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Abstract—In this work, we carry out the first, in-depth, privacy
analysis of Decentralized Learning—a collaborative machine
learning framework aimed at addressing the main limitations
of federated learning. We introduce a suite of novel attacks
for both passive and active decentralized adversaries. We
demonstrate that, contrary to what is claimed by decentralized
learning proposers, decentralized learning does not offer any
security advantage over federated learning. Rather, it increases
the attack surface enabling any user in the system to perform
privacy attacks such as gradient inversion, and even gain full
control over honest users’ local model. We also show that,
given the state of the art in protections, privacy-preserving
configurations of decentralized learning require fully connected
networks, losing any practical advantage over the federated
setup and therefore completely defeating the objective of the
decentralized approach.

Index Terms—Collaborative Machine Learning, Privacy at-
tacks, Peer-to-Peer systems

1. Introduction

Collaborative machine learning is gaining traction as
a way to train machine learning models while respecting
the privacy of users’ local training dataset [40]. There are
two main approaches to collaborative machine learning:
federated learning [40] and decentralized learning [36].

In federated learning, the iterative learning process is
orchestrated by a central parameter server. This server in-
termediates communication in-between users and maintains
the global state of the system. Such central component can
become a communication bottleneck as the number of users
grows, and, due to its full control on the learning process,
can perform a number of security and privacy attacks on
users [3], [15], [50], [64], [16], [79].

Decentralized machine learning, also known as fully-
decentralized machine learning, peer-to-peer machine learn-
ing, or gossip learning, aims at addressing these issues by
eliminating the central server. Instead, the learning takes
place via peer-to-peer communication, see Figure 1. Propo-
nents of decentralized learning argue that decentralization:
(a) reduces bandwidth consumption, (b) provides users with
control on who they communicate with, and (c) increases

privacy of users in the system by eliminating the central
server. A large body of theoretical studies, empirical evalu-
ations, and model extensions attest to (a) and (b) [7], [23],
[25], [30], [31], [32], [34], [35], [38], [49], [51], [52], [61],
[36], [66], [72], [73], [62], [20]. However, these works do
not assess (c). Either they state that decentralized learning
offers a higher level of privacy compared to the centralized
approach without any evidence [7], [61], [20], [39], [58],
or simply do not provide any privacy argument [25], [32],
[34], [35], [36], [66], [72], [62], [11].

In this work, we thoroughly evaluate the privacy offered
by decentralized learning, against both passive and active
adversaries. We propose novel attacks that demonstrate that
in a decentralized setting: (1) A passive adversarial user
can successfully (i) infer membership of samples with better
accuracy than in the federated setting and (ii) perform
reconstruction attacks on the training set of arbitrary honest
users. (2) An active adversarial user can (i) influence the
update process of honest users in arbitrary ways and (ii)
and perform effective privacy attacks such active gradient
inversion [64], [3].

We show that these attacks are possible because de-
centralization increases the inference power of users, as
well as their influence on other users’ status. This leads to
adversarial users in decentralized learning becoming as
powerful as the parameter server in federated learning.

We study the effectiveness of mitigation techniques
against our attacks. Our findings are two-fold. We first
show that the potential protections against our attacks are
in conflict: trying to eliminate one leakage factor augments
another, leaving little space to eventually develop truly
privacy-preserving decentralized learning. Second, we show
that, while it is possible to reduce the attack surface result-
ing from decentralization, e.g., by changing the underlying
topology and using expensive aggregation techniques, the
privacy provided by decentralized learning will always be
less (or equal at best) than the one provided by the federated
counterpart. This invalidates claim (c). Moreover, achieving
protection comparable to federated learning comes at a huge
cost in efficiency that destroys any remaining advantage of
decentralization, invalidating claims (a) and (b).

In summary, in contrast to common belief, in collab-
orative learning decentralization does not increase privacy.
Instead, it inherently boosts the capabilities of privacy at-
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Figure 1: Schematic representation of the decentralized
learning and federated learning protocols. “PS” stands for
Parameter Server.

tackers and thus, decentralized learning tends to degrade
users’ privacy compared to the federated setting. This dis-
advantage cannot be overcome by existing mitigations with-
out sacrificing the gains of decentralization over federated
learning.

Our work makes the following contributions:
• We provide the first in-depth privacy evaluation of de-
centralized learning, in which users exchange updates in a
peer-to-peer fashion. We characterize the key factors that
contribute to privacy leakage within the protocol. We explore
how these elements interact with each other to comprehend
their effects on the privacy of decentralized users.
• We introduce a suite of novel privacy attacks designed
specifically for the decentralized setting, covering both the
passive and active security models. Our attacks demonstrate
that decentralized users can reach the same adversarial
capabilities of a parameter server in federated learning.
• We show that the capabilities that decentralization grants
to adversaries results in a degradation of users’ privacy
compared to federated learning. Moreover, we show that
no existing protection can bridge this privacy gap without
eliminating the advantages of decentralization.

2. Preliminaries and Setup

In this section, we provide the necessary background
on decentralize learning, we introduce the notation used in
the paper, and we define our evaluation setup. We start in
Section 2.1 by covering the Decentralized and Federated
Learning protocols. In Section 2.2, we formalize the privacy
attacks upon which we build our analysis and comparison.

2.1. Collaborative Machine Learning

We define Collaborative Machine Learning (CML) as
the class of learning algorithms that enable a set V of n
distributed users to train a shared model f defined by a
set of parameters Θ. Each client v ∈ V participates to
the protocol with a local training dataset Xv. The local
training sets must be kept private during the training. Thus,
not only the training data cannot be shared directly, but the
parties involved in the CML training must not be able to
learn anything about each other’s training set from their
interactions, besides the information obtainable from the

final model. Any additional information that an adversary
can learn from observing or participating in the collaborative
training constitutes a privacy leakage.

In CML, the model f is typically trained using a
distributed version of Stochastic Gradient Descent (SGD),
where users iteratively propagate model updates. These up-
dates are intermediate outputs of each user’s local optimiza-
tion process such as gradients or updated parameters [40],
[36], obtained after one (or more) local SGD step computed
using their training set. A CML protocol defines the way in
which model updates are shared among the parties.

2.1.1. Decentralized Learning. In Decentralized Learning
(DL) [36], users connect to each other in a peer-to-peer
fashion. During the protocol, every user v ∈ V connects
with a non-empty set of other users which we call neighbors,
N(v), where v ∈ N(v). This set is typically small compared
to the set of all users, and can either be fixed at the beginning
of the execution or dynamically change across iterations.
We model the communication links shared among users as
an undirected graph G={V,∪v∈V N(v)}, where users are
nodes and communication links are edges (see Figure 1a).
Hereafter, we refer to this graph as communication topology
or topology for short.

During the DL training, users share model updates only
with their set of neighbors N(v). Through a gossip-like
propagation mechanism, DL protocols ensure that users indi-
rectly receive and benefit from the model updates produced
by non-neighbor users.

In contrast to federated learning (see below) where con-
nections are fixed and proxied by a server, DL protocols
tend to not constrain the users’ choice of neighbors. This
flexibility is claimed as an advantage of DL as it enables
users to cluster according to arbitrary criteria, e.g., data
similarity or computational capabilities [1], [75]. In the
general case, therefore, users participating in DL protocols
can arbitrarily pick their neighbor nodes and autonomously
define the underlying topology G. It is worth mentioning
that a significant body of research has been dedicated to
examining the effects of fixed and pre-defined topologies
in decentralized learning. However, these studies primarily
focus on theoretical aspects and do not provide insights into

Data: Initial parameters: Θ0
v , local training set: Xv

1 for t ∈ [0, 1, . . . ] do
/* Local optimization step */

2 ξtv ∼ Xv ;

3 Θ
t+ 1

2
v =Θt

v − η∇Θt
v

(ξtv,Θ
t
v);

/* Communication with neighbors */
4 for u ∈ N(v)/{v} do

5 send Θ
t+ 1

2
v to u;

6 receive Θ
t+ 1

2
u from u;

7 end
/* Model updates aggregation */

8 Θt+1
v = 1

|N(v)|
Σ

u∈N(v)
Θ

t+ 1
2

u ;

9 end
Algorithm 1: Training protocol for every decentralized
user v ∈ V .
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the practical challenges of enforcing topological constraints
during the deployment of the system.

In this paper, we target our privacy analysis on the
D-PSGD protocol proposed by Lian et al. [36]. This protocol
provides the same core functionality and properties as the
bulk of DL protocols in the literature [1], [14], [25], [30],
[34], [35], [38], [55], [66], [70], [74]. Thus, it is repre-
sentative of the decentralized learning state-of-the-art. Its
similarity to FedAVG (see Section 2.1.2) permits a direct
comparison between decentralized and federated learning.

In D-PSGD, summarized in Algorithm 1, n users start
with common model parameters Θ0 and iterate over the
following three steps until a stop condition is met:

1) Local training: Users sample a mini-batch ξ from
their (private) local training set and apply gradient
descent on their local view of the model parameters.
This results in an intermediate model Θ

t+ 1
2

v that we
refer to as model update.

2) Communication: Users share their model updates
Θ
t+ 1

2
v with their neighbors, and receive their neigh-

bors’ updates (line 4 in Algorithm 1).
3) Aggregation: Users compute their new model by

aggregating all their neighbor’s updates with their
local one. The aggregation is the average of the
model parameters.1

In contrast to the federated setting, at each round in
DL, users’ local set of parameters can be arbitrar-
ily different. After a suitable number of communication
rounds, users find consensus on a global state; that is, users’
local parameters become equal. In this paper, we measure
how close users are from reaching consensus using the
consensus distance C. This distance is computed as the
pairwise discrepancy among local parameters at time t:

C(t) =

∑
v∈V

∑
u∈V/{v}‖Θt

v −Θt
u‖2

|V |2−|V |
. (1)

Intuitively, large values of C indicate that there is a large dis-
crepancy among users’ local parameters, whereas small val-
ues indicate that users have similar local models. We say that
the system has found consensus when C approaches zero.

The D-PSGD protocol does not specify how users select
their neighbors nor how they agree on a training setup
(including initial parameters of the local models Θ0). Fol-
lowing the most relevant works in decentralized learning [2],
[12], [14], [22], [30], [61], [36], [70], we assume those
decisions happened during a honest setup and focus on
the fixed communication graph setting; i.e., the graph G
does not change over time and users do not drop-off in-
between rounds. Nevertheless, our attacks and the result
of our analysis apply also to cases in which the topology
changes dynamically and users initialization is arbitrary.

We consider three communication topologies:

1. We assume model updates to have equal weights, though, in general,
the aggregation of line 8 can be expressed via a weighted sum.

Torus: A regular topology where every user is connected
with four other nodes. This topology represents the best-
case scenario for decentralized learning given its good mix-
ing properties and higher spectral gap that allow for fast
convergence and efficient communication [30]. We consider
torus graphs with different number of nodes and we refer
to them as torus-n, where n is the number of nodes.

Random regular: A regular topology in which all nodes
have d random neighbors. Random regular topologies enable
us to analyze the impact of the density of connections (d)
on the privacy of DL. We refer to these graphs as regular-
(n, d), where n is the number of nodes and d the density.

Davis Southern women social network: An unstructured
topology which represents a more realistic case, e.g., users
communicating in a cross-device setting, used by Koloskova
et al [30]. This social network has 32 users with diverse
degree. The average degree is 5.74. We refer to this topology
as social-32.

We provide additional results for different topologies
and configurations in Appendix E.

2.1.2. Federated Learning. In Federated Learning
(FL) [40] users perform the distributed training process
with the support of a central parameter server that
aggregates and synchronizes model updates among users
(Figure 1b). At each iteration, users download the global
model from the server and locally apply one or more local
training steps. Users send their model updates back to the
server. The server aggregates these updates and applies the
result to the global parameters, completing a training round.

Compared to DL, there is no direct communication
among users in FL. All the communication takes place
through the server. Following our notation, we write that ev-
ery federated user v has neighbors N(v)={PS}, where PS
stands for parameter server. As main consequence, users, by
design, do not have access to each other’s model updates
during the training; they can only access the aggregated
model update (the average of users’ model updates) sent
to them by the parameter server. Another consequence of
this design is that, at each round, users always share the
same set of local parameters for the model f . We refer to
those parameters as the global parameters.

In our evaluation, we take the Federated Averaging
protocol FedAVG [40] as representative of FL algorithms.
Motivated by the small amount of users assumed in the
decentralized learning literature (n < 100) [36], [30], [34],
[35], [49], [52], [61], we evaluate a cross-silo federated set-
ting [28], where all users participate in each training round.
This setting represents a lower bound for privacy compared
to a cross-device federated setting in which only a subset of
users participate in every round. We also force users’ local
training step to be computed on a single, random batch per
round to match D-PSGD. Indeed, under this configuration,
FedAVG becomes functionally equivalent to D-PSGD where
the topology is fully connected (i.e., all users are connected
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to each other). This configuration enables a fair comparison
between decentralized and federated approaches.

2.1.3. Datasets and architecture. In our experiments, we
use the CIFAR-10, CIFAR-100 [33], and STL10 [8] datasets.
As in [30], we consider the users’ local training sets to be
uniformly distributed among users; i.e., every user gets an
uniformly sampled (without replacement) fraction 1

n of the
training set (where n=|V | is the number of users in the
system). We use a ResNet20 [21] architecture, with the same
hyper-parameters for both the decentralized and federated
settings. For each comparison we also consider the same
number of users, and the same local training set partition for
the decentralized and federated settings. We provide more
details about our setup in Appendix C.

2.2. Privacy attacks

We evaluate the privacy offered by decentralized
learning using two attacks: membership inference, in which
an adversary learns whether a target sample is in the training
set of a user; and gradient inversion in which the adversary
can reconstruct samples in the training set of a user.

2.2.1. Membership Inference Attacks. In a Membership
Inference Attack (MIA) [56], the adversary tries to infer
whether a sample is part, or not, of the training dataset.
To make their guess, the adversary can use all information
available to them: they can look at the model updates
or query the trained model. Vulnerability (or equivalently
robustness) to MIA is a good privacy beacon, as membership
inference connects to almost all other privacy attacks, e.g.,
attribute inference attacks can be reduced to MIA [69], [77].
As a result, capturing privacy through MIA is a common
choice in the CML literature [57], [69], [37], [56], [68], [5],
[43], [42].

In our evaluation, we measure a learning protocol’s
vulnerability to MIA through the success of a simple metric-
based attack. Formally, given a set of model parameters Θ,
a local training set X , and a test set O s.t. X ∩O = ∅ and
|X|=|O|=m, we estimate membership vulnerability as the
accuracy of the membership inference attack over the sets
X and O:

M(Θ, X,O) =
1

2 ·m

m−1∑
i=0

[MIAΘ(Xi) + ¬MIAΘ(Oi)]

(2)
with MIAΘ(x) = ξ(fθ(x)) < ρ, (3)

where ξ is the “label-informed” entropy [57] and ρ is the
optimal threshold. For convenience, when presenting our
results we subtract the random guessing baseline (0.5) from
the accuracy so that the results we report are centered in 0.
We choose to rely on this simple attack because it allows us
to quantify the difference in membership vulnerability be-
tween DL and FL protocols at a low computational cost (see
Section 4). It would be straightforward to run our evaluation
with more complex and effective inference attacks including

white-box attacks [43], [5], [68]. This would likely increase
the vulnerability estimations in DL and FL, but we do not
expect that it would significantly affect the difference in
between the estimation in each setting.

2.2.2. Gradient inversion. Gradient inversion attacks ex-
ploit the observation that the gradient produced by one
(or more) SGD steps is just a smooth function of the
training data used to compute it. Thus, an attacker capable
of accessing users’ model updates during a CML protocol
may be able to invert them and fully or partially recover
the underlying users’ private data [16], [26], [71], [79]. The
quality of this inversion process is heavily dependent on the
configuration used to compute the gradient, the number of
trainable parameters of the network and batch size being the
most impactful factors.

We adapt two instances of gradient inversion (origi-
nally designed for FL) to the DL framework: the passive
optimization-based approach proposed by Geiping et al. [16]
and the active attack proposed by Boenisch et al. [3]. Our
setup seamlessly extends to other attacks [64].

3. The generalization and knowledge trade-off
in Decentralized Learning

In this section, we characterize two main byproducts
resulting from decentralizing FL. We refer to them as:
local generalization and adversarial system knowledge. We
demonstrate that these properties alone prevent honest users’
from reaching any meaningful level of privacy in DL.

3.1. Local generalization

Generalization is pivotal to protect the privacy of the
training set against attacks based on the model behavior.
While well-generalized models may still leak information
about the underlying training set [69], [37], it has been
demonstrated that poor generalization is the root cause of
the privacy risk [56].

Informally, good generalization in CML is achieved
when the number of users participating in the learning
protocol is maximized: the more users involved in training,
the less information about a single individual can be inferred
from model updates shared during the protocol.

FL maximizes generalization in this respect: the cen-
tral server ensures that every state of the global model is
computed using all the n available model updates, and,
importantly, that every model update contributes equally to
this computation.

In the decentralized setting, this is not the case. While,
as in FL, users’ models are a function of the models of all
other users in the system; in DL every user has a different
“personalized” local model to which not all users contribute
equally. The contribution of user ui on user uj’s local
parameters depends on the distance between those users in
the communication topology. The further these users are, the
weaker is the influence of ui’s updates on uj’s model. The
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Figure 2: Average loss of u1’s local model computed on
every local training set.

strength of the influence decays exponentially with the num-
ber of intermediary users, as the updates of ui get blended
with those of intermediary users’ models before arriving
to uj due to the gossip-based propagation. We illustrate
this phenomenon with a chain-like topology represented in
Figure 2 (top). In this topology, u1 (the first user in the
chain) only has one direct neighbor u2 and the rest of the
users in the system are several hops away. Here, user u1

only receives the updates produced by u5 after they have
been “consumed” (i.e., aggregated with other received model
updates at the end of a round) and propagated by each inter-
mediate user in the chain within the following model update.
When u5’s update reaches u1, the strength of its signal is
reduced by a factor 1

|N(u4)|
· 1

|N(u3)|
· 1

|N(u2)|
· 1

|N(u1)|
= 1

54

due to the aggregation rule (line 8 Algorithm 1). There is
less information about u5’s data compared to model updates
produced by closer users (e.g. 1

2 for u2). In contrast, in
FL every pair of users is virtually separated by a single
hop: the server. This ensures that every user’s contribution
is weighted equally in the global model.

This slow and uneven propagation of updates results in
the local model of decentralized users being dominated by
their own training set and the training sets of their immediate
neighbors, yielding poor generalization. We illustrate this
effect in Figure 2 (bottom), where we report the average loss
when applying u1’s local model on the local training sets
of other users. The loss increases with the distance between
u1 and the owner of the local training set. We call this
phenomenon “local generalization”, in contrast to “global
generalization” offered by federated learning.

After a suitable number of iterations, information will be
uniformly propagated in the system and every user’s local
model will be the same: consensus is met and generalization
is maximized. For every round before that, all intermediate
user’s local models and model updates store more informa-
tion about their private local training sets than the updates of
the other users in the system due to the local generalization
phenomenon. As we empirically demonstrate later in the
paper, the ability to access these poorly generalized model
updates gives a substantial advantage to privacy adversaries
compared to what can be learned by just accessing a global
(aggregated) model as in FL.

This advantage can only be reduced by limiting the
effect of local generalization; that is, by reducing the average
distance between each pair of users in the communication

graph, or, more pragmatically, increasing the number of
neighbors of each node. In the extreme, when all nodes
are connected to each other, local effects disappear and the
protocol achieves global generalization as in FL.

3.2. System knowledge

Dense topologies, as those needed to limit the effect
of local generalization, have negative implications on per-
formance and on privacy. On the performance side, dense
topologies increase the communication overhead of users,
defeating one of the objectives of decentralized protocols.
On the privacy side, dense topologies increase adversaries’
knowledge of the state of other users in the system, provid-
ing them with more information to perform privacy attacks.

In FL, users can only observe the aggregated result
provided by the server, i.e., the global set of parameters.
In contrast, in DL, decentralized users receive the model
updates of each of their neighbors (Figure 1a). Each of
these updates captures a view of the system, as it contains
information coming from a different subset of nodes in the
graph (the neighbors of the neighbors). We call “system
knowledge” the ability that a user of DL has to access
multiple individual model updates per round. The system
knowledge gained from having simultaneous access to
disjoint views of the system grants an additional advantage
to decentralized attackers. As we demonstrate in the next
sections, they can combine the model updates they receive
and use them to isolate individual contributions of other
users, effectively reducing generalization and its positive
effect on users’ privacy. More critically, we show that
an attacker with enough system knowledge can reach
the same adversarial capabilities as a parameter server in
FL. This effectively defeats another of the objectives of
decentralizing learning.

3.3. Take aways

Local generalization and system knowledge are in direct
opposition. Increasing the number of users’ neighbors as a
way to reduce the adversary’s advantage coming from local
generalization inherently increases the adversary’s advan-
tage coming from system knowledge. Conversely, topologies
that limit decentralized adversary’s system knowledge to
prevent them from isolating individual users’ contribution
inherently increase local generalization, increasing the ad-
versary’s advantage.

In the following sections, we quantify the privacy loss
stemming from the adversary exploiting this conflict. Our
study leads to the conclusion that the intrinsic trade-
off between local generalization and system knowledge
fundamentally limits the privacy achievable by users in
decentralized learning.

4. Privacy Against Passive Adversaries
To prove the argument of Section 3, we start by compar-

ing the privacy offered by the DL approach against FL in the
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semi-honest model, i.e., when there is a passive adversary
in the system. We start by formalizing our threat model.
Passive adversary threat model. A first type of adversaries
in CML are passive adversaries. Such adversaries legiti-
mately follow the steps of the CML protocol yet will at-
tempt to learn all possible information from received model
updates. Their goal is to infer information about the private
training sets of one or more honest users in the system,
which we refer to as victims or targets interchangeably.
Passive adversaries do not forge adversarial model updates
neither by changing the loss function of the model nor by
tampering with their local training set [60].

In this paper, we assume a weak passive adversary who
has no information about the system (e.g., they know their
neighbors but not the rest of the communication topology).
DL passive adversary. Any user involved in a decentralized
protocol can be a passive adversary, as they observe the
model updates of their neighbors. As the communication
topology is always connected in the DL setup [30], [34],
[35], every user has at least one neighbor. Thus, DL is
required to guarantee privacy against adversarial neighbors
as a cardinal property of the protocol. Note that the only
scenario that allows decentralized users to rule out adver-
sarial neighbors is when trust is introduced in system; that
is, users assume that all their neighbors are fully honest.
Current decentralized learning frameworks do not impose
any limitation on user connectivity. Thus, an adversarial user
can connect to a chosen victim to become their adversarial
neighbor (see Section 6.3). Hereafter, we denote a passive
adversarial user in DL as ADL.
FL passive adversary. In FL, the server has similar capabil-
ities to an adversarial neighbor in DL, i.e., it receives and
sends (an aggregation of) model updates. Federated users
can only observe the global model sent by the server at the
end of each round. Hereafter, we denote a passive adversarial
user in FL as AFL

user, and a passive adversarial parameter
server as AFL

server.

4.1. Decentralized user vs federated user (passive)

We first compare the privacy that honest users can enjoy
against an adversarial decentralized user (ADL) and an
adversarial federated user (AFL

user). Our results demonstrate
that decentralization provides an intrinsic advantage to pas-
sive adversarial users compared to the federated setting.

4.1.1. Inference on model updates. As part of any CML
protocol, users share the model updates computed on their
local data. A passive adversary can use them as parameters
for a model fv and run arbitrary privacy attacks on the
victim(s) who generated the updates.

In the DL setting, at every round t of Algorithm 1, the
attacker ADL receives the model updates Θ

t+ 1
2

v from each
of their neighbors v ∈ N(ADL). In the FL setting, AFL

user
has only access to the global state of the model provided
by the parameter server at the start of the round, which
aggregates the updates of all the users in the system.

In Figure 3, we compare the vulnerability of victims
against membership inference attacks in DL and FL. We plot
the evolution of the vulnerability of the adversary’s neigh-
bors to membership inference attacks as the training process
progresses. To capture vulnerability, y-axis represents the
average MIA accuracy across all the attacker’s victims v.
From Eq 2, this is computed as:

1

m

∑
v

M(Θ
t+ 1

2
v , Xv,O), (4)

where A is either ADL (red line) or AFL
user (blue line), and

the set of victims is either all users in FL (and m = n), or
the neighbors of A in DL (and m = |N(A)/A|). The figure
also reports the progression of the consensus distance (Eq. 1)
in DL (gray dotted line).

The x-axis aims at capturing the training progression. A
natural choice for this axis would be to use the number of
protocol iterations t. However, DL and FL do not converge
at the same speed. Therefore, DL and FL models at the
same round t may be arbitrarily different. To address this
limitation, we choose to compare models when they have
the same generalization error gerr(t) (i.e., same level of
overfitting). In DL, we compute the average generalization
error of users’ local parameters at iteration t as:

gerr(t) = acc(X,Θt)− acc(O,Θt), (5)

where, Θt= 1
|V |
∑
v∈V Θt

v is the average state of the system,
X=

⋃
v∈V Xv is the union of all the local training sets, O

is a test set completely disjointed from X , and acc is the
accuracy function. In FL, the average state of the system is
simply the global model as ∀v∈V Θt=Θt

v.
In DL, the vulnerability is a function of both the gen-

eralization error and the consensus distance. Larger gen-
eralization error denotes overfitting, which is known to
result in information leakage about the training set [56].
Larger consensus distance indicates that information is still
not uniformly propagated in the system, thus updates carry
significantly more information about the local training set
than sets from other users. This is what we referred to as
local generalization in Section 3. We observe that privacy
leakage due to local generalization may happen even when
the generalization error is close to 0 (leftmost parts of
the plots). That is, even when a decentralized system
has perfect generalization, decentralized model updates
still contain individualized information that can be used
to infer about training data. In FL, as expected, when
assessing the privacy risk at a generalization error level that
is near to zero, the privacy risk also approaches zero.

When the DL system reaches consensus (rightmost part
of the plots), the vulnerability in DL and FL approaches
the same value. This is because when consensus is reached
local generalization disappears: decentralized users share the
same global model (as in FL). Thus, the victim’s model
updates do not carry information particular to their own
training sets.

The harmful effect of local generalization on privacy can
be reduced by increasing the density of the communication
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(a) torus-36 & CIFAR-10
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(b) social-32 & CIFAR-10

0.00 0.01 0.02 0.03 0.04
Generalization error

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

No
rm

al
ize

d 
M

IA
 a

cc
ur

ac
y 

(M
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Co
ns

en
su

s d
ist

an
ce

 (C
)

1e 6

(c) torus-36 & CIFAR-100
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Figure 3: Average MIA vulnerability on four different communication topologies and datasets (DL in red and purple, and
FL in blue). For each combination of topology and dataset, we report the average results over 16 runs. In each run, we select
a different adversarial user uniformly at random in the system. The halo around the curves reports the standard deviation
over the various runs. The gray dotted line represents the consensus distance in DL, computed using Eq. 1.
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Figure 4: Average MIA vulnerability of model updates
generated by decentralized users on regular graphs with
increasing density (CIFAR-100).

topology (see Section 3). We confirm this in Figure 4,
where we show that increasing the density in random regular
topologies (regular-(36, d) with d ∈ {3, 6, 12, 24}) reduces
the privacy harm.

4.1.2. Inference on functionally marginalized model
updates. In contrast to AFL

user, the decentralized adver-
sary ADL has access to multiple model updates produced by
different users (one per each of their neighbors). This system
knowledge can be used to further increase membership
vulnerability by combining model updates and using them
to isolate the local contribution to the update from honest
neighbors. To demonstrate this capability, we introduce a
novel attack that we call “functional marginalization”.

Functional marginalization exploits the fact that the local
model update Θt

v of user v can be divided into two core
components:

Θt
v ≈ Θ̊t

v + Θt
V/v, (6)

where Θ̊t
v represents the contribution to the update computed

with the local training set of the node v, and Θt
V/v captures

the contributions of all other nodes in the system.
With enough information about Θt

V/v, and because they
know Θt

v, the adversary can extract the marginalized con-
tribution Θ̊t

v from Eq 6. Exactly recovering the term Θt
V/v

is unfeasible. However, the adversary can compute a rough
approximation of this value for a victim v from the model
updates the adversary receives from other neighbors. The

adversary estimates Θt
V/v as the average of all parameters

they receive, excluding the victim’s:

Θt
V/v =

∑
u∈N(ADL)/v Θ

t+ 1
2

u

|N(ADL)|
. (7)

Then, by removing this approximation from the victim’s
model update, ADL isolates the victim’s contribution:

Θ̊t
v = |N(ADL)|·(Θt+ 1

2
v −Θt

V/v). (8)

This process can also be seen as reversing the aggregation
operation in line 8 in Algorithm 1 by pulling out the term
Θ
t+ 1

2
v from the averaged model Θt+1

v , using somewhat
incomplete information.

The recovered “functionally marginalized model” Θ̊t
v is

a function of the local training set of v only. Thus, the
adversary can use it to obtain better results than when
attacking directly Θ

t+ 1
2

v , which contains contributions from
other users. The difference between the red and purple lines
in Figure 3 captures this improvement. As can be seen in the
figure, the improvement is not consistent. This is because,
as showed in the previous section, membership vulnerability
is a function of the global generalization error and the
consensus distance. When the consensus distance is high
(leftmost part of the plots), ADL cannot compute an accu-
rate representation of the global functionality Θt

V/v. Thus,
the marginalized model Θ̊t

v may not be a good representation
of the victim’s local training set and the attack performs
worse than when performed directly on the received model.
When the consensus distance C decreases (rightmost part of
the plots), Θt

V/v becomes a good representation of the global
state, the marginalization (Eq. 8) becomes accurate, and
membership vulnerability abruptly increases. Finally, when
the consensus distance C approaches zero and all users have
the same view, and marginalization has no effect as there is
no victim’s contribution to be isolated. At that point, Eq. 8
results in Θ̊t

v=Θ
t+ 1

2
v and membership vulnerability is the

same as when the received model is attacked directly.
The results in Figure 3 hint that attacks on the received

model update or its functionally marginalized version are
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Figure 5: MIA vulnerability as a function of generalization
error and consensus distance for the received and marginal-
ized model. Setup: torus-36 on CIFAR-100.

complementary: the former succeeds when the consensus
distance is high, the latter succeeds when consensus distance
is low. In order to understand the conditions under which
attack is more powerful, we compare the two attacks in Fig-
ure 5. This figure represents the level of vulnerability (lighter
colors represent more vulnerable cases) depending on the
generalization error (x-axis) and the consensus distance (y-
axis). In both attacks, vulnerability is proportional to the
generalization error, but they behave differently depending
on the consensus distance. Attacking the received model
results in high vulnerability when the distance is large
(top center), while when attacking the marginalized model
vulnerability is maximized when the consensus distance is
low (bottom right). This means that the adversary can max-
imize their effectiveness by choosing the best attack after
evaluating the consensus distance on the received model
updates. As before, when the network reaches consensus
(i.e., C(t)=0 in the rightmost edge of the plots), the vulner-
ability is minimized as local datasets have the least influence
on the updates. In Appendix E.2, we present results obtained
on a larger number of users (64 and 128), along with addi-
tional topologies. Those show that increasing the number
of users magnifies the local generalization phenomenon,
which in turn amplifies the vulnerability of model updates.
In Appendix E.4, we present an extension of our evaluation
to a NLP task, yielding results that are consistent with those
in Figure 3.

It should be noted that the inference attacks discussed in
this section are stateless and can be executed in a single DL
round. Therefore, they can be directly applied to dynamic
topologies, where the attacker’s neighbors may vary during
the training process. Additionally, we highlight that the
introduced functional marginalization technique is general
and can be potentially extended to other CML frameworks.
For instance, it can be applied to most Personalized FL
frameworks, where users or the server [11], [76] have access
to multiple (personalized) versions of users’ models.

The results in this section provide empirical support to
our claims in Section 3.1; local generalization in DL is an
unavoidable source of leakage that does not exist in the FL
setup. Ultimately, this means that, for every non-complete
topology G (i.e., every topology that induces local gener-
alization), a passive decentralized adversary ADL would

always be able to infer more information about honest users
than an equivalent passive federated adversarial user AFL

user.
In the next section, we show that this claim holds also for
any complete topology.

4.2. Decentralized user vs federated server (pass.)

We now compare the adversarial capabilities of an
adversarial passive decentralized user ADL, against an
adversarial passive federated server AFL

server. Our results
demonstrate that an adversarial user in DL can have the
same adversarial capabilities as a parameter server in FL.

In FL, the adversary AFL
server is in a privileged posi-

tion to run privacy attacks. Unlike adversarial federated
users AFL

user, who only receive aggregate model updates,
the parameter server has access to user’s model updates
and the intermediate states of their local optimization pro-
cesses – pseudo-gradients for FedAVG. This position en-
ables AFL

server to perform powerful privacy attacks such
as accurate inference attacks on gradients [46] or gradient
inversion [16], [26], [48], [71], [78], [79].

To carry out a gradient inversion attack, an attacker A
needs two pieces of information: (1) the gradient ∇Θt

v
L(ξtv),

and (2) the parameters of the network Θt
v used to compute

such a gradient. These two components are, by design,
available to an adversarial parameter server in FL. However,
they are not directly accessible to an adversarial user in
DL ADL.

An attacker ADL in DL receives the following model
update Θ

t+ 1
2

v from their neighbor v:

Θ
t+ 1

2
v = Θt

v − η∇Θt
v
L(ξtv). (9)

To extract the gradient ∇Θt
v
L(ξtv) from this model update,

ADL needs to know Θt
v. In principle, the exact value Θt

v is
not available to the attacker as it is a function of the model
updates from v’s neighbors. In principle, this could render
gradient inversion attacks in DL unfeasible.

4.2.1. Gradient inversion attack in decentralized learn-
ing. We now show how the adversary ADL can estimate
the gradient ∇Θt

v
L(ξtv) in order to perform the gradient

inversion attack.
There are three ways in which ADL can perfectly re-

cover the individual gradient of their neighbors. The first
two are trivial cases in which Θt

v=Θt
ADL : the first training

iteration t=0, and when users ADL and v achieve consen-
sus (i.e., C(t) = 0). In both cases, the attacker can recover
the victim’s gradient by computing 1

η (Θ
t+ 1

2
v −Θt

ADL).
Gradient recovery at t=0 could be prevented by having

users choose different initial parameters Θ0, with the caveat
that this modification may impact the learning process. The
second case, however, cannot be avoided. Reaching consen-
sus is the goal of decentralized learning. Thus, eventually,
the attacker will have the opportunity to recover the gradient
and perform the inversion attack.
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Figure 6: ADL is able to access the gradient of the victim
node v because of its connection with the honest node u3.

Figure 7: Examples of reconstruction (red panels) obtained
via gradient inversion on the node v (see Figure 6) using [16]
for a batch size of size 16 on the CIFAR-10 dataset.

Gradient recovery from system knowledge. The third sit-
uation in which the adversary ADL can recover neighbors’
gradients is when the set of attacker’s neighbors N(ADL) is
a super-set of the victim’s neighbors set N(v). This situation,
providesADL with enough system knowledge to recover the
gradient regardless of the time step t.

In order to recover the gradient produced by v, an
attacker ADL needs to subtract the unknown set of param-
eters Θt

v from the received model update Θ
t+ 1

2
v . Recall that

the victim’s set of parameters Θt
v is defined as:

Θt
v =

1

|N(v)|
∑

u∈N(v)

Θ
t− 1

2
u , (10)

where, Θ
t− 1

2
u is the model broadcasted by the node u to all

its neighbors during the previous training iteration (t−1). If
the adversary has access to the updates of the neighbors of
the victim, they can use these neighbours updates at time t−
1 to reconstruct

∑
u∈N(v) Θ

t− 1
2

u , and use this to compute Θt
v.

Figure 6 illustrates this issue. The local model of the
victim v (in yellow) is:

Θt
v=

1

3
(Θ

t− 1
2

v + Θ
t− 1

2

ADL + Θ
t− 1

2
u3 ), (11)

where Θ
t− 1

2
u3 is a model update produced by another user

who is not under the control of the attacker (i.e., u3). If
the attacker ADL (in red) also has access to u3’s updates
(i.e., N(v) ⊂ N(ADL)), then they can recompute the local
state Θt

v as in Eq. 11 and recover the gradient signal from
v’s model updates as ∇Θt

v
=Θ

t− 1
2

v −Θt
v.

Once ADL has ∇Θt
v
, they can run an arbitrary inversion

attack. Figure 7 shows a sample of images reconstructed via
gradient inversion for the topology in Figure 6 obtained us-
ing the optimization-based method proposed in [16]. Given

the same underlying setup (e.g., same batch size), the result
of the inversion attack is equivalent to the one that would
be achieved by AFL

server. Note that this is not a targeted
attack and ADL can perform gradient recovery on all the
neighbors for which the condition is met simultaneously at
every given round.

The neighbors-discovery trick. A condition for ADL to be
able to perform the gradient recovery attack described above
is that they must know the exact set of neighbors of their
target v: N(v). We now show how, even if the attacker does
not know the global communication topology, they can learn
N(v) from the model updates whenever N(v) ⊆ N(ADL).

In a nutshell, the neighbors-discovery trick finds the
model updates of the previous round that explain the vic-
tim’s model update received at the current time step. More
formally, it searches for the set Q ⊆ N(ADL) such that
E(Q) = 0, where E is defined as:

E(Q) = Θ
t+ 1

2
v − (Θ̃Q + ∇̃Q) with (12)

Θ̃Q =
1

|Q|
∑
u∈Q

Θ
t− 1

2
u and ∇̃Q = Θ

t+ 1
2

v − Θ̃Q (13)

When Q=N(v), we have Θ̃Q+∇̃Q = Θ
t+ 1

2
v and the subtrac-

tion in Eq. 12 results in 0. When there is no Q ⊆ N(ADL)
s.t. E(Q)=0, the attacker learns that currently they are not
connected to all the victim’s neighbors. In Appendix B, we
empirically demonstrate the effectiveness of this discovery
trick. We note that Eq. 12 is linear and can be solved via
linear/dynamic programming. The chances of successfully
discovering the neighbors—and consequently the ability to
perform gradient inversion—is maximized when the adver-
sary has as many neighbors as possible.

It is worth noting that techniques like gradient recovery
and the neighbor discovery trick are effective even in a
dynamic communication topology setting, where users select
their neighbors on a round-by-round basis. The attacker only
needs to be connected to the victim for a minimum of two
consecutive rounds to execute such attacks.

Summing up, a passive adversarial user in decentral-
ized learning can be as powerful as a passive server in the
federated setup. As we show, it is the case for all victims v
such that N(v) ⊆ N(ADL). Since DL allows the adversary
to connect to users of their choice, hence to be connected
to all users, ADL eventually is as powerful as AFL

server:
just like an adversarial server, ADL can (1) observe the
model update of every user in the system and (2) isolate the
individual gradients of a user. It is also trivially true when
the DL topology is fully connected to begin with.

4.3. Take aways

In Section 4.1, we show that an adversarial decentralized
user can exploit the local generalization of any non-complete
topology to launch membership inference attacks. To limit
this leakage, the density of the communication topology
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must increase, up to the complete topology, where there
is no local generalization phenomenon anymore. Increasing
connectivity, however, is in conflict with the conclusions
of Section 4.2 which show that increasing connectivity
increases the system knowledge of the adversary. Giving
the adversary the ability to collect additional information
on the system, results in even more significant leakage, and
enables powerful attacks such as gradient inversion.

We conclude that there is no topology G for which
DL provides better, or even equal, honest user protection
against a passive adversary in the network than the one
federated users enjoy. In other words, the adversary ADL is
more powerful than AFL

user regardless of the underlying DL
setup. In addition, ADL can acquire the same adversarial
capabilities as AFL

server, as long as there are no constraints
on how users connect to each other in DL (or the topology
is complete). As consequence, while in FL there is at
most one powerful adversary: the server, in DL there may
be multiple powerful adversaries: any user with enough
connections. This means that contrary to what is claimed
by its proponents, DL does not reduce the capabilities of
adversaries. Rather the power of adversaries, and so the
privacy vulnerability of honest users, is multiplied.

5. Privacy Against Active Adversaries

In this section, we compare the privacy offered by the
DL approach against the FL alternative in the malicious
model, i.e., when there is an active adversary in the system.
As in Section 4, we start by formalizing our threat model.
Active adversary threat model. Active adversaries in CML
(eq. malicious) behave maliciously during the protocol ex-
ecution. In this paper, we instantiate such an adversary
by allowing the them to send arbitrary model updates to
their neighbors in addition to their passive capabilities. We
refer to an active adversarial user in DL as ĀDL, and to a
malicious user and a malicious parameter server in FL as
ĀFL

user and ĀFL
server, respectively.

5.1. Decentralized user vs federated user (active)

In CML, the effectiveness of active attacks is propor-
tional to the capability of adversarial users of influencing the
model parameters of their victim [24], [42], [43]. Intuitively,
this is because the adversary uses the victim model updates
as input for making inferences. These updates are a function
of the victim’s local model parameters and training set. By
influencing the victim’s model parameters, the adversary can
modify the model updates to leak more information about
the private training set [3], [15], [24], [43], [50], [64].

In both FL and DL, a user computes their local model
parameters v as the aggregation of their own model update
and the model updates of other users in the system:

Θt+1
v =

1

m
Θ
t+ 1

2
v +

1

m
Θ
t+ 1

2
u1 + · · ·+ 1

m
Θ
t+ 1

2
um−1 , (14)

where m is the number of users participating in the aggre-
gation (all users in FL, and the neighbors of v in DL).

u1
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u3

1
4

1
2

1
3

1
4

1
3

1
4

1
3

1
3

Figure 8: Figure describing the direct influence factor (edge
thickness and label) of each node on neighbors’s local
models for a given topology composed of four users.

Assuming that the model updates are bounded in norm,
any user can influence at most a fraction 1

m of v’s model.
The larger m is, the smaller the influence a single adversarial
user can have on v’s model. In the federated setting, by defi-
nition all users participate in the aggregation (m = n). Thus,
the influence an adversarial user can have on their victim is
the minimum possible. In decentralized settings, the number
of neighbors, and thus the level of adversarial influence,
depends on the topology (see Figure 8). For the DL settings
that offer a significant cost advantage with respect to FL, the
topology is sparse and therefore users have a small number
of neighbors (m << n). In such scenario an adversarial user
ĀDL in DL always has higher influence over their targets’
model parameters than an equivalent malicious user ĀFL

user
in FL. The influence is only equal to an FL adversarial user
when the DL topology is fully connected, but at that point
there is no advantage in decentralizing the learning process.

Besides the increase of influence on each honest user,
decentralization enables active adversarial users ĀDL to
send m different updates to their m neighbors each round.
This is in contrast to the FL scenario where ĀFL

user can only
submit a single model update per round (to the server). This
extra capability enable adversarial users in DL to carry out
attacks that an adversarial FL user cannot launch.

We briefly introduce the “echo attack”, as example of
an active attack that can be performed by ĀDL but not by
ĀFL

user. (More details can be found in Appendix A.) During
an echo attack, the adversary ‘echoes’ back each received
model update (or a variation, e.g., the functionality marginal-
ized version of the model update) to the neighbor who sent
it, in order to push them to overfit on their local training data.
Our experimental results show a significant increase in the
generalization error (4×), and consequently in the privacy
leakage, when performing the echo attack (see Figures 11
and 12 in Appendix A). The federated adversary ĀFL

user,
which only receives the aggregated model from the server,
cannot isolate users’ individual contributions and is left with
one possibility: echoing the global model to the server,
which will have little to no effect on the generalization error
of users. In general, decentralized users can perform any
active attack in reach for federated users (e.g. [24], [42],
[43]), while the converse is not true.

Adversarial influence, like local generalization, grows
with sparsity of the underlying topology. Therefore, simi-
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larly to local generalization, it can be diminished by increas-
ing the number of neighbors m of the victim. When users
are connected to all nodes in the system, m is maximized
and their models reach global generalization, e.g., node u2

in Figure 8.

In conclusion, given that all the attacks that ĀFL
user can

perform can be also performed by ĀDL and that ĀDL has
always greater influence on victims than ĀFL

user, any non-
complete topology in DL offers less protection against
active privacy attacks from malicious users than the
equivalent federated approach. In Section 5.2.1, we show
that this result extends to the complete topology.

5.2. Decentralized user vs federated server (active)

We now compare the adversarial capabilities of active
adversarial users (ĀDL) in decentralized learning against
an active adversarial parameter server in FL (ĀFL

server).
A malicious parameter server ĀFL

server is the strongest
active attacker possible: it can arbitrarily decide the local
state of any user in one single iteration. This results in ex-
tremely effective privacy attacks [3], [15], [50], [64]. These
attacks cannot be directly applied by ĀDL, as obtaining
such influence on victims’ models is inconceivable in the
decentralized setting, regardless of the underlying topology.
Indeed, even when the attacker is the only neighbor of the
victim, their influence on the victim’s model is in theory at
most 1

2 , since the victim aggregates the adversary’s contri-
bution with their own local information (see edge (u2, u1)

in Figure 8). However, we show how ĀDL can use system
knowledge to achieve full influence on a victim’s state, just
like a malicious federated server.

5.2.1. State-override attack. In Section 4.2.1, we show
that system knowledge enables the attacker to remove the
effect of generalization and isolate victims’ gradients. This
knowledge can also be used to cancel out contributions
coming from honest neighbors on the victim’s aggregated
model. The goal of the adversary is not to isolate infor-
mation, but to increase its influence capability. We now
introduce the “state-override attack”, in which the adversary
uses this capability to override the result of the local model
aggregation computed by the victim at line 8 of Algorithm 1.

Formally, given a target v and an adversary A such that
N(v) ⊆ N(A), the adversary can distribute the following
model update to override the victim’s model with parame-
ters Θ̃ chosen by the adversary:

Θ
t+ 1

2

A = −(
∑

u∈N(v)/A

Θ
t+ 1

2
u ) + |N(v)| · Θ̃. (15)

This forged update contains the negated, partial aggregation
in Eq. 15 of the model updates from the victim’s neigh-
bors N(v)/A.

Figure 9: Examples of reconstruction obtained via state-
override attack and gradient inversion (malicious initializa-
tion [3]) on the node v (see Figure 6) for a batch size of
size 64 on the STL10 dataset.

Upon receiving the model updates, the victim v proceeds
to aggregate the receive inputs locally:

Θt+1
v =

1

|N(v)|
∑

u∈N(v)

Θ
t+ 1

2
u =

(
∑
u∈N(v)/AΘ

t+ 1
2

u ) + Θ
t+ 1

2

A ]

|N(v)|
= Θ̃. (16)

The adversary’s update cancels the contribution of the
neighbors, and the result of the aggregation becomes the
“payload” Θ̃.

With this attack, the adversary can take complete control
of the victim’s parameters regardless the number of the
victim’s neighbors. As a result, the adversary can perform
attacks such as [3], [15], [50], [64] within two iterations:
one to override the model and one to extract the result. This
is equivalent to a single round of federated learning.

To give a concrete example of the impact of the state-
override attack on the privacy of users in DL, we consider
active gradient inversion attacks. Boenisch et al demonstrate
in [3] that the effect of gradient inversion can be greatly
magnified in both reconstruction quality and applicability
when the attacker has full control on the parameters used to
compute the gradient. The attacker can inject the victim’s
network with maliciously crafted parameters that force the
computed gradient to artificially memorize more information
than intended about the input batches [15], [64], [3]. The
state-override attack is the perfect way for the adversary to
get control on the parameters used to compute the gradient.

In our setting, the attacker ĀDL first uses the state-
override attack to maliciously force the victim v’s local
state to be the adversary-chosen parameters Θ̃ created
according to [3]. In the next round, ĀDL first receives
v’s model update. Second, recovers the gradient signal
as ∇Θ̃L(ξtv)=Θ

t+ 1
2

v − Θ̃. And third performs the inversion.
We show the results of this attack in Figure 9. It is im-
portant to note that the adversary A can, at each round,
simultaneously perform the state-override attack on all users
whose neighbors are a subset of the adversary’s neighbors.
It suffices to send a different adversarial model update
(computed according to Eq.15) to each neighbor within
the same communication round, and perform the gradient
inversion steps discussed above in parallel.

To perform the state-override attack as described
above, A must be a rushing adversary, i.e., the last user to
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Figure 10: Minimal example of secure aggregation evasion
for an aggregation threshold of 3 users.

communicate its model update, so as to know the inputs of
the victim’s neighbors beforehand. If the adversary cannot
do this (e.g., if the system has a broadcast schedule), A
can use model updates from the previous round and achieve
comparable results, as we show in Appendix D.

Additionally, while in this work we focus on privacy at-
tacks, the state-override attack can also be used as a stepping
stone towards robustness attacks. Trivially, it enables the
attacker to plant arbitrarily backdoor/trojan functionality in
users’ models [18] or completely destroy the utility of their
models (e.g., by setting the payload to random parameters).

5.3. Take aways

We show that active adversaries can gain full influence
over honest users’ state. This enables them to mount privacy
attacks with extremely high quality of reconstruction of
the users’ training sets. Like in the semi-honest setting,
active adversarial users in decentralized learning can be as
powerful as a malicious parameter server as long as the
underlying topology allows for it. When the attacker is fully-
connected, they can arbitrarily decide the parameters of all
the honest users in the system every round, matching the
functionality of the FL server. In practice, this means that,
with respect to current real-world deployments of federated
learning [19], [41], [67] in which the parameter server must
be (semi-)honest in order to guarantee a meaningful level
of privacy to users [3], [15], [50], the decentralized learning
paradigm increases the number of potential adversaries, and
thus the number of entities that need to be (semi-)honest for
users to have privacy.

6. Defences

In this section, we discuss the suitability of different
defense techniques from the CML literature and their ef-
fectiveness to prevent the attacks we introduce in this the
paper.

6.1. Secure Aggregation

A way to prevent system-knowledge-based attacks is
to use secure aggregation (SA) protocols [4]. When using
SA, users privately perform the aggregation step (line 8
of Algorithm 1) without revealing their model updates in
the clear to each other. Users can only access the result of
the aggregation after their update has been averaged with
those of other users. Since individual model updates are

not observable by the adversary, SA can eliminate attacks
relying on system knowledge such as gradient recovery,
functional marginalization, or state-override.2

Therefore, by using SA and a fully-connected topology
to achieve global generalization, DL offers users the same
level of privacy as federated learning against passive adver-
saries (see Section 3). However, this setting would impose
a significant overhead: every decentralized user has the
same communication complexity as a parameter server in
FL, and in addition the overhead imposed by cryptographic
operations needed for secure aggregation. This overhead
with respect to FL would come at no gain in privacy.
Evading SA in Decentralized Learning Even if the over-
head introduced by the protocol would be acceptable, se-
curely implementing SA in decentralized learning poses a
significant challenge. We demonstrate below how an attacker
can always retrieve the model update of another user if they
can impersonate or compromise an additional node in the
system.

Essentially, the attacker can obtain the model update
of a victim v by calculating the difference between two
aggregated values that differ only by v’s model update. More
formally, given Aa and Ab the nodes under the control of the
attacker A and a victim node v, A can recover the victim’s
model update Θt

v, by choosing N(Ab)=N(Aa)/v. Once the
attacker nodes received the aggregated values, these can re-
cover v’s model update by computing: Θt

v=SA(
∑N(Aa)
u )−

SA(
∑N(Ab)
u ). An example of this configuration is depicted

in Figure 10. This approach does not require any auxil-
iary knowledge on the victim, and N(Aa) can be chosen
arbitrarily by the attacker. We remark that this simple SA-
evasion technique is independent from the employed aggre-
gation protocol and they would work even under verifiable
SA or SA performed via Trusted Execution Environment
(TEE) [47]. Assuming fault resilient SA [4] (which is nec-
essary under real-world deployments), this strategy would
work also in a complete topology, where N(Aa)=N(Ab).
In this case, it is enough for Ab to simulate the drop-off
of the victim. In the general case, this technique would be
remain applicable as long as the threshold for SA is greater
equal to |N(Ab)|−1.

More research is needed to find effective and reliable
topology-aware SA in decentralized learning.

Differential privacy. A formal approach to achieve
privacy in DL would be using Differential Privacy (DP) [13],
such as differential-private SGD to implement the local
optimization steps.

In decentralized learning, the lack of a trusted, central-
ized curator (role taken by the parameter server in federated
learning) prevents the use of central-DP. Thus, DL protocols
have to resort to local-DP. Local-DP results in a worse
trade-off between privacy and utility compared to central-
DP [27], [45]. One common way to improve this trade-off is
to use distributed-DP [6], [27] which assumes the existence
of an effective secure aggregation protocol that would only

2. Although gradient recovery would unavoidably succeed when
N(v)={A} (always) or N(A)={v} (when C=0).
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reveal the noisy sum of the local model updates to the
aggregator. Distributed-DP allows to tune the local noise
proportionally to the number of users m participating at the
aggregation (∼ 1

m ). As for plain secure aggregation (see
Section 6.1), the success of this approach depends on the
density of the topology. The lower the number of neighbors
of a user, the less participants in the aggregation, and the
more noise users have to add locally to achieve a desired
level of privacy. Increasing the number of neighbors would
solve this issue, but would also increase the communica-
tion overhead, suppressing the advantage of decentralized
learning over the federated approach. Indeed, as for SA,
distributed-DP matches the utility of federated learning only
when the topology is complete.

In summary, decentralized learning cannot match the
utility/privacy trade-off of the federated setting given ex-
isting DP techniques due to the lack of a centralized curator
and the need to keep its communication overhead advantage.
This gap may be reduced using differentially-private tech-
niques tailored to decentralized learning. The community
already started moving in this direction [7], [9], [65], so far
achieving only limited results.

Finally, while these perturbation-based defenses may
work, they can be also applied in FL. Thus, they do not
result on any privacy advantage for the decentralized setting.
In fact, techniques such as distributed-DP [6], [27] (which
uses SA as a primitive) are easier, and more efficient, to
apply to FL protocols compared to DL.

6.2. Robust aggregation protocols

Robust aggregation methods [29] aim at reducing the
influence of active adversaries on the local state of users
by replacing the plain average-based aggregation (line 8 of
Algorithm 1) with more robust metrics. These techniques
can neither prevent the privacy attacks we propose nor
confer any advantage to decentralization.

Robust aggregation techniques trade privacy for robust-
ness as they rely on magnifying the influence of local
information (the current state of the user) over external one
(model updates provided by other users). This amplifies the
local generalization effect, increasing the information our
attacks can exploit. Robust aggregation can hamper attacks
such as the state-override attack, but not prevent them
entirely. We demonstrate this is the case in Appendix A.1,
where we apply our attacks to self-centering clipping [22]—
a robust aggregation protocol for DL.

Furthermore, robust aggregation can also be applied to
the federated setting by letting federated users maintain a
consistent local state and implement any user-side robust
aggregation. Therefore, they do not provide an advantage
for DL with respect to the federated approach.

6.3. Constraining the communication topology

Decentralized learning advocates often point out that
freedom to choose neighbors is a positive and unique feature
of decentralization. In this paper, we thoroughly demonstrate

that such freedom can be leveraged by the adversary to boost
their capabilities to the point of achieving the same attack
power as the parameter server in federated learning.

To address this issue, the communication topology un-
derlying DL should be carefully designed if we wish to
prevent certain attacks. This means that systems in which
users join the network without constraints are unworkable,
as individual decisions are unlikely to match any pre-defined
topology. In fact, it is actually hard to enforce constraints
without a central orchestrator that has a global knowledge
of the system as highlighted by years of research on peer-to-
peer anonymous communications [17], [44], [54], [53], [63].
Yet, introducing such a powerful central entity in the system
would result on new security threats if this entity is mali-
cious: Assuming a malicious central orchestrator who can
arbitrary choose the communication topology is equivalent
to assuming a malicious parameter server in FL. Trivially,
the orchestrator can maliciously design the topology in order
to grant full adversarial capability to itself (and carry the
attacks in Sections 4.2 and 5.2).

n siItuations where trust can been established among
users within the system, the ability to choose neighbors
can also have a positive impact. If users have the ability to
differentiate between trustworthy and untrustworthy nodes,
they can selectively connect with users whom they trust to
be honest and reject connection requests from those who are
untrusted. This approach can lead to secure configurations
without the need for strict topological constraints, as it
assumes that no honest user would connect to the untrusted
adversarial nodes. However, this approach requires making
strong assumptions about both the behavior of users and the
security of the underlying implementation.

7. Conclusion

Fully decentralized collaborative machine learning has
been proposed as a potential solution for preserving user
privacy while avoiding the performance issues associated
with federated learning. In this work, we introduced a series
of attacks that show that existing decentralized learning
protocols do not deliver on their promised privacy prop-
erties. Our results indicate that decentralized users possess
adversarial capabilities that are comparable to those of a
federated parameter server.

We also show that due to the increase in capabilities
decentralization confers to adversaries, existing defenses
cannot prevent all the attacks we propose. In order for
decentralized learning to provide the same level of privacy
guarantees as federated learning, it must give up on any
potential performance gains. We hope that our findings can
serve as benchmarks for the research community, inspiring
the development of new design principles that enable truly
privacy-preserving decentralized learning.
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[23] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a de-
centralized alternative to federated learning,” in IFIP International
Conference on Distributed Applications and Interoperable Systems,
2019.

[24] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the
gan: Information leakage from collaborative deep learning,” in CCS.
ACM, 2017.

[25] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A
segmented gossip approach,” arXiv preprint, 2019.

[26] J. Jeon, J. Kim, K. Lee, S. Oh, and J. Ok, “Gradient inversion with
generative image prior,” in NeurIPS, 2021.

[27] P. Kairouz, Z. Liu, and T. Steinke, “The distributed discrete gaussian
mechanism for federated learning with secure aggregation,” in ICML.
PMLR, 2021.

[28] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. A. Bonawitz, Z. Charles, G. Cormode, R. Cummings,
R. G. L. D’Oliveira, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett,
A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui,
C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi,
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Appendix A.
Echo attacks

Echo attacks exploit the high influence factor of a
decentralized attacker and system knowledge to force
the local state of a chosen neighbor victim to leak
information about its private training set. The aim of the
attacker is driving the victim’s local model towards severe
“overfitting”, forcing it to memorize the local training set
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beyond what would be memorized in a honest execution.
This amplifies the information leakage stemming from
local generalization, worsening the impact of the attacks
presented in the previous sections.

To carry out an echo attack, at the broadcast step, instead
of their own model, the adversary ĀDL broadcasts echos
of the victim’s updates at the current or previous round.
Such echo updates artificially increase the relevance of the
victim’s local training set in the victim’s local model. This
diminishes the influence of other users in the system on the
victim’s model, magnifying the effect of local generaliza-
tion. More formally, during the echo attack, the adversary
starts by collecting the neighbors’ model updates and uses
them to craft the echo update Θ̃. In particular, the attacker
uses the functionally marginalized version (Section 4.1.2) of
the victim model update (i.e., Θ̃=Θ̊t

v) which approximately
captures the isolated contribution of the victim. The adver-
sary broadcasts Θ̃ to all the attacker’s neighbors including
the victim, increasing overfitting at the next step of the
victim’s honest execution (line 8 Algorithm 1). The effect of
echo attacks is magnified by the iterative interaction between
the attacker and the victim and by the “echo chamber effect”
that results from the neighbors of the attacker also propagat-
ing the malicious echo update to the victim via second order
interactions. We formalize echo attacks in Algorithm 2.

Echo attacks are extremely efficient and easy to carry:
the adversary does not require a local training set or any
information on the learning task and they have very low
computational cost, as it does not need to train a local
model but only post-process the received updates. Note that
malicious FL users (ĀFL

user) cannot replicate echo attacks
as they cannot isolate other users’ individual contributions
from the observable global state of the system and, thus,
they cannot broadcast echo updates.

While conceptually simple, echo attacks are extremely
effective in practice. Figure 11 compares the generalization
error of the victim’s model against other non-target users
in the system at different training iterations during the echo
attack. While this gap is larger at the start of the training,
on average, the generalization error of the target is about 10
times more than the non-targets’. As seen in the previous
section, the increase in the generalization error creates a
massive privacy risk for the target node.
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Figure 11: Generalization errors for the target user of the
echo attack and the non-target ones during the protocol for
the setup: torus-36, ResNet20 and CIFAR-100.

We show the effectiveness of the echo attack in Figure 12
on various configurations (green lines) and compare them
to the results obtained with the passive inference attacks of
Section 4.1 (dashed lines). Even when the system finds con-
sensus, the privacy risk for the target remains high. This is
because the attacker’s echo updates have actively influenced
the global state of the system (not only the victims’s one)
by artificially increasing the relevance of the victims’s con-
tribution. For the social-32 topologies, we observe a large
standard deviation. This is because the impact of the attack
depends on the connectivity of the victim. Recall that the
strength of an active attack is proportional to the influence
factor of the attacker, which is inversely proportional to the
number of neighbors of the victim (see Section 5.1). We
illustrate this phenomenon in Figure 13, where we evaluate
the effect of the echo attack on targets with different
number of neighbors on regular graphs with an increasing
density. We keep the degree of the attacker fixed to 3 in
order to isolate the impact of the victim’s connectivity on
the privacy risk. We see that, as we predicted in Section 5.1,
low degree boosts the impact of active attacks on users.

Also, attackers can improve their effectiveness by
choosing their position in the communication topology to
maximize their influence on the system. Like for gradient
inversion, the best strategy is to maximize their number of
neighbors. If this is not possible, attackers can also aim to
be in a position that maximizes the closeness centrality (or
other centrality metrics) with the victim to strengthen the
“echo chamber effect”. However, adversaries can only use
this strategy if they know the global topology. Finally, we
note that if the attacker has the victim as sole neighbor or
the marginalized model cannot be computed, the adversarial
model update can be set to Θ̃=Θ

t+ 1
2

v (i.e., victim’s model
update), obtaining inferior but comparable performance;
we show this in Figure 15 in Appendix E.
A.1. Echo attack on robust aggregation.

One common approach to reduce the adversarial influ-
ence of active attackers in both the federated and decen-
tralized setting is to use robust aggregation methods [29].
An example for the decentralized setup is the work of
He et al. [22]. This work proposes to hamper the influence
of byzantine nodes by using self-centered clipping. Nodes
clip the received model updates in the τ -sphere around their
current local model before aggregating them:

Θt+1
v =

∑
u∈N(v)

[
wi,j · (Θ

t+ 1
2

v + CLIP(Θ
t+ 1

2
u −Θ

t+ 1
2

v , τ))

]
,

(17)
where CLIP(x, τ)=min(1, τ/||x||) · x.

This approach hides a trade-off between generalization
and robustness. The clipping procedure simply degrades the
information provided by the other users in the system in
favor of the local one. This successfully reduces the effec-
tiveness of general active attacks. However, it also reduces
the generalization of the users’ local models, magnifying
the harmful effect of local generalization. Because there is

433



0.00 0.01 0.02 0.03 0.04 0.05
Generalization error

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

No
rm

al
ize

d 
m

em
be

rs
hi

p 
ac

cu
ra

y 
(M

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
ns

en
su

s d
ist

an
ce

 (C
)

1e 5

Global model (Federated) Received model (echo attack) Received model (passive) Marginalized model (passive) Consensus

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Generalization error

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d 
m

em
be

rs
hi

p 
ac

cu
ra

y 
(M

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
ns

en
su

s d
ist

an
ce

 (C
)

1e 5

(a) torus-36 & CIFAR-10
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(b) social-32 & CIFAR-10
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(c) torus-36 & CIFAR-100
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Figure 12: Average MIA vulnerability during an echo attack, on four different combinations of communication topologies
and training sets for DL and FL.
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Figure 13: Effect of different numbers of neighbors for the
target of the echo attack using CIFAR-100 as training set.
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Figure 14: Effect of the self-centered clipping robust aggre-
gation on the echo attack for torus-36 and CIFAR-10.

less information from others, the local model updates retain
more information about the local training set of the user.

Eventually, self-centered clipping produces a very simi-
lar effect than an echo attack: the influence of local param-
eters is magnified. Therefore, this defense tends to amplify
our attacks rather then defending from them. We show this
effect in Figure 14, where we compare the performance
of echo attacks on systems with and without self-centered-
clipping [22]. Of course, when τ gets closer to 0, the system
degenerates to non-collaborative learning (every node trains
its model locally). In this case, active attacks such as echo
does not offer much inference advantage to the adversary.

Appendix B.
Neighbors discovery trick

Under deployment, weights are computed in finite pre-
cision. Then, due to floating-point arithmetic, Eq. 12 does

Input: victim node: v
1 for t ∈ [0, 1, . . . ] do

/* Receive model updates from
neighbors */

2 for u ∈ N(A)/{A} do
3 receive Θ

t+ 1
2

u from u;
4 end

/* Forge adversarial model
update */

5 Θ̃=Θ̊t
v=(|N(A)|−1)(Θ

t+ 1
2

v −∑
u∈N(A)/{v,A} Θ

t+ 1
2

u

|N(A)|−1
);

/* Broadcast the malicious model
update */

6 for u ∈ N(A)/{A} do
7 send Θ̃ to u;
8 end
9 end
Algorithm 2: echo attack for an active attacker node A.
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Figure 15: Comparison between echo attack based on
marginalized model (green) and received model (cyan) for
CIFAR-100, torus-36 and ResNet20.

not always result in a precise 0. For the practical case, it is
enough to search for:

argmin
Q∈N(ADL)

|Θt+ 1
2

v − (Θ̃Q + ∇̃Q)|, (18)

obtaining almost perfect accuracy (see Eq. 12). To validate
this claim, we use the torus-16 topology, the worst-case
for the adversary given its intrinsic regularity. The attacker

434



0 50 100 150 200 250 300
Training iterations

98.8

99.0

99.2

99.4

99.6

99.8

100.0

%
 o

f l
oc

al
 m

od
el

 re
m

ov
ed

Figure 16: Performance of the state-override attack with
inexact information for the topology in Figure 6.

is fully connected and wants to enumerate the local con-
nections of all the other users in the system. We train a
ResNet20 architecture on CIFAR-10 for 10 rounds. We then
use the model updates received by the attacker to perform
the neighbors discovery trick using Eq. 18. We repeat the
experiment 32 times. Eq. 18 finds the exact set of neighbors
98.7% of the time.

Yet, it is possible that due to finite precision arithmetic
a subset Q̇ 6= N(v) such that E(Q̇) ≤ E(N(v)) exists (see
Eq. 12). To reduce this probability, it is enough to run Eq. 18
when the consensus distance is high, which can be triggered
by a malicious user through model inconsistencies, or to
compute Eq. 18 over different rounds.

Appendix C.
Details on model training

• Training set partition: The training set is uniformly
partitioned among users. Given a training set X:
every user gets a disjointed sample from X of size
|X|
n , where n is number of users in the system. No

data augmentation is performed.
• Optimizer: We use SGD with momentum (α=0.9).
• Learning rate: We anneal the learning rate during

the training to speed up consensus for the decentral-
ized systems. The initial learning rate is set to 0.1,
then we scale it by 0.1 at iterations 200, 350 and 450
during the training. We do not schedule the learning
for federated learning.

• Batch size: 256.
• Stop condition: We train the models with early-

stopping. We stop the training when the accuracy of
the average of the local models on the validation set
stops improving (with a patience of 3).

Our code will be available upon publication.

Appendix D.
State-override attack with inexact information

When the users are forced to send their updates syn-
chronously in the decentralized protocol, an attacker will
not receive the model updates of their neighbor before
sending their own model update. To perform the state-
override attack, the adversary then needs to rely on the
model updates of the previous round. Of course, this results
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Figure 17: Average MIA vulnerability on two combinations
of communication topologies and training sets for DL and
FL when using a shallow CNN architecture.

in an inexact suppression of the current state of the victim.
We show the result of the state-override attack using model
updates received at the previous round in Figure 16. At
worst, the attacker controls 98.7% of the local state of the
target. It approaches 100% at the end of the training. We
conclude that the state-override attack is effective even when
adversaries cannot choose when to send their updates.

Appendix E.
Additional results

E.1. Shallower architectures

In Figure 17 we report the MIA accuracy for a shallow
Convolution Neural Network (CNN) of 225, 000 parameters
for both the passive and active attacks. While the privacy
risk for the received model tends to be lower, the attacks
match what was observed with the deeper ResNet20 model.

E.2. Scaling-up number of users

In Figure 20 we report the MIA vulnerability of the
model updates and their marginalized version in the torus-64
topology. Comparing these results to the torus-36 topology
(Figure 3), it is evident that the sparsity of the topology
augments the vulnerability of the received model updates.
As the number of users augments (but their number of neigh-
bors stays 4), the average distance between users increases,
which boosts the local generalization phenomenon and the
inherent privacy risk associated (Section 3). This result rein-
forces our observation: sparse topologies reduce individual
user’s privacy. To keep privacy risk constant, the topology
density must adapt whenever new users join the protocol.
We observe similar results for torus-128 and expander-128
in Figure 18, where expander-128 is an Erdős–Rényi random
graph with edge probability log(n)

n as defined in [10].

E.3. Multiple local iterations

We further investigate the effect of local generalization
on different DL setups. In particular, we consider the impact
of multiple optimization steps in the local optimization
phase of clients (line 3 of Algorithm 1). Results are reported
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(a) torus-128 & CIFAR-10
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(b) expander-128 & CIFAR-10
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(d) expander-128 & CIFAR-100

Figure 18: Average MIA vulnerability on four different combinations of communication topologies and datasets (DL in red
and purple, and FL in blue). For each combination, we report the average results over 16 runs.
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Figure 19: Average MIA vulnerability on three DL setups on a text classification task.
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(a) torus-64 & CIFAR-10
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(b) torus-64 & CIFAR-100

Figure 20: Average MIA vulnerability on two different com-
binations of communication topologies and training sets for
distributed and federated learning (ResNet20 architecture).

in Figure 21, where 2 and 3 steps are considered for torus-
36 and CIFAR-10. Compared to the single step optimization
setting (Figure 3), running multiple optimization rounds
boosts the local generalization phenomenon, magnifying
the leakage inherent in the model updates. This effect is
particularly marked for the MIAs based on the shared model
updates (red lines).

E.4. Different input domains

In this section, we briefly explore data domains beyond
the realm of vision, which is the primary focus of the decen-
tralized learning literature. Specifically, we assess the effect
of local generalization on a Natural Language Processing
(NLP) task. To conduct our experiments, we utilize the
widely-used imdb-reviews dataset, which involves a movie
review classification task. The experimental setup we em-
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(a) torus-36; CIFAR-10; 2 steps
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Figure 21: Average MIA vulnerability on two DL setups
with different number of local optimization steps.

ploy is the one described in [59]. In particular, in this setting,
our aim is to assess the ability of an attacker to infer the
membership of an entire review (i.e., a sequence of words)
in the local training set of other nodes that are part of the
collaborative training process. In Figure 19, we report results
for the topologies torus-36, social-32, and expander-36. As
evident from the results, although models exhibit varying
behaviors due to the different learning task, the effectiveness
of the inference attacks described in Section 4.1 is consistent
with the one observed in the vision domain.
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