
Practical Timing Side-Channel Attacks on Memory
Compression

Martin Schwarzl1, Pietro Borrello2, Gururaj Saileshwar3, Hanna Müller1, Michael Schwarz4, Daniel Gruss1

1 Graz University of Technology, 2 Sapienza University of Rome,
3 NVIDIA Research, 4 CISPA Helmholtz Center for Information Security

Abstract—Compression algorithms have side channels due to
their data-dependent operations. So far, only the compression-
ratio side channel was exploited, e.g., the compressed data size.

In this paper, we present Decomp+Time, the first memory-
compression attack exploiting a timing side channel in compres-
sion algorithms. While Decomp+Time affects a much broader
set of applications than prior work. A key challenge is precisely
crafting attacker-controlled compression payloads to enable the
attack with sufficient resolution. Our evolutionary fuzzer, Com-
prezzor, finds effective Decomp+Time payloads that optimize
latency differences such that decompression timing can even
be exploited in remote attacks. Decomp+Time has a capacity
of 9.73 kB/s locally, and 10.72 bit/min across the internet (14
hops). Using Comprezzor, we develop attacks that leak data
bytewise in four different case studies: First, we leak 1.50 bit/min
from Memcached on a remote PHP script. Second, we leak
database records with 2.69 bit/min, from PostgreSQL in a
Python-Flask application, over the internet. Third, we leak secrets
with 49.14 bit/min locally from ZRAM-compressed pages on
Linux. Fourth, we leak internal heap pointers from the V8 engine
within the Google Chrome browser on a system using ZRAM.
Thus, it is important to re-evaluate the use of compression on
sensitive data even if the application is only reachable via a
remote interface.

I. INTRODUCTION

Data compression plays a vital role for reducing the memory
and storage utilization and in file formats such as PDF, image,
and video files. Similarly, operating systems (OSs) rely on
memory compression [1], [2] to reduce system memory uti-
lization. Memory compression is also used in databases [3] and
key-value stores [4]. Compression can even increase perfor-
mance and efficiency when storing or transferring data to slow
storage devices or across networks. Hence, compression is
widely used for HTTP traffic [5], [6] and file-system compres-
sion [7]. Recent trends include columnar (column-oriented)
compression to reduce the disk utilization for databases [8],
[9], [10], [11]. When compressing secret data, the compression
ratio depends on the secret, introducing a compression-ratio
side channel, often exploited in TLS-encrypted traffic [12],
[13], [14], [15], [16], [17], [18]. All these attacks focused on
web traffic and only exploited differences in the compressed
size of data when compressed together with attacker-controlled
data. The size of the compressed data is either accessed
directly [12] or indirectly by observing the transmission time
that linearly depends on the size of the compressed data [14]
and, thus, the compression ratio.

Compression trades data size for computation time. How-
ever, so far, only the result of the compression, i.e., the com-
pressed size, has been exploited to leak data but not the time
consumed by the process of compression or decompression
itself. First described by Kelsey et al. [19], most attacks focus
on compressed web traffic. Surprisingly, security implications
of compression in other settings, such as virtual memory
or databases, have not been studied much. This raises two
questions:
Q1: Are timing differences in compression and decompression
exploitable if the compression ratio is unobservable?
Q2: Can these timing differences be significant enough to
exploit them in a fully remote setting?

In this paper, we present Decomp+Time, the first memory-
compression attack exploiting a timing side channel in memory
decompression. We show that the decompression time directly
leaks information about the compressed data. Our timing side
channel exploits large timing differences for edge cases when
decompressing nearly incompressible data. Since these edge
cases require surgically crafted attacker-controlled payloads,
we developed Comprezzor, an evolutionary fuzzer to gener-
ate memory layouts to trigger and amplify the edge cases.
The techniques we present are generic and can be applied
to various compression algorithms implementing sequence
compression. We show that the Comprezzor-based payloads
influence the decompression time so significantly that they can
be observed remotely when the compressed data never leaves
the victim system, i.e., the compression-ratio side channel is
not exploitable.

We compare latency differences induced by Comprezzor-
generated algorithm-specific payloads and manually crafted
ones and find that Comprezzor-generated attacker payloads
have latency differences up to three orders of magnitude above
manually crafted layouts. We evaluate four realistic secret-
leakage scenarios by generating these precise high-latency-
inducing payloads. We even demonstrate remote attacks on
an in-memory database system without executing code on the
victim machine and without observing the victim’s network
traffic. Hence, our case studies show that compressing sensitive
data poses a security risk in any scenario using compression
and not just for web traffic.

We systematically analyze six compression algorithms, in-
cluding widely-used algorithms such as DEFLATE (in zlib),
PGLZ (in PostgreSQL), and zstd (by Facebook). Comprezzor

1186

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Martin Schwarzl. Under license to IEEE.
DOI 10.1109/SP46215.2023.00073

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

29
7

is easy to extend to new compression algorithms, and it
already fully supports all of these compression algorithms.
Our findings show that the decompression time not only
correlates with the entropy of the uncompressed data but also
with various other aspects, such as the relative position of
secret data or alignment of compressible data. In general,
these timing differences arise due to the design of the com-
pression algorithm and, importantly, also its implementation.
Our results show that all analyzed compression algorithms
are susceptible to timing side channels when observing data-
compression and -decompression times.

We evaluate Decomp+Time in scenarios where secret data
is compressed alongside attacker-controlled data. This is a
common scenario in virtual memory and also in databases
where victim data and attacker-controlled data may be placed
in a single cell, e.g., when storing structured data like JSON
documents.1 The attacker guesses the secret bytes while
measuring the decompression time e.g., via a web request
that on the server-side performs a simple read access to
the data in compressed memory. We evaluate the capacity
of Decomp+Time in a covert channel abusing the memory
compression of Memcached, an in-memory object caching
system. We can, on average, transmit 9.73 kB/s locally and
10.72 bit/min across the internet (14 hops).

We present 4 case studies leaking compressed data byte
by byte: First, we attack an internet-facing PHP application
using Memcached internally to leak a secret in 5.32 min per
byte over the internet, i.e., 1.50 bit/min. Second, we leak
database records from a remote PostgreSQL instance with
transparent database compression at 2.97 min per byte, i.e.,
2.69 bit/min. Third, we exploit ZRAM, the Linux memory
compression module, transparently introducing timing side
channels regardless of the security needs of the application.2

In this setting, we leak a secret locally in 0.16 min per
byte, i.e., 49.14 bit/min. Fourth, we demonstrate an end-to-
end exploit leaking internal heap pointers from sandboxed
JavaScript inside the Chrome browser.

Our work highlights the importance of re-evaluating the use
of compression on sensitive data on any layer, even if the
application is only reachable via a remote interface.
Contributions. The main contributions of this work are:
1) We present a systematic analysis of timing leakage for

several lossless data-compression algorithms.
2) We develop an evolutional fuzzer to find surgically precise

attacker payloads to trigger extremely slow edge cases in
memory decompression algorithms.

3) We demonstrate the possible leakage rate with a re-
mote covert channel leaking 9.73 kB/s locally, and
10.72 bit/min across the internet (14 hops).

4) We leak secrets byte by byte using Memcached,
PostgreSQL, and ZRAM, with leakage rates between

1Importantly, there is no indication or recommendation to not place victim
and attacker-controlled data in one cell.

2This is particularly dangerous as users are not informed about this behavior
of the OS, that introduces leakage in their applications.

1.5 bit/min to 2.69 bit/min in the remote setting and
1.5 kB/s to 9.73 kB/s in the local setting.

Disclosure. We responsibly disclosed our findings to the
developers, and the issues were assigned CVE-2022-0925.
Comprezzor and parts of the attacks, as well as a demo are
openly accessible3.

II. BACKGROUND AND RELATED WORK

A. Data Compression Algorithms

Lossless compression reduces the size of data without los-
ing information. One of the most popular algorithms is the
DEFLATE compression algorithm [20], which is used in
gzip (zlib). The DEFLATE compression algorithm consists of
two main parts, LZ77 followed by Huffman encoding. The
Lempel-Ziv (LZ77) part scans for the longest repeating
sequence within a sliding window and replaces repeated se-
quences with a reference to the first occurrence [21]. This
reference stores distance and length of the occurrence. The
Huffman-coding part tries to reduce the redundancy of
symbols. When compressing data, DEFLATE first performs
LZ77 encoding and Huffman encoding [21]. When decom-
pressing data (inflate), they are performed in reverse order. The
algorithm provides different compression levels to optimize
for compression speed or compression ratio. The smallest
possible sequence has a length of 3 B [20]. Other algorithms
provide different design points for compressibility and speed.
Zstd, designed by Facebook [22] for modern CPUs, improves
both compression ratio and speed, and is used for com-
pression in file systems (e.g., btrfs, squashfs) and databases
(e.g., AWS Redshift, RocksDB). LZ4 and LZO are optimized
for compression and decompression speed. Especially LZ4
gains its performance by using a sequence compression stage
(LZ77) without the symbol encoding stage (Huffman) like
in DEFLATE. FastLZ, similar to LZ4, is a fast compression
algorithm implementing LZ77. PGLZ is a fast LZ-family
compression algorithm used in PostgreSQL for varying-length
data in the database [3].

B. Prior Data Compression Attacks

In 2002, Kelsey [19] first showed that any compression al-
gorithm is susceptible to information leakage based on the
compression-ratio side channel. Duong and Rizzo [12] applied
this idea to steal web cookies with the CRIME attack by ex-
ploiting TLS compression. In the CRIME attack, the attacker
adds additional sequences in the HTTP request, which act as
guesses for possible cookies values, and observes the request
packet length, i.e., the compression ratio of the HTTP header
injected by the browser. If the guess is correct, the LZ77-part
in gzip compresses the sequence, making the compression ratio
higher, thus allowing the secret to be discovered. For CRIME,
the attacker needs to spy on the packet length, and the secret
needs a known prefix such as cookie=. To mitigate CRIME,
TLS-level compression was disabled for requests [14], [13].

3See https://github.com/IAIK/Memory-Compression-Attacks and https://
streamable.com/qxr9h4.

21187

The BREACH attack [13] revived the CRIME attack by
attacking HTTP responses instead of requests and leaking
secrets in the HTTP responses such as cross-site-request-
forgery tokens. The TIME attack [14] uses the time of a
response as a proxy for the compression ratio, as it can be
measured even via JavaScript. To reliably amplify the signal,
the attacker chooses the size of the payload such that additional
bytes, due to changes in compressibility, cross a boundary
and cause significantly higher delays in the round-trip time
(RTT). TIME exploits the compression ratio to amplify timing
differences via TCP windows and does not exploit timing
differences in the underlying compression algorithm itself.
Vanhoef and Van Goethem [15] showed with HEIST that
HTTP/2 features can also be used to determine the size of
cross-origin responses and to exploit BREACH using the
information. Van Goethem et al. [17] similarly showed that
compression can be exploited to determine the size of any
resource in browsers. Karaskostas and Zindros [16] presented
Rupture, extending BREACH attacks to web apps using block
ciphers. Voracle [18] exploits compression in VPNs using
similar techniques as CRIME. Tsai et al. [23] demonstrated
cache timing attacks on compressed caches, leaking a secret
key in under 10 ms. Common Theme. Prior attacks primarily
exploit the compression-ratio side channel. However, the time
taken by the underlying compression algorithm is not analyzed
or exploited as side channels. Additionally, these attacks
largely target the HTTP traffic and website content, and do
not focus on the broader use of compression such as memory
compression, databases, and others, that we target in this paper.

C. Fuzzing to Discover Side Channels

Historically, fuzzing has been used to discover memory cor-
ruption bugs in applications [24], [25], [26], [27]. Typically, it
involves feedback based on novelty search, executing inputs,
and collecting ones that cover new program paths with the
goal of triggering bugs. Some fuzzers use genetic algorithms
to improve the coverage [28], [29]. Directed fuzzing guides the
exploration towards specific program points that are identified
as interesting [30], [31], [32]. Recently, fuzzing has also been
used to discover side channels both in software and in the
microarchitecture [33], [34], [35], [36]. ct-fuzz [37] used
fuzzing to discover timing side channels in cryptographic
implementations. Nilizadeh et al. [38] used differential fuzzing
to detect compression-ratio side channels that enable the
CRIME attack. Bang et al. [39] used symbolic execution to
discover side-channel leakage for compression-ratio attacks.

III. HIGH-LEVEL OVERVIEW

In this section, we discuss the high-level overview of memory
compression attacks and the attack model.

A. Attack Model & Attack Overview

Attack Model. Most prior attacks discussed in Section II-B
focus on the compression ratio side channel. Observing the
compression ratio over the network requires a strong attacker,
monitoring network traffic. Additionally, this information must

Attacker Victim

SECRET
(victim data)

XYZ...GUESS
(attacker data)

1© Send data to a victim application/server

2© Compress secret
data co-located with
attacker data

4© Decompress data

3© Request data (Save timestamp)

5© Calculate Round-Trip Time (RTT)

Victim’s RAM/Disk Page

Fig. 1: Overview of a memory compression attack exploiting
a timing side channel.

be exposed by the system, which is typically not the case if
compressed data is only handled on the remote system and
not transferred to the attacker. Even the TIME attack and its
variants [15], [17] only exploit timing differences due to the
TCP protocol. None of these exploited or analyzed timing dif-
ferences due to the compression algorithm itself, i.e., the focus
of our attack. Once attacker data is compressed with the secret,
the attacker measures the latency of a subsequent read access
to the attacker-controlled data. As we expect system noise,
when performing the experiment, we assume that the attacker
can repeat the measurement multiple times. Furthermore, we
assume no software vulnerabilities in the application itself. A
public API provides an interface to upload, read and modify
data, which is compressed and stored either in main memory
or on the disk. The threat model is similar to fully remote
attacks, as, presented by Schwarzl et al. [40].
Data Co-location. We assume that the attacker can co-locate
data with secret data. This assumption is in line with all
previous memory compression attacks [12], [13], [14], [15],
[17], [16]. For HTTP requests/responses, the attacker was
able to arbitrarily co-locate guesses of the cookie value,
e.g., Known Data (Prefix) || Secret Data ||
Attacker-controlled data. Moreover, co-location
can also occur in the other direction with a known suffix
or direct co-location of attacker-controlled and secret data
e.g., Secret Data || Known Data (Suffix) ||
Attacker-controlled data.

In applications, co-location is possible not only in HTTP
requests, but also via a memory storage API like Memcached,
with a shared database between attacker and victim that com-
presses multiple rows or columns. For cellular compression,
co-location might occur in JSON fields storing data from
different origins. Moreover, co-location can occur directly in
virtual memory. For instance, pointers can be co-located with
other attacker-controlled data structures (on the heap) and
compressed by the operating system. In such a setting, po-
tential targets are internal malloc pointers to libc functions for
breaking ASLR or internal pointers to metadata in JavaScript
engines. We present four case studies, where co-location leads
to data leakage in commonly used software in Section VI.
Attack Overview. Figure 1 illustrates an overview of a mem-
ory compression attack in five steps. The victim application

31188

can be a web server with a database or software cache, or
a filesystem that compresses stored files. First, the attacker
sends its data to be stored to the victim’s application. Sec-
ond, the victim application compresses the attacker-controlled
data, together with some co-located secret data, and stores
the compressed data. The attacker-controlled data contains a
partial guess of the co-located victim’s data SECRET or, in the
case where a prefix or suffix is known, prefix=SECRET.
The guess can be performed bytewise to reduce the guessing
entropy. If the partial guess (e.g., SECR) is correct, the
compressed data not only has a higher compression ratio,
but it also influences the decompression time. Third, after
the compression happened, the attacker requests the content
of the stored data again and takes a timestamp. Fourth, the
victim application decompresses the attacker-controlled input
together with the secret data and acknowledges the request.
Fifth, the attacker takes another timestamp when the applica-
tion responds and computes the RTT as the difference between
the two timestamps. Based on the RTT, which depends on the
decompression latency of the algorithm, the attacker infers the
correct guess and leaks the secret data. Thus, the attack relies
on the timing differences of the compression algorithm itself,
which we characterize next.

IV. SYSTEMATIC STUDY: COMPRESSION ALGORITHMS

In this section, we provide a systematic analysis of timing
leakage in compression algorithms. We choose six popular
compression algorithms (zlib, zstd, LZ4, LZO, PGLZ, and
FastLZ), and evaluate compression and decompression times
based on the input data entropy. Zlib, implementing the
DEFLATE algorithm, is used, e.g., for compressing files
and in gzip. Zstd is Facebook’s alternative to Zlib. PGLZ
is used in PostgreSQL. LZ4, FastLZ, and LZO were built
to increase compression speeds. For each algorithm, we see
timing differences in the range of hundreds to thousands of
nanoseconds depending on the input data.

A. Experimental Setup

We conducted the experiments on an Intel i7-6700K (Ubuntu
20.04, kernel 5.4.0) with a fixed frequency of 4 GHz. We
evaluate the latency of each compression algorithm with three
different input values, each 4 kB in size. The first input is the
same byte repeated 4096 times, which should be fully com-
pressible. The second input is partly compressible and a hybrid
of two other inputs: half random bytes and half compressible
repeated bytes. The third input consists of random bytes which
are theoretically incompressible. With these, we show that
compression algorithms have different timings depending on
the compressibility of the input.

B. Timing Differences for Different Inputs

For each algorithm and input, we measure the decompression
and compression time of a 4 kB data blob over 100 000 repe-
titions and compute the mean values and standard deviations.
Decompression. Table I lists the decompression latencies
for all evaluated compression algorithms. Depending on the

TABLE I: Different compression algorithms yield distinguish-
able timing differences when decompressing 4 kB content with
a different entropy (n = 100000).

Algorithm Fully Partially Incompressible (ns)Compressible (ns) Compressible (ns)

FastLZ 7257.88 (±0.23%) 4264.56 (±2.27%) 1155.57 (±0.92%)
LZ4 605.79 (±1.02%) 218.68 (±1.76%) 107.90 (±2.49%)
LZO 2115.65 (±2.05%) 1220.07 (±3.64%) 309.44 (±6.27%)
PGLZ 813.75 (±0.71%) 5340.47 (±0.38%) -
zlib 7016.02 (±0.33%) 13 212.53 (±0.35%) 1640.09 (±1.51%)
zstd 941.05 (±0.94%) 772.55 (±0.77%) 370.59 (±2.87%)

entropy of the input data, there is considerable variation in
the decompression time. All algorithms incur a higher latency
for decompressing a fully compressible page compared to an
incompressible page, leading to a timing difference of few
hundred to few thousand nanoseconds for different algorithms.
This is because, for incompressible data, algorithms can
augment the raw data with additional metadata to identify
such cases and perform simple memory copy operations
to “decompress” the data, as is the case for zlib where
the decompression for an incompressible page is 5375.93 ns
faster than for a fully-compressible page. For decompression
of partially-compressible pages, some algorithms (FastLZ,
LZ4, LZO, zstd) lead to lower latencies compared to fully-
compressible pages. Zlib and PGLZ lead to a higher decom-
pression latency for partially-compressible pages compared to
fully-compressible pages. This shows the existence of even
algorithm-specific variations in timings. PGLZ does not create
compressible memory in the case of an incompressible input,
and hence we do not measure its latency for this input.
Compression. For compression, we observed a trend in the
other direction (Table IV in Appendix B lists compression
latencies for different algorithms). For different levels of
compressibility, there are also latencies between the three
different inputs, which are clearly distinguishable in the order
of multiple hundreds to thousands of nanoseconds. Thus,
timing side channels from compression might also be used to
exploit compression of attacker-controlled memory co-located
with secret memory. However, attacks using the compression
side channel might be harder to perform in practice as the
compression of data might be performed in a separate task
(in the background), and the latency is, therefore, not easily
observable for an attacker. Hence, our work focuses on attacks
exploiting the decompression timing side channel.
Handling of Corner Cases. For incompressible pages, the
“compressed” data can be larger than the original size with the
additional compression metadata. Additionally, it is slower to
access after compression than raw uncompressed data. Hence,
this corner-case with incompressible data may be handled in
an implementation-specific manner, which can itself lead to
additional side channels. For example, a threshold for the
compression ratio can decide when a page is stored in a raw
format or in a compressed state, like in Memcached-PHP [4].
PGLZ, the algorithm used in PostgreSQL database, which
computes the maximum acceptable output size for input by

41189

checking the input size and the strategy compression rate,
could fail to compress inputs in such corner cases.

In Section VI, we show how real-world applications like
Memcached, PostgreSQL, and ZRAM deal with such corner
cases and demonstrate attacks on each of them.

C. Leaking Secrets via Timing Side Channels

Thus far, we analyzed timing differences for decompressing
different inputs, which in itself is not a security issue. In this
section, we demonstrate Decomp+Time to leak secrets from
compressed pages using these timing differences. We focus on
sequence compression, i.e., LZ77 in DEFLATE.

1) Building Blocks for Decomp+Time
Decomp+Time has 3 building blocks: sequence compression

to modulate the compressibility of an input, co-location of at-
tacker data and secrets, and timing variation for decompression
depending on the change in compressibility of the input.
Sequence compression: Sequence compression i.e., LZ77
tries to reduce the redundancy of repeated sequences in an
input by replacing each occurrence with a pointer to the
first occurrence. This results in a higher compression ratio
if redundant sequences are present in the input and a lower
ratio if no such sequences are present. This compressibility
side channel can leak information about the compressed data.
Co-location of attacker data and secrets: If the attacker
can control a part of data that is compressed with a secret, as
described in Figure 1, then the attacker can place a guess about
the secret and place it co-located with the secret to exploit
sequence compression. If the compression ratio increases, the
attacker can infer if the guess matches the secret or not. While
the CRIME attack [12] previously used a similar set up and
observed the compressed size of HTTP requests to steal secrets
like HTTP cookies, we introduce a more general attack that
does not require observability of compressed sizes.
Timing Variation in Decompression: We infer the change
in compressibility via its influence on the decompression
timing. We observe that even sequence compression can cause
variation in the decompression timing based on compressibility
of inputs (for all algorithms in Section IV-B). If the sequence
compression reduces redundant symbols in the input and
increases the compression ratio, we observe faster decompres-
sion due to fewer symbols. Otherwise, with a lower compres-
sion ratio and more symbols, decompression is slower. Hence,
the attacker can infer the compressibility changes for different
guesses by observing differences in decompression time. For a
correct guess, the guess and the secret are compressed together
and the decompression is faster due to fewer symbols. For
incorrect guesses with more symbols it is slower.

2) Launching Decomp+Time
Using the building blocks described above, we set up the

attack with an artificial victim program that has a 6 B secret
string (SECRET) embedded into a 4 kB page. The page also
contains attacker-controlled data that is compressed together
with the secret, like the scenario shown in Figure 1. The
attacker can update its own data in place to make multiple
guesses. The attacker can also read this data, which triggers a

FOOBAR
SECRET

PYTHON
123456

COOKIE
SOMEDA

ADMIN1
NOPENO

3,950

4,000

Ti
m

in
g

[n
s]

Fig. 2: Decompression time with Decomp+Time for different
guesses of the secret value. A threshold (line) separating the
correct from wrong secrets.

SECRES
SECRE1

SECRET
SECRE2

SECRE5
SECRE7

SECREP
SECREZ

3,520

3,540

3,560

Ti
m

in
g

[n
s]

Fig. 3: Bytewise-leakage of the secret’s last byte. A threshold
(line) separates the correct from the wrong guess.

decompression of the page and allows the attacker to measure
the decompression time. A correct guess that matches the
secret results in faster decompression.

We perform the attack on the zlib library (1.2.11) and use 8
different guesses, including the correct guess. For each guess,
a single string is placed 512 B away from the secret value;
Note that this offset is arbitrarily chosen, and other offsets
also work. Other data in the page is initialized with dummy
values (repeated number sequence from 0 to 16). To measure
the execution time, we use the rdtsc instruction.
Evaluation. Our evaluation was performed on an Intel i7-
6700K (Ubuntu 20.04, kernel 5.4.0) with a fixed frequency of
4 GHz. To get stable results, we repeat the decompression step
with each guess 10 000 times and repeat the entire attack 100
times. For each guess, we take the minimum timing difference
per guess and choose the global minimum timing difference to
determine the correct guess. Figure 2 illustrates the minimum
decompression times. With zlib, we see that the correct guess
is faster on average by 71.5 ns (n = 100, σµ̄ = 199.55%)
compared to the second-fastest guess. Our attack correctly
guessed the secret in all 100 repetitions of the attack. While
we used a 6 B secret, our experiment also works for smaller
secrets down to a length of 4 B.
Bytewise Leakage. If the attacker manages to guess or know
the first three bytes of the secret, the subsequent bytes can
even be leaked bytewise using our attack. Both CRIME and
BREACH assume a known prefix such as cookie=. Similar
to CRIME and BREACH [12], [13], [16], we try to perform
a bytewise attack by modifying our simple layout. We use the
first 5 characters of SECRET as a prefix ("SECRE") and
guess the last byte with 7 different guesses. On average, the
latency is 28.37 ns (n = 100, σµ̄ = 186.61%), between the se-
cret and second fastest guess. Figure 3 illustrates the minimum
decompression times for the different guesses. However, we

51190

observe an error rate of 8 % for this experiment, which might
be caused by the Huffmann-decoding part in DEFLATE.

While techniques like the Two-Tries method [12], [13],
[16] have been proposed to overcome the effects of Huffman-
coding in DEFLATE to improve the fidelity of bytewise attacks
exploiting compression ratio, we seek to explore whether
bytewise leakage can be reliably performed via the timing only
by amplifying the timing differences.

3) Challenge of Amplifying Timing
While the decompression timing side channels can be used

in attacks, the timing differences are quite small for practical
exploits on real-world applications. For example, the timing
differences we observe for the correct guess are in tens of
nanoseconds, while most practical use cases of compression,
like a Memcached server accessed over the network or Post-
greSQL database accessed from a disk, could have access
latencies of milliseconds.
Amplification. To enable memory compression attacks even
via the network, we need to amplify the timing difference
between correct and incorrect guesses. However, it is imprac-
tical to manually identify inputs that could amplify the timing
differences, as each compression algorithm has a different im-
plementation that is often highly optimized. Moreover, various
input parameters could influence the timing of decompression,
such as frequency of sequences, alignments of the secret and
attack-controlled data, size of the input, entropy of the input,
and different compression levels provided by algorithms. We
develop an evolutionary fuzzer, Comprezzor, to automatically
find inputs that amplify the timing difference between correct
and incorrect guesses for compression algorithms.

V. EVOLUTIONARY COMPRESSION-TIME FUZZER

Compression algorithms are highly optimized and complex.
Hence, we introduce Comprezzor, an evolutionary fuzzer to
discover attacker-controlled inputs for compression algorithms
that maximize differences in decompression times for certain
guesses enabling bytewise leakage.The motivation for this
automated tool is that there are too many possibilities for
crafting efficient payloads manually. Our manual attempts only
result in minimal timing differences that are difficult to exploit.

Comprezzor empowers genetic algorithms to amplify de-
compression side channels. It treats the decompression process
of a compression algorithm as an opaque box and mutates
inputs to the compression while trying to maximize the out-
put, i.e., timing differences for decompression with different
guesses. The mutation process in Comprezzor focuses on the
entropy of data and memory layout and alignment that end up
triggering optimizations and slow paths. Figure 4 illustrates a
high-level overview of the steps Comprezzor performs.

While previous approaches used fuzzing to detect timing
side channels [38], [37], Comprezzor can dramatically am-
plify timing differences by being specialized for compression
algorithms by varying parameters like the input size, layout,
and entropy that affect the decompression time. The inputs
discovered by Comprezzor can amplify timing differences to
such an extent that they are even observable remotely.

Generator Executor

1©
Genera

te 2©
Test 3©

Report
∆ = 1000ns

∆ = 20ns

4© Update population

cookie=SECRET

cookie=SECRET
Incompressible data

cookie=SECRET

cookie=SECRET
cookie=SECRET

Incompressible data

Fig. 4: Comprezzor generates memory layouts with different
entropy, input size, and secret alignment, leading to high-
latency decompression times. Every iteration, samples with
the highest latency difference are used as input to generate
newer layouts.

A. Design of Comprezzor

In this section, we describe the key parts of our fuzzer: Input
Generation, Fitness Function, Input Mutation and Evolution.
Input Generation. Comprezzor generates memory layouts
for Decomp+Time by maximizing the timing differences on
decompression of the correct guess compared to incorrect
ones. Comprezzor creates layouts with sizes in the range
of 1 kB to 64 kB. It uses a helper program that takes the
memory layout configuration as input, builds the requested
memory layout for each guess, compresses them using the
target compression algorithm, and reports the observed timing
differences in the decompression times among the guesses.
A memory layout configuration is composed of a file to
start from, the offset of the secret in the file, the offset of
guesses, how often the guesses are repeated in the layout,
the compression level (i.e., between 1 and 9 for zlib), and
a modulus for entropy reduction that reduces the range of the
random values. The fuzzer can be used in cases where a prefix
or suffix is known and unknown.
Fitness Function. The evolutionary algorithm of Comprezzor
starts from a random population of candidate layouts (samples)
and takes as feedback the difference in time between decom-
pression of the generated memory containing the correct guess
and the incorrect ones. Comprezzor uses the timing difference
between the correct guess and the second-fastest guess as the
fitness score for a candidate. The fitness function is evaluated
using a helper program performing an attack on the same setup
as in Section IV-A. The program performs 100 iterations per
guess and reports the minimum decompression time per guess
to reduce the impact of noise. This minimum decompression
time is the output of the fitness function for Comprezzor.
Input Mutation. Comprezzor is able to amplify timing dif-
ferences thanks to its set of mutations over the samples space
specifically designed for data compression algorithms. Data
compression algorithms leverage input patterns and entropy to
shrink the input into a compressed form. For performance rea-
sons, their ability to search for patterns in the input is limited
by different internal parameters, like lookback windows, look-
ahead buffers, and history table sizes [3], [21]. We designed
the mutations that affect the sample generation process to

61191

focus on input characteristics that directly impact compression
algorithm strategies and limitations towards corner cases.

Comprezzor mutations randomize the entropy and size of
the samples that are generated. This has an effect on the overall
compressibility of sequences and literals in the sample [21].
Moreover, the mutator varies the number of repeated guesses
and their position in the resulting sample, stressing the capabil-
ity of the compression algorithm to find redundant sequences
over different parts of the input. This affects the sequence
compression and triggers corner cases, e.g., subsequent blocks
to be compressed are directly marked as incompressible (cf.
Section V-B). All these factors contribute to Comprezzor’s
ability to amplify timing differences.
Input Evolution. Comprezzor follows an evolutionary ap-
proach to generate inputs that maximize timing differences. It
generates and mutates candidate layout configurations for the
attack. Each configuration is forwarded to the helper program
that builds the requested layout, inserts the candidate guess,
compresses the memory, and returns the decompression time.

Comprezzor iterates through different generations, with
each sample having a probability of survival to the new
generation that depends on its fitness score. The fitness score
is the time difference between the correct guess and the nearest
incorrect one. Comprezzor discards all the samples where
the correct guess is not the fastest or slowest. A retention
factor decides the percentage of samples selected to survive
among the best ones in the old generation (5 % by default).
The population for each new generation is initialized with the
samples that survived the selection and enhanced by random
mutations. By default, 70 % of the new population is generated
by mutating the best samples from the previous generation. To
avoid locally optimal solutions, a percentage of completely
random new samples is injected in each new generation.
Comprezzor runs until the maximum number of generations
is evaluated, and returns the best candidate layouts.

B. Results: Fuzzing Compression Algorithms

Evaluation. Our test system has an Intel i7-6700K (Ubuntu
20.04, kernel 5.4.0) with a fixed frequency of 4 GHz. We run
Comprezzor on four compression algorithms: zlib (1.2.11),
Facebook’s Zstd (1.5.0), LZ4 (v1.9.3), and PGLZ in Post-
greSQL (v12.7). Comprezzor can support new algorithms by
just adding compression and decompression functions.

We run Comprezzor with 50 epochs, 1000 samples each,
and a retention factor of 5 %, selecting the best 50 samples
in each generation. We randomly mutate the selected samples
to generate 70 % of the children and add 25 % of randomly
generated layouts to the new generation. The overall runtime
of Comprezzor was 2.46 h for zlib, 1.73 h for zstd, 1.64 h for
LZ4, and 2.09 h for PGLZ. Table III (Appendix A) lists the
maximum timing differences found for the four compression
algorithms. Particularly, for zlib and PGLZ, the fuzzer dis-
covers cases with timing differences of multiple microseconds
between correct and incorrect guesses.
Zlib. Comprezzor discovers a corner case in zlib where all
incorrect guesses lead to a slow code path, and the correct

guess leads to a significantly faster execution time. Using
Comprezzor with a known prefix, we observe a high timing
difference of 71 514.75 ns, which is 3 orders of magnitude
larger than the manually-discovered latency difference (cf.
Section IV-C). This memory layout also leads to similarly high
timing differences across all compression levels of zlib. To
rule out microarchitectural effects, we confirm the experiment
on different systems with an Intel i5-8250U, AMD Ryzen
Threadripper 1920X, and Intel Xeon Silver 4208.

On further analysis, we observe that the corner case iden-
tified by the fuzzer is due to incompressible data. The initial
data in the page, from a uniform distribution, is primarily
incompressible. For such incompressible blocks, DEFLATE
can store them as raw data blocks, called stored blocks [20].
Such blocks have fast decompression times as only a single
memcpy operation is needed on decompression instead of the
actual DEFLATE process. In this particular corner case, the
correct guess results in such an incompressible stored block
which is faster, while an incorrect guess results in a partly-
compressible input which is slower.
Correct Guess. In the case where the guess matches the
secret, the entire guess string, i.e., cookie=SECRET, is
compressed with the secret string. All subsequent data in
the input is incompressible and treated as a stored block
and decompressed with a single memcpy operation, which
is significantly faster than Huffman and LZ77 decoding.
Incorrect Guess. In the compression case where the guess
does not match the secret, only the prefix of the guess,
i.e., cookie=, is compressed with the prefix of the secret,
while another longer sequence, i.e., cookie=FOOBAR leads
to forming a new block. Therefore, when decompressing, this
block must now undergo the Huffman decoding (and LZ77),
which results in several table lookups, memory accesses, and
higher latency. Thus, the timing differences for the correct and
incorrect guesses are amplified by the layout that Comprezzor
discovered. We provide more details about this layout in
Figure 10 in the Appendix D and also provide listings of
the debug trace from zlib for the decompression with the
correct and incorrect guesses, to illustrate the root-cause of
the amplified timing differences with this layout.
Larger Secret Sizes. Evaluating a larger secret size (1 kB
random string) with Comprezzor on zlib, results in similar
high timing differences in the range of tens of microseconds
for the correct guess using a byte-by-byte attack.

Takeaway We showed that it is possible to amplify timing
differences for decompression timing attacks (answers Q1).
With Comprezzor, we presented an approach to automati-
cally find high timing differences in compression algorithms.

VI. CASE STUDIES

In this section, we present case studies showing the security
impact of the timing side channel. We present a local covert
channel leveraging the high-latency scenarios found by Com-
prezzor. Furthermore, we present a remote covert channel that
exploits the decompression of memory objects in Memcached.

71192

1,000 1,500 2,000 2,500 3,000
0

500

1,000

Timing [ns]

A
m

ou
nt

Lower entropy(0x42*4096) Higher entropy

Fig. 5: Timing when decompressing a zlib-compressed 4 kB
page with high entropy compared to a page with low entropy.

We demonstrate Decomp+Time on a PHP application that
compresses secret data together with attacker data to leak the
secret bytewise. We leak inaccessible values from a database,
exploiting PostgreSQL’s internal compression. We show that
OS-based memory compression (ZRAM) also has timing side
channels that can leak secrets. In these case studies, we do
not artificially restrict the possible layouts of the pages, since
these are possible ways in which those systems may be used,
as confirmed by their developers during responsible disclosure.
In our fourth study, on Chrome, we create co-location between
attacker-controlled data and internal heap pointers and exploit
ZRAM compression to leak the internal pointer.

A. Covert channel

To evaluate the transmission capacity of memory-compression
attacks, we evaluate the transmission rate for a covert channel,
where the attacker controls the sending and receiving end.
Similar to previous works [41], [42], [43], [44], [45], we
evaluate a cross-core covert channel using shared memory.
The maximum capacity poses a leakage rate limit for our
other attacks. Our local covert channel achieves a capacity
of 9.73 kB/s (n = 100, σµ̄ = 0.00097%).
Setup. We create a simple key-value store that communicates
via UNIX sockets. The store takes input from a client and
stores it on a 4 kB-aligned page. The sender inserts a key
and value into the first page to communicate with the server.
The receiver inserts a small key and value as well, placed on
the same 4 kB page. If the 4 kB-page is full, the key-value
store compresses the whole page. Compressing full 4 kB-page
separately also occurs on filesystems like BTRFS [7].

Sender and receiver agree on a time frame to send and
read content. The basic idea is to communicate via the
observation on zlib that memory with low entropy, e.g., 4096
times the same value, requires more time when decompressing
compared to pages with a higher entropy, e.g., repeating
sequence number from 0 to 255. Note that the content of the
page controlled by the receiver is co-located to the senders
controlled part. Figure 5 shows the decompression latency
histogram for both cases for the key-value on an Intel i7-
6700K running at 4 GHz. On average, we observe a timing
difference of 3566.22 ns (14 264.88 cycles, n = 100000).
Transmission. We evaluate our cross-core covert chan-
nel by generating and sending random content from
/dev/urandom through the memory compression timing
side channel. The sender controls 4095 B of a 4 kB page. The

sender transmits a ‘1’-bit by performing a store with high-
entropy data. Conversely, to transmit a ‘0’-bit, the sender stores
a low-entropy data. To trigger the compression, the receiver
also stores data in the store which fills a full 4 kB page, which
the key-value store then compresses. The receiver performs
a fetch request from the key-value store, which triggers a
decompression of the full 4 kB page. To distinguish bits, the
receiver measures the mean RTT of the fetch request.
Evaluation. Our test machine has an Intel Core i7-6700K
(Ubuntu 20.04, kernel 5.4.0) with all cores running at 4 GHz.
We repeat the transmission 50 times and send 640 B per run.
To reduce the error rate, the receiver fetches the receiver-
controlled data 50 times and compares the average response
time against the threshold. Our cross-core covert channel
achieves an average transmission rate of 9.73 kB/s (n = 100,
σµ̄ = 0.0068%) with an error rate of 0.082 % (n = 100, σµ̄ =
0.023%). The capacity of the unoptimized covert channel is
in line with other state-of-the-art microarchitectural cross-core
covert channels that do not rely on shared memory [46], [47],
[48], [49], [50], [51], [52], [33].

B. Remote Covert Channel

We extend the scope of our covert channel to a remote covert
channel. In the remote scenario, we rely on Memcached on a
web server for memory compression and decompression.
Memcached is a simple key-value store, widely used for web
site caching [53]. Internally, it uses a slab allocator with a
fixed unit of contiguous physical memory assigned to a certain
slab class which is typically a 1 MB region [54]. PHP offers
the possibility to use Memcached for caching, and memory
compression is enabled by default if Memcached is used [4].
PHP-Memcached has a threshold that decides at which size
data is compressed, with the default value being 2000 B. Fur-
thermore, PHP-Memcached compares the compression ratio
to a compression factor and decides whether it stores the data
compressed or uncompressed in Memcached. By default, the
compression factor is 1.3, i.e., it is only compressed if the size
would be reduced by 23 % or more [4].
Bypassing the Compression Factor. While the compression
factor already introduces a timing side channel, we focus
on scenarios where data is always compressed. This is used
in Section VI-C useful for leaking co-located data. Intuitively,
it should suffice to prepend highly-compressible data to en-
force compression. However, we found that only prepending
and adopting the offsets for secret repetitions, as for zlib,
also influenced the corner case we found and the large timing
difference. We integrate prepending of compressible pages to
Comprezzor and also add the compression factor constraint
to automatically discover inputs that fulfills the constraint and
leads to large latencies between a correct and incorrect guess.
Transmission. We use the page found by Comprezzor that
triggers a significantly lower decompression time to encode a
‘1’-bit. For a ‘0’-bit, we choose content that triggers a signif-
icantly higher decompression time. The sender places a key-
value pair for each bit index at once into PHP-Memcached.
The receiver sends GET requests to the resource, causing

81193

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·106

0

200

400

Response time [ns]

A
m

ou
nt 0

1

Fig. 6: Distribution of HTTP response times for zlib-
decompressed pages stored in Memcached on memory com-
pression encoding a ‘1’ and a ‘0’-bit.

decompression of the data containing the sender content. The
timing difference of the decompression is reflected in the RTT
of the HTTP request. Hence, we measure the timing difference
between the sent HTTP request and the first received response.
Evaluation. Our sender and receiver use an Intel i7-6700K
(Ubuntu 20.04, kernel 5.4.0) and connect to the internet with a
10 Gbit/s connection. For the web server, we use a dedicated
server in the Equinix [55] cloud, 14 hops away from our
network (over 700 miles physical distance) with a 10 Gbit/s
connection. The victim server uses an Intel Xeon E3-1240 v5
(Ubuntu 20.04, kernel 5.4.0). Our server runs Nginx 1.18.0,
with a PHP (version 7.4, FPM enabled) website that allows
storing and retrieving data, backed by Memcached 1.5.22,
the default version on Ubuntu 20.04. We perform a simple
test where we perform 5000 HTTP requests to a PHP site
that stores zlib-compressed memory in Memcached. Figure 6
illustrates the timing difference between a ‘0’-bit and a ‘1’-bit.
The timing difference between the mean values for a ‘0’- and
‘1’-bit is 61 622.042 ns. We transmit a series of random mes-
sages of 8 B over the internet. Our simple remote covert chan-
nel achieves an average transmission rate of 10.72 bit/min
(n = 20, σµ̄ = 15.96%) at an average error rate of 0.93 %.
We achieve a similar transmission rate as Schwarzl et al.
[40] with remote memory-deduplication attacks. Our covert
channel outperforms the one by Schwarz et al. [56] and
Gruss et al. [57], even though our attack works with HTTP
instead of the more lightweight UDP sockets. Other remote
timing attacks usually do not evaluate their capacity with a
remote covert channel [58], [59], [60], [61], [62], [60], [63].
Note that our numbers to mount a successful covert channel
over such a distance is way below the numbers reported by
Van Goethem et al. [63, Table 1].

C. Remote Attack on PHP-Memcached

Using our building blocks to perform Decomp+Time and the
remote covert channel, we perform a remote attack on PHP-
Memcached to leak secret data from a server over the internet.
We assume a memory layout where secret memory is co-
located to attacker-controlled memory, and the overall memory
region is compressed. As mentioned in Figure 1, we assume
that the attacks can arbitrarily co-locate arbitrary data to secret
data. This is reasonable as the developer might store additional
metadata, e.g., API keys co-located to the attacker-controlled
data, or might make some modifications. Also, structured
document data might be cached within the same memory slab

cookie=0
cookie=5

cookie=9
cookie=A

cookie=H
cookie=M

cookie=S
cookie=Z

1
1.02
1.04
1.06

·106

Ti
m

in
g

[n
s]

Fig. 7: Response times for the correct byte guess (S) and
the incorrect guesses (0-9, A-R, T-Z) leaked from PHP-
Memcached. Subsequent bytes are similar (cf. Appendix E).
Standard error margins are below 1 % of the value for all
guesses.

as the API of Memcached does not prevent an user from
merging data of multiple users together. The compressed data
is never visible to the user, and the compression ratio is not
exposed, relying on the compression ratio is not possible.
Attack Setup. We use the same setup as in Section VI-B
and run the attack using the same server setup as used for the
remote covert channel. We define a 6 B long secret (SECRET)
with a 7 B long prefix (cookie=) and prepend it to the stored
data of users. PHP-Memcached compresses the data before
storing it in Memcached and decompress it when accessing it
again. For each guess, the PHP application stores the uploaded
data to a certain location in Memcached. On each data fetch,
the PHP application decompresses the secret data together with
the co-located attacker-controlled data and then responds only
the attacker-controlled data. The attacker measures the RTTs
and discerns the timing differences between the guesses.
Evaluation. For the bytewise attack, we assume each byte of
the secret is uppercase alphanumeric (36 different options). For
each of the bytes to be leaked, we generate separate memory
layouts using Comprezzor that maximize the latency between
guesses. We repeat the experiment 20 times. On average, our
attack leaks the entire secret string in 31.95 min (n = 20,
σµ̄ = 60.58%) i.e., 5.32 minutes per byte or 1.5 bit/min.
Since the latencies between a correct and incorrect guess are
in the microseconds range, we do not observe false positives
with our approach. Figure 7 shows the median response time
for each guess in the first iteration as a representative example.
It can be seen that the response time for the correct guess is
significantly faster than the incorrect guesses.

Takeaway: We show that a PHP application using Mem-
cached to cache blobs hosted on Nginx enables covert
communication with a transmission rate of 10.72 bit/min
(answers Q2). Moreover, we demonstrate a remote memory-
compression attack on Memcached leaking 1.5 bit/min.

D. Leaking Data from Compressed Databases

In this section, we show that an attacker can exploit com-
pression in databases to leak inaccessible information from
the internal database compression of PostgreSQL. In this
setting, the compression ratio is not visible to the attacker,
only the timing can be observed. A potential attack scenario
for structured text in a cell is where JSON documents are

91194

stored and compressed within a single cell, and the attacker
controls a specific field within the document. While our focus
is restricted to cell-level compression, compressed columnar
storage [8], [9], [10], [11] or columnar databases, may also
be vulnerable to decompression timing attacks. The attacker
controls data in the same cell or the content of a cell in the
same column as the target data.
PostgreSQL Data Compression. PostgreSQL is a wide-
spread open-source relational database system using the SQL
standard. PostgreSQL maintains tuples saved on disk using
a fixed page size of commonly 8 kB, storing larger fields
compressed and possibly split into multiple pages. By default,
variable-length fields that may produce large values, e.g.,
TEXT fields, are stored compressed. PostgreSQL’s transparent
compression is known as TOAST (The Oversized-Attribute
Storage Technique) and uses a fast LZ-family compression,
PGLZ [3]. Data in a cell is stored compressed if such a form
saves at least 25 % of the uncompressed size to avoid wasting
decompression time. Data stored uncompressed is accessed
faster than data stored compressed as the decompression
algorithm is not executed.
Attack Setup. To assess the feasibility of an attack, we use
a local database server with the database stored on an SSD
and access two differently compressed rows with a Python
wrapper using the psycopg2 library. The first row contains
8192 characters of highly compressible data, while the second
one 8192 characters of random incompressible data. Both rows
are stored in a table as TEXT data and accessed 1000 times.
The median for the number of clock cycles required to access
the compressible row is 249 031, while for the uncompressed
one is 221 000, which makes the two accesses distinguishable.
On our 4 GHz CPUs, this is a timing difference of 7007.75 ns.
We use Comprezzor to amplify these timing differences and
demonstrate bytewise leakage.
Leaking First Byte. For the bytewise leakage of the secret,
we first create a memory layout to leak the first byte using
Comprezzor against a standalone version of PostgreSQL’s
compression library, using a similar setup as the previous
Memcached attack. A key difference in the use of Comprezzor
with PostgreSQL is that the helper program measuring the
decompression time returns a time of 0 when the input is not
compressed, i.e., the data compressed with PGLZ does not
save at least 25 % of the original size. Comprezzor found a
layout that sits exactly at the corner case where a correct guess
in the secret results in a compressed size that saves 25 % of
the original size. Hence, a correct guess is saved compressed,
while for any wrong guess, the data is saved uncompressed.
Leaking Subsequent Bytes with Secret Shifting. We ob-
served that one good layout can be reused for bytewise leakage
in PGLZ. The prefix can be shifted by one character to the left
by a single character, i.e., from “cookie=S” to “ookie=SE”, to
accommodate an additional byte for the guess. Shifting allows
bytewise leakage with the same memory layout. Note that we
could not mount this shifting approach on DEFLATE.
Evaluation. We perform a remote decompression timing
attack against a Flask [64] web server that uses a PostgreSQL

cookie=0
cookie=5

cookie=9
cookie=A

cookie=H
cookie=M

cookie=S
cookie=Z

1.2

1.25

·106

Ti
m

in
g

[n
s]

Fig. 8: Distribution of response times for the bytewise leakage
in the remote PostgreSQL attack, with the correct guess (S)
and incorrect guesses (0-9, A-R, T-Z). This is similar for
subsequent bytes leaked (cf. Appendix E). The standard error
is below 1 % for all guesses.

database to store user-provided data. We used the same
Equinix cloud-server setup as used for the Memcached remote
attack (cf. Section VI-C). The server runs Python 3.8.5 with
Flask 2.0.1 and PostgreSQL 12.7. We use a similar setup as in
Section VI-C with the difference that attacker-controlled data
is co-located to a secret in a database cell. The secret is never
shown to the user. Using the layout found by Comprezzor,
the entry in the database is stored compressed only when the
secret matches the provided data. A second endpoint in the
server accesses the database to read the data without returning
the secret to the attacker. The attack leaks bytewise over the
internet by guessing again uppercase alphanumeric characters
(36 possibilities per character), including the correct one. We
repeat the attack 20 times. The average time for the attack,
i.e., the time required to determine the guess with the highest
latency that the server had to decompress before returning,
is 17.84 min (2.97 min/B) (n = 20, σµ̄ = 0.33%) i.e.,
2.69 bit/min. Figure 8 illustrates the median response times
showing how the correct guess results in a slower response.
Without fixing the CPU frequency, twice as many requests
are required to clearly determine the correct secret. However,
keeping the server busy automatically leads to an almost
constant frequency. We guess over the set of all printable
characters and observe one secret byte in 7.83 min.

Takeaway: Secrets can be leaked from databases due to
timing differences caused by PostgreSQL’s transparent com-
pression, if applications store untrusted data with secrets in
the same cell. Our decompression timing attack on Post-
greSQL leaks a byte across the internet with 2.69 bit/min.

E. Attacking OS Memory Compression

In this section, we show how memory compression in modern
OSs can introduce exploitable timing differences. We demon-
strate bytewise leakage of secrets from compressed pages
in ZRAM, the Linux implementation of memory compres-
sion. Co-location can be achieved here if virtual memory
is compressed together with mostly attacker-controlled data.
As we show in Section VI-F, co-location can occur for V8-
internal pointers, together with attacker-controlled data. The
compression ratio is not observable for the attacker since the
attacker cannot read the compressed memory from ZRAM.

101195

Background. Memory compression is a technique used
in many modern OSs, e.g., Linux [65], Windows [66], or
MacOS [67]. Similar to traditional swapping, memory com-
pression increases the effective memory capacity of a system.
When processes require more memory than available, the
OS can transparently compress unused pages in DRAM to
ensure they occupy a smaller footprint in DRAM rather than
swapping them to disk. This frees up memory while still
allowing the compressed pages to be accessed from DRAM.
Compared to disk I/O, DRAM access is an order of magnitude
faster, and even with the additional decompression overhead,
memory compression is significantly faster than swapping.
Hence, memory compression can improve the performance de-
spite the additional CPU cycles required for compression and
decompression. The Linux kernel implements ZRAM [68],
enabled by default on Fedora [65] and Chrome OS [67].

1) Characterizing Timing Differences in ZRAM
To understand how memory compression can be exploited,

we characterize its behavior in ZRAM. On Linux systems,
ZRAM appears as a DRAM-backed block device. When pages
need to be swapped to free up memory, they are instead
compressed and moved to ZRAM. Subsequent accesses to data
in ZRAM result in a page fault, and the page is decompressed
from ZRAM and copied to a regular DRAM page for use
again. We show that the time to access data from a ZRAM
page depends on its compressibility and thus the data values.
According to the previous experiments, we characterize the
latency of accessing data from ZRAM pages with different
entropy levels: pages that are incompressible (with random
bytes), partially-compressible (random values for 2048 bytes
and a fixed value repeated for the remaining 2048 bytes), and
fully-compressible (a fixed value in each of the 4096 bytes).
We ensure a page is moved to ZRAM by accessing more
memory than the memory limit allows. To ensure fast run
times for the proof of concept, we allocate the process to a
cgroup with a memory limit of a few megabytes. We measure
the latency for accessing a 8-byte word from the page in
ZRAM, and repeat this process 500 times. Table II shows
the mean latency of ZRAM accesses for different ZRAM
compression algorithms on an Intel i7-6700K (Ubuntu 20.04,
kernel 5.4.0). The latency for accesses to ZRAM is much
higher for partially-compressible pages (with lower entropy)
compared to incompressible pages (with higher entropy) for
all compression algorithms. This is because the process of
moving compressed ZRAM pages to regular memory on an
access requires additional calls to functions that decompress
the page. ZRAM pages that are stored uncompressed do not
require these function calls (cf. Appendix C). We observe the
largest timing difference for the deflate algorithm (close to
10 000 ns) and 842 algorithm (close to 7000 ns); we observe
moderate timing differences for lzo and lzo-rle (close
to 1000 ns), and zstd (close to 750 ns); the smallest timing
difference are for lz4 and lz4hc (close to 250 ns). These
timing differences largely correspond with the algorithm’s
raw decompression latency (cf. Table I). Accesses to a fully-
compressible page in ZRAM, i.e., a page containing the same

TABLE II: Mean latency of accesses to ZRAM. Distinguish-
able timing differences exist based on data compressibility in
the pages (n = 500 and 6 %of samples removed as outliers
with more than an order of magnitude higher latency).

Algorithm Incompressible (ns) Partly Fully
Compressible (ns) Compressible (ns)

deflate 1763 (±12%) 12 208 (±2%) 1551 (±12%)
842 1789 (±11%) 8785 (±2%) 1556 (±10%)
lzo 1684 (± 9%) 4866 (±4%) 1479 (±12%)
lzo-rle 1647 (± 9%) 4751 (±4%) 1453 (±12%)
zstd 1857 (±10%) 2612 (±9%) 1674 (±11%)
lz4 1710 (±11%) 1990 (±7%) 1470 (±10%)
lz4hc 1746 (± 9%) 2091 (±9%) 1504 (±11%)

byte repeatedly, are faster (by 200 ns) than accesses to an
incompressible page for all the compression algorithms. This
is because ZRAM stores such pages with a special encoding
as a single-byte (independent of the compression algorithm)
that only requires reading a single byte from ZRAM on an
access to such a page.

2) Leaking Secrets via ZRAM Decompression Timings
In this section, we exploit timing differences between ac-

cesses to a partially-compressible and an incompressible page
in ZRAM (using deflate algorithm).

Attack Setup. We demonstrate bytewise leakage attack on
a program with a 4 kB page stored in ZRAM containing both
a secret value and attacker-controlled data, as is common in
many applications like databases. To determine optimal data
layouts an attacker might use, we combine this program with
Comprezzor. With a known secret value, Comprezzor runs
the program with the attacker guessing each byte position
successively. For each byte position, Comprezzor generates
the optimal memory layouts. In such an optimal layout,
when the attacker’s guess matches the secret-byte, the page
entropy reduces (page is partially compressible), and ZRAM
decompression takes longer; and for all other guesses, the
entropy is high, and ZRAM decompression is fast. We repeat
this process to generate optimal data layouts for each byte
position. Note that this optimal data layout only relies on the
number of repetitions of the guess and the relative position of
the guessed data and the secret (a property of the compression
algorithm), and is applicable with any data values. Using
these attacker data layouts, we perform bytewise leakage of an
unknown secret. At each step, the attacker guesses one byte
(0-9, A-Z) and denotes the guess with the highest latency as
correct. We repeat this attack for 100 random secrets.

Evaluation. Figure 9 shows the bytewise leakage for a
secret value (cookie=SECRET), with the decompression
times for guesses of the first four bytes depicted in each
of the graphs. For each byte, among guesses of (0-9, A-
Z), the highest decompression time successfully leaks the
secret byte value (shown in red). For example, for byte
0, the highest time is for cookie=S. Similar trends are
observed for the remaining bytes, as shown in the Figure 13
in Appendix E for byte 1, the highest latency is observed
for cookie=SE. For byte 2, we observe a false positive,

111196

cookie=0
cookie=5

cookie=9
cookie=A

cookie=H
cookie=M

cookie=S
cookie=Z

0
0.5
1

1.5

·104
Ti

m
in

g
[n

s]

Fig. 9: Times for guesses (0-9, A-Z) for the first byte (S) of
the secret leaked bytewise from ZRAM. The highest times
correspond to the secret-byte value (shown in red). The
standard error is below 1 % for all guesses.

cookie=SE8, which also has a high latency, along with the
correct guess cookie=SEC. But in the subsequent byte 3,
when both these strings are used as prefixes for the guesses, the
false positives are eliminated, and cookie=SECR is obtained
as the correct guess. The next two bytes are also successfully
leaked to fully obtain cookie=SECRET, as shown in the
Figure 13 in Appendix E. Repeating the experiment with 100
randomly generated secrets, we observe that in 90 out of 100
cases, the secret is leaked successfully. Our attack successfully
completes in 58.6 s (n = 90, σµ̄ = 642.22%) on average, i.e.,
49.14 bit/min. In 9 out of the 10 remaining cases, we narrow
down the secret to within four candidates (due to false posi-
tives for the last-byte guess), and in the last case, we recover
4 bytes out of the 6-byte secret (the false positives grow for
the 5th byte and beyond in this case). The false positives in
our ZRAM PoC are caused by the Comprezzor-generated data
layouts that are not as robust as in previous PoCs. Comprezzor
with ZRAM is a few orders of magnitude slower (almost 0.03x
the speed) compared to iterations with raw algorithms studied
in Section V-B. Moving a page to ZRAM and compressing
it requires accessing sufficient memory to swap the page out,
which is much slower than executing just the compression
algorithm. Consequently, the explored search space is smaller.
Such false positives can be addressed by using multiple strong
data layouts, or by fuzzing for a longer duration.

F. Leaking Heap Pointers from Google Chrome

For exploits in Javascript environments like V8 in Chrome,
breaking memory randomization is often the first step. Such
ASLR breaks usually rely on information leaks to disclose
pointers from V8 isolates. However, vulnerabilities like out-of-
bound reads that allow information leaks are promptly patched
when discovered. In this section, we use our side channel to
disclose a heap pointer and thus break heap-memory random-
ization. We assume a Chrome browser running on a device
with ZRAM enabled. We run our experiments on a notebook
equipped with an Intel i5-8250U CPU and 16 GB DDR4
RAM running Ubuntu 20.04 (kernel 5.4.0-124-lowlatency) and
Google Chrome 90.0.4430.72. We setup a 4 GB ZRAM device
as swap partition with the deflate algorithm. As a timer, we
use a JavaScript counting thread [69], [70], [71], [72].
Co-Location. The first major requirement to leak a pointer
is co-location between attacker-controlled data and a heap
pointer (secret) on a 4 kB page. In JavaScript, elements of

TypedArrays (e.g., Uint8Array) are memory-backed by
an ArrayBuffer object. A backing heap pointer points to
the location where the ArrayBuffer stores the data in
memory [73]. All such 64-bit values in JavaScript (includ-
ing pointers) are encoded using the IEE754 floating-point
representation. Hence, to store a pointer in memory, non-
typed arrays of numbers encoding 64-bit pointers are used.
Thus, attacker-controlled numbers and secret heap-pointers (to
TypedArray) can be co-located in a non-TypedArray,
leading to the desired co-location of attacker data and the
target pointer. We massage the allocations such that the target
pointer is at the beginning of a 4 kB page. Listing 3 illustrates a
snippet that co-locates the backing pointer of a TypedArray
with a mostly attacker-controlled 4 kB region. Listing 4 is a
memory dump showing the resultant co-location within the
memory of a Chrome process. The resultant layout is indeed
dependant on Chrome’s allocator and may not always be the
same. So, we measure which offsets we get with repeated
runs of the same code snippet. For the same pointer, we
observe that offsets of 0x0 or 0xc0 within the page occur in
84 % of the allocations (cf. Appendix E). Using Comprezzor,
we can generate memory layouts for different byte offsets of
the pointers with our setup. Note that the 32-bit compressed-
pointers V8 uses to refer to objects in the same isolate are not
randomized for each execution and do not affect our attack.
Trigger Swapping from JavaScript. The default
swapiness value for Ubuntu 20.04 is 60. This means
that if 80 % of memory is used, the kernel starts to perform
swapping.Therefore, to swap the target data from RAM
to the ZRAM swap device area, the attacker has to create
high memory pressure. As the heap size per process is
limited to 4 GB, this can be challenging. One approach
an attacker can adopt is to spawn multiple processes to
achieve the desired memory pressure. We observe that every
iframe gets a separate renderer process, therefore, a higher
memory pressure can be achieved. However, iframes from
same domains (including subdomains) might get merged
back into a similar process [74]. This could lead to the
main tab crashing as the memory limit per tab is exceeded.
Therefore, the attacker requires to use multiple iframes
embedding content from different web servers to trigger
swapping reliably. As COEP is set to cross-domain, the
server under the attackers control requires to set the CORP
to cross-origin [75]. Each of the domains can allocate
about 4 GB. Therefore, to trigger swapping frequently, 4
additional remote servers from different domains are required.
To ensure that the target is always evicted, we delete the
iframes and repeat the allocation a second time. Note that this
is the worst case scenario, assuming an idle system. Other
system activity can only increase the probability of swapping
out target pages. We run an experiment which constantly
loads an iframe and tries to evict a certain target page. To
successfully evict the target page from memory, the attacker
requires, on average, 14.91 s (n = 100, σx̄ = 7.59%).
Total Attack Runtime. The attacker has to guess all 256
possibilities per byte to leak the correct pointer. We use

121197

Comprezzor to generate layouts for the 6 byte offsets. For
stable results, 20 measurements per guess are required. Thus,
leaking a single byte requires about 20 s for the swapping part
in JavaScript and about one second to evaluate the memory
layout, i.e., 21 s per guess. This leads to a total runtime of
29.8 h (21 s * 20 (tries per guess) * 256 = 107520/3600 =
29.8h) per byte. An attacker can invest additional engineer-
ing effort to perform multiple guesses in one iteration. Our
theoretical runtime is only 7 min/B (21 s * 20 / 60 = 7m).

Takeaway: We show that even if an application does not
explicitly use compression, its data may still get compressed
by the OS due to memory compression. We demonstrate a
local attack leaking 49.14 bit/min and port the attack to
JavaScript leaking heap pointers in Google Chrome.

VII. MITIGATIONS

Taint tracking. The best strategy to mitigate compression
side channels is to avoid sensitive data being with poten-
tial attacker-controlled data. Mutexion [76] enforces mutually
exclusive compression between attacker-controlled data and
secret data in HTTP. This approach uses automated annotations
of secret and attacker-controlled data. However, finding all
the sources and sinks can be a complex problem for software
developers, especially in large and complex software projects.
Taint tracking tries to trace the data flow and mark input
sources and their sinks. Paulsen et al. [77] use taint analysis
to track the flow of secret data before feeding data into
the compression algorithm. Their tool, Debreach, is about
2-5 times faster than SafeDeflate [77]. However, it is only
compatible with PHP, and the developer needs to flag the
sensitive input which is being tracked.
Disabling LZ77. A naive solution is to disable compression
or at least disable the LZ77 part. Karakostas et al. [78] showed
for web pages that, this adds an overhead between 91 % and
500 %. Furthermore, attacks on symbol compression have not
been studied well enough to provide security guarantees.
Mitigating the Timing Side Channel. Constant time im-
plementations might remove the timing side channel [79],
[80], [81]. There are several solutions to automatically trans-
form code into a constant-time version to mitigate side
channels [82], [83], [84], [85], [86]. However, such solu-
tions usually rely on code linearization, executing both the
taken and not-taken path of branches. While this is feasible
for cryptographic implementations with a limited number
of branches, compression algorithms have too many input-
dependent branches. Moreover, the overhead might get con-
siderably worse without the memcpy optimization.
Masking. Karakostas et al. [78] presented a generic defense
technique called Context Transformation Extension (CTX).
The general idea is to use context-hiding to protect secrets
from being compressed with attacker-controlled data. Data is
permuted on the server side using a mask, and on the client
side, an inverse permutation is performed (JavaScript library).
The overhead compared to the original algorithms decrease
with the number of compressed data [78].

Duplicating secrets. As Decomp+Time uses the generated
layouts by Comprezzor, the guess is placed multiple times
to trigger edge cases. Placing the secret multiple times might
already be effective enough to mitigate Decomp+Time. We
leave it as future work to evaluate the effectiveness.
Randomization. Yang et al. [87] showed an approach with
randomized input to mitigate compression side-channel at-
tacks. The service would require adding an additional amount
of random data to hide the size of the compressed memory.
However, as the authors also show, randomization-based ap-
proaches can be defeated at the expense of a higher execution
time. Also, Karaskostas et al. [78] showed that size random-
ization is ineffective against memory compression attacks. It is
also unclear if size randomization mitigates the timing-based
side channel of the memory decompression.
Keyword protection. Zieliński presented an implementation
of DEFLATE called SafeDeflate [88]. SafeDeflate mitigates
memory compression attacks by splitting the set of keywords
into sensitive and non-sensitive subsets. Depending on the
completeness of the sensitive keyword list, this approach is
considered secure. As Paulsen et al. [77] mention, it is easy
to overlook a corner case. Furthermore, this approach leads to
a loss of compression ratio of about 200 % to 400 % [78].

The aforementioned mitigations focus on mitigating
compression-ratio side channels. As the compression and
decompression timings are not constant, a timing side channel
is harder to mitigate. Since the latency for a correct guess
is in the region of microseconds, not many requests (≤ 200)
are required per guess to distinguish the latency. Therefore,
in a remote setting, a simple DDoS detection might detect an
attack but only after a certain amount of data being leaked.

VIII. CONCLUSION

In this paper, we presented Decomp+Time, a timing side-
channel attack on several memory-compression algorithms.
We developed Comprezzor, an evolutionary fuzzer to am-
plify timing latencies when performing attacks on different
compression algorithms. Our remote covert channel achieves
a transmission rate of 9.73 kB/s locally and 10.72 bit/min
over the internet (14 hops). We showed bytewise leakage
with a leakage rate of 1.50 bit/min across the internet from
a server using Memcached hosting, a PHP application. We
leaked database records from PostgreSQL with 2.69 bit/min.
We showed that we can locally attack ZRAM on Linux and
leak heap pointers from Google Chrome. Our results show
that compression of sensitive data can be dangerous even if
the compressed data is not directly observable.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their valuable feedback
and comments on the paper. Furthermore, we want to thank
Moritz Lipp, Jonas Juffinger and Claudio Canella for feedback
on this work. This work was supported by generous funding
and gifts from Red Hat. Any opinions or recommendations
expressed in this work are those of the authors and do not
necessarily reflect the views of the funding parties.

131198

REFERENCES

[1] P. Yosifovich, A. Ionescu, M. E. Russinovich, and D. A. Solomon,
Windows Internals Part 1, 7th ed. Microsoft Press, 2017.

[2] Apple Insider, 2013. [Online]. Available: https:
//appleinsider.com/articles/13/06/13/compressed-memory-in-os-x-
109-mavericks-aims-to-free-ram-extend-battery-life

[3] PostgreSQL, “TOAST Compression,” 2021. [Online]. Available:
https://www.postgresql.org/docs/current/storage-toast.html

[4] php.net, “memcached.constants.php,” 2021. [Online]. Available: https:
//www.php.net/manual/en/memcached.constants.php

[5] Mozilla, “Compression in HTTP,” 2021. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Compression

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Rfc 2616, hypertext transfer protocol – http/1.1,”
1999. [Online]. Available: http://www.rfc.net/rfc2616.html

[7] BTRFS, “Compression,” 2021. [Online]. Avail-
able: https://btrfs.wiki.kernel.org/index.php/Compression#Why does
not du report the compressed size.3F

[8] Amazon, 2012. [Online]. Available: https://docs.aws.amazon.com/
redshift/latest/dg/t Compressing data on disk.html

[9] Citus, “Columnar: Distributed PostgreSQL as an extension.” 2021.
[Online]. Available: https://github.com/citusdata/citus/blob/master/src/
backend/columnar/README.md

[10] Microsoft, “concepts-hyperscale-columnar,” 2021. [Online].
Available: https://docs.microsoft.com/en-us/azure/postgresql/concepts-
hyperscale-columnar

[11] Oracle, 2022. [Online]. Available: https://www.oracle.com/a/ocom/docs/
database/hybrid-columnar-compression-brief.pdf

[12] J. Rizzo and T. Duong, “The CRIME attack,” in ekoparty security
conference, vol. 2012, 2012.

[13] Y. Gluck, N. Harris, and A. Prado, “BREACH: reviving the CRIME
attack,” Unpublished manuscript, 2013.

[14] T. Be’ery and A. Shulman, “A Perfect CRIME? Only TIME Will Tell,”
Black Hat Europe, 2013.

[15] M. Vanhoef and T. Van Goethem, “HEIST: HTTP Encrypted Information
can be Stolen through TCP-windows,” in Black Hat US Briefings,
Location: Las Vegas, USA, 2016.

[16] D. Karakostas and D. Zindros, “Practical new developments on breach,”
Black Hat Asia, 2016.

[17] T. Van Goethem, M. Vanhoef, F. Piessens, and W. Joosen, “Request
and conquer: Exposing cross-origin resource size,” in USENIX Security
Symposium, 2016.

[18] A. Nafeez, “Compression oracle attacks on vpn networks,” Blackhat,
USA, 2018.

[19] J. Kelsey, “Compression and information leakage of plaintext,” in Fast
Software Encryption, 2002.

[20] P. Deutsch, “Rfc1951: Deflate compressed data format specification
version 1.3,” USA, 1996.

[21] E. Chen, “Understanding zlib,” 2021. [Online]. Available: https:
//www.euccas.me/zlib/#deflate

[22] Y. Collett, “Smaller and faster data compression with Zstandard,”
2016. [Online]. Available: https://engineering.fb.com/2016/08/31/core-
data/smaller-and-faster-data-compression-with-zstandard/

[23] P.-A. Tsai, A. Sanchez, C. W. Fletcher, and D. Sanchez, “Safecracker:
Leaking secrets through compressed caches,” in ASPLOS, 2020.

[24] M. Zalewski, “American Fuzzy Lop,” 2021. [Online]. Available:
https://github.com/Google/AFL

[25] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combin-
ing incremental steps of fuzzing research,” in USENIX Workshop on
Offensive Technologies (WOOT), August 2020.

[26] LLVM Project, “libFuzzer – a library for coverage-guided fuzz testing.”
2018. [Online]. Available: https://llvm.org/docs/LibFuzzer.html

[27] M. Payer, “The fuzzing hype-train: How random testing triggers thou-
sands of crashes,” IEEE Security and Privacy, 2019.

[28] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in NDSS, 2017.

[29] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz:
Efficient fuzzing with neural program smoothing,” in IEEE Symposium
on Security and Privacy, 2019.

[30] M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in CCS, 2017.

[31] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in ACM Sigplan Notices, vol. 40, no. 6, 2005, pp.
213–223.

[32] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in 31st International Conference on Software Engineering,
2009.

[33] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and C. Rossow, “Osiris:
Automated Discovery Of Microarchitectural Side Channels,” in USENIX
Security Symposium, 2021.

[34] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi, “ABSynthe:
Automatic Blackbox Side-channel Synthesis on Commodity Microar-
chitectures,” in NDSS, 2020.

[35] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz, “Medusa: Microar-
chitectural Data Leakage via Automated Attack Synthesis,” in USENIX
Security Symposium, 2020.

[36] A. Fogh, “Covert Shotgun: automatically finding SMT covert channels,”
2016. [Online]. Available: https://cyber.wtf/2016/09/27/covert-shotgun/

[37] S. He, M. Emmi, and G. Ciocarlie, “ct-fuzz: Fuzzing for Timing
Leaks,” in International Conference on Software Testing, Validation and
Verification (ICST), 2020.

[38] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in International Conference on Soft-
ware Engineering (ICSE), 2019.

[39] L. Bang, A. Aydin, Q.-S. Phan, C. S. Păsăreanu, and T. Bultan, “String
analysis for side channels with segmented oracles,” in SIGSOFT, 2016,
pp. 193–204.

[40] M. Schwarzl, E. Kraft, M. Lipp, and D. Gruss, “Remote Page Dedupli-
cation Attacks,” in NDSS, 2022.

[41] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches,” in USENIX Security
Symposium, 2015.

[42] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “AR-
Mageddon: Cache Attacks on Mobile Devices,” in USENIX Security
Symposium, 2016.

[43] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Symposium,
2014.

[44] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
Fast and Stealthy Cache Attack,” in DIMVA, 2016.

[45] B. Gülmezoğlu, M. S. Inci, T. Eisenbarth, and B. Sunar, “A Faster and
More Realistic Flush+Reload Attack on AES,” in COSADE, 2015.

[46] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-space: High-speed
Covert Channel Attacks in the Cloud,” in USENIX Security Symposium,
2012.

[47] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P, 2015.

[48] D. Evtyushkin and D. Ponomarev, “Covert Channels Through Random
Number Generator: Mechanisms, Capacity Estimation and Mitigations,”
in CCS, 2016.

[49] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX
Security Symposium, 2016.

[50] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. Al-
berto Boano, S. Mangard, and K. Römer, “Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud,” in NDSS, 2017.

[51] B. Semal, K. Markantonakis, K. Mayes, and J. Kalbantner, “One Covert
Channel to Rule Them All: A Practical Approach to Data Exfiltration
in the Cloud,” in TrustCom, 2020.

[52] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, “CrossTalk:
Speculative Data Leaks Across Cores Are Real,” in S&P, 2021.

[53] Memcached, “memcached - a distributed memory object caching
system,” 2020. [Online]. Available: https://memcached.org/

[54] holmeshe.me, “Understanding the memcached source code - slab
ii,” 2020. [Online]. Available: https://holmeshe.me/understanding-
memcached-source-code-II/

[55] Equinix, 2021. [Online]. Available: https://www.equinix.com
[56] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-

Spectre: Read Arbitrary Memory over Network,” in ESORICS, 2019.
[57] D. Gruss, E. Kraft, T. Tiwari, M. Schwarz, A. Trachtenberg, J. Hen-

nessey, A. Ionescu, and A. Fogh, “Page Cache Attacks,” in CCS, 2019.
[58] X.-j. Zhao, T. Wang, and Y. Zheng, “Cache Timing Attacks on Camellia

Block Cipher,” Cryptology ePrint Archive, Report 2009/354, 2009.

141199

[59] D. Jayasinghe, J. Fernando, R. Herath, and R. Ragel, “Remote cache
timing attack on advanced encryption standard and countermeasures,”
in ICIAFs, 2010.

[60] H. Aly and M. ElGayyar, “Attacking aes using bernstein’s attack
on modern processors,” in International Conference on Cryptology in
Africa, 2013.

[61] V. Saraswat, D. Feldman, D. F. Kune, and S. Das, “Remote Cache-timing
Attacks Against AES,” in Workshop on Cryptography and Security in
Computing Systems, 2014.

[62] O. Acıiçmez, W. Schindler, and C. K. Koc, “Cache based remote timing
attack on the aes,” in CT-RSA, 2006.

[63] T. Van Goethem, C. Pöpper, W. Joosen, and M. Vanhoef, “Timeless
Timing Attacks: Exploiting Concurrency to Leak Secrets over Remote
Connections,” in USENIX Security Symposium, 2020.

[64] Flask, “Flask,” 2021. [Online]. Available: https://flask.palletsprojects.
com/en/2.0.x/

[65] M. Larabel, “What Is Memory Compression in Windows 10?” 2020.
[Online]. Available: https://www.phoronix.com/scan.php?page=news
item&px=Fedora-33-Swap-On-zRAM-Proposal

[66] C. Hoffman, “What Is Memory Compression in Windows 10?”
2017. [Online]. Available: https://www.howtogeek.com/319933/what-
is-memory-compression-in-windows-10/

[67] DennyL, “Enabling ZRAM in Chrome OS,” 2020. [Online].
Available: https://support.google.com/chromebook/thread/75256850/
enabeling-zram-doesn-t-work-in-crosh?hl=en&msgid=75453860

[68] N. Gupta, “zram: Compressed RAM-based block devices,” 2021.
[Online]. Available: https://www.kernel.org/doc/html/latest/admin-
guide/blockdev/zram.html

[69] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic Timers
and Where to Find Them: High-Resolution Microarchitectural Attacks
in JavaScript,” in FC, 2017.

[70] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the Line: Practical Cache Attacks on the MMU.” in NDSS, 2017.

[71] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in S&P, 2019.

[72] P. Vila, B. Köpf, and J. Morales, “Theory and Practice of Finding
Eviction Sets,” in S&P, 2019.

[73] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector,” in S&P,
2016.

[74] A. Agarwal, S. O’Connell, J. Kim, S. Yehezkel, D. Genkin, E. Ronen,
and Y. Yarom, “Spook.js: Attacking Chrome Strict Site Isolation via
Speculative Execution,” in S&P, 2022.

[75] WebDev, 2022. [Online]. Available: https://web.dev/coop-coep/
[76] T. Moon, H. Kim, and S. Hyun, “Mutexion: Mutually exclusive com-

pression system for mitigating compression side-channel attacks,” ACM
Transactions on the Web (TWEB), 2022.

[77] B. Paulsen, C. Sung, P. A. Peterson, and C. Wang, “Debreach: mitigating
compression side channels via static analysis and transformation,” in
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019.

[78] D. Karakostas, A. Kiayias, E. Sarafianou, and D. Zindros, “Ctx: Elimi-
nating breach with context hiding,” Black Hat EU, 2016.

[79] J. Agat, “Transforming out timing leaks,” 2000.
[80] H. Mantel and A. Starostin, “Transforming out timing leaks, more or

less,” 2015.
[81] C. Pereida Garcı́a, B. B. Brumley, and Y. Yarom, “Make Sure DSA

Signing Exponentiations Really Are Constant-Time,” in CCS, 2016.
[82] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, “Constantine:

Automatic Side-Channel Resistance Using Efficient Control and Data
Flow Linearization,” in CCS, 2021.

[83] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “Fact: A
dsl for timing-sensitive computation,” in PLDI, 2019.

[84] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi,
“Ghostrider: A hardware-software system for memory trace oblivious
computation,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2015.

[85] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in ISSTA, 2018.

[86] L. Soares and F. M. Q. Pereira, “Memory-safe elimination of side
channels,” in CGO, 2021.

[87] M. Yang and G. Gong, “Lempel-ziv compression with randomized
input-output for anti-compression side-channel attacks under https/tls,”
in International Symposium on Foundations and Practice of Security.
Springer, 2019.

[88] M. Zielinski, “Safedeflate: compression without leaking secrets,” Cryp-
tology ePrint Archive, Report 2016/958. 2016, Tech. Rep., 2016.

[89] S. Rostedt, “ftrace - Function Tracer,” 2017. [Online]. Available:
https://www.kernel.org/doc/Documentation/trace/ftrace.txt

APPENDIX A
COMPREZZOR-DISCOVERED TIMING DIFFERENCES

Table III shows the timing differences discovered by Comprez-
zor for different compression algorithms. We run Comprezzor
with 50 epochs and a population of 1000 samples per epoch.
We set the retention factor to 5 %, selecting the best 50 samples
in each epoch. We randomly mutate the selected samples to
generate 70 % of the children and add 25 % of completely
randomly generated layouts in the new generation.

APPENDIX B
TIMING DIFFERENCE FOR COMPRESSION

Table IV shows the timing differences when compressing in-
compressible, partially incompressible, and fully-compressible
memory. The execution time and, thus, latency depends on the
level of compressibility. For compressible memory, the timing
is lower, which may appear counter-intuitive, but it means
higher redundancy in the data and, thus, e.g., smaller Huffman
trees and fewer sequences. For incompressible memory, the
opposite case occurs, with more sequences and a larger tree,
consuming more computation time. Additionally, when the
compression ratio for a block is then too low, the compression
is discarded, and additional memcpy operations are performed
instead. All of this consumes computation time, leading to the
timing differences we see in Table IV. For the intermediate
case of partially incompressible data, both cases occur for
part of the blocks leading to an intermediate timing. However,
observing the compression time can be difficult, as no request
or operation latency observable by the attacker depends on the
compression time. Hence, we we focused on attacks exploiting
the decompression timing side channel.

APPENDIX C
KERNEL TRACE FOR ZRAM DECOMPRESSION

To highlight the root cause of the timing differences in ZRAM
accesses, we trace the kernel functions called on accesses
to ZRAM pages using the ftrace [89] utility. Listing 1
shows the trace of kernel functions called on an access to
an incompressible and compressible page in ZRAM. The
incompressible page contains random bytes, while the com-
pressible page contains 2048 bytes of the same value and 2048
random bytes, similar to the partially-compressible setting in
Section VI-E1. We only list the functions which are called
when the ZRAM page is swapped in to regular memory. The
main difference between the two cases (colored in red) is that
the functions performing decompression of the ZRAM page
are only called when a compressible page is swapped-in, while

151200

TABLE III: Timing differences between correct and incorrect
guesses found by Comprezzor and the corresponding runtime.

Algorithm Max difference for correct guess (ns) Runtime (h)
PGLZ 109233.25 2.09

zlib 71514.75 2.46
zstd 4239.25 1.73
LZ4 2530.50 1.64

TABLE IV: Different compression algorithms yield distin-
guishable timing differences when compressing content with
a different entropy. (n = 100000

Algorithm Fully Partially Incompressible (ns)Compressible (ns) Compressible (ns)

FastLZ 38 619.07 (±0.74%) 58 887.40 (±0.50%) 79 384.89 (±0.40%)
LZ4 44 748.02 (±0.15%) 47 731.08 (±0.16%) 47 316.56 (±0.16%)
LZO 5645.86 (±2.18%) 5915.28 (±2.78%) 7928.21 (±3.91%)

PGLZ 44 275.84 (±0.13%) 65 752.55 (±0.12%) -
zlib 38 479.53 (±0.22%) 80 284.72 (±0.23%) 76 973.82 (±0.20%)
zstd 3596.41 (±0.42%) 22 288.14 (±0.52%) 29 284.77 (±0.34%)

these functions are skipped for the page stored uncompressed.
As the operating system knows from the stored meta-data
whether the page is stored compressed or uncompressed and
can skip the corresponding functions for uncompressed pages.
Of these additional function calls, the main driver of the
timing difference is the __deflate_decompress function
in Listing 1 which consumes 12555 ns. This ties in with the
characterization study in Section VI-E1 which showed the
average timing difference between accesses to compressible
and incompressible pages to be close to 10000 ns for ZRAM
with deflate algorithm. These timings are for the deflate
implementation in the Linux kernel, a modified version of
zlib v1.1.3; hence these timings differ from the zlib
timings in Table I for the more recent zlib v1.2.11.

1 Incomp.(ns) Comp.(ns) Function
2 Incomp.(ns) Comp.(ns) Function
3 0 0 swap_readpage
4 62 61 page_swap_info
5 126 123 __frontswap_load
6 195 188 __page_file_index
7 254 248 bdev_read_page
8 326 310 blk_queue_enter
9 395 379 zram_rw_page

10 460 442 zram_bvec_rw.isra.0
11 527 505 generic_start_io_acct
12 590 575 update_io_ticks
13 661 634 part_inc_in_flight
14 729 755 __zram_bvec_read.constprop.
15 813 838 zs_map_object
16 967 1040 _raw_read_lock
17 - 1229 zcomp_stream_get
18 - 1306 zcomp_decompress
19 - 1373 crypto_decompress
20 - 1433 deflate_decompress
21 - 1499 __deflate_decompress
22 - 14053 zcomp_stream_put

Listing 1: Kernel function trace for ZRAM access to an
incompressible and compressible page.

APPENDIX D
LAYOUT DISCOVERED BY COMPREZZOR

Figure 10 shows the layout discovered by the Comprezzor
that amplifies the timing difference for decompression of
the correct and incorrect guesses in Zlib dictionary attack.
Note that for correct guesses, the entire guess string, i.e.,

cookie=SECRET, is compressed with the secret string.
And as discussed in Section V-B, the subsequent data is
incompressible and invokes only a single memcpy operation,
which faster than Huffman or LZ77 decoding. For wrong
guesses, only the prefix is compressed, introducing the timing
difference we exploit. Listing 2a and Listing 2b show the
debug trace from the Zlib code for decompression with the
correct and incorrect guesses to illustrate the root cause of the
timing differences. On a decompression, this block must now
undergo the Huffman decoding (and LZ77), which results in
several table lookups, memory accesses, and higher latency.

Correct guess

Incorrect guess

cookie=SECRET

ptr to cookie=SECRET x n
Incompressible data

cookie=SECRET

ptr to cookie= FOOBAR ptr to cookie=FOOBAR x n
Incompressible data

New Dynamic Huffmann Block Stored Block

Fig. 10: Incorrect guesses with the corner case discovered by
Comprezzor lead to a dynamic Huffman block creation for the
partially-compressible data that is slow to decompress.

1 length 12
2 distance 16484
3 literal 0x17
4 length 13
5 distance 14
6 literal 0xb3
7 length 13
8 distance 14
9 literal ’x’

10 length 13
11 distance 14
12 literal 0x05
13 length 13
14 distance 14
15 literal 0xa9
16 length 13
17 distance 14
18 literal 0x81
19 length 13
20 distance 14
21 literal ’[’
22 stored block (last)
23 stored length 16186
24 stored end
25 check matches trailer
26 end

(a) Trace for correct guess in
zlib. Here the entire guess string
is compressed, and the remain-
der is incompressible (decom-
pressed fast as a stored block).

1 length 6
2 distance 16484
3 literal ’F’
4 literal ’O’
5 literal ’O’
6 literal ’B’
7 literal ’A’
8 literal ’R’
9 literal 0x17

10 length 13
11 distance 14
12 literal 0xb3
13 length 13
14 distance 14
15 literal ’x’
16 length 13
17 distance 14
18 literal 0x05
19 dynamic codes block (last)
20 table sizes ok
21 code lengths ok
22 codes ok

(b) Trace for incorrect guess
in zlib. Here only part of
the guess string (cookie=) is
compressed, and the remain-
der cookie=FOOBAR is sepa-
rately compressed (decompres-
sion requires a slower code
block for Huffman tree decod-
ing).

Listing 2: Zlib traces for compression

APPENDIX E
BYTEWISE LEAKAGE

Figure 11 illustrates the bytewise leakage of the secret (SE-
CRET) for a PHP application using PHP-Memcached. Fig-
ure 12 shows the bytewise leakage of data stored in Post-
greSQL. The prefix value can be shifted bytewise, which
allows reusing the same memory layouts found by Comprez-
zor. Figure 13 shows the last two bytes leaked from a secret
(SECRET) in a ZRAM page. This is a continuation of Figure 9

161201

cookie=0
cookie=5

cookie=9
cookie=A

cookie=H
cookie=M

cookie=S
cookie=Z

1
1.02
1.04
1.06

·106
Ti

m
in

g
[n

s]

cookie=S0
cookie=S5

cookie=S9
cookie=SA

cookie=SE
cookie=SH

cookie=SM
cookie=SS

cookie=SZ
0.98

1
1.02
1.04
1.06

·106

Ti
m

in
g

[n
s]

cookie=SE0
cookie=SE5

cookie=SE9

cookie=SEC
cookie=SEH

cookie=SEM
cookie=SES

cookie=SEZ
1

1.05

1.1
·106

Ti
m

in
g

[n
s]

cookie=SEC0

cookie=SEC5

cookie=SEC9

cookie=SECA

cookie=SECH

cookie=SECM

cookie=SECR

cookie=SECRZ
1

1.05

·106

Ti
m

in
g

[n
s]

cookie=SECR0

cookie=SECR5

cookie=SECR9

cookie=SECRA

cookie=SECRE

cookie=SECRM

cookie=SECRS

cookie=SECRZ
0.95

1

1.05

·106

Ti
m

in
g

[n
s]

cookie=SECRE0

cookie=SECRE5

cookie=SECRE9

cookie=SECREA

cookie=SECREH

cookie=SECREM

cookie=SECRET

cookie=SECREZ

1

1.05

·106

Ti
m

in
g

[n
s]

Fig. 11: Bytewise leakage of the secret (S,E,C,R,E,T) from
PHP-Memcached. In each plot, the lowest timing (shown in
red) indicates the correct guess. The standard error is below
1 % for all guesses.

which showed the leakage of the first four bytes. All three
cases expose extremely high timing differences with an orders-
of-magnitude gap between the correct and wrong guesses. The
standard error is below 1 % for all guessess.

JAVASCRIPT MEMORY LAYOUT

Our allocation script cf. Listing 3 creates a memory layout
such that a 64-bit heap pointer pointing to the backing store
is stored into a regular JavaScript array (non typed arrays).

cookie=0
cookie=5

cookie=9
cookie=A

cookie=H
cookie=M

cookie=S
cookie=Z

1.2

1.25

·106

Ti
m

in
g

[n
s]

ookie=S0
ookie=S5

ookie=S9
ookie=SA

ookie=SE
ookie=SH

ookie=SM
ookie=SS

ookie=SZ
1.18
1.2

1.22
1.24
1.26

·106

Ti
m

in
g

[n
s]

okie=SE0
okie=SE5

okie=SE9
okie=SEC

okie=SEH
okie=SEM

okie=SES
okie=SEZ

1.2

1.25

·106

Ti
m

in
g

[n
s]

kie=SEC0
kie=SEC5

kie=SEC9
kie=SECA

kie=SECH
kie=SECM

kie=SECR
kie=SECRZ

1.2

1.25

1.3
·106

Ti
m

in
g

[n
s]

ie=SECR0
ie=SECR5

ie=SECR9
ie=SECRA

ie=SECRE
ie=SECRM

ie=SECRS
ie=SECRZ

1.2

1.25

·106

Ti
m

in
g

[n
s]

e=SECRE0
e=SECRE5

e=SECRE9
e=SECREA

e=SECREH
e=SECREM

e=SECRET
e=SECREZ

1.2

1.25

·106

Ti
m

in
g

[n
s]

Fig. 12: Bytewise leakage of the secret (S,E,C,R,E,T) from
PostgreSQL. The known prefix (cookie=) is shifted left by
1 character in each step, allowing the same memory layout
to be reused. In each plot, the highest timing (shown in red)
indicates the correct guess. The standard error is below 1 %
for all guesses.

This can be achieved by first inserting a TypedArray with the
full length of a page in the first slot of the list. To co-locate
attacker-controlled data, the script inserts 4096 64-bit numbers
into a regular JavaScript Array (colocate_data). This
array will then be inserted into the array containing the 64-bit
pointers (non typed arrays) and the garbage collection will be
triggered. As 64-bit values in JavaScript are represented using

171202

cookie=0
cookie=5

cookie=9
cookie=A

cookie=H
cookie=M

cookie=S
cookie=Z

0
0.5
1

1.5

·104
Ti

m
in

g
[n

s]

cookie=S0
cookie=S5

cookie=S9
cookie=SA

cookie=SE
cookie=SH

cookie=SM
cookie=SS

cookie=SZ
0

0.5
1

1.5

·104

Ti
m

in
g

[n
s]

cookie=SE0
cookie=SE5

cookie=SE8

cookie=SEC
cookie=SEH

cookie=SEM
cookie=SES

cookie=SEZ
0

0.5
1

1.5

·104

Ti
m

in
g

[n
s]

cookie=SE80

cookie=SE89

cookie=SE8A

cookie=SE8M

cookie=SE8Z

cookie=SEC0

cookie=SECA

cookie=SECR

cookie=SECRZ
0

0.5
1

1.5

·104

Ti
m

in
g

[n
s]

cookie=SECR0

cookie=SECR5

cookie=SECR9

cookie=SECRA

cookie=SECRE

cookie=SECRM

cookie=SECRS

cookie=SECRZ
0

0.5
1

1.5

·104

Ti
m

in
g

[n
s]

cookie=SECRE0

cookie=SECRE5

cookie=SECRE9

cookie=SECREA

cookie=SECREH

cookie=SECREM

cookie=SECRET

cookie=SECREZ

0.4
0.6
0.8
1

1.2 ·104

Ti
m

in
g

[n
s]

Fig. 13: Bytewise leakage of the secret (S,E,C,R,E,T) from
ZRAM. Times for guesses (0-9, A-Z) for each of the bytes are
shown. The highest value in each plot (shown in red) indicates
the correct secret value for the byte. The standard error is
below 1 % for all guesses.

the IEE754 floating-point representation, we use a conversion
function itof to encode a 64-bit hexadecimal pointer to
IEE 754 floating-point number. This function takes the BigInt
and stores it into an Float64Array. By dumping the V8
memory we found that a number of 203 elements in the list
to a memory layout, where the attacker controls most of the
page and the only data that varies are the two heap pointers
at offset 0. Listing 4 illustrates the generated memory layout

0x0 0xc0 0x38 0x720 0x7c 07e0

0

100

200

Timing [ns]

A
m

ou
nt

Fig. 14: Pointer offset distribution in Chrome.

after running the script from Listing 3. The first line (00) shows
the 64-bit heap pointers aligned to page offset 0. We observe
that the data between offset (10:) and offset (7c:) is constant
and contains some compressed pointers to JavaScript objects.
The data from offset 7c to 0xfff is fully attacker-controlled
indicated in Listing 4 by the value (0xcafebabe). Using a fixed
suffix, the attacker can use Decomp+Time to leak the correct
byte values of the pointer. However, we do not observe that the
heap pointer is always placed at page offset 0. We repeat our
experiment 500 times to see the offset distribution. Moreover,
we observe that if only the attacker-controlled data is modified,
the garbage collection does not reorganize the heap. Figure 14
shows the distributions in 47 % of the cases the pointer is at
offset 0. In 37 % of the cases the pointer is at offset 0xc0.
The remaining 16 % of the positions the pointer was at 4 other
offsets.

1 const NUM_VALS = 203;
2 var non_typed_arrays = new Array(NUM_VALS);
3 non_typed_arrays.fill(Object);
4 // inserts target TypedArray including the 64-bit

pointer
5 non_typed_arrays[0] = allocTypedArray(4096,0x31);
6 for(var k = 1; k < NUM_VALS; k++) {
7 let colocate_data = [];
8 for (let i = 0; i < 4096; i++) {
9 // itof converts a BigInt to IEE 754 floating-

point representation
10 colocate_data[i] = itof(0xcafebabecafebaben);
11 }
12 non_typed_arrays[k] = colocate_data;
13 triggerGC(); // trigger garbage collection
14 }

Listing 3: Co-locate V8 heap pointers with attacker-controlled
data.

1 00: 00 00 01 01 58 3c 00 00 30 72 9c 00 58 3c 00 00
2 10: 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
3 20: 00 00 00 00 05 22 04 08 10 00 00 00 b5 23 04 08
4 30: b5 23 04 08 b5 23 04 08 b5 23 04 08 b5 23 04 08
5 40: b5 23 04 08 b5 23 04 08 b5 23 04 08 05 22 04 08
6 50: 10 00 00 00 c1 46 24 08 5d 44 24 08 c1 e7 24 08
7 60: dd 30 25 08 71 c7 24 08 25 f3 24 08 59 d7 24 08
8 70: b1 2a 25 08 99 2a 04 08 a2 22 00 00 ca fe ba be
9 80: ca fe ba be ca fe ba be ca fe ba be ca fe ba be

10 *
11 1000
12 Legend: 00-0f:|64-bit pointers at offset|
13 10-7b:|Static data|, 7c-fff:|Attacker-controlled

data|

Listing 4: Memory dump of the target page from Chrome after
allocating non-typed and typed arrays and adding them to a
list. The attacker can co-locate two V8 64-bit heap pointers
and attacker-controlled data.

181203

