devices
and are problematic for continuous fuzzing because the host
component of TEEzz cannot access the device anymore. We
had to perform 130 factory resets and 20 hard resets during
this experiment for the keymaster and gatekeeper TA,

TABLE II
RESULTS OF FUZZING COTS TAS USING TEEZZ. WE FUZZED EACH TA

ON EACH DEVICE FOR 24H. ♦ – ENCRYPTED TA

TEE Device (OS Vers.) TA CA Req/Sec #Crashes

TC P9 Lite (6.0) keymaster AOSP 9.6 681
TC P9 Lite (6.0) gatekeeper AOSP 11.1 645
TC P9 Lite (6.0) secure storage Vendor 10.7 0
TC P9 Lite (6.0) rpmbkey ♦ Vendor 7.3 0
TC P9 Lite (6.0) antitheft ♦ Vendor 7.1 0
TC P9 Lite (6.0) hwsign ♦ Vendor 7.1 0

TC P20 Lite (8.0) keymaster ♦ AOSP 12.7 10
TC P20 Lite (8.0) gatekeeper ♦ AOSP 6.4 0
TC P20 Lite (8.0) secure storage ♦ Vendor 6.5 0
TC P20 Lite (8.0) rpmbkey ♦ Vendor 5.3 0
TC P20 Lite (8.0) antitheft ♦ Vendor 0.7 0
TC P20 Lite (8.0) hwsign ♦ Vendor 5.8 0

QSEE Nexus 5X (7.1.2) keymaster AOSP 3.8 55
QSEE Nexus 5X (7.1.2) gatekeeper AOSP 6.0 0
QSEE Nexus 5X (7.1.2) widevine AOSP 7.2 80

QSEE Pixel 2 XL (9.0) keymaster AOSP 5.0 0
QSEE Pixel 2 XL (9.0) gatekeeper AOSP 3.3 0
QSEE Pixel 2 XL (9.0) widevine AOSP 5.3 70

respectively. To automatically handle these cases and allow
for continuous fuzzing, TEEzz is capable of booting the
phone into recovery mode and restoring a functional system.
Additionally, our fuzzer can carry out hard resets using a
phone case equipped with a servo motor that pushes the
phone’s power button until it reboots.

TEEzz found 40 unique bugs in TAs deployed across 4
different COTS Android phones. This result provides evidence
that TEEzz is capable of effectively finding bugs in TAs
deployed on production devices.

VIII. LIMITATIONS

Although TEEzz provides an effective way to fuzz test TAs,
it suffers from several limitations.

Unlocked device: TEEzz requires complete control of
the rOS for which the bootloader needs to be unlocked.
Vendors who do not allow unlocking their bootloaders are
challenging targets for TEEzz.

1215

Availability of CAlibs: In the worst-case scenario, some
one-time manual effort is required per TA to obtain its CAlib’s
interface definition and implement test cases that trigger in-
teractions with the TA. We argue that synthesizing test cases
is a problem at the frontier of science and has barely been
solved in situations with source code available (see Fudge [8]
and FuzzGen [41]), and is thus an orthogonal problem. With
TEEzz we will release and document the tooling that allowed
us to fuzz each TA listed in Table II.

Extending to other TEEs: Our current prototype can fuzz
TAs on three popular platforms. While the concepts generally
apply to other TEEs, TEEzz needs adaptation to run on those
platforms. We plan to support a further target in the future:
Samsung’s TEE called TEEGRIS [68]. As far as we know,
TEEGRIS is similar to TC and OPTEE, and porting TEEzz
to this platform should be straightforward.

IX. RELATED WORK

Several researchers have studied and exploited vulnerabil-
ities in TZ-based TEEs [46], [67], [72], including a class of
flaws, called BOOMERANG [52]. Furthermore, there have
been various side-channel attacks on TZ [14], [48], [78], [82],
[90]. The static analysis techniques employed by the works
mentioned above are difficult to generalize for vulnerability
detection in TAs, as the structure and implementation of TAs
depend on their tOS [4], [55], [75], [80]. Regardless, vendors
started to encrypt TAs [85], making it difficult to retrieve their
binaries, which renders static analysis techniques inapplicable.

Commercial TEEs with encrypted TAs are essentially black-
box systems that expose certain functionalities or APIs [27]
that are accessible from the rOS through SMC [6] instructions.
Fuzzing [13], [22], [26], [28] is a well-known technique to
test blackbox systems. There has been significant progress
in whitebox [26] and greybox [11] fuzzing regarding perfor-
mance [54], [86], coverage [12], [49], [64], [71], [73] and
bug finding ability [17], [18], [61]. However, these techniques
need access to the binary of the program under test. Although,
Harrison et al. recently proposed a tOS emulation technique,
PartEmu [39], which can be used to fuzz the correspond-
ing TAs, this technique fails when the tOS and TAs are
encrypted. Consequently, these techniques cannot be applied
directly to fuzz TAs.

A further technique to fuzz blackbox systems is grammar-
based fuzzing [29]. This technique uses the grammar of the
target program’s input to generate fuzz inputs. Peach [60] is a
well-known commercial grade tool for grammar-based fuzzing
capable of processing complex inputs. Despite this, getting
the input format accepted by TAs is difficult because there is
no standard input format. Furthermore, well-known interface
recovery techniques [9], [19], [63], [65], [81] cannot be used
as they rely on the availability of the program binary.

Almost all commercial TEEs expose an interface in the
rOS, usually in the form of a device driver [1], [3], [74].
Most of these device drivers are open-source and expose high-
level formats of the input accepted by the TAs, like raw
request and response buffers [2]. Recently, fuzzing techniques

targeting device drivers have been proposed [20], [38], [43],
[77]. Specifically, DIFUZE [20] uses static analysis to infer the
accepted input format. This format is then used to effectively
fuzz the driver, or applied by other device-driver fuzzers, like
Syzkaller [32]. As we show in Section A in our appendix,
these techniques are ineffective in generating inputs for TAs.
In comparison, TEEzz is the first work opportunistically using
different techniques to fuzz commercial TAs effectively.

X. CONCLUSIONS

While TEEs in modern smartphones are intended to provide
a safe haven for sensitive data and computations, they also
pose a major security risk. Privileged code running within the
TEE has complete access to every aspect of the smartphone
(e.g., cryptographic keys, hardware peripherals, and sensitive
user data). Unfortunately, despite this potentially catastrophic
security risk, traditional security analyses, such as fuzz testing,
are rendered useless due to the limited access to and lack
of feedback from production TAs. To address this analysis
gap, we present TEEzz, the first TEE-aware fuzzer capable
of effectively fuzzing TAs on production smartphones. TEEzz
leverages a combination of DBI and stateful replay techniques
to ensure that both the protocol and structure expected by the
targeted TAs are met, enabling almost all of the fuzzed inputs
to be processed. Indeed, TEEzz discovered over 40 unique
crashes on QSEE and TC combined, resulting in one CVE so
far, and found 13 previously unknown bugs in TAs running
on OPTEE, an open-source reference implementation for TZ-
based TEE.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
feedback and appreciate the opportunity for a major revision to
conduct additional experiments. This project was supported by
European Research Council (ERC) grant No. 850868, SNSF
grant PCEGP2 186974, DARPA grants R001119S0089-AMP-
FP-034 and N6600120C4031, DHS grant FA8750-19-2-0005,
and ONR grants N00014-20-1-2632 and N00014-17-1-2897.
Any findings are those of the authors and do not necessarily
reflect the views of our sponsors.

REFERENCES

[1] Huawei Trusted Core Kernel Driver. https://github.com/OpenKirin/
android kernel huawei hi3650/tree/7.x/drivers/hisi/tzdriver.

[2] QSEE Request and Response Sizes. https://android.googlesource.
com/kernel/msm.git/+/77cac325253126dd9e6c480d885aa51f1abf3c40/
drivers/misc/qseecom.c#97.

[3] QSEECOM Driver. https://android.googlesource.com/kernel/msm.git/+/
77cac325253126dd9e6c480d885aa51f1abf3c40/drivers/misc/qseecom.c.

[4] QSEEComAPI.h. https://android.googlesource.com/platform/hardware/
qcom/keymaster/+/master/QSEEComAPI.h.

[5] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario
Polino, Paulo de Geus, Christopher Kruegel, and Giovanni Vigna. Going
native: Using a large-scale analysis of android apps to create a practical
native-code sandboxing policy. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), pages 1–15, 2016.

[6] ARM. SMC Calling Convention. http://infocenter.arm.com/help/topic/
com.arm.doc.den0028b/ARM DEN0028B SMC Calling Convention.
pdf.

1216

[7] ARM. Tee reference documentation, 2018. https:
//www.arm.com/why-arm/technologies/trustzone-for-cortex-a/
tee-reference-documentation.

[8] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo Ivancic, Tim King,
Markus Kusano, Caroline Lemieux, László Szekeres, and Wei Wang.
FUDGE: fuzz driver generation at scale. In Marlon Dumas, Dietmar
Pfahl, Sven Apel, and Alessandra Russo, editors, Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 975–985.
ACM, 2019.

[9] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthe-
sizing program input grammars. CoRR, abs/1608.01723, 2016.

[10] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
Proceedings of the FREENIX, pages 41–46. USENIX, 2005.

[11] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
pages 2329–2344. ACM, 2017.

[12] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
CCS ’16, pages 1032–1043, New York, NY, USA, 2016. ACM.

[13] Ella Bounimova, Patrice Godefroid, and David Molnar. Billions and bil-
lions of constraints: Whitebox fuzz testing in production. In Proceedings
of the 2013 International Conference on Software Engineering, pages
122–131. IEEE Press, 2013.

[14] Sebanjila Kevin Bukasa, Ronan Lashermes, Hélène Le Bouder, Jean-
Louis Lanet, and Axel Legay. How trustzone could be bypassed: Side-
channel attacks on a modern system-on-chip. In Proceedings of the IFIP
International Conference on Information Security Theory and Practice,
pages 93–109. Springer, 2017.

[15] Marcel Busch, Johannes Westphal, and Tilo Müller. Unearthing the
trustedcore: A critical review on huawei’s trusted execution environment.
In Yuval Yarom and Sarah Zennou, editors, Proceedings of the Workshop
on Offensive Technologies, WOOT. USENIX Association, 2020.

[16] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto.
Sok: Understanding the prevailing security vulnerabilities in trustzone-
assisted tee systems. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), pages 18–20, 2020.

[17] Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive
mutational fuzzing. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), SP ’15, pages 725–741, Washington, DC, USA,
2015. IEEE Computer Society.

[18] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. arXiv preprint arXiv:1803.01307, 2018.

[19] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and
Engin Kirda. Prospex: Protocol specification extraction. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P), SP ’09, pages
110–125, Washington, DC, USA, 2009. IEEE Computer Society.

[20] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: in-
terface aware fuzzing for kernel drivers. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
pages 2123–2138. ACM, 2017.

[21] CVE. Google android security vulnerabilities, 2018.
https://www.cvedetails.com/vulnerability-list/vendor id-1224/product
id-19997/Google-Android.html.

[22] Jared DeMott. The evolving art of fuzzing. DEF CON, 14, 2006.
[23] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan

Whelan. Repeatable reverse engineering with PANDA. In Jeffrey Todd
McDonald, Mila Dalla Preda, and Natalia Stakhanova, editors, Proceed-
ings of the 5th Program Protection and Reverse Engineering Workshop,
pages 4:1–4:11. ACM, 2015.

[24] Jan-Erik Ekberg, Kari Kostiainen, and N Asokan. Trusted execution
environments on mobile devices. In Proceedings of the ACM SIGSAC
conference on Computer & communications security (CCS), pages
1497–1498. ACM, 2013.

[25] Tao Feng, Nicholas DeSalvo, Lei Xu, Xi Zhao, Xi Wang, and Weidong
Shi. Secure session on mobile: An exploration on combining biometric,
trustzone, and user behavior. In Proceedings of the Mobile Computing,
Applications and Services (MobiCASE), pages 206–215. IEEE, 2014.

[26] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In Proceedings of the 31st International Conference

on Software Engineering, ICSE ’09, pages 474–484, Washington, DC,
USA, 2009. IEEE Computer Society.

[27] GlobalPlatform. TEE Internal Core API Specification, 1.1.1 edition,
2016.

[28] Patrice Godefroid. Random testing for security: blackbox vs. whitebox
fuzzing. In Proceedings of the 2nd international workshop on Random
testing, pages 1–1. ACM, 2007.

[29] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based
whitebox fuzzing. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’08, pages
206–215, New York, NY, USA, 2008. ACM.

[30] Google. Drm, 2001. https://source.android.com/devices/drm.
[31] Google. Google play billing overview, 2001. https://developer.android.

com/google/play/billing/billing overview.
[32] Google. syzkaller - linux syscall fuzzer, 2017. https://github.com/google/

syzkaller.
[33] Google. Android hal, 2018. https://source.android.com/devices/

architecture/hal.
[34] Google. Android security bulletins, 2018. https://source.android.com/

security/bulletin.
[35] Zuxing Gu, Jiecheng Wu, Jiaxiang Liu, Min Zhou, and Ming Gu. An

empirical study on api-misuse bugs in open-source c programs. In 2019
IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), volume 1, pages 11–20, 2019.

[36] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng
Yu, and Trent Jaeger. Trustshadow: Secure execution of unmodified
applications with arm trustzone. In Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
pages 488–501. ACM, 2017.

[37] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind
Machiry, Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon,
Yung Ryn Choe, Christophe Kruegel, et al. Toward the analysis of
embedded firmware through automated re-hosting. In Proceedings of
the 22nd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), pages 135–150, 2019.

[38] HyungSeok Han and Sang Kil Cha. Imf: Inferred model-based fuzzer.
In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 2345–2358. ACM, 2017.

[39] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen,
Michael Grace, Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent
Simon, Hayawardh Vijayakumar, et al. Partemu: Enabling dynamic anal-
ysis of real-world trustzone software using emulation. In Proceedings
of the 29th USENIX Security Symposium (USENIX Security), 2020.

[40] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer.
Fuzzgen: Automatic fuzzer generation. In Proceedings of the 29th
USENIX Security Symposium (USENIX Security), pages 2271–2287,
2020.

[41] Kyriakos K. Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias
Payer. Fuzzgen: Automatic fuzzer generation. In Srdjan Capkun and
Franziska Roesner, editors, Proceedings of the USENIX Security Sympo-
sium (USENIX Security), pages 2271–2287. USENIX Association, 2020.

[42] Jinsoo Jang, Changho Choi, Jaehyuk Lee, Nohyun Kwak, Seongman
Lee, Yeseul Choi, and Brent Byunghoon Kang. Privatezone: Providing
a private execution environment using arm trustzone. IEEE Transactions
on Dependable and Secure Computing, 15(5):797–810, 2018.

[43] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee,
and Insik Shin. Razzer: Finding kernel race bugs through fuzzing. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P),
page 0. IEEE, 2018.

[44] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. HFL: hybrid fuzzing on the linux kernel.
In Proceedings of the Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2020.

[45] Stephan Kleber, Lisa Maile, and Frank Kargl. Survey of protocol reverse
engineering algorithms: Decomposition of tools for static traffic analysis.
IEEE Communications Surveys & Tutorials, 2018, 2018.

[46] laginimaineb. Exploring qualcomms secure execution
environment, 2016. http://bits-please.blogspot.com/2016/04/
exploring-qualcomms-secure-execution.html.

[47] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Princi-
pled reverse engineering of types in binary programs. 2011.

[48] Paul Leignac, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre,
and Simon Pontié. Comparison of side-channel leakage on rich and

1217

trusted execution environments. In Proceedings of the Sixth Workshop on
Cryptography and Security in Computing Systems, pages 19–22, 2019.

[49] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin,
Yang Liu, and Alwen Tiu. Steelix: Program-state based binary fuzzing.
In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, pages 627–637, New York, NY, USA,
2017. ACM.

[50] Sheng Liang. The Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley Professional, 1999.

[51] Linaro Limited. Open portable trusted execution environment, 2020.
https://www.op-tee.org/.

[52] Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls, Nick
Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher
Kruegel, and Giovanni Vigna. Boomerang: Exploiting the semantic gap
in trusted execution environments. In Proceedings of the 2017 Network
and Distributed System Security Symposium (NDSS), 2017.

[53] Aravind Machiry, John Kastner, Matt McCutchen, Aaron Eline, Kyle
Headley, and Michael Hicks. C to Checked C by 3C. In Proceedings
of the ACM Conference on Object-Oriented Programming Languages,
Systems, and Applications (OOPSLA), October 2022.

[54] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing
fuzzing overhead through coverage-guided tracing. arXiv preprint
arXiv:1812.11875, 2018.

[55] Hadi Nahari. TLK: A FOSS Stack for Secure Hardware To-
kens. http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/
papers/webcrypto2014 submission 25.pdf, 2012.

[56] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and
Sarah Martin. Trustzone explained: Architectural features and use cases.
In Proceedings of the Collaboration and Internet Computing (CIC),
pages 445–451. IEEE, 2016.

[57] Matt Noonan, Alexey Loginov, and David Cok. Polymorphic type
inference for machine code. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’16, pages 27–41, New York, NY, USA, 2016. ACM.

[58] @oleavr. Frida, 2020. https://frida.re/.
[59] Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine: Optimiz-

ing OS fuzzer seed selection with trace distillation. In William Enck
and Adrienne Porter Felt, editors, Proceedings of the USENIX Security
Symposium (USENIX Security), pages 729–743. USENIX Association,
2018.

[60] Peach. The peach fuzzer, 2017. http://www.peachfuzzer.com/.
[61] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by

program transformation. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), pages 697–710. IEEE, 2018.

[62] Qualcomm. Qualcomm mobile security, 2018. https://www.qualcomm.
com/solutions/mobile-computing/features/security.

[63] Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are
equal: Neural byte sieve for fuzzing. arXiv preprint arXiv:1711.04596,
2017.

[64] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2017.

[65] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote,
David Warren, Gustavo Grieco, and David Brumley. Optimizing seed
selection for fuzzing. In Proceedings of the USENIX Security Symposium
(USENIX Security), SEC’14, pages 861–875, Berkeley, CA, USA, 2014.
USENIX Association.

[66] Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Anto-
nio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel,
and Giovanni Vigna. Bootstomp: on the security of bootloaders in
mobile devices. In Proceedings of the USENIX Security Symposium
(USENIX Security), 2017.

[67] Dan Rosenberg. Reflections on trusting trustzone. BlackHat USA, 2014.
[68] Samsung. Samsung teegris, 2020. https://developer.samsung.com/

teegris/overview.html.
[69] Thorsten Schreiber. Android binder. A shorter, more general

work, but good for an overview of Binder. http://www. nds. rub.
de/media/attachments/files/2012/03/binder. pdf, 2011.

[70] SecWiki. Android kernel exploits, 2018. https://github.com/SecWiki/
android-kernel-exploits.

[71] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi
Ray, and Suman Jana. Neuzz: Efficient fuzzing with neural program
smoothing. machine learning, 89(46):38, 2018.

[72] Di Shen. Exploiting trustzone on android. Black Hat USA, 2015.
[73] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu

Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2016.

[74] STMicroelectronics and Linaro Security Working Group. OP-TEE non-
secure world-secure world driver. https://github.com/linaro-swg/linux/
blob/optee/drivers/tee.

[75] STMicroelectronics and Linaro Security Working Group. OP-TEE non-
secure world-secure world smc call. https://github.com/linaro-swg/linux/
blob/optee/drivers/tee/optee/call.c:L117.

[76] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. Trustotp: Transforming
smartphones into secure one-time password tokens. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 976–988. ACM, 2015.

[77] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang,
Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: facilitating
dynamic analysis of device drivers of mobile systems. In Proceedings
of the USENIX Security Symposium (USENIX Security), pages 291–307,
2018.

[78] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. Clkscrew:
exposing the perils of security-oblivious energy management. In Pro-
ceedings of the USENIX Security Symposium (USENIX Security), pages
1057–1074, 2017.

[79] Huawei Technologies. Emui 8.0 security technical white paper, 2017.
https://consumer-img.huawei.com/content/dam/huawei-cbg-site/en/mkt/
legal/privacy-policy/EMUI8.0SecurityTechnologyWhitePaper.pdf.

[80] Trustonic. trustonic-tee-user-space. https://
github.com/Trustonic/trustonic-tee-user-space/blob/
e3b0b06025605b06fc1e19588098e5011f6afc83/MobiCoreDriverLib/
Daemon/MobiCoreDriverDaemon.cpp, February 2015.

[81] Petar Tsankov, Mohammad Torabi Dashti, and David Basin. Secfuzz:
Fuzz-testing security protocols. In Proceedings of International Work-
shop on Automation of Software Test (AST), pages 1–7. IEEE, 2012.

[82] Jie Wang, Kun Sun, Lingguang Lei, Shengye Wan, Yuewu Wang, and
Jiwu Jing. Cache-in-the-middle (citm) attacks: Manipulating sensitive
data in isolated execution environments. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
pages 1001–1015, 2020.

[83] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong
Zhang. Jn-saf: Precise and efficient ndk/jni-aware inter-language static
analysis framework for security vetting of android applications with
native code. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), CCS ’18, pages 1137–
1150, New York, NY, USA, 2018. ACM.

[84] xairy. kernel exploits, 2018. https://github.com/xairy/kernel-exploits.
[85] XePeleato. Huawei kirin trustzone, 2017. https://github.com/OpenKirin/

Documentation/blob/master/04-Trustzone.md.
[86] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. De-

signing new operating primitives to improve fuzzing performance.
In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 2313–2328. ACM, 2017.

[87] Sileshi Demesie Yalew, Gerald Q Maguire, Seif Haridi, and Miguel
Correia. T2droid: A trustzone-based dynamic analyser for android
applications. In Proceedings of the Trustcom/BigDataSE/ICESS, pages
240–247. IEEE, 2017.

[88] Google Project Zero. Trust issues: Exploiting trustzone
tees, 2018. https://googleprojectzero.blogspot.com/2017/07/
trust-issues-exploiting-trustzone-tees.html.

[89] Dongli Zhang. Trustfa: Trustzone-assisted facial authentication on
smartphone. Technical report, Technical Report, 2014.

[90] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas
Hou. Truspy: Cache side-channel information leakage from the secure
world on arm devices. IACR Cryptology ePrint Archive, 2016:980, 2016.

[91] Vincent Zimmer and Michael Krau. Establishing the root of trust, 2016.

APPENDIX A

From the perspective of a userland program on Android, the
TEE appears as a device which is exposed by the Linux kernel
as a device driver node in the filesystem. Since device driver
fuzzing is an established research field, it comes naturally to

1218

use a kernel fuzzer to fuzz the TEE and TAs in particular. Our
intuition for kernel fuzzers is that a general-purpose approach
to device driver fuzzing is insufficient for the complex inputs
and interactions required by the TEE. To validate this hypoth-
esis and get a deeper understanding of its implications, we
chose two representative kernel fuzzers, namely Syzkaller [32]
and DIFUZE [20], to fuzz TEE drivers on COTS Android
devices. We prepared both of these fuzzers according to the
available documentations and deployed them on two COTS
devices, the Pixel 2 XL (Android 9.0) and the Huawei P20 Lite
(Android 8.0). The Pixel 2 XL is based on a Qualcomm chipset
and, hence, runs QSEE. The Huawei P20 Lite is based on a
HiSilicon chipset and runs TC. For this experiment, we rooted
both devices and deployed custom kernels. The modifications
to the original kernels are minimal. We instrumented the
locations where the Linux kernel executes a secure monitor
call instruction to count the number of context switches to the
TEE and to count the number of ioctl calls that the fuzzers
generated. Additionally, we enabled kcov for the Syzkaller
experiment. Since DIFUZE is not a coverage-guided fuzzer,
we did not enable this feature.

For Syzkaller, we manually specified the TEE driver’s
syscalls and different ioctl-handlers, including the different
argp data structures expected by these handlers. Furthermore,
Syzkaller’s grammar allowed us to specify stateful APIs. For
example, a filedescriptor that is returned from an open syscall
can be linked to the filedescriptor consumed by an ioctl
syscall.

DIFUZE automatically generates data models to fuzz
ioctl calls from the driver’s source code, but, in comparison
to syzkaller, it does not support stateful APIs or coverage-
guidance.

TABLE III
RESULTS OF USING DIFUZE AND SYZKALLER TO FUZZ TEE DRIVERS ON

COTS PHONES. BOTH FUZZERS RAN FOR 24 HOURS.

Technique Σioctl (per sec) ΣSMC (% Σioctl)
QSEE (Pixel 2 XL - taimen)

DIFUZE 7,370,756 (85.3) 112,854 (1.53%)
Syzkaller 7,006,579 (81.1) 229,784 (3.28%)

TrustedCore (Huawei P20 Lite)
DIFUZE 1,513,929 (17.5) 540,019 (35.67%)
Syzkaller 10,847,220 (125.5) 2,245,970 (20.71%)

According to our experiment shown in Table III, DIFUZE
and Syzkaller have a respectable ioctl throughput of up to
85.3 and 125.5 requests per second (Σioctl per sec on the Pixel
2XL and the Huawei P20 Lite, respectively).

Contrary to our hypothesis that driver interface fuzzing
techniques would not be able to generate any SMC requests
(i.e., ΣSMC = 0), DIFUZE and Syzkaller were both able to
generate those requests by just fuzzing the driver interface.
On QSEE, a small fraction (1.53% and 3.28%) of invocations

reach the TEE, and on TC, up to a third of the calls reaches
the TEE (35.67% and 20.71%).

To better understand this counterintuitive observation, we
investigated the specific ioctl requests that yield SMCs. A
TEE driver supports several command handlers that are not
related to the TA lifecycle. Those handlers include facilities
to query the tOS’s version or synchronize the time with the
tOS. Not a single generated SMC is triggered by a command
handler related to the interaction with a TA. Consequently, the
interface to communicate with TAs is not reached at all.

Looking at the design of both kernel fuzzers, it is apparent
that they would require extensive adaptations to incorporate
a fuzzing harness that supports establishing sessions to TAs.
Hence, we conclude that kernel fuzzers are ineffective for
fuzzing TAs.

APPENDIX B

Since PartEmu [39] is the only fuzzer targeting proprietary
TAs, we contacted the authors to support our evaluation of
TEEzz because PartEmu is not open to the public. According
to the authors, the prototype cannot be made available due
to parts of it being under a non-disclosure agreement with
Samsung Research, and the individual TAs or firmware images
used as a dataset in their evaluation cannot be revealed due to
the security-sensitive nature of TZ.

We agreed with them to compare our results of a six-hour
fuzzing session of the widevineTA on the Pixel 2XL plat-
form since this target was a common denominator. PartEmu
was able to discover two shallow bugs in the target. One
of these bugs was already discovered and reported during
the development of TEEzz and the corresponding CVE-2019-
10561 is assigned to us. The other bug discovered by PartEmu
was not found by TEEzz because we never captured a seed
during the interaction of mediaserver with the widevine
TA that triggers the affected command handler. This limitation
is due to our reliance on captured seeds and could be mitigated
by adding an exploration stage to TEEzz in order to discover
the supported commands of a given TA.

TEEzz was able to find one more bug that is located
five function calls deep from the command handler in the
widewine TA. According to its authors, PartEmu only
discovered shallow bugs and never reached deeper into the
target’s logic than two to three function calls deep.

An inherent limitation of PartEmu is that it cannot be
utilized for the encrypted TEE firmware images used on the
Huawei P20 Lite. In comparison, TEEzz could not only fuzz
the TAs on this device but also found a bug in the keymaster
TA.

1219

