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Abstract—Function Secret Sharing (FSS; Eurocrypt 2015) al-
lows a dealer to share a function f with two or more evaluators.
Given secret shares of a function f , the evaluators can locally
compute secret shares of f(x) for any input x, without learning
information about f in the process.

In this paper, we initiate the study of access control for
FSS. Given the shares of f , the evaluators can ensure that
the dealer is authorized to share the provided function. For
a function family F and an access control list defined over
the family, the evaluators receiving the shares of f ∈ F can
efficiently check that the dealer knows the access key for f .

This model enables new applications of FSS, such as: (1)
anonymous authentication in a multi-party setting, (2) access
control in private databases, and (3) authentication and spam
prevention in anonymous communication systems.

Our definitions and constructions abstract and improve
the concrete efficiency of several recent systems that imple-
ment ad-hoc mechanisms for access control over FSS. The
main building block behind our efficiency improvement is
a discrete-logarithm zero-knowledge proof-of-knowledge over
secret-shared elements, which may be of independent interest.

We evaluate our constructions and show a 50–70× reduc-
tion in computational overhead compared to existing access
control techniques used in anonymous communication. In other
applications, such as private databases, the processing cost of
introducing access control is only 1.5–3×, when amortized over
databases with 500,000 or more items.

1. Introduction

Function secret sharing (FSS) [6, 8] is at the core
of many privacy-preserving systems, including private
databases [14, 15, 40], private telemetry [5], privacy-
preserving machine learning [30, 33], distributed oblivious
RAM (ORAM) [18], anonymous communication [13, 19,
31, 39], and efficient multi-party computation [9]. Since
these applications involve the processing of private user data,
often in settings where users may be behaving maliciously,
access control becomes an important problem [19, 31, 39].
For example, in applications of FSS that involve privately
reading from—or writing to—a database [5, 18, 19, 31, 39],
access control is necessary to prevent malicious users from
accessing or overwriting data belonging to other users.

FSS lets any user (called the dealer) distribute succinct
secret shares of a function to a set of function evaluators.
These evaluators can efficiently—and non-interactively—
evaluate the function on a common input x to obtain secret

shares of f(x). FSS guarantees that the function remains
private to strict subsets of the evaluators, which means that
the evaluators do not learn anything about f (beyond the
function family that f belongs to).

In this paper, we investigate the problem of privately
enforcing access control in the context of FSS. We identify
several existing applications of FSS that construct different
ad-hoc solutions for access control [19, 31, 39], highlighting
the utility of formally studying this paradigm.

For example, FSS is often used for private information
retrieval (PIR) [6, 11, 22, 40]. In PIR, a dealer secret shares
a selection function fi with the evaluators. The evaluators
use the shares to evaluate fi on a database DB and send back
shares [fi(DB)], which encodes the ith item in the database.
The dealer then recovers the ith item by combining the
returned shares. Importantly, the evaluators who are given
shares of fi learn nothing about fi (beyond the fact that fi
is from the “selection function” family) and therefore do not
learn which item the dealer retrieved from DB.

In the PIR setting, access control could require that
only users with an access key for the ith item in the
database can successfully share fi with the evaluators. More
specifically, in applications involving e-commerce [25, 26],
web queries [40], and media consumption [24], where users
are only entitled to retrieve some (but not all) items in the
database, such access control is imperative. Likewise, in
private information writing applications, such as anonymous
communication systems [19, 31, 39] and private teleme-
try [5, 12], access control is crucial to prevent attacks by
malicious users sending invalid writes (e.g., by overwriting
mailboxes of honest users [19, 31, 39]). Only users with a
valid access key for the ith database row should be able to
write to it.

Defining the problem of private access control. We model
access control as a one-to-one mapping between functions
and keys. Each function (in a family of functions) is mapped
to a verification key and an access key. The evaluators hold
the verification keys and a dealer has one or more access
keys (we discuss key distribution in Section 3.4). A dealer
secret shares the function fi through FSS and, using the
corresponding access key, provides a proof π proving access
rights to fi under some subset of verification keys. The
evaluators (whom we also call the verifiers) can check the
proof π using the verification keys (without learning which
keys were used) and decide whether or not the dealer is
entitled to an evaluation of the function fi. For example,
in the PIR setting, knowledge of the access key for the
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selection function fi, allows a user to distribute secret shares
of fi to the evaluators along with a proof π. The evaluators
check π before evaluating the function to ensure that the
user is entitled to retrieve the ith item (without learning i).

Challenges. Privately enforcing access control over a secret-
shared function is challenging. As mentioned above, the
evaluators are oblivious to the function they are evaluating,
which bars obvious approaches to access control. That is,
access control must maintain the privacy of the function (see
Section 1.1). Additionally, FSS is concerned with efficiency
(computation and communication overheads for the dealer
and the evaluators). As such, the access control mechanism
must preserve the efficiency guarantees of the FSS scheme.
Finally, it is important to consider malicious evaluators that
may try to exploit the access control mechanism to violate
privacy (this is a problem when designing any form of verifi-
cation over FSS [5, 8, 16]). Preventing malicious evaluators
from violating privacy, without relying on strong assump-
tions or inefficient solutions, can be difficult [4, 8, 16].

Goals. We identify efficiency and malicious security as the
primary goals when modeling and designing access control
for FSS. More specifically—and following the requirements
of FSS—we will require communication efficiency and min-
imal interaction between verifiers. Our definition (described
in Section 3) captures these efficiency requirements by
demanding (1) succinct proofs, (2) no interaction with the
prover, and (3) at most one message exchanged between
verifiers to check access rights (note that this is in fact
optimal as it is necessary to exchange one message to verify
any proof over secret-shares [4]). Importantly, by minimiz-
ing interaction between verifiers, we also obtain security
against any subset of malicious verifiers. More concretely,
(3) ensures that any construction satisfying our model never
provides “feedback” to any subset of malicious verifiers
which, in turn, ensures that malicious verifiers obtain no
information through the access control mechanism.

1.1. Background on FSS

FSS [6] takes a different approach to “traditional” secret
sharing of data. With traditional secret sharing, a dealer
shares a value v with a set of s parties such that (1)
knowledge of up to some threshold number of shares does
not reveal any information on v and (2) shares can be
efficiently recombined to recover v. FSS applies the same
idea to functions where the dealer instead secret shares a
description of a function f : {0, 1}n → {0, 1}∗ with a set
of s evaluators. Denote the shares of f as [f ]. The evaluators
can then locally compute shares [y] := [f(x)] on any input
x. Informally, FSS must satisfy three properties:

• Correctness. The jth evaluator can evaluate their secret
share of f on an input x to obtain a secret share of f(x).

• Privacy. A secret share [f ]i reveals no information on f .

• Efficiency. The secret shares [f ] are succinct (sublinear
in the size of the truth table for f ).

Boyle et al. [6, 8] provide constructions for several function
families. Specifically, they describe efficient FSS construc-
tions for NC0 functions, constant conjunction search queries,
and interval functions. Their constructions are based only on
the assumption that one-way functions exist [6]. The main
primitive behind their results is an FSS family for distributed
point functions (DPFs) [6, 8, 22]. Subsequent work of Boyle
et al. [8] extends DPFs to FSS for decision trees and
products of distinct secret-shared functions. FSS schemes
from stronger cryptographic assumptions yield constructions
for all efficient function families [6, 7, 17].

1.2. Prior work

Express [19], Spectrum [31], and Sabre [39] use FSS
for anonymous communication. In these systems, users pri-
vately write messages into mailboxes using a DPF.

To prevent malicious users from corrupting mailboxes
belonging to honest users, all three systems require a form
of access control applied over DPFs, which they enforce
through a lightweight multi-party computation protocol.

The access control mechanism in Express associates
each mailbox with a secret “address.” The evaluators keep
the addresses secret. Only a dealer with knowledge of a
mailbox address can successfully write to that mailbox.

Unfortunately, the mechanism used in Express has sev-
eral drawbacks: (1) it does not generalize to larger families
of DPF and currently remains specific to the two-party
DPF construction for point functions [6, 8], (2) the use of
“addresses” for access control requires a large output range
and leads to a 5× computational overhead for the evaluators
(and, more importantly, prevents optimization techniques
for DPFs [8]), and (3) the multi-party computation requires
extra communication between evaluators and the dealer. In
contrast, our model and constructions (Sections 4 and 5) re-
quire only one message exchanged between verifiers and no
interaction with the dealer. Additionally, our constructions
make minimal assumptions on the underlying DPF scheme,
making them compatible with DPF optimizations [8, 16].

Sabre extends Express by developing a different access
control mechanism using zero-knowledge proofs over secret
shares. Their techniques reduce the computational overhead
on the evaluators (especially in the context of anonymous
communication where many users are assumed to be mali-
cious) at the cost of significantly increasing communication
between the dealer and the evaluators. Like Express, Sabre
is designed around two-party DPF constructions [6, 8] and
requires a round of interaction between the evaluators to
enforce access control. The access control mechanism of
Sabre is actually a special case of a generic approach to ac-
cess control realized via zero-knowledge proofs over secret-
shares, which we describe in Section 7. However, their
techniques are tailored to the anonymous communication
setting where (1) a large number of users are assumed to be
malicious and (2) where access control is verified in batches.

Spectrum provides yet a different technique for access
control via secret-shared hashing. The idea behind Spectrum
is to have the evaluators “hash” the value being written to
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each mailbox using a unique hash key associated with the
mailbox. The evaluators only process writes from a dealer
that can prove, in zero-knowledge, that it knows the resulting
hash value (which, in turn, proves that the dealer knows the
hash key of the mailbox). The technique is communication
efficient and only requires one message exchanged between
verifiers to enforce access control (which aligns with our
modelling of access control).

In Section 4, we start by abstracting the access control
construction of Spectrum. We then generalize it further and
develop new techniques to realize more efficient private
access control schemes. In Section 8, we show that our
improved constructions reduce the computational overhead
by 50–70× in both Express and Spectrum and have 1,000×
smaller proof sizes compared to Sabre.

1.3. Contributions

We make the following five contributions:

• A model for Private Access Control Lists (PACLs) for
FSS. Our definitions capture the functionality require-
ments of several existing applications of access control for
FSS [19, 31, 39] and demand a stringent set of efficiency
requirements that align closely with the goals of FSS.

• PACL constructions for black-box DPFs and lightweight
FSS classes derived from DPFs. Our constructions are
secure against malicious provers, guarantee privacy in
the face of malicious verifiers, have a constant-factor
overhead (relative to sharing and evaluating the function),
and can be used as drop-in replacements in existing
applications for significant efficiency improvements.

• For the special case of verifiable FSS [16], we construct an
optimized public-key PACL for black-box verifiable DPFs
(which gives rise to PACLs for a large class of verifiable
FSS). For this construction, we develop a zero-knowledge
proof of discrete-logarithm knowledge over secret-shared
group elements. Our construction has 2,400× smaller
proof sizes compared to a naı̈ve approach and is possibly
of independent interest.

• PACLs for FSS for functions in P/poly (not just classes
of FSS derived from DPFs). Our generic construction
is based on non-interactive zero-knowledge proofs over
secret shares, instantiated in the random oracle model.

• An open-source implementation which we evaluate on
several canonical applications, such as anonymous user
authentication in a distributed setting, access control in
private databases, and anonymous communication.

2. Overview
Here, we define non-private access control for func-

tions. We define private access control for FSS in Section 3.

2.1. Access Control Lists (ACLs)

We define ACLs from a cryptographic lens in order
to facilitate the definitions of private ACLs, which we

introduce in Section 3. Specifically, we define ACLs as a set
of access and verification keys associated with a collection
of objects (in our case, functions).

Definition 2.1 (Access Control Lists). Let λ ∈ N be a secu-
rity parameter, F : {0, 1}n → {0, 1}∗ be a function family,
and fi ∈ F . An ACL scheme consists of an access control
list Λλ (parameterized by λ) containing verification keys and
an efficiently computable predicate CheckAccess(Λλ, fi, sk)
that outputs yes if and only if the access key sk satisfies a
relation R with respect to the verification key associated
with fi in Λλ. For notational convenience, we let N := |F|
and omit the λ subscript when it is clear from context.

We note that Definition 2.1 is general and not specific
to FSS (indeed, Definition 2.1 does not even capture the
notion of secret shares or distributed verifiers). We will
define these notions in Section 3 when formalizing private
ACLs for FSS. It is also natural to equip Definition 2.1 with
completeness and soundness properties (with respect to an
adversary). These are likewise deferred to the formalization
of private ACLs in Definitions 3.1 and 3.2.

We now describe instantiations of CheckAccess from
Definition 2.1. We will port these to private ACLs for FSS
in Section 3. We observe that, in most cases, the goal
of CheckAccess is to check if the provided access key
matches with some unique verification key associated with
the function fi. We call this the match predicate. However,
it is also possible that a function is associated with multiple
different verification keys. Such a predicate is especially
useful for maintaining efficient access key revocation in a
setting with many users. A key can be removed for a given
function without impacting the validity of the remaining
keys. In this scenario, we instantiate CheckAccess as an
inclusion predicate over a set of verification keys associated
with the function.

Match predicate. The match predicate consists of
an efficiently computable relation R(·, ·), N verification
(vk1, . . . , vkN ) and access (sk1, . . . , skN ) keys, such that
R(vki, skj) = 1 if and only if i = j and each tuple is
uniquely associated with a canonical instance of fi ∈ F .
CheckAccess is defined as:

CheckAccess(Λλ, fi, sk)

parse Λλ = (vk1, . . . , vkN )

if R(vki, sk) = 1 return yes, else return no

That is, CheckAccess outputs yes if and only if the provided
sk is related to the verification key associated with fi.

Inclusion predicate. A generalization of the match predi-
cate satisfying Definition 2.1 is the inclusion predicate that
associates each function with ℓ ≥ 1 verification keys,

Λλ :=

 (vk1,1 . . . vk1,ℓ)
...

(vkN,1 . . . vkN,ℓ)

 .

Any key in the row (vki,1 . . . vki,ℓ) can be used to satisfy
the relation for fi. CheckAccess is defined as:
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Figure 1: Overview of FSS and our access control model. Left: In FSS without access control, a dealer distributes shares of a function
fi with the evaluators. 1 A setting with access control where the evaluators have Λ and 2 the dealer has an access key pk2 for f2. 3

the dealer (acting as the prover) with knowledge of the access key for f2 distributes secret shares of the function f2 and proof shares π
to the evaluators. 4 The evaluators collectively check access rights to f2 using the proof shares [π] and the access control list Λ.

CheckAccess(Λλ, fi, sk)

parse Λλ =
(
(vk1,1, . . . , vk1,ℓ), . . . , (vkN,1, . . . , vkN,ℓ)

)
if ∃vki,j such that R(vki,j , sk) = 1 return yes,

else return no

That is, CheckAccess outputs yes if and only if sk matches
with any of the verification keys associated with fi.

Boolean predicate. A generalization of the inclusion pred-
icate satisfying Definition 2.1 is a monotone boolean pred-
icate (ANDs and ORs) over a list of CheckAccess outputs.
Here, Λλ consists of ℓ sublists Λ(1)

λ , . . . ,Λ
(ℓ)
λ and a predicate

P defined over the bits bi ← CheckAccessi(Λ
(i)
λ , fi, sk) for

i ∈ {1, . . . , ℓ}. CheckAccess(Λλ, fi, sk) outputs yes if and
only if P (sk, b1, . . . , bℓ) = 1.

2.2. Notation and cryptographic preliminaries

Notation. We use x ← Alg to denote assignment from a
possibly randomized algorithm Alg and x←R D to denote
a random sample from a distribution D. We denote linear
secret shares of x (resp. function secret shares of f ) as [x]
(resp. [f ]) and [x]i (resp. [f ]i) as the ith secret share in the
set of shares encoding x (resp. f ). We say an algorithm is
efficient if it runs in probabilistic polynomial time.

Linear Secret Sharing. A linear secret-sharing (LSS)
scheme [36] consists of two (possibly randomized) algo-
rithms Share(F,t,s) and Recover. Share generates s shares of
a secret value in the field F such that (1) any subset of t
or more shares can be combined using the linear function
Recover to reveal the encoded value in the field F, (2) no
subset of fewer than t shares provides any information on
the secret, and (3) shares can be added together to obtain a
new share encoding the sum of the secrets.

Remark 1. A consequence of the linearity of Recover is
that it can be evaluated “in the exponent” of a group. That
is, given g[v]1 , . . . , g[v]t , it is possible to efficiently compute
gv := gRecover([v]1,...,[v]t). For simplicity of notation, we
define ExpRecover: Gt → G to be the efficiently computable
function which takes as input (g[v]1 , . . . , g[v]t) and outputs
gv with v := Recover([v]1, . . . , [v]t).

Discrete logarithm problem and assumption. Let λ ∈ N
be a security parameter. For a cyclic group G of prime order
p = p(λ) with generator g, the Discrete Logarithm (DL)
assumption states that no efficient algorithm A can find x ∈
Zp satisfying y = gx for a uniformly random y ∈ G [28].

Function Secret Sharing. FSS is a generalization of LSS;
rather than secret-sharing a value, FSS captures the notion
of secret sharing functions.

Definition 2.2 (FSS [6]). Let 2 ≤ t ≤ s be integers and
F : {0, 1}n → {0, 1}∗ be a family of functions and let
N = |F|. A (t, s)-FSS scheme for F consists of efficiently
computable (possibly randomized) algorithms Gen and Eval
with the following syntax:

• Gen(1λ, f)→ (κ1, . . . , κs). Takes as input a security pa-
rameter 1λ and function f ∈ F . Outputs s evaluation keys
κ1, . . . , κs.

• Eval(κi, x)→ [y]i. Takes as input an evaluation key κi

and x ∈ {0, 1}n. Outputs secret share [y]i.

The functionality must satisfy the following properties:

• Correctness. A (t, s)-FSS scheme is correct if for all
subsets I ⊆ {1, . . . , s} where |I| ≥ t, there exists an
efficient output decoder Decode such that for all f ∈ F :

Pr

[
(κ1, . . . , κs)← Gen(1λ, f) :
Decode({[y]i ← Eval(κi, x) | i ∈ I}) = f(x)

]
= 1.

• Privacy. For all I ⊂ {1, . . . , s} subset of indices such
that |I| < t, let DI be the distribution over {κi | i ∈ I}
where κi is sampled according to Gen(1λ, f). A (t, s)-FSS
scheme (Gen,Eval) is private if there exists an efficient
simulator S such that DI ≈c S(1λ, I).

• Efficiency. A (t, s)-FSS scheme is efficient if (1) each
key κi is at most O(λN ϵ) in size, for any ϵ < 1 (possibly
dependent on n) and (2) Decode runs in time O(λs).

Following Boyle et al. [6], we assume Decode is a linear
function of the inputs and therefore let Decode := Recover.
As such, we also write [f ]i to denote the ith FSS key κi and
[f(x)]i to denote the ith share of the evaluation Eval(κi, x).
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3. Private Access Control Lists

In this section, we formalize the notion of private ACLs
applied to FSS (Definition 2.2). A private ACL (PACL) is
instantiated between a prover and a set of s verifiers. The
prover holds an access key sk and the function fi ∈ F . The
verifiers hold secret-shares [fi] and have the access control
list Λ (see Definition 2.1) for the function family F . The
verifiers determine whether or not CheckAccess outputs yes,
without learning fi. See Figure 1 for an overview.

Efficiency constraints. As highlighted in Section 1, a PACL
scheme is efficient if it has a small communication overhead
for the prover (relative to sharing f ) and at most one
message exchanged between verifiers. By requiring that
only one, constant-sized message is exchanged between
verifiers, we achieve optimal communication (up to con-
stant factors) and ensure function privacy against malicious
verifiers deviating from protocol. (Our definition will also
implicitly eliminate all solutions that involve the prover in
the verification process.)

3.1. Defining PACLs

A PACL scheme consists of four algorithms: KeyGen,
Prove, Audit, and Verify, parameterized by a function family
F , and integers 2 ≤ t ≤ s. Prove is used by the prover
to generate an access control proof for a function fi. The
other algorithms are used by the verifiers to enforce ac-
cess control. The Audit and Verify algorithms, combined,
instantiate CheckAccess for the family of functions in the
distributed setting. Audit and Verify only reveal the output
of CheckAccess (yes or no). without revealing any other
information to the verifiers. We leave public parameters as
an implicit input to all algorithms.

Definition 3.1 (PACL: Syntax, Completeness, & Efficiency).
Let λ ∈ N be a security parameter, integer N := 2n,
and F :

{
fi : {0, 1}n → {0, 1}∗ | 1 ≤ i ≤ N

}
be a family

of functions. Fix integers 2 ≤ t ≤ s and let (Gen,Eval)
instantiate a (t, s)-FSS scheme for F . A (t, s)-PACL scheme
consists of efficient algorithms KeyGen, Prove, Audit, and
Verify defined as follows:

• KeyGen(1λ, f) → (vk, sk). Takes as input a security
parameter 1λ and a function f ∈ F . Outputs a new pair
of verification and access keys (vk, sk).

• Prove(f, sk)→ ([π]1, . . . , [π]s). Takes as input a function
f ∈ F and access key sk. Outputs a vector of s proof
secret shares ([π]1, . . . , [π]s).

• Audit(Λ, [f ]i, [π]i) → τi. Takes as input access control
list Λ = (vk1, . . . , vkN ), function secret share [f ]i of f
sampled according to Gen, and proof share [π]i. Outputs
audit token τi.

• Verify(T := {τi | i ∈ I}) → yes/no. Takes as input a
set of t or more audit tokens indexed by the set I ⊆
{1, . . . , s}. Outputs yes or no.

The above functionality must satisfy:

• Completeness. Let CheckAccess be as defined in Def-
inition 2.1. A (t, s)-PACL scheme with secret shares
([f ]1, . . . , [f ]s) of f ∈ F sampled according to
Gen(1λ, f) is complete if for all security parameters λ,
for all subsets I ⊆ {1, . . . , s} with |I| ≥ t, and for all
Λ := (vk1, . . . , vkN ) where ∀i, vki is sampled according
to KeyGen:

Pr

 ([π]1, . . . , [π]s)← Prove(f, sk);
{τi ← Audit(Λ, [f ]i, [π]i) | i ∈ I} :
Verify({τi | i ∈ I}) = CheckAccess(Λ, f, sk)

 = 1,

where the probability is taken over the randomness of
KeyGen and Prove.

• Efficiency. The size of each proof share [π]i is most
O(λN ϵ) for any ϵ < 1 (possibly dependent on n). The
size of each audit token τi is O(λ).

Remark 2. We will primarily be interested in PACLs where
ϵ, as defined in the efficiency property of Definition 3.1
(PACL), matches the ϵ of Definition 2.2 (FSS). This trans-
lates to a constant overhead in communication over sharing
f itself via FSS (i.e., without any access control).

Definition 3.2 (PACL, Soundness & Privacy). A PACL
scheme (as defined in Definition 3.1) must satisfy the sound-
ness and privacy properties, which are defined as follows.

• Soundness. There exists a negligible function negl and
security parameter λ ∈ N such that for all efficient
algorithms A and subsets I ⊆ {1, . . . , s} where |I| ≥ t,

Pr[PKSOUNDNESSPACL,A,I(λ) = yes] ≤ negl(λ),

where PKSOUNDNESSPACL,A,I(λ) is defined in Figure 2.

Game PKSOUNDNESSPACL,A,I(λ)

for i ∈ {1, . . . , N} :
(vki, ski)← KeyGen(1λ, fi)

Λ := (vk1, . . . , vkN ), T = {}
([fγ ], [πγ ])← AGETKEY(1λ,Λ)

fγ ← Recover([fγ ])

for i ∈ I :

τi ← Audit(Λ, [fγ ]i, [πγ ]i)

return Verify({τi | i ∈ I}) = yes

and fγ ∈ F and γ ̸∈ T

Oracle GETKEY(j)

T := T ∪ {j}
return skj

Figure 2: PACL soundness game.

In words, no efficient algorithm A can forge a proof
π that verifies with non-negligible probability without
knowledge of an access key for fγ .

• Privacy. For all subsets I ⊂ {1, . . . , s} such that |I| < t,
define J := {1, . . . , s} \ I and DI,J to be the distribution
over {([π]i, τ∗i ) | i ∈ I}∪ {τj | j ∈ J} where each [π]i is
sampled according to Prove(f, sk), each τ∗i is sampled
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arbitrarily, and τj ← Audit(Λ, [f ]j , [π]j) for all j ∈ J . A
(t, s)-PACL is private if there exists an efficient simulator
S such that: DI,J ≈c S(1λ, I, {τ∗i | i ∈ I}). That is, the
distribution of proof shares and audit shares reveal nothing
about fi or the access key sk to a subset of at most t− 1
computationally bounded (possibly malicious) verifiers.

3.2. Symmetric-key PACL

For some applications [19, 39], it is useful to relax
the definition of soundness of Definition 3.2 and let the
access control list Λ consist of the secret keys rather than
public keys (see prior approaches in Section 1.2). In this
regime, the soundness definition must exclude Λ from the
inputs to the adversary A. In practical terms, symmetric-
key PACLs do not protect against snapshot attacks where
an adversary might momentarily compromise a verifier and
learn Λ (allowing it to subvert the access control at a
later point in time) [21]. We provide a formal definition
in Appendix A.

3.3. Security against malicious verifiers

Privacy. Definition 3.1 guarantees privacy against any sub-
set of fewer than t malicious verifiers. Only one message
(the audit token) is exchanged by the verifiers to check
the proof. Thus, the audit token of each honest verifier is
guaranteed to be computed independently of audit tokens
output by malicious verifiers. As a consequence of this,
the simulator S—as defined in Definition 3.2—can simply
ignore the audit tokens output by malicious verifiers (i.e.,
malicious verifiers have no influence over the output of the
honest verifiers). This simplifies the analysis required in our
security proofs (Section 4.4).

Soundness. In contrast, note that the soundness property of
PACLs is only guaranteed if all verifiers follow the protocol.
This is a natural consequence of the fact that FSS itself only
guarantees integrity of the output if all evaluators adhere
to the protocol (any malicious evaluator can incorrectly
compute [fi(x)] to corrupt the final output). As such, access
control is only well-defined when verifiers have a vetted
interest in ensuring correctness of the function evaluation.

3.4. Key distribution

Key distribution is a challenging problem in many real-
world systems. Systems using FSS and PACLs must handle
distributing the verification and access keys to the users
(dealers) and function evaluators (verifiers). This can be
done through a variety of techniques. For example, a trusted
setup can take place to generate and distribute the keys.
Alternatively, anonymous communication channels can be
used to register with the evaluators by providing a veri-
fication key for a particular function. Ultimately, the key
distribution mechanism itself is orthogonal to the goals of
PACLs as it depends significantly on the deployment setting
(e.g., see Express [19] and Spectrum [31]).

4. PACLs for Distributed Point Functions

In this section, we describe our PACL constructions
for the class of distributed point functions (DPFs). DPFs
are the main primitive behind more complex FSS classes
constructible from minimal assumptions [6, 8]. By focusing
on DPFs, our PACL constructions become applicable to
larger classes of FSS, which we explain further in Section 6.

Distributed Point Functions (DPFs). A point function Pi

is a function that evaluates to 1 on input i and evaluates to
0 on all other inputs j ̸= i. A distributed point function is
an instance of FSS for the family of point functions. More
generally, DPFs can be defined to output any value m at
index i [22]. We focus on m = 1 for simplicity and note
that our constructions generalize to arbitrary m.

4.1. PACLs for DPFs

Parameters. Let G be a group of order p = p(λ) with
generator g in which the discrete logarithm problem is
assumed to be computationally intractable. We assume that
the family of (distributed) point functions has range Zp.
In the special case of two-party DPF constructions, which
output in a binary field [6, 8], our constructions can be
adapted by simply “interpreting” the binary secret share as
an element of Zp, resulting in subtractive secret shares of
either −1 or 1 at the special index, which the prover knows.

Overview. In Section 4.1.1, we construct a DPF-PACL for
the match predicate of Section 2.1. Our construction can be
seen as a generalization of the technique used by Newman
et al. [31]. In Section 4.1.2, we extend this technique to a
DPF-PACL for the inclusion predicate of Section 2.1.

4.1.1. DPF-PACL for match predicate. In Algorithm 1, we
present the construction for a DPF-PACL with CheckAccess
instantiated for the match predicate described in Section 2.1.
Loosely speaking, the idea behind the construction is to use
the DPF to locally select shares of the ith verification key
in Λ. Two facts make this possible: (1) all the verifiers have
Λ = (gα1 , . . . , gαN ) and (2) the FSS key κi encoding a
DPF can be used to privately retrieve the kth entry in any
vector by first evaluating the DPF [yj ]i ← DPF.Eval(κi, j)
and then computing the inner-product “in the exponent” as:
g[αk] := g⟨(α1,...,αN ),([y1]i,...,[yN ]i)⟩. This allows the verifiers
to locally obtain a (multiplicative) secret share g[αk]i . To
verify knowledge of αk, the prover distributes to the verifiers
additive secret shares of π := −αk = skk (described in
Prove). Each verifier computes τi := (g[αk]i)g[π]i using
Audit and reveals τi to all other verifiers. All verifiers
proceed to check that τ = g0 (described in Verify).

Theorem 1. There exists a DPF-PACL for the FSS family
DPF : {0, 1}n → Zp with proof size O(λ) and audit
size O(λ), where CheckAccess is instantiated as the match
predicate of Section 2.1.
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Algorithm 1: DPF-PACL FOR MATCH PREDICATES

Public parameters: integers 2 ≤ t ≤ s, function family F =
{fi : {0, 1}n → Zp | 1 ≤ i ≤ N}, and group G = (g, p).

• KeyGen(1λ, fi):
1: αi ←R Zp

2: vki := gαi , ski := −αi

3: return (vki, ski)

• Prove(f, sk):
1: ([π]1, . . . , [π]s)← Share(Zp,t,s)(sk)

2: return ([π]1, . . . , [π]s)

• Audit(Λ, [f ]i, [π]i):
1: parse Λ = (gα1 , . . . , gαN ) and [f ]i = κi

2: [yj ]i ← DPF.Eval(κ, j), ∀j ∈ {1, . . . , N}
3: A :=

∏N
j=1 (g

αj )[yj ]i // Inner product in G.

4: τi := A · g[π]i

5: return τi

• Verify(T ):
1: parse T := {τ1, . . . , τt}.
2: C ← ExpRecover(τ1, . . . , τt) // See Remark 1.

3: return C
?
= 1G

4.1.2. DPF-PACL for inclusion predicates. We now de-
scribe how to instantiate a DPF-PACL with an inclusion
predicate (Section 2.1). Each function is associated with ℓ
access keys. As such, Λ consists of N verification keys,
where each verification key consists of ℓ subkeys. For each
vki ∈ Λ, any of the ℓ subkeys can be used to prove access
rights for the function fi.

Theorem 2. Let sℓ be the size of a DPF key for a point
function with domain {1, . . . , ℓ}. There exists a DPF-PACL
for the FSS family DPF : {0, 1}n → Zp with proof size
O(λ + sℓ) and audit size O(λ), where CheckAccess is
instantiated as the inclusion predicate of Section 2.1.

Algorithm 2 presents our construction of DPF-PACL
for inclusion predicates. At a high level, the verifiers “se-
lect” the ith row in the matrix Λ using fi (similarly to
Algorithm 1) by computing the inner product between the
evaluation of fi on its domain and the rows of the access
control matrix. However, the challenge is then to have the
verifiers obliviously select the jth column in the selected
row. Because the resulting row is secret-shared, the ver-
ifiers cannot recursively select the column using another
DPF, as it would require the vector to be known by all
verifiers. Revealing the column does not work either as it
would violate the privacy requirement of Definition 3.2.
One option is to use zero-knowledge proofs over secret
shares [4, 12]. However, we opt for a simpler and more
efficient approach. First, the verifiers generate ℓ sums of
verification keys for each row in the access control list

Algorithm 2: DPF-PACL FOR INCLUSION PREDICATES

Public parameters: integers 2 ≤ t ≤ s, function family F =
{fi : {0, 1}n → Zp | 1 ≤ i ≤ N}, and group G = (g, p).

Let (Prove′,Audit′,Verify′) be as in Algorithm 1.

• Precomputation: // Compute correction terms

1: parse Λ = (vk1, . . . , vkN ), vkj = (vkj,1, . . . , vkj,ℓ)

2: for j ∈ {1, . . . , N}, k ∈ {1, . . . , ℓ}:
2.1: vkj,k = (gαj,k , gβj,k)

2.2: gw(j−1)ℓ+k :=
∏ℓ

l=1,l ̸=k g
αj,l

• KeyGen(1λ, fi):
1: (αi,1, . . . , αi,ℓ)←R Zℓ

p, (βi,1, . . . , βi,ℓ)←R Zℓ
p

2: for j ∈ {1, . . . , ℓ}
2.1: vki,j := (gαi,j , gβi,j ), ski,j := (−αi,j ,−βi,j , j)

3: return (vki,1, . . . , vki,ℓ), (ski,1, . . . , ski,ℓ)

• Prove(f, sk):
1: parse f = Pi and sk = (α, β, γ)

2: ([α]1, . . . , [α]s)← Share(Zp,t,s)(α)

3: ω := (i− 1)ℓ+ γ // γth key in row i

4: (κ′
1, . . . , κ

′
s)← DPF.Gen(1λ, Pω)

5: ([π̃]1, . . . , [π̃]s)← Prove′(Pω, β)

6: [π]j := ([α]j , [π̃]j , κ
′
j) for j ∈ {1, . . . , s}

7: return ([π]1, . . . , [π]s)

• Audit(Λ, [f ]i, [π]i):
1: parse Λ = (vk1, vk2 . . . , vkN ),

vkj = (vkj,1, . . . , vkj,ℓ), vkj,k = (gαj,k , gβj,k),
[f ]i = κi, and [π]i = ([α]i, [β]i, κ

′
i)

2: [yj ]i ← DPF.Eval(κi, j) for j ∈ {1, . . . , N}
3: (A1, . . . , Aℓ) :=

∏N
j=1(g

αj,1 , . . . , gαj,ℓ)[yj ]i

4: Λ′ := (gw1 , . . . , gwNℓ), τ (0)
i ← Audit′(Λ′, κ′

i, [β]i)

5: [cj ]i ← DPF.Eval(κ′
i, j), ∀j ∈ {1, . . . , Nℓ}

6: W :=
∏Nℓ

j=1 (g
wj )[cj ]i // Correction term.

7: A :=
(∏ℓ

j=1 Aj

)
· (W )−1, τ (1)

i := A · g[α]i

8: return τi := (τ
(0)
i , τ

(1)
i )

• Verify(T ):
1: parse T = {τ1, . . . , τt} and τi = (τ

(0)
i , τ

(1)
i )

2: if Verify′
({

τ
(0)
1 , . . . , τ

(0)
t

})
= no then return no

3: C ← ExpRecover(τ
(1)
1 , . . . , τ

(1)
t ) // See Remark 1.

4: return C
?
= 1G

(resulting in a total of Nℓ terms). One of these sums can
then be used as a “correction term” by the prover to select
only the jth column in the row. To see how, consider a
row Ri = (gαi,1 , . . . , gαi,ℓ). Each of the ℓ correction terms
gwi,1 , . . . , gwi,ℓ associated with the ith row is defined as:
gwi,j :=

∏ℓ
k=1,k ̸=j g

αi,k . The jth entry in the multiplica-
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tively secret-shared row [Ri] := (g[αi,1], . . . , g[αi,ℓ]) can be
recovered as: g[αi,j ] :=

(∏ℓ
k=1 g

[αi,k]
)
/g[wi,j ].

The prover can easily select the correction term gwij

by generating a separate DPF for the point function Pω and
sending it to the verifiers. The verifiers use the DPF to select
the ωth term in the list of correction terms. To see how,
notice that we can “flatten” the correction terms into a list
of size Nℓ elements and take the inner product to get a
secret share of the ωth correction term, as in Section 4.1.1.

Unfortunately, while the prover can now select the cor-
rect key in the list, this idea also creates an avenue for an
attack. A malicious prover can subvert access control en-
tirely by selecting multiple correction terms to “annihilate”
a row. The prover can send a distributed multi-point function
(a point function that evaluates to 1 on multiple inputs)
to select all ℓ correction terms of a row in Λ. Then, the
verifiers would recover shares of g0 for which the discrete
logarithm is simply zero. To prevent this attack, we leverage
the following insight: each correction term is associated with
a unique access key in Λ. As a consequence, we can instan-
tiate a separate DPF-PACL to enforce access control over
the vector of correction terms. Specifically, we generate an
access key βi,j for wi,j and apply Algorithm 1 to enforce the
access control over the set of correction terms. The access
key is now a tuple (αi,j , βi,j), and verification consists of
checking access control for two DPFs: the implicit DPF (Pi)
and the DPF selecting the correction term.

4.2. Optimizations and extensions

We briefly highlight some optimizations and extensions
that can be applied to Algorithms 1 and 2.

Reducing communication and computation. We present
Algorithm 2 with a separate DPF for the selection of the
correction term. This would result in an additive overhead
of O(λ(Nℓ)ϵ) in communication (ϵ as defined in Defini-
tion 2.2). However, we observe that we can use the “FSS
tensoring” transformation described by Boyle et al. [8] to
capitalize on the common “backbone” of the underlying
DPF being authenticated and reduce the communication
overhead from O(λ(Nℓ)ϵ) down to O(λℓϵ). Specifically, the
prover can use Pi(i) (the non-zero output of the DPF) as a
mask for κ′ (the key for the DPF selecting the correction
term). In this way, κ′ only needs a range of ℓ (rather than
Nℓ) leading to the reduced proof size. In the interest of
space, we point the reader to Boyle et al. [8] for a full
description of the FSS tensoring technique.

Sparse domain auditing. The constructions presented in
Algorithms 1 and 2 require O(N) work per verifier to
compute Audit. However, in practice, the evaluators (i.e.,
verifiers) might only evaluate f on a sparse subset of the
domain rather than the entire domain of the function. In
this case, the verifiers only need to compute Audit on the
matching subset of the domain on which they evaluate f .
Taking this to its extreme, if the verifiers only evaluate f
on a constant number of inputs, then this optimization leads

to Audit running in O(1) time. Furthermore, the ACL Λ
need only contain O(1) keys. More generally, for a subset
S ⊆ {1, . . . , N} of the DPF domain, we need |S| keys
in Λ and evaluate Audit on the |S| inputs, making the
verifier work O(|S|). Given this optimization, the overhead
of PACLs is essentially constant relative to the evaluation of
the function itself. A downside, however, is that the prover
may need to know S (or a subset thereof) when computing
Prove. More specifically, we can view this optimization
as enforcing access control on a smaller function f ′ that
coincides with f on all inputs in the subset S. That is,
f ′(x) = f(x) for all x ∈ S but it may be the case that
f ′(x′) ̸= f(x′) for all x′ ̸∈ S, which naturally requires the
prover to know f ′.

Public-key vs. symmetric-key DPF-PACL. When G is
chosen to be a group in which the discrete logarithm prob-
lem is assumed to be computationally intractable [3] (e.g.,
when G = Z∗

p) then the construction satisfies the soundness
property of PACLs as defined in Definition 3.2. When G is
the additive group Zp, then we get a symmetric-key PACL
satisfying the relaxed soundness property in Appendix A.

4.3. Aggregating PACLs

A nice property of our DPF-PACL constructions (Sec-
tions 4.1.1 and 4.1.2) is the ability to aggregate proofs across
different DPFs and access control lists. Concretely, our con-
structions satisfy the following two aggregation properties.
At a high level, for any integer q that is polynomial in the
security parameter λ and family of point functions F :
1) Let Λ be an ACL for the family F and let f1, . . . , fq ∈ F

have associated access keys α1, . . . , αq ∈ Λ, then α′ :=∑q
i=1 ski is an access key for f ′(x) :=

∑q
i=1 fi(x). This

aggregation property allows the verifiers to simultane-
ously enforce access control on q distinct functions in the
family for the computational and bandwidth overhead of
verifying a single function in the family.

2) Our constructions permit aggregating proofs from mul-
tiple separate ACLs to simultaneously enforce access
control on a vector of functions (f1, . . . , fq) ∈ Fq.
For a vector of ACLs (Λ1, . . . ,Λq), the ACL Λ′ :=⊙q

i=1 Λi (where ⊙ denotes the group operation applied
component-wise) is an ACL for the vector (f1, . . . , fq)
such that CheckAccess(Λi, fi, ski) = yes for all i.
This aggregation property allows for batched verification
of q functions, each associated with a separate ACL:
the verifiers first compute g[α

(1)], . . . , g[α
(q)] individually

for each function using the corresponding ACL. Then
g[α] :=

⊙q
i=1 g

[α(i)] can be verified using Λ′. While
the computational overhead of this aggregation property
remains proportional to verifying each function individ-
ually, it permits compact proofs and audits.

4.4. Security analysis

In this section, we prove security of Algorithms 1 and 2
with respect to Definitions 3.1 and 3.2. We first prove
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a useful lemma which says that any adversary that wins
the PKSOUNDNESSPACL,A,I(λ) game in our DPF-PACL
constructions with some function (not necessarily a DPF),
must also implicitly output a valid DPF and access key.

Lemma 1. If there exists an efficient A that wins the
PKSOUNDNESSPACL,A,I(λ) game for our DPF-PACL con-
structions (Algorithms 1 and 2) with non-negligible proba-
bility δ(λ) for some function f̂γ and proof π̂ where f̂γ is not
sampled from FDPF, then, there exists an efficient A′ that
wins the PKSOUNDNESSPACL,A,I(λ) game with probability
δ(λ), where A′ outputs fγ and π such that fγ ∈ FDPF.

Proof. Deferred to Appendix A.

Theorem 3. Let p be a prime chosen with respect to a
security parameter λ and let G be any group of order
p in which the discrete logarithm problem is assumed to
be computationally intractable. Algorithm 1 (DPF-PACL
for match predicates) satisfies the completeness, efficiency,
soundness, and privacy properties of Definitions 3.1 and 3.2
with CheckAccess as defined in Section 2.1 (match predi-
cate).

Proof. We prove each property in turn.

Completeness. Let i be the special index of the encoded
point function. Consider the exponent of the recovered audit:
logg(C) = logg(A · g−α) = (

∑N
j=1 αjyj) − α. We have:

(
∑N

j=1 αjyj) = αi if i ̸= 0 and 0 otherwise. As such,
logg(C) = αi − α. By construction, α := αi, so it follows
that logg(C) = 0. Therefore, C = g0 = 1G, as required.

Soundness. Assume, towards contradiction, that there exists
an efficient prover A and non-negligible function δ such that
for all I ⊆ {1, . . . , s} where |I| ≥ t:

Pr[PKSOUNDNESSPACL,A,I(λ) = yes] ≥ δ(λ).

By Lemma 1, we can assume that fγ (output by A
in Figure 2) is a point function with special index γ.
Construct an efficient algorithm B that solves the discrete
logarithm problem as follows. On input y := gx, sample
random γ′ ←R {1, . . . , N} and (α1, . . . , αN )←R ZN

p . Set
Λ := (gα1 , . . . gαN ) but replace gαγ′ with y. Let T := {}.
Run AGETKEY(1λ,Λ). Respond to each GETKEY(j) query
with αj (unless j = γ′, in which case abort) adding j to T .
Obtain fγ and π from A. If γ ̸= γ′ output fail. Else, output
−π. The list Λ constructed by B matches the distribution of
KeyGen because y := gx is a random element of G. If A
succeeds, then Verify outputs yes, which means that C = 1G
and so it holds that x = −π. The probability that γ = γ′ is
1
N and so B succeeds with probability at least 1

N δ(λ), which
remains non-negligible. As such, B successfully recovers the
discrete logarithm in G contradicting the assumption that the
discrete logarithm is computationally intractable in G.

Privacy. We construct an efficient simulator S for the view
of any subset of t−1 (possibly malicious) verifiers. On input
(1λ, I, {τ∗i | i ∈ I}), S proceeds as follows:
1: J := {1, . . . , s} \ I .

2: ([0]1, . . . , [0]s)← Share(Zp,t,s)(0).
3: ([π]1, . . . , [π]s)← Share(Zp,t,s)(0).
4: τk := g[0]k for all k ∈ I ∪ J .
5: Output {([π]i, τi) | i ∈ I} ∪ {τj | j ∈ J}.
First, note that the τ∗i ’s are independent of the honest verifier
outputs (see Section 3.3) and therefore do not influence
the simulator. The distribution output by S matches the
distribution of any subset I ⊂ {1, . . . , s}, where |I| < t,
because in the real view, (1) the proof shares [π] are out-
put by Share which guarantees that any subset of fewer
than t shares is information-theoretically hiding and (2)
the audit tokens are (computationally-hiding) multiplicative
secret shares of g0 = 1G. The audit tokens in the real
view are not information-theoretically hiding because they
are computed using the output of the DPF, which consists
of computationally-hiding secret shares. The output of S
thus only differs on (2). However, if there is an efficient
distinguisher for (2), then the FSS scheme is not private, a
contradiction.

Efficiency. Each proof share [π]i is an element of G and thus
is of size O(λ). Each audit token is also of size O(λ).

Theorem 4. Let p be a prime chosen with respect to a
security parameter λ and let G be any group of order p
in which the discrete logarithm problem is assumed to be
computationally intractable. Algorithm 2 (DPF-PACL for
Inclusion Predicates) satisfies the completeness, efficiency,
soundness, and privacy properties of Definitions 3.1 and 3.2
for the inclusion predicate of Section 2.1.

Proof. The proof follows a similar structure to the proof of
Theorem 3 but involves more tedious calculations. We defer
the proof to Appendix B.

5. Faster PACLs from Verifiable DPFs

In this section, we introduce a concretely more efficient
construction of DPF-PACL for the class of verifiable DPFs
(VDPFs) [16] (also known as extractable DPFs [5]). A
VDPF allows the evaluators to efficiently check if the DPF
is well-formed (see Appendix B), which we will capitalize
on to construct more efficient PACLs.

The primary source of inefficiency in Algorithms 1
and 2 is due to the group operations required in computing
the PACL audit. If, instead, the verifiers could “select”
the public key over a field (e.g., Fp) rather than in G,
then computing the audit token would be bottle-necked by
operations over the field instead of operations in G.

There are two technical challenges with this approach.
First, if the audit is not computed in G, the verifiers end
up with additive shares of [gαi ] (rather than multiplicative
shares g[αi]), which does not lend itself to the efficient veri-
fication procedure of Algorithms 1 and 2. To overcome this
problem, we introduce a building block we call a Schnorr
Proof over Secret Shares (SPoSS; Section 5.1), which allows
a prover to efficiently prove to a set of verifiers that it knows
the discrete logarithm of an additively secret-shared element.
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Algorithm 3: SCHNORR PROOF OVER SECRET SHARES

Public parameters: Group Z∗
p = (g, p) and random oracle H .

• Prove(x):
1: ([x]A, [x]B)← Share(Zp,2,2)(x)

2: yA := g[x]A , yB := g[x]B

3: ([a]A, [b]A, [c]A, [a]B , [b]B , [c]B)← Beaver(2,2)(Zp)

4: a← [a]A + [a]B , b← [b]A + [b]B

5: zA, zB ←R {0, 1}λ // random nonces

6: rA ← H(zA, [x]A, a, [c]A), rB ← H(zB , [x]B , b, [c]B)

7: r ← rA + rB
8: d← rg[x]A − a, e← g[x]B − b

9: [π]A := (A, [x]A, a, [c]A, r, d, e, zA)

10: [π]B := (B, [x]B , b, [c]B , r, d, e, zB)

11: return ([π]A, [π]B)

• Audit([y]i, [π]i):
1: parse [π] := (i, [x]i, u, [c]i, r, d, e, z)

2: r̂i ← H(z, [x]i, u, [c]i)

3: ŷ ← g[x]i

4: if i = A: if i = B:

4.1: f ← rŷ − u

4.2: [v]i ← (de/2) + eu

4.3: [w]i ← [v]i+[c]i−r[y]i

4.1: f ← ŷ − u

4.2: [v]i ← (de/2) + du

4.3: [w]i ← [v]i + [c]i − [y]i

5: τi := ([w]i, r̂, r, f, d, e)

6: return τ

• Verify({τA, τB}):
1: parse τA = ([w]A, r̂A, r, d̂, d, e)

2: parse τB = ([w]B , r̂B , r, ê, d, e)

3: r̂ ← r̂A + r̂B , w ← [w]A + [w]B

4: return w = 0 and r̂ = r and d̂ = d and ê = e

The second challenge is that, in the proof of security, the
knowledge extractor (see Section 4.4) would not have the
guarantee that the resulting additive secret shares encode a
verification key from Λ (it could be any linear combination
of group elements). This rather subtle problem is a barrier
to proving soundness when taking this approach with (non-
verifiable) DPFs. To overcome this, we restrict our focus
to VDPFs, which ensures that the verifiers always obtain
a valid group element from Λ. We then prove security
similarly to the proof of Theorem 3.

5.1. Schnorr Proof over Secret Shares (SPoSS)

SPoSS is a non-interactive proof system instantiated in
the random oracle model between a prover and a set of
two or more verifiers. The verifiers hold additive secret
shares of a group element y := gx. The prover provides a
zero-knowledge proof-of-knowledge of x (i.e., the discrete
logarithm of y base g). SPoSS is a concrete instantia-

tion of a general zero-knowledge proof system over secret
shares [4, 12] and can be thought of as a secret-shared
analog of a Schnorr proof [34]. We define the formal require-
ments of SPoSS in Definition 5.1 and prove security of our
construction in Appendix C. The proof size of our SPoSS
construction is significantly smaller compared to generic
approaches based on zero-knowledge proofs (see Section 8).

Definition 5.1 (SPoSS). Let λ ∈ N be a security parameter
and let G be a cyclic group of order p = p(λ) with gener-
ator g. A non-interactive zero-knowledge proof of discrete-
logarithm knowledge over a (t, s)-secret-shared element
y, consists of efficient (possibly randomized) algorithms
(Prove,Audit,Verify) with the following functionality. We
leave G and g as implicit inputs.
• Prove(x) → ([π]1, . . . , [π]s). Takes as input integer x ∈
Zp. Outputs proof shares ([π]1, . . . , [π]s).

• Audit([y]i, [π]i) → τi. Takes as input a secret share [y]i
and a secret share [π]i. Outputs an audit token τi.

• Verify(T := {τi | i ∈ I}) → yes/no. Takes as input any
subset of t or more audit tokens indexed by the set I ⊆
{1, . . . , s}. Outputs yes if and only if π is a valid proof
of discrete logarithm knowledge with respect to y ∈ G.

The functionality must satisfy the following properties.
Completeness. For all x ∈ Zp and y := gx, and all subsets
I ⊆ {1, . . . , s} such that |I| ≥ t,

Pr


([y]1, . . . , [y]s)← Share(Zp,t,s)(y);
([π]1, . . . , [π]s)← Prove(x);
{τi ← Audit([y]i, [π]i) | i ∈ I} :
Verify({τi | i ∈ I}) = yes

 = 1,

where the probability is over the randomness of Prove.
Argument-of-knowledge. If there exists an efficient (pos-
sibly malicious) prover P∗ such that for all group elements
y, P∗ produces [π∗] such that Verify({τi | i ∈ I}) = yes
(where τi ← Audit([y]i, [π

∗]i), for all i ∈ I) with probabil-
ity δ(λ), then there exists an efficient knowledge extractor
E and negligible function negl such that,

Pr
[
x← EP∗

(y) : y = gx
]
≥ δ(λ)− negl(λ),

where the probability is over the randomness of P∗. In
words, E recovers the discrete logarithm x from valid proofs
output by P∗. SPoSS is an argument (rather than a proof) of
knowledge because the prover is computationally bounded
in the random oracle model.
Zero-knowledge. For all subsets I ⊂ {1, . . . , s} such that
|I| < t, define J := {1, . . . , s} \ I and DI,J to be the
distribution over {([π]i, τ∗i ) | i ∈ I} ∪ {τj | j ∈ J} where
[π]i is sampled according to Prove(x), τ∗i is sampled ar-
bitrarily, and τi ← Audit([y]i, [π]i) for all j ∈ J . SPoSS
is zero-knowledge if there exists an efficient simulator S
such that DI,J ≈ S(1λ, I, {τ∗i | i ∈ I}). That is, the view
induced by the proof shares and audit tokens reveals no
information about x or y to any subset of fewer than t− 1
computationally bounded (possibly malicious) verifiers.
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SPoSS: Main idea. The main idea behind SPoSS is to
leverage the additive and multiplicative homomorphism of
secret shares over Zp−1 and Z∗

p, respectively. Our construc-
tion assumes G = Z∗

p. However, our approach generalizes
to any group where the group operation can be described
as an arithmetic circuit over a ring. Notice that, given
share [x]i in Zp−1, each verifier can obtain a multiplicative
share of x by computing g[x]i . At a high level, the SPoSS
verification procedure goes as follows. Each verifier holds
additive secret-shares of y and x (secret shared over Zp and
Zp−1, respectively). First, each verifier computes g[x]i to
obtain a multiplicative secret share of x. Notice that g[x]i

is defined over the field Zp and that the group operation
of Z∗

p is multiplication over Zp. The verifiers then compute
the group operation (multiplication in Zp) over the additive
shares using a prover-assisted computation. Notice that as a
result of this computation, the verifiers hold additive secret
shares [gx]. Third, the verifiers compute [w] := [y] − [gx]
and swap their shares of [w] to check if w = 0.

5.1.1. Protocol overview. We describe SPoSS in Algo-
rithm 3. For clarity, we describe the protocol with two
verifiers but note that all our techniques extend to a many-
verifier setting. In Algorithm 3, the verifiers first derive
additive shares of g[x]i (for i ∈ {A,B}), which we de-
note by [g[x]i ]. With two verifiers, this is done by simply
letting Verifier A set [g[x]A ]A := g[x]A and verifier B set
[g[x]A ]B := 0 (observe that [g[x]A ]A + [g[x]A ]B = g[x]A , as
required). Verifier B proceeds to do the same with g[x]B . If
it were possible to compute the product [g[x]A · g[x]B ] non-
interactively over the additive secret shares, then the verifiers
could locally obtain [gx]. Unfortunately, doing so requires
interaction between the verifiers. Instead, in Algorithm 3,
we use a standard approach from zero-knowledge proofs
over secret-shares [4, 12] and have the prover “assist” the
verifiers in the computation. Specifically, the prover provides
a Beaver multiplication triple [2], enabling the verifiers to
compute the multiplication. (We provide an overview of
Beaver multiplication in Appendix D for completeness.)

Preventing malicious provers. As observed in prior
work [12], prover-assisted multiplication can allow the
prover to cheat by introducing a linear term in the output
of the multiplication, which would result in the verifiers
computing [ŷ] := [g[x]A · g[x]B +∆], for some ∆. To defend
against this attack, in Algorithm 3, the verifiers instead
check that [r(g[x]A ·g[x]B )]−[r(y)] = [0] where r is a random
scalar chosen by the verifiers. As long as the prover does
not choose r, the proof is guaranteed to fail for any ∆ ̸= 0
with probability 1− 1

p , when instantiated over Zp [12].

Removing interaction. Finally, in Algorithm 3, to avoid
interaction between verifiers, we apply the Fiat-Shamir
transform [20] and let the prover (instead of the verifiers)
choose r using a random oracle H . This makes SPoSS
mesh with our PACL definition (which only allows for one
message exchanged between verifiers). Concretely, we use
the distributed analog of Fiat-Shamir described in the full
version of Boneh et al. [4]. Given a random oracle H , the

prover generates a proof using H to simulate the choice of
r by the verifiers. As noted in [4], in the distributed setting,
the resulting r can leak information about the shares. To
prevent this, in Algorithm 3, we follow the blueprint of [4]
and generate random nonces zA and zB , that are independent
of the proof shares and serve to “mask” the inputs to H .

Reducing proof size. We observe that because each verifier
sets all but their own additive share of ŷi := g[x]i to zero, the
ith verifier knows the value of all other verifiers’ “secret”
share of [ŷi] (they are always zero). As a consequence, only
the verifier holding the non-zero share needs to mask it when
computing the Beaver multiplication (see Appendix D). This
corresponds to revealing a (from the Beaver triple) to Veri-
fier A and b to Verifier B, where the Beaver triple is of the
form ([a], [b], [ab]). Because a and b are random, they still
serve as a mask when computing the Beaver multiplication.
We apply this optimization in Algorithm 3.

5.2. VDPF-PACL using SPoSS

In this section, we describe how SPoSS can be used to
construct a VDPF-PACL. We focus on constructing a VDPF-
PACL for the match predicate since extending the construc-
tion to inclusion predicates can be achieved by following
the blueprint of Algorithm 2. We describe our construction
in Algorithm 4. The main idea is that, following private
selection of the verification keys (as in Algorithm 1 but
now over Zp) with a VDPF (Definition B.1), each verifier
holds an (additive) secret-share of y := gαi (in contrast to
Algorithm 1, where the verifiers hold multiplicative secret
shares of y). To prove knowledge of αi, the prover provides
a SPoSS proof to the verifiers for the secret-shared group
element y. The verifiers then proceed to verify the SPoSS
proof and accept if it passes.

5.3. Security analysis

Theorem 5. Let p be a prime chosen with respect to a
security parameter λ ∈ N and let G be a group of order
p in which the discrete logarithm problem is assumed to
be computationally intractable. Algorithm 4 (VDPF-PACL
for match predicates) satisfies the completeness, efficiency,
soundness, and privacy properties of Definitions 3.1 and 3.2,
with CheckAccess as defined in Section 2.1 (match predi-
cate).

Proof. Deferred to the full version of the paper [35].

6. PACLs for FSS from DPF-PACLs

We now describe a set of PACL constructions for classes
of FSS derived from DPFs. These transformations are taken
from Boyle et al. [6, Section 3.2] and form the class of func-
tions that can be efficiently secret-shared using lightweight
cryptographic assumptions. More expressive classes of FSS
are believed to require heavier tools [6], for instance, fully-
homomorphic encryption [17].
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Algorithm 4: VDPF-PACL FOR MATCH PREDICATES

Public parameters: integers 2 ≤ t ≤ s, function family F =
{fi : {0, 1}n → Zp | 1 ≤ i ≤ N}, and group Z∗

p = (g, p).

• KeyGen(1λ, fi): as in Algorithm 1.

• Prove(f, sk):
1: parse f = Pi

2: ([π]1, . . . , [π]s)← SPoSS.Prove(sk)

3: return ([π]1, . . . , [π]s)

• Audit(Λ, [f ], [π]):
1: parse Λ = (gα1 , . . . , gαN ) and [f ] = κ

2: ([yj ], ρ)← VDPF.Eval(κ, j), ∀j ∈ {1, . . . , N}
3: A :=

∑N
j=1(g

αj )[yj ]i

4: τ̃ ← SPoSS.Audit(A, [π])

5: return τ := (τ̃ , ρ)

• Verify(T ):
1: parse T = {(τ1, ρ1), . . . , (τt, ρt)}.
2: return SPoSS.Verify({τ1, . . . , τt})

and VDPF.Verify({ρi, . . . , ρt})

PACLs for range functions and decision trees. Boyle et al.
[6, 8] describe how to apply linear combinations of DPFs to
derive FSS for range functions (and more generally decision
trees [8]). Range functions and decision trees can be viewed
as special cases of distributed multi-point functions (DMPF),
which evaluate to a non-zero value on multiple inputs. In
turn, DMPFs can be viewed as an aggregation of DPFs
(this also follows from the linear-composition of FSS [6,
Section 3.2]). By the aggregation property of DPF-PACLs
(Section 4.3), we immediately obtain PACLs for DMPFs
and, as a result, PACLs for range functions and decision
trees.

PACLs for small function classes. FSS for all functions
with a small domain |F| can be obtained via a DPF that
“selects” the function fi ∈ F in the canonically ordered
function family F [6]. Our DPF-PACL construction applies
to this class of FSS directly as a result. Following similar
transformations, Boyle et al. [6] obtain FSS for data match-
ing and NC0 functions, which we briefly describe next.

PACLs for data matching functions. Data-matching func-
tions are parameterized by a set S ⊆ {1, . . . , N} of
ℓ ∈ O(1) elements and a value v ∈ {0, 1}n such that
fS,v(x) = 1 if xi = vi,∀i ∈ S. FSS for this class
of functions can be realized using a DPF with a range
large enough to describe all

(
n
ℓ

)
2ℓ possible values of fS,v

(hence the requirement that ℓ is constant). As a consequence,
our DPF-PACL can be applied directly to this family of
FSS by associating each access key with the corresponding
canonically ordered function.

PACLs for NC0 functions. The class NC0 captures all
functions that can be represented by constant-depth boolean

circuits C : {0, 1}u → {0, 1}v with fan-in 2 (two inputs
per gate). We can trivially consider a DPF-PACL where Λ
corresponds to all possible such circuits, of which there
are vO(u2d ) in total. However, this is a naive approach.
As observed by Boyle et al. [6], it is possible to leverage
the bit-wise parallel structure of NC0 circuits and DPFs to
realize efficient FSS for NC0 functions. Specifically, any
circuit C ∈ NC0 can be decomposed into v 1-bit-output,
depth-d sub-circuits. For u-bit inputs, each such sub-circuit
has only O(u2d) possibilities. For each sub-circuit, we can
generate a DPF for the ith canonical ordering of all O(u2d)
possible circuits. Repeating this for all v sub-circuits yields
an FSS scheme consisting of v DPF keys (one for each
sub-circuit). Using the aggregation property of our DPF-
PACL construction described in Section 4.3, it is possible
to enforce access control over the v DPFs simultaneously.
However, it becomes necessary to enforce access control
over the unique combination of sub-circuits since each DPF-
PACL operates independently of the gloabal circuit C. To
achieve this, we can apply a “generic PACL” (Section 7)
over the combination of sub-circuits (in conjunction with
DPF-PACLs for each sub-circuits) using a zero-knowledge
proof over secret-shared data.

7. Generic PACLs from zero-knowledge proofs

In this section, we describe how to construct PA-
CLs for any FSS class (formally, FSS for all functions
in P/poly [6]). Our approach relies on secret-shared
non-interactive proofs (SNIPs) [12] and Fiat-Shamir over
SNIPs [4]. We describe these in Section 7.1.

7.1. Preliminaries

SNIPs [12] (and their generalizations [4]) can be used to
prove that any (public) arithmetic circuit C evaluates to
1 on a secret-shared input x provided that the following
two conditions are met: (1) the circuit C is known to the
verifiers and (2) the prover knows the input x and C. SNIPs
guarantee that the verifiers (who hold secret shares of x)
do not learn any information except that C(x) = 1. The
efficiency of SNIPs is measured by the size of a SNIP
proof and the interaction between verifiers (note that SNIPs
are non-interactive for the prover). The size of a SNIP is
proportional to the number of multiplication gates in the
circuit and can be verified in one round of interaction.

Fiat-Shamir for SNIPs. The Fiat-Shamir transform [20] is
a standard technique used to eliminate interaction in zero-
knowledge proofs. At a high level, Fiat-Shamir allows the
prover to generate its own challenges with the help of a
random oracle by “simulating” the randomness chosen by
the verifiers in the interactive proof system. With SNIPs,
however, the situation is slightly different because SNIPs are
already non-interactive for the prover. Instead, Fiat-Shamir
can be applied to SNIPs to reduce the interaction required
when verifying the proof [4]. Specifically, the verification
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of the SNIP with Fiat-Shamir requires only one message
exchanged between verifiers (instead of one round of inter-
action consisting of two sequential messages).

7.2. Construction

At a high level, we construct PACLs for P/poly-FSS
as follows. As in our group-based constructions, the dealer
first distributes shares of the function f using the FSS
scheme and shares of the access key sk to all verifiers. In
addition, the prover distributes a SNIP proof showing that
(1) [f ] corresponds to some valid output of FSS.Gen and (2)
the access key sk is such that CheckAccess(Λ, f, sk) = 1.
(Without loss of generality, we assume that both FSS.Gen
and CheckAccess are described as arithmetic circuits over
a field F.) The verifiers then check the SNIP using their
shares of f and sk.

While this approach to generic PACLs is conceptually
simple, there is an efficiency challenge that needs to be
addressed. By definition, CheckAccess takes the entire ac-
cess control list Λ, which would result in a large (linear
in |Λ|) proof size, violating the efficiency property of PA-
CLs. Specifically, the naive approach requires the prover
to incorporate the entire access control list into the SNIP
when proving that CheckAccess(Λ, f, sk) = 1, even if sk
only depends on one verification key in Λ. We overcome
this efficiency problem by using any vector commitment
scheme [10, 29] (described by algorithms VC.Commit and
VC.Verify). We instead define vki := H(fi∥ski), where H
is a collision-resistant hash function (CRHF) sampled by the
verifiers and ski is the access key for function fi. The ver-
ifiers compute a commitment to all verification keys using
VC.Commit, publishing the resulting commitment c and all
the openings e1, . . . , eN such that VC.Verify(c, vki, ei) = 1.
The prover then sends [ṽk], [ẽ], and three SNIP proofs: (1) a
proof that FSS.Gen(1λ, fi; r) = [fi], where r describes the
random coins of FSS.Gen, (2) a proof that ṽk = H(fi∥ski),
and (3) a proof that Verify(c, ṽk, ẽ) = 1. The verifiers check
the three SNIP proofs using their shares [fi] and [ski]. If the
proofs are accepting, then the verifiers are convinced that the
dealer knows the access key ski associated with fi and that
their shares of fi were output according to FSS.Gen. The
size of the SNIP proofs is bounded by O(s+log |Λ|) rather
than O(|Λ|), where s is the number of multiplication gates
in FSS.Gen. See the full version of the paper [35] for details.

8. Implementation and evaluation

In this section, we describe our implementation and eval-
uation of the (V)DPF-PACL constructions from Sections 4
and 5. Our evaluation focuses on the state-of-the-art two-
party FSS schemes [8, 16]. Multi-party FSS constructions
are less efficient [6] or require heavier cryptographic as-
sumptions, making them concretely slower [13, 31]. Because
we are interested in evaluating the overhead of PACLs,
evaluating our constructions in a two-party setting results in
worst-case overheads relative to baseline FSS evaluations.
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Figure 3: Our DPF-PACL construction amortizes with more eval-
uations of the DPF but plateaus at approximately 32 evaluations.
For DMPFs, which have a higher baseline processing time, the
overhead is less significant thanks to aggregation, which amortizes
the overhead of access control (Section 4.3).
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Figure 4: Our VDPF-PACL construction is dominated by the ex-
ponentiation in Z∗

p (dashed lined) and has a higher initial overhead
compared to the DPF-PACL construction. In contrast to DPF-
PACLs, our VDPF-PACL construction amortizes almost entirely
after 64 evaluations and has an asymptotically smaller overhead.

We evaluate our implementation for applications of FSS in-
cluding private information retrieval, distributed anonymous
authentication, and anonymous communication protocols.

Implementation. We implement PACLs in Go v1.16. and C
in approximately 4,500 lines of code. Our implementation is
open-source [1]. We instantiate G as the P-256 elliptic curve
group (part of the crypto/elliptic package in Go)
in our DPF-PACL construction for public-key (pub) sound-
ness (Definition 3.2) and as Z2λ for symmetric-key (sym)
soundness (Definition A.1). For our public-key VDPF-PACL
construction, we instantiate G as Z∗

p with a 3072-bit safe
prime p as specified in RFC3526.

Environment. We use Amazon Elastic Cloud Compute
(EC2) for our experiments. We run experiments on a
c4.4xlarge (16 vCPUs; 32 GB RAM) Amazon Linux
general purpose virtual machine. We use AES-NI-enabled
CPUs for fast PRG evaluations, as well as other (V)DPF-
specific optimizations [8, 16]. All experiments are per-
formed on a single core.
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TABLE 1: Overhead of introducing public-key (pub; Section 3) and symmetric key (sym; Section 3.2) PACLs to DPF and DMPF classes
of FSS. As the FSS class becomes more complex (e.g., FSS for DMPFs such as inequality and range functions) the overhead of enforcing
access control diminishes. We set the (V)DPF domain to {0, 1}32. All benchmarks are amortized over 100,000 evaluations of the FSS.

FSS.Eval
Baseline

DPF-PACL
(match predicate)

DPF-PACL
(inclusion predicate)

VFSS.Eval
Baseline

VDPF-PACL
(match predicate)

VDPF-PACL
(inclusion predicate)

sym pub sym pub sym pub sym pub
DPF 1.41 µs 1.42 µs 5.66 µs 33.10 µs 84.11 µs 1.46 µs 1.47 µs 1.69 µs 33.66 µs 36.11 µs
DMPF 90.44 µs 90.46 µs 93.26 µs 122.22 µs 213.47 µs 93.14 µs 93.19 µs 93.50 µs 125.52 µs 128.71 µs

Methodology. We run each experiment between 10 and
1,000 times (depending on the experiment) and report the
average over the trials. 95% confidence interval is occasion-
ally invisible.

Optimizations. In a setting with two verifiers, we observe
that Verify simply has each verifier checking that each
secret share corresponds to a share of zero. If the parties
convert their shares to subtractive (rather than additive)
secret shares, then this check becomes an equality check
(both parties have the same subtractive share if it’s a share
of zero). Therefore, to avoid sending all secret shares, the
verifiers can send succinct hashes of their audit shares to
reduce communication.

8.1. Prover costs

The proving costs for our PACL constructions are min-
imal. The prover only needs to generate (V)DPF keys (for
inclusion predicates) in our (V)DPF-PACL constructions.
The complexity of (V)DPF.Gen is linear in the (V)DPF
domain size n [6, 8] and remains below 20 ms for practical
values of n (i.e., n ≤ 128). In our VDPF-PACL construction
the prover also has to compute the SPoSS proof. We bench-
mark SPoSS.Prove at 30 ms of CPU time (bottlenecked by
exponentiation in Z∗

p).

8.2. Communication costs

Tables 2 and 3 report the concrete communication over-
heads on the prover and the verifiers. To remain independent
of the underlying DPF construction, we let sℓ denote the size
of a DPF with range ℓ (e.g., sℓ = log(ℓ) · (λ+ 2) bits [8]).

In Table 2, we compare communication costs to other
approaches for DPF access control. Express [19] and
Sabre [39] operate in the symmetric-key (sym) setting, satis-
fying the relaxed PACL soundness definition (Appendix A).
Newman et al. [31] construct an access control mechanism
similar to Algorithm 1 satisfying the soundness definition of
Definition 3.2. Using SPoSS for verifying discrete-logarithm
knowledge results in over 2,400× less communication com-
pared to a naive approach (described in Appendix E) and a
1,000× smaller proof size compared to Sabre [39].

8.3. Verification costs

We report the processing time in Figures 3 and 4.
Introducing PACLs results in a concrete processing overhead

TABLE 2: Proof size (Prover → Verifier) and audit token size
(Verifier ↔ Verifier) for (V)DPF-PACL with the match predicate
for access control (Algorithm 1). ∗Naive SPoSS (see Appendix E).

Match predicate Prover → Verifier Verifier ↔ Verifier

DPF-PACL 32 B 64 B
VDPF-PACL (SPoSS) 1952 B 816 B
(V)DPF-PACL (sym) 16 B 16 B
VDPF-PACL (naive) ∗ 4.7 MB 816 B

Express [19] (sym) 2 kB 184 B
Spectrum [31] 32 B 64 B
Sabre [39] (sym) (40 + 120n) kB 16 B

TABLE 3: Proof size (Prover → Verifier) and audit token size
(Verifier ↔ Verifier) for (V)DPF-PACL with inclusion predicate
for access control (Algorithm 2) and ℓ access keys per function in
the FSS family. We denote by sℓ the size (in B) of a (V)DPF key
with a range of {1, . . . , ℓ}. Prior techniques [19, 31, 39] do not
support inclusion predicates. ∗Naive SPoSS (see Appendix E).

(inclusion predicate) Prover → Verifier Verifier ↔ Verifier

DPF-PACL (16 + sℓ) B 32 B
VDPF-PACL (SPoSS) (1952 + sℓ) B 816 B
(V)DPF-PACL (sym) (16 + sℓ) B 16 B
VDPF-PACL (naive)∗ (4.7× 106 + sℓ) B 816 B

relative to evaluating fi (here, fi is either a DPF or DMPF),
especially when the number of evaluations of the function
is small (e.g., less than 64). However, as the number of
evaluations increases, the amortized cost of access control
decreases (the overhead of the group exponentiation in
Verify is amortized over the evaluations of fi). FSS itself is
typically only of interest in settings where the function is
evaluted on a large number of inputs (otherwise it is more
efficient to just secret share [f(x)] rather than [f ]). As such,
it is more reasonable to consider the amortized overhead that
access control introduces. For our DPF-PACL construction
(reported in Figure 3), the amortized overhead plateaus at
approximately 5× the baseline cost of evaluating fi with
around 28 evaluations. This is primarily due to the linear
number of group (elliptic curve) exponentiations required
in the Audit procedure. In contrast, for our VDPF-PACL
construction (reported in Figure 4), which requires only a
constant number of group exponentiations in Z∗

p, we observe
a larger initial overhead but far better amortized overhead.
The larger initial overhead is entirely due to the single ex-
ponentiation in Z∗

p (which we benchmark at approximately
13 ms). All our constructions have a lower overhead as
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the complexity of the FSS increases (e.g., when applying
PACLs to DMPFs) thanks to the aggregation properties
described in Section 4.3. To better understand the asymptotic
amortization of our constructions, we report the tail values
of Figures 3 and 4 in Table 1, where we amortize over
100,000 evaluations of the DPF and DMPF.

8.4. Applications of PACLs

Private databases with access control. Systems that
use multi-server PIR (e.g., [13–15, 24, 27, 40]) can take
advantage of (V)DPF-PACLs to restrict access to database
items. (Gupta et al. [24] specifically leave open the problem
of supporting authenticated media consumption through
Popcorn.) Other systems such as Dory [14] use DPFs for
private keyword queries in a remote database. For exam-
ple, Wang et al. [40] use PIR (realized using DPFs) to
build privacy-preserving restaurant, geolocation, and flight
searches. Gupta et al. [24] use PIR for privacy-preserving
movie streaming. In Figure 5, we report the overhead of
introducing access control in PIR via VDPF-PACLs. As
the items in the database become larger, the overhead of
introducing access control diminishes. Part of the overhead
from introducing PACLs to PIR is due to switching from
operations in a binary field (xors) to operations in Zp, which
are concretely slower. Ostrovsky and Shoup [32] describe a
read-and-write private database, which can be realized using
DPFs [8]. Applying VDPF-PACLs to this setting would
result in similar overheads to the PIR setting.
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Figure 5: Server-side CPU time for privately retrieving an item
from a database through two-server PIR with and without VDPF-
PACLs. Adding access control has a 1.5–3× impact on processing
time. The access control overhead is automatically amortized over
the number of items in the database. The relative overhead also
diminishes as the items in the database become larger.

Anonymous authentication. We identify a potentially inter-
esting application of PACLs for the purpose of anonymous
user authentication (for instance, password-based authen-
tication [23]) in a distributed setting. Denote each user
pseudonym by i and let ski be the corresponding key (or
password). We can set Λ to be the set of valid account
keys and let fi be the point function with special index
i. Applying our VDPF-PACL construction over [fi], the
verifiers can learn if user i has a valid account (and knows
the key ski associated with vki) without learning which

account was used to authenticate. In Table 4, we benchmark
the processing time required to authenticate a user as a
function of the number of accounts in the database.

TABLE 4: Evaluation of VDPF-PACLs applied to anonymous user
authentication with varying number of accounts (evaluation points).

Anonymous authentication with VDPF-PACLs

Number of accounts: 250K 500K 1M 2M
Authentication time: 103 ms 192 ms 381 ms 757 ms

Faster anonymous communication. Our VDPF-PACL con-
struction can be applied out-of-the-box to the anonymous
communication systems Express [19], Sabre [39] and Spec-
trum [31] to improve their concrete performance. In Fig-
ure 6, we show that swapping their implicit access control
mechanism with our VDPF-PACL construction improves
performance by a factor of 50–70×. Sabre [39]’s compu-
tational overhead is on-par with baseline FSS (and DPF-
PACLs satisfying symmetric-key soundness Appendix A
and Table 2) but requires significantly larger proofs for
access control purposes (approximately 3.5 MB; see Ta-
ble 2). However, we note that Sabre [39] achieves other nice
properties that are tailored to anonymous communication
(see Section 1.2).
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Figure 6: Our VDPF-PACLs significantly improve performance
of anonymous communication systems that require access control.
These performance improvements come from two sources: (1) the
ability to use optimized DPF constructions with our DPF-PACLs
(e.g., the access control in Express requires concretely slower DPF
constructions) and (2) the better amortization of VDPF-PACLs.

9. Conclusion

We modeled and formalized the notion of private access
control for FSS. Our constructions can be applied to a
variety of FSS applications and improve the performance
of ad-hoc methods found in prior work. We also present a
generic theoretical construction that has exciting potential
for future work. Finally, we evaluate our constructions and
showcase their performance on several concrete use cases,
ranging from anonymous authentication and communication
to access control in private databases. Our evaluation shows
that introducing access control results in minimal overheads
relative to baseline FSS, and amortizes well asymptotically
when the function is evaluated on many inputs.
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Appendix

Appendix A.
Symmeric-key PACL soundness

Definition A.1 (PACL: Symmetric-key soundness). There
exists a negligible function negl and security parameter λ ∈
N such that for all efficient algorithms A and subsets I ⊆
{1, . . . , s} where |I| ≥ t,

Pr[SKSOUNDNESSPACL,A,I(λ) = yes] ≤ negl(λ),

where SKSOUNDNESSPACL,A,I(λ) is defined in Figure 7.

Game SKSOUNDNESSPACL,A,I(λ)

for i ∈ {1, . . . , N} :
( , ski)← KeyGen(1λ, fi)

Λ := (sk1, . . . , skN ), T = {}
([fγ ], [πγ ])← AGETKEY(1λ)

fγ ← Recover([fγ ])

foreach i ∈ I :

τi ← Audit(Λ, [fγ ]i, [πγ ]i)

return Verify({τi | i ∈ I}) = yes

and fγ ∈ F and γ ̸∈ T

Oracle GETKEY(j)

T := T ∪ {j}
return skj

Figure 7: Symmetric-key PACL access soundness game.

In words, no efficient algorithm A, without knowledge
of the access key, can forge a proof π that verifies with
non-negligible probability. Unlike Definition 3.2, here Λ is
private to the verifiers and is not given to A.

Appendix B.
Verifiable DPFs

de Castro and Polychroniadou [16] present definitions
for (2, 2)-VDPF constructions. We generalize their defini-
tions to any (t, s)-VDPF scheme.

Definition B.1 (VDPF [16]). Let λ ∈ N be a security
parameter and F be any finite field. Fix a domain {0, 1}n.
A VDPF consists of three (possibly randomized) algorithms
(Gen,Eval,Verify):

• Gen(1λ, i ∈ {0, 1}n,m ∈ F) → (κ1, . . . , κs). Takes as
input a security parameter, an index i ∈ {0, 1}n, and
message m. Outputs a set of evaluation keys encoding
point function Pi,m such that Pi,m(i) = m.

• Eval(κj , X ⊆ {0, 1}n) → ([v]j , ρj). Takes as input an
evaluation key κj and a subset of values in the domain.
Outputs a secret share of a vector v, where the kth
coordinate of v corresponds to a share of Pi,m(k) for
k ∈ X , and a verification string ρj .

• Verify({ρj | j ∈ J}) → yes/no. Takes as input any sub-
set of t or more verification strings indexed by the set
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J ⊆ {1, . . . , s}. Outputs yes if and only if {[v]j | j ∈ J},
as output by Eval using {κj | j ∈ J}, encodes a point
function on the evaluated set of inputs X .

A (t, s)-VDPF must satisfy the correctness, privacy, and
efficiency properties of FSS (Definition 2.2). Additionally,
a VDPF must guarantee soundness. Informally, soundness
requires that Verify outputs no for any set of evaluation keys
that do not encode a point function on the evaluated points.

• Correctness. A (t, s)-VDPF is correct if for all k ∈
{0, 1}n, for all m ∈ F, and all subsets J ⊆ {1, . . . , s},
such that |J | ≥ t, there exists an efficient algorithm
Decode such that

Pr

[
(κ1, . . . , κs)← Gen(1λ, i,m) :
Decode({Eval(κj , {k}) | j ∈ J}) = Pi,m(k)

]
= 1,

where the probability is over Gen.

• Soundness. A (t, s)-VDPF is sound if for all (possibly
maliciously generated) keys (κ∗

1, . . . , κ
∗
s), adversarially

chosen inputs X∗ ⊆ {0, 1}n, and ρj sampled according
to ( , ρj) ← Eval(κ∗

j , X
∗) for j ∈ J , |J | ≥ t, it holds

that if the correctness property is not satisfied then:

Pr[Verify({ρj | j ∈ J}) = yes] ≤ negl(λ),

where the probability is taken over the adversary’s ran-
domness. Otherwise, Verify({ρj | j ∈ J}) = yes with
probability 1.

• Privacy. For all subsets I ⊂ {1, . . . , s} such that |I| < t,
define J := {1, . . . , s} \ I and DI,J to be the distribution
over {(κi, ρ

∗
i ) | i ∈ I}∪{ρi | j ∈ J} where κi is sampled

according to Gen, each ρ∗i is sampled arbitrarily, and each
ρi is sampled according to Eval. A (t, s)-VDPF is private
if there exists an efficient simulator S such that DI,J ≈c

S(1λ, I, {ρ∗i | i ∈ I}). That is, all subsets of fewer than
s evaluation keys and the entire set of verification strings
(of which t − 1 might be maliciously generated), reveal
no information on the point function encoded in the set
of keys (κ1, . . . , κs).

Appendix C.
Deferred proofs

C.1. Proof of Lemma 1

The proof hinges on the aggregation property of our
construction (Section 4.3). Consider an efficient A that
outputs f̂γ and π̂ where f̂ is not a point function (and also
not the trivial identity function f(x) = 0 for all x). Then,
it holds that f̂γ =

∑
j∈S ajfj , where S ⊆ {0, 1, . . . , N},

each fj is a point function, and aj are arbitrary scalars
in Zp \ {0}. Construct an adversary A′ that breaks the
PKSOUNDNESSPACL,A,I(λ) game with fγ = Pγ (a point
function) as follows. First, run A to get function f̂γ . Then
compute fγ := f̂γ −

∑
j∈S,j ̸=γ ajfj and π := π̂ −∑

j∈S,j ̸=γ ajαj (recall that A′ is allowed to query for all αj

provided j ̸= γ). Finally, output fγ and π. It must hold that
γ ∈ S (if this were not the case then A does not succeed as
it queried all the necessary access keys skj for j ∈ S). By
the aggregation properties of our construction (described in
Section 4.3), it follows that fγ is a point function and π is a
valid access proof for fγ . Thus, A′ succeeds with the same
probability as A.

C.2. Proof of Theorem 4 (security of Algorithm 2)
Completeness. Consider C ∈ G as computed in Verify:

C :=

(∏ℓ

j=1
Aj

)
·
(∏N,ℓ

j=1
g−cj ·wj

)
· gα.

Examining “the exponent,” we get that:

logg(C) =
∑N

j=1

∑ℓ

k=1
αj,k · yj −

(∑Nℓ

j=1
wj · cj

)
+α.

If fi is a DPF instance, then yj = 1 only for j = i. Thus,

logg(C) =
∑ℓ

k=1
αi,k −

(∑Nℓ

j=1
wj · cj

)
+ α.

Further, if (κ′
1, . . . , κ

′
s) encode a DPF for the (i−1)ℓ+γ =

ωth index, then all cj = 0 for j ̸= ω. Therefore,

logg(C) =
∑ℓ

k=1
αi,k − wω + α.

However, by construction, wω =
∑ℓ

k=1,k ̸=γ αi,k, and so we
get that: logg(C) = αi,γ + α = 0, by construction since
α = −αi,γ . Therefore, it holds that C = g0 = 1G and
Verify outputs yes, making the construction complete.

Soundness. Assume, towards contradiction, that there exists
an efficient A that wins the PKSOUNDNESSPACL,A,I(λ)
game with non-negligible probability δ(λ). Then, A outputs
secret shares of f̂γ (corresponding to point function Pγ) en-
coded as keys (κ̂1, . . . , κ̂s) and proof shares ([π̂]1, . . . , [π̂]s)
such that for all I ⊆ {1, . . . , s} where |I| ≥ t,

Pr

[
τi ← Audit(Λ, [f̂γ ]i, [π̂]i),∀i ∈ I :
Verify({τi | i ∈ I}) = yes

]
≥ δ(λ).

Without loss of generality (by Lemma 1), we can assume
thatA outputs f̂γ sampled from the family of point functions
when considering Algorithm 2. For notational simplicity, we
“expand” the N verification keys in Λ (each containing ℓ
subkeys) so as to make Λ consist of Nℓ verification keys.
We now construct an efficient algorithm B that solves the
discrete logarithm problem as follows. On input y := gx,
1: (α1,1, . . . , αN,(ℓ−1))←R ZN×(ℓ−1)

p .
2: Λ := (gα1,1 , . . . , gα1,ℓ , . . . , gαN,1 , . . . , gαN,(ℓ−1) , y).
3: Run AGetKey

(
1λ,Λ

)
and answer each GetKey(i) query

with (αi,1, . . . , αi,ℓ) for all i ̸= N . If A queries GetKey
on input N , then abort.

4: Obtain output ([f̂γ ], [π̂]) from A.
5: Recover f̂γ and (f̂ω, α̂, β̂) from [f̂γ ] and [π̂], respectively.
6: Output α̂.
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By the aggregation properties of our DPF-PACL construc-
tions and Lemma 1 and soundness of Algorithm 1 (Sec-
tion 4.4), it holds that α̂ is the discrete logarithm of y
whenever A succeeds in PKSOUNDNESSPACL,A,I(λ) with a
DPF fN and using the ℓth key in Λ for fN . The probability
that A outputs fN is 1

N and the probability A uses the ℓth
key for row N is 1

ℓ . Thus, B succeeds with probability at
least 1

Nℓδ(λ) which remains non-negligible, contradicting
the hardness of the discrete logarithm problem.

Privacy. We construct an efficient simulator S for the view
of any subset of at most t−1 (possibly malicious) verifiers.
Let S ′ be the simulator in the proof of Theorem 3. On input
(1λ, I, {τ∗i | i ∈ I}), S proceeds as follows:
1: J := {1, . . . , s} \ I .
2: parse τ∗i = (τ̂

(0)
i , τ̂

(1)
i ) for all i ∈ I .

3: ([0]1, . . . , [0]s)← Share(Zp,t,s)(0).
4: ([z′]1, . . . , [z

′]s)← Share(Zp,t,s)(0).
5: (κ′

1, . . . , κ
′
s)← DPF.Gen(1λ, P1).

6: view← S ′(1λ, I, {τ̂ (0)i | i ∈ I}).
7: parse view =

{(
[π′]i, τ

(0)
i

)
| i ∈ I

}
∪
{
τ
(0)
j | j ∈ J

}
.

8: [π]i := ([z′]i, [π
′]i, κ

′
i).

9: τ
(1)
k := g[0]k for all k ∈ I ∪ J .

10: τk := (τ
(0)
k , τ

(1)
k ) for all k ∈ I ∪ J .

11: Output {([π]i, τi) | i ∈ I} ∪ {τj | j ∈ J}.

The distribution output by S matches the distribution of
any subset I ⊂ {1, . . . , s}, where |I| < t because: (1) any
subset of {[0]1, . . . , [0]s} of size < t is uniformly distributed
and therefore matches the distribution of any subset of
{[α]1, . . . , [α]s} of size < t in the real view, (2) [π′]i is guar-
anteed to be computationally indistinguishable by the proof
of Theorem 3, (3) the DPF key for point function Pω (in the
real view) is computationally indistinguishable to κ′

i corre-
sponding to point function P1 by the privacy of FSS (Def-
inition 2.2), and (4) the audit tokens are (computationally-
hiding) multiplicative secret shares of (1G, 1G) in the real
view and uniformly random multiplicative secret shares in
the output of S. An efficient distinguisher for (4) would also
contradict the privacy property of FSS.

Efficiency. Using the “FSS tensoring” [8] optimization (see
Section 4.1.2), the size of each proof share is O(λ + sℓ)
where sℓ is the size of a DPF key encoding a point function
with range {1, . . . , ℓ}.

C.3. Security of SPoSS

Proposition 1. The SPoSS construction in Algorithm 3
satisfies the correctness, argument-of-knowledge, and zero-
knowledge properties (Definition 5.1) required of a secret-
shared non-interactive proof system [4].

Proof of Proposition 1. We prove each property in turn:
completeness, argument-of-knowledge, and zero-knowledge.

Completeness. We show that if the prover is honest, then
Verify outputs yes. In Algorithm 3, Verify outputs yes if and
only if wA + wB = 0 and r̂ = r, d̂ = d, and ê = e. The
equality of r̂ = r, d̂ = d, and ê = e follows by inspection.
To see why it holds that wA + wB = 0, observe that

wA + wB = vA − ryA + vB − ryB

= v − ry

= 2(
de

2
) + ea+ db+ (cA + cB)− ry

= (rŷA − a)

d

(ŷB − b)

e

+ea+ db+ c− ry

= rŷ − a(ŷB) + a(ŷB)− ry

= r(ŷ − y) = 0 by assumption that ŷ = gx = y.

Argument-of-knowledge. We construct an efficient extrac-
tor E that recovers the discrete logarithm of y from a proof
[π] output by a possible malicious prover P∗. E proceeds
as follows:
1: Run P∗(y) to obtain as output (πA, πB) where

πA = (A, [x]A, a, [c]A, r, d, e, zA)

πB = (B, [x]B , b, [c]B , r, d, e, zB).

2: Output x = [x]A + [x]B .
If (πA, πB) is a valid SPoSS proof valid, then wA+wB = 0.
In turn, we have that rŷ− (rŷA)b−a(ŷB)+ab+ ea+db−
ry+c = 0 for some randomness r (see completeness proof).
The malicious prover P∗ can choose arbitrary a, b, c. As
such, we have that c = ab+∆ for some ∆ [12], which yields
rŷ−(rŷA)b−a(ŷB)+2ab+ea+db−ry+∆ which reduces
to r(ŷ − y) + ∆ = 0. Thus, either (1) the malicious prover
obtained r from H such that r(ŷ−y) = −∆ (which happens
with negligible probability given H is a random oracle) or
(2) ŷ = y and ∆ = 0 which implies that (ŷ − y) = 0 and
therefore g[x]A+[x]B = ŷ = y and so x = [x]A + [x]B is the
discrete logarithm, as required.

Zero-knowledge. To prove that SPoSS is zero-knowledge,
we construct an efficient simulator S that given i ∈ {A, B}
and τ∗i , outputs a statistically indistinguishable view to that
of verifier i (the simulator generalizes to the many-verifier
case). On input (1λ, {i}, {τ∗i }), S proceeds as follows:
1: j ∈ {A, B} \ {i}.
2: ([w]A, [w]B)← Share(Fp,2,2)(0).
3: [x]i ←R Zp−1.
4: [c]i, u, d, e←R Fp.
5: r̂i, r,←R Zp \ {0}.
6: zi ←R {0, 1}λ.
7: [π]i := ([x]i, u, [c]i, r, d, e, zi).
8: τA ← ([w]A, r̂i, r, d, d, e).
9: τB ← ([w]B , r − r̂i, r, e, d, e).

10: Output {([π]i, τi)} ∪ {τj}.

Analysis. Consider the distribution of [π]i in the real view of
the ith verifier. Observe that [π]i consists of (1) secret shares
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[x]i and [c]i, (2) masks zi and u (see optimization described
in Section 5.1.1), (3) Beaver multiplication openings d, e,
and (4) the distributed Fiat-Shamir randomness r. All these
values are generated by the prover. (1), (2) and (3) are
uniformly distributed. (4) is uniformly distributed due to the
mask zi [4]. As such, the distribution of [π]i, as output by
S, matches that of the real view of the ith verifier.

Now, consider τj , which consists of (1) a secret share
[w]i, (2) random oracle outputs r̂ and r (which are identical
when the prover is honest and distributed uniformly due
to the mask zj) and (3) Beaver multiplication openings f
(computed by verifier j and d, e given by the prover). (1)
and (3) are uniformly distributed due to [c]j being uniform
share and the mask uj . Moreover, f is either d or e and thus
provides no new information. (2) reveals no new information
because r̂ = r and r is given to all verifiers. We conclude
that the output distribution of S is distributed identically to
the view of verifier i in Algorithm 3, which concludes the
proof of zero-knowledge.

Appendix D.
Beaver’s Protocol

We provide a brief overview of Beaver’s [2] approach to
multiplication of secret shares as adapted by Corrigan-Gibbs
and Boneh [12]. We focus on the setting with two parties;
see [12] for a more general exposition. Given two parties
holding additive shares [x] and [y], encoding field elements
x and y, the parties must securely compute shares of [xy],
encoding the value xy ∈ F. A Beaver triple consists of
additive shares of ([a], [b], [c]) such that a and b are random
field elements and c := ab ∈ F. If the parties are given
shares of a Beaver triple, then the parties can compute a
secret share encoding the product two secret shares x and
y as follows. Each party locally computes:

[d]← [x]− [a] and [e]← [y]− [b],

and broadcasts its shares of d and e. The parties recover d
and e and locally compute: [xy] := d[b] + e[a] + [c] + de

2 .
This works because

d[b] = (x− a)[b] = [xb− ab],

e[a] = (y − b)[a] = [ya− ab],

de

2
=

xy − xb− ay + ab

2

(de2 is a 2-out-of-2 “share” of de = xy− xb− ay+ ab) and
so we get that:

d[b]+e[a] +
de

2
+ [c] =

= [xb− ab] + [ya− ab] + [xy − xb− ay + ab] + [c]

= [xb− ab+ ya− ab+ xy − xb− ay + ab+ c]

= [xy − ab+ c]

= [xy].

As such, Beaver’s technique reduces the rounds of com-
munication required to compute a multiplication over secret
shares down to one round [2].

Appendix E.
Naive SPoSS using SNIPs

Here, we estimate the overhead of naively applying a
SNIP for verifying a Schnorr proof over secret shares. Ver-
ification in Schnorr requires computing an exponentiation
in G. This translates to an exponentiation with a secret-
shared exponent in our case. Using the textbook approach
to modular exponentiation (e.g., repeated squaring) requires
one multiplication per bit of the group order. When G = Z∗

p

we have log p ≈ 3072 for security. We let λ := ⌈log p⌉. The
SNIP proof requires sending one Beaver triple (3λ bits per
verifier) and two elements of Zp per multiplication gate in
the circuit (the proof consists of a degree-2M polynomial
interpolating the multiplication gates). We now describe the
arithmetic circuit computing an exponentiation. We note that
the prover can secret-share the bit decomposed exponent as
part of the proof. In this case, the verifiers only need to
check that the secret shares encode a binary number and
then apply the group operation (multiplication in Zp) λ
times to computed the repeated squaring circuit. First, this
requires the verifiers to check that each secret-shared bit ai
for i ∈ {1, . . . , λ} is either 0 or 1. The arithmetic circuit
computing this check is defined as C(ai) = 1 + a2i − ai.
Therefore, the arithmetic circuit for checking the validity
of the binary decomposition requires λ multiplication gates
and makes the SNIP proof consist of 2λ elements of Zp.
The total size, in bits, is therefore 2λ2.

Second, the verifiers much check the repeated squaring
circuit, which requires computing the group operation (one
multiplication in Zp) λ times. This makes the SNIP proof
consist of 2λ elements of Zp. The total size of the repeated
squaring proof, in bits, is therefore 2λ2 as well.

Combined, the total proof size is:

(3 · 3072)
Beaver triple

+2 · (3072)2

binary check

+ 2 · (3072)2

repeated squaring

bits

= (9216) + 2 · (3072)2 + 2 · (3072)2 bits
≈ 4.7 MB.

Note that using an elliptic curve instead of Z∗
p (which

would allow us to work over a field of roughly order
p ≈ 2256 instead of p ≈ 23072) does not improve the
situation. While the proof size for the validity of the binary
decomposition (checking that C(ai) = 1, for all i) would
be roughly 12× smaller, these savings are negated by the
complexity of the elliptic curve group operation, which
requires multiple field multiplications to compute the group
operation [37, 38]. The advantage of working with Z∗

p is
that we only require one multiplication in Zp to apply the
group operation.
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