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Abstract—MEGA is a leading cloud storage platform with
more than 250 million users and 1000 Petabytes of stored data.
MEGA claims to offer user-controlled, end-to-end security. This is
achieved by having all data encryption and decryption operations
done on MEGA clients, under the control of keys that are only
available to those clients. This is intended to protect MEGA users
from attacks by MEGA itself, or by adversaries who have taken
control of MEGA’s infrastructure.

We provide a detailed analysis of MEGA’s use of cryptography
in such a malicious server setting. We present five distinct attacks
against MEGA, which together allow for a full compromise of the
confidentiality of user files. Additionally, the integrity of user data
is damaged to the extent that an attacker can insert malicious
files of their choice which pass all authenticity checks of the
client. We built proof-of-concept versions of all the attacks. Four
of the five attacks are eminently practical. They have all been
responsibly disclosed to MEGA and remediation is underway.

Taken together, our attacks highlight significant shortcomings
in MEGA’s cryptographic architecture. We present immediately
deployable countermeasures, as well as longer-term recommen-
dations. We also provide a broader discussion of the challenges of
cryptographic deployment at massive scale under strong threat
models.

I. INTRODUCTION

The cloud – for outsourcing of both computation and data
storage – has become a very popular approach to address
scaling and management problems in IT. This applies to both
enterprise and consumer domains. In the latter case, the market
offers a myriad of different cloud services, with products
having different combinations of storage, computation and
collaboration features, and making a range of security and
privacy claims. The consumer storage market alone was valued
at USD 13.6 billion in 2021.1

As a prominent example, MEGA2 is a cloud storage and
collaboration platform founded in 2013 offering “secure stor-
age and communication” services. With over 250 million reg-
istered users, 10 million daily active users [1] and 1000 PB of
stored data [2], MEGA is a significant player in the consumer
domain. What sets them apart from their competitors such as
DropBox, Google Drive, iCloud and Microsoft OneDrive is
the claimed security guarantees: MEGA advertise themselves
as “the privacy company” and promise user-controlled end-to-
end encryption (UCE).

UCE refers to the fact that data uploaded to the MEGA
cloud is encrypted, and that only the user who owns the

1https://dataintelo.com/report/consumer-cloud-storage-services-market/.
2https://mega.io/

data has access to the key (derived from the user’s password)
needed to decrypt. Thus, MEGA’s main selling point is
confidentiality of user data even against MEGA themselves,
as showcased in the following quote from their website [3]:

“MEGA does not have access to your password or
your data. Using a strong and unique password will
ensure that your data is protected from being hacked
and gives you total confidence that your information
will remain just that – yours.”

This implies a threat model in which the service provider
itself should be considered potentially adversarial, and yet the
service should remain secure. All the service is then trusted for
is availability. This adversarial model provides an interesting
setting for cryptanalysis: not only does the adversary have
access to encrypted user keys and data, it can also interact
with users through legitimate channels during steps like user
authentication and file access.

This may seem a very strong adversarial model. However,
we stress that it is consistent with the security claims made
by MEGA themselves. Moreover, we must consider the pos-
sibility that even if MEGA is not adversarial, their systems
may have been compromised by malicious third parties, for
example nation state security agencies or hacking groups, who
wish to gain access to users’ data and files. Indeed, the sheer
size of MEGA – and the likelihood of it attracting users who
wish to protect highly sensitive data precisely because of the
security the service claims to offer – surely make MEGA
an attractive target. Additionally, UCE should ensure that
MEGA cannot be coerced into revealing user data, e.g. through
subpoenas, since they are technically unable to do so.

In this work, we review the security of MEGA in this threat
model and find significant issues in how it uses cryptography.
These lead to devastating attacks on the confidentiality and
integrity of user data in the MEGA cloud.

A. The MEGA Key Hierarchy

MEGA’s approach to UCE begins with the user password,
PW, which acts as the root of the key hierarchy depicted
in Figure 1. The MEGA client derives an authentication key
and an encryption key from the password. The authentication
key is used to identify users to MEGA. The encryption key
encrypts a randomly generated master key, which in turn
encrypts other key material of the user. Every account has
a set of asymmetric keys: an RSA key pair for sharing data, a
Curve25519 key pair for exchanging chat keys for MEGA’s
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Fig. 1. MEGA’s key hierarchy. The master key encrypts the share, chat, sign
and node keys using AES-ECB.

chat functionality, and an Ed25519 key pair for signing the
other keys. Furthermore, the client generates a new key for
every file or folder (collectively referred to as nodes) uploaded
by the user. All keys are encrypted by the client with the
master key using AES-ECB and then stored on MEGA’s
servers to support access from multiple devices. A user on a
new device can enter their password, authenticate to MEGA,
fetch the encrypted key material, and decrypt it with the
encryption key derived from the password.

B. Trivial Attacks

The above description of MEGA’s key hierarchy immedi-
ately leads to a trivial attack. MEGA could mount dictionary
attacks on user passwords using data revealed in the authen-
tication protocol (in which the authentication key is sent to
the MEGA server). This attack is mitigated by users choosing
strong passwords and by MEGA imposing a suitable password
policy.

Moreover, another trivial attack is that MEGA could in-
troduce malicious code to their web clients. This could be
used to exfiltrate the user password or keys to the MEGA
servers. MEGA provides a browser extension – including
signed updates – which avoids loading code dynamically and
instead runs it locally. This, to some extent, addresses this
code integrity issue.

We do not consider these attacks any further in this paper,
since they are both mitigated in the MEGA service.

C. Contributions

We present a series of five attacks on the key hierarchy
of MEGA. The first two attacks exploit the lack of integrity
protection of ciphertexts containing keys (henceforth referred
to as key ciphertexts), and allow full compromise of all user
keys encrypted with the master key, leading to a complete
break of data confidentiality in the MEGA system. The next
two attacks breach the integrity of file ciphertexts and allow
a malicious service provider to insert chosen files into users’
cloud storage. The last attack is a Bleichenbacher-style attack
against MEGA’s RSA encryption mechanism. It is applicable
in a slightly weaker attack model than our first four attacks.
We have developed proof-of-concept (PoC) implementations
for all five attacks. We briefly present each attack next.

1) RSA Key Recovery Attack. Using the session ID ex-
change at the start of a client connection to MEGA, a
malicious service provider can recover a user’s private
RSA share key (used to share file and folder keys) over
512 login attempts. When the RSA key has been com-
promised by the attacker, the confidentiality and integrity
of all node keys shared with the victim is lost. Our attack
exploits the lack of integrity protection of the encrypted
RSA key and properties of the RSA-CRT implementation
used by MEGA clients to build an oracle that leaks one
bit of information per login attempt about a factor of the
RSA modulus. It combines this novel attack vector with
known lattice techniques to accelerate the attack.

2) Plaintext Recovery Attack. Building on the previous
vulnerability, the malicious service provider can recover
any plaintext encrypted with AES-ECB under a user’s
master key. This includes all node keys used for encrypt-
ing files and folders (including unshared ones not affected
by the previous attack), as well as the private Ed25519

signature and Curve25519 chat key. As a consequence,
the confidentiality of all user data protected by these
keys, such as files and chat messages, is lost. This
attack exploits MEGA’s reuse of the master key and the
use of RSA-CRT, in combination with the abilities of
the adversary to manipulate key ciphertexts and choose
plaintexts used in the authentication protocol. We believe
it to be an entirely novel kind of attack.

3) Two Integrity Attacks. We present two attacks with
which a malicious service provider can break the integrity
of the file encryption scheme and insert arbitrary files into
the user’s file storage which pass the authenticity checks
during decryption. This enables framing of the user by
inserting controversial, illegal, or compromising material
into their file storage. The attacks are non-trivial because
the adversary cannot properly encrypt node keys without
access to the user’s master key.
The first attack uses the previous plaintext recovery attack
to obtain a suitable node key and then constructs an
encrypted file. The user cannot demonstrate that they did
not upload the forged data because the files and keys are
indistinguishable from genuinely uploaded ones.
The second integrity attack does not require that the
attacker has access to a decryption oracle for AES-ECB
under the master key. Instead, it exploits a fundamental
problem with the method used by MEGA to “obfuscate”
file and folder keys before encryption. It needs only
knowledge of a single AES block and its AES-ECB
encryption under the user’s master key to create a forgery
that is difficult to detect.

4) RSA Decryption Attack. The RSA encryption used
to exchange chat keys as a legacy fallback is vulner-
able to a novel variant of Bleichenbacher’s attack on
PKCS#1 v1.5 padding [4]. This attack allows for the
decryption of RSA ciphertexts containing chat and node
keys. This is already implied by the key recovery attack
in point 1, but this attack requires a weaker adversary
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model (which we describe in detail in the sequel). This
attack is challenging to perform in practice as it would
require almost 217 client interactions. Nevertheless, it ex-
poses an entirely independent attack vector and uncovers
additional issues in MEGA’s cryptographic design.

In addition to these technical contributions, we propose
countermeasures to protect against the attacks, as well as a
discussion of more general learnings about the challenges of
deploying and maintaining cryptography at scale.

D. Ethical Considerations

We contacted MEGA to inform them of the vulnerabilities
in their system and to suggest three different levels of mit-
igation (immediate, minimal, and recommended) on March
24, 2022. We suggested a 90-day disclosure period. MEGA
acknowledged the attacks on March 24, 2022, confirming that
the system is vulnerable. They decided to introduce additional
client-side checks on the format of RSA private keys to protect
against our first attack. While these checks directly prevent
the RSA key recovery attack, and hence by extension the
attacks that depend on it, this fix significantly differs from
our proposed countermeasures. MEGA released their patches
on June 21, 2022, and awarded us a bug bounty.

We only worked with our own test account when exploring
MEGA’s services and building our PoCs. We avoided over-
loading MEGA with login requests when running our attacks.
We did not attempt to reverse engineer any MEGA server-side
code, but instead relied on MEGA’s whitepaper [5], inspection
of client-side code, and the public server API.

E. Related Work

1) Previous Attacks on Cloud Storage Systems: Dal-
skov and Orlandi [6] performed an in-depth analysis of
SpiderOak One, another provider with user-controlled encryp-
tion, in a threat model similar to ours. They uncovered several
vulnerabilities in the cryptographic design of SpiderOak One
which led to a breach of data confidentiality. Niehage [7]
discovered four attacks on Nextcloud. The first vulnerability
exploited that the server could maliciously replace public keys
due to the lack of integrity protection. The other three attacks
break file integrity by modifying files partially, replacing them,
or performing a downgrade attack on the encryption.

2) Related Cryptographic Attacks: Previous results on key
recovery through over-writing of key material targeted RSA
in the context of OpenPGP [8]. The focus was on signatures
instead of encryption with only partial output. A more sys-
tematic analysis of the impact of key over-writing attacks on
OpenPGP was recently given in [9]. Power fault attacks on
RSA signatures [10], [11] inspired our attack on RSA-CRT,
however, we tamper with the private key instead of inducing
errors in single computations. Prior work on authenticated
encryption without key commitment constructs ciphertexts that
can be decrypted to two valid files using different keys [12],
[13], [14]. While they share the setting of AES primitives with
known keys, we only consider a single key for our integrity
attacks and target CBC-MAC instead of encryption.

We contribute an RSA decryption attack that is a novel
variant of Bleichenbacher’s attack on PKCS#1 v1.5 from
1998 [4]. Other instances of this attack [15], [16], [17], [18],
[19] exploit different side-channel leakage to build padding
oracles. Unlike them, we do not target PKCS#1 v1.5 padding
but the custom padding scheme of MEGA that includes an
unknown prefix circumventing the straightforward adaption of
Bleichenbacher’s attack.

3) Proposals for Cloud Storage Systems: A high-level sur-
vey of the functionality and security of multiple cloud storage
providers is given in [20]. Messmer et al. [21] provide a
generic security model for a simplified cloud file system. Boyd
et al. [22] give models for secure cloud storage, including
consideration of a compromised service provider. Kamara and
Lauter [23] survey architectures for secure cloud storage with
a trusted client and an untrusted service provider. Metal [24]
and Titanium [25] are recent proposals for hiding metadata (as
well as data) in encrypted file-sharing systems. These papers
are part of a rich academic literature on secure cloud storage
and collaboration systems.

4) Full Version: Further explanations of our attacks, PoC
demonstrations and the full version of this paper are available
from [26].

F. Paper Organization

The next section gives a self-contained description of
MEGA and its use of cryptography. The ensuing sections
present our five attacks. Section VII describes our PoCs.
Section VIII describes countermeasures to our attacks. Sec-
tion IX discusses the wider implications of our work and future
directions.

II. THE MEGA CLOUD

A. Notation

By [m]k we denote the encryption of a message m with
the key k. The encryption algorithm can be derived from the
context. We let l[a:b] denote the slice (ea, ea+1, . . . , eb) from
the tuple l ← (e1, e2, . . . , en), where 1 ≤ a ≤ b ≤ n. We
treat byte strings as tuples of bytes. We use [a, b] to denote
the integer set {a, a+1, . . . , b}. B is shorthand for byte. By ‖
and ⊕ we denote string concatenation and XOR, respectively.

B. Key Hierarchy

At the root of a MEGA client’s key hierarchy, illustrated
in Figure 1, is the password chosen by the user. From this
and a client-chosen salt, two 128-bit keys are derived using
PBKDF2-HMAC-SHA512: an encryption key ke and an authen-
tication key ka. Additionally, the client generates a 128-bit
master key kM , which is encrypted with ke using AES-ECB
and uploaded to the server. Below the master key in the
hierarchy reside the node keys:3 a set of symmetric AES keys
used to encrypt user files and folders (nodes). A fresh node
key is generated for each node object created by the user.
Moreover, each user has three asymmetric key pairs:

3Sometimes referred to as data encryption keys in other settings.

148



EncNode(kM ,F, attr):

Given: master key kM , node F, attributes attr
Returns: encrypted file chunks [Fi]kF , attributes [attr]kF ,
obfuscated key [kobf

F ]kM
1 kF ←$ {0, 1}128 � node key
2 NF ←$ {0, 1}64 � node nonce
3 lF ← 2j for j ∈ [10, 13] � #AES blocks per chunk
4 F1‖F2‖ . . . ‖Fn ← F � ∀i ∈ [1,n] . |Fi| = 128 · lF bits
5 For all i ∈ [1, n]:
6 [Fi]kF ,Ti ← AES-CCM∗.Enc(kF ,NF‖(i · lF),Fi)
7 CF ← [F1]kF‖[F2]kF‖ . . . ‖[Fn]kF
8 Tcond ← CBC-MAC.Tag(kF ,T1‖T2‖ . . . ‖Tn)
9 kobf

F ← ObfKey(kF ,NF ,Tcond)
10 [kobf

F ]kM ← AES-ECB.Enc(kM , k
obf
F )

11 [attr]kF ← AES-CBC.Enc(kF , iv := 0128, attr)
12 return CF , [attr]kF , [kobf

F ]kM

Fig. 2. MEGA’s chunkwise file encryption procedure.

AES-CCM∗.Enc(kF , IV ,Fi):

Given: node key kF , file chunk Fi, initialization vector IV
Returns: encrypted file chunk ci, authentication tag Ti

1 NF ← IV [1:8] � extract file nonce from leftmost 8B of IV
2 Ti ← CBC-MAC.Tag(kF , iv := NF‖NF ,Fi)
3 ci ← AES-CTR.Enc(kF , IV ,Fi)
4 return ci, Ti

Fig. 3. MEGA’s custom AES-CCM implementation.

• “Share key”: an RSA key pair for sharing node keys (and
as a fallback solution for chat key transfer)

• “Chat key”: a Curve25519 key pair for exchanging keys
for the MEGAchat

• “Sign key”: an Ed25519 key pair for signing the other
public keys

The private keys and the node keys are encrypted with
AES-ECB under the master key and the resulting ciphertexts
are stored by MEGA’s servers.

C. Node Encryption

To encrypt a file F, the client first samples a random 128-
bit node key kF and a 64-bit nonce NF . Large files are then
partitioned into chunks Fi of size between 128 KB and 1 MB.4

Consequently, there are between 210 and 213 AES blocks per
chunk, each 128 bits large. The chunks are encrypted with a
custom implementation of AES-CCM with key kF and nonce
NF . Additionally, the file attributes attr (containing metadata
such as the filename) are encrypted using AES-CBC with a
zero IV and key kF . The full node encryption procedure is
shown in Figure 2. For folders, which do not have file content,
the file input F is ignored and only the attributes are encrypted.

Figure 3 describes AES-CCM∗, MEGA’s variant of
AES-CCM. This deviates from the specification in RFC

4Clients usually select a single chunk size and use it for all chunks.

ObfKey(kF ,NF ,Tcond):

Given: node key kF , file nonce NF , condensed MAC Tcond

Returns: obfuscated file key
1 τ1‖τ2‖τ3‖τ4 ← Tcond� |τi| = 4, ∀i ∈ [0, 3]
2 Tmeta ← τ1 ⊕ τ2‖τ3 ⊕ τ4
3 x ← kF ⊕ (NF‖Tmeta)
4 return x‖NF‖Tmeta

DeobfKey(kobf
F ):

Given: obfuscated file key kobf
F

Returns: node key kF , file nonce NF , metamac Tmeta

5 x‖NF‖Tmeta ← kobf
F

6 kF ← x ⊕ (NF‖Tmeta)
7 return kF , NF , Tmeta

Fig. 4. MEGA’s key obfuscation and de-obfuscation procedures.

3610 [27],5 which invalidates the formal security analysis
in [29]. However, we did not find attacks on AES-CCM∗.

To finish the node encryption in Figure 2, the client ag-
gregates the file chunk MACs T1, T2, . . ., Tn into a single
condensed tag value Tcond using CBC-MAC with the key kF
applied to the concatenation of all chunk MACs. Additionally,
the client computes an “obfuscated file key”, kobf

F , from the
node key kF , nonce NF , and condensed tag Tcond . This
kobf
F is then encrypted with AES-ECB under the master key

and uploaded to MEGA’s servers together with the encrypted
attributes and file chunks. Note that no MAC tag is computed
for the attributes, implying a lack of integrity protection.

D. Key Obfuscation

MEGA applies an obfuscation procedure to the node key,
nonce and MAC tag before they are encrypted and uploaded to
the server. The obfuscation, described in Figure 4, aggregates
the condensed MAC Tcond to a so-called “metamac” Tmeta by
splitting Tcond into four 4-byte chunks and XORing together
the first two chunks, as well as the last two chunks. The key
kF is then XORed with the concatenation of NF and Tmeta.
The final obfuscated key kobf

F is obtained by appending NF

and Tmeta to the scrambled file key.
Unfortunately, MEGA provides no reasoning for the design

of the key obfuscation. We hypothesize that the aim is to create
a binding between the involved components. However, as we
show in Section V, the structure introduced by ObfKey leads
to attacks on the integrity of node ciphertexts.

E. Authentication and Session ID Exchange

When a user logs into their MEGA account, the client
derives the authentication key ka from the password and sends
it over a TLS connection to the server for authentication. The
server compares the first 128 bits of the SHA-256 hash of
ka to a value stored during registration, indexed by the user’s

5The CBC-MAC tag of the plaintext chunk Fi is computed using the IV
NF‖NF , rather than the zero bytes string (cf. RFC 3602 [28]). Furthermore,
the CBC-MAC tag is returned in the clear, rather than encrypted with the
first key stream block from the counter mode encryption. This means that
MEGA’s variant of AES-CCM is effectively an Encrypt-and-MAC scheme,
rather than MAC-then-Encrypt.
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DecSid([skencoded
share ]kM , [m]pkshare ):

Given: encrypted RSA private key [skencoded
share ]kM , encrypted

message [m]pkshare
Returns: decrypted and unpadded SID sid′

1 skencoded
share ← AES-ECB.Dec(kM , [sk

encoded
share ]kM )

2 N , e, d, p, q,dp, dq, u← DecodeRsaKey(skencoded
share )

3 m′p ← ([m]pkshare )
dp mod p

4 m′q ← ([m]pkshare )
dq mod q

5 t← m′p −m′q mod p
6 h← t · u mod p
7 m′ ← h · q +m′q
8 sid′ ← m′[3:45]� Unpad 43 B SID.
9 return sid′

Fig. 5. SID decryption during MEGA’s client authentication using RSA.

email address. If these values match, the server generates a
session ID (SID) sid and pads it with two bytes to the left
and 211 bytes to the right.6 Let (pkshare , skshare) be the 2048-
bit RSA key pair of the user and let m be the padded sid.
After generating the SID, the server encrypts m with pkshare
and sends it to the client, together with the encrypted version
of skshare .

Figure 5 provides an in-depth description of the client
side decryption of the encrypted private RSA key and SID.
First, the client decrypts the RSA key, which is encoded for
RSA-CRT as follows:

skencoded
share ← l(q)‖q‖l(p)‖p‖l(d)‖d‖l(u)‖u‖P.

Here, q and p are the two 1024-bit prime factors of the RSA
modulus N , d is the secret exponent, and u ← q−1 mod p
is an additional value useful for the RSA-CRT decryption
described below. P is padding and l(x) denotes the two-
byte big-endian length encoding of the byte-length of x ∈
{p, q,d,u}. For 2048-bit RSA, the encoding consists (with
high probability7) of three 128 B elements (q, p, and u) and
one 256 B part d. Since AES blocks are 16 B, this results in
41 blocks in total, where the last block contains the eight byte
padding P.

Next, DecodeRsaKey parses skencoded
share into components and

calculates dp ← (d−1) mod p and dq ← (d−1) mod q. The
client only sanity checks the length encodings to ensure that
the result is split into exactly four parts. Neither the padding
nor the lengths of the individual components are verified. No
integrity check is performed during decryption since the key
is encrypted using AES-ECB. After decoding the private key,
the client performs RSA-CRT decryption of the encrypted SID.
Lines 3 and 4 of Figure 5 decrypt the padded session ID m
in the smaller rings Zp and Zq. Lines 5–7 recover the padded
SID m′ using Garner’s formula [30]. Instead of checking the
padding, line 8 uses the known SID length to truncate m′ to
sid′. Before truncation, m′ is left-padded with zero bytes until

6The exact padding scheme is not published by MEGA. However, the need
for compatibility with the client-side decryption determines the position of
sid in the encoded string, which suffices for our attacks to work.

7Inverses modulo a random x-bit number are approximately uniformly
distributed and, thus, have close to x bits with high probability.

its length matches the byte length of N . In a correct execution,
we have sid′ = sid. The client sends sid′ in subsequent
requests to the server to complete the authentication.

F. MEGAchat

In addition to the cloud storage service, MEGA provides
the end-to-end encrypted chat messaging service MEGAchat.
The chat messages are encrypted with AES-CTR using 16-
byte keys which are periodically rotated. The sender generates
these symmetric chat keys and encrypts them for the recipient
using the user’s long-term asymmetric Curve25519 key. If the
Curve25519 public key is not available,8 the sender uses the
RSA-2048 share keys to encrypt the symmetric chat keys as
a fallback option.

III. RSA KEY RECOVERY

In this section, we present a practical attack to recover a
user’s RSA private key by exploiting the lack of integrity
protection of key ciphertexts. By tampering with the encrypted
RSA private key, a malicious server can deceive the client
into leaking information about one of the prime factors of
the RSA modulus during the session ID exchange. More
specifically, the session ID that the client decrypts with the
mauled private key and sends to the server will reveal whether
the prime is smaller or greater than an adversarially-chosen
value. This information enables a binary search for the prime
factor, with one comparison per client login attempt, allowing
the adversary to recover the private RSA key after 1023
client logins. The number of required login attempts can be
reduced from 1023 to 512 by implementing a lattice-based
optimization, which allows an attacker to terminate the search
early and recover the remaining missing bits of the prime.

A. Threat Model

We assume a malicious service provider (that is, the adver-
sary controls MEGA’s core infrastructure).

B. Attack Description

The attack begins with a key overwriting step, in which
the attacker exploits the lack of integrity protection of key
ciphertexts to modify the client’s outsourced RSA private key.
The resulting key is altered in the last part of the encoding
before the padding, such that it contains u′ 6= u = q−1 mod p.
When the client uses the thus modified private RSA key to
decrypt a ciphertext [m]pkshare containing a message m chosen
by the adversary, the result leaks information about whether
m < q or m ≥ q, where q ∈ [21023, 21024 − 1] is one of the
prime factors of the RSA modulus N .

This case distinction oracle arises due to properties of
RSA-CRT, and allows the adversary to perform a binary
search for q, by choosing m such that the search interval is
halved by each client decryption. To make the client decrypt

8Comments in the source code suggest that accounts created before 2016
did not have a long-term asymmetric Curve25519 key pair. For contacts
added before Curve25519 keys were introduced, the sender may not yet
have updated the record of public keys for the recipient and therefore lack
the Curve25519 public key.
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messages of its choice, the adversary uses the session ID sent
from the server at the start of each session. That is, instead
of choosing a SID the way the server would, the attacker sets
m to the middle value of the remaining search interval for q
and sends [m]pkshare , the encryption of m, in the place of the
encrypted SID. Once one factor q has been determined, the
adversary can easily recover the remaining private key.

Next we describe the details of each step of the attack.
1) Key Overwriting: First, [skencoded

share ]kM is modified such
that the resulting decrypted RSA private key contains a differ-
ent u-value than the original private key encoding. Recall that
u is a 128 B value spanning blocks 33–41 of skencoded

share , with
partial coverage of blocks 33 and 41. Since the encoded key is
encrypted with AES-ECB, it can be altered at block granularity
by modifying the corresponding ciphertext block. Hence the
desired modification can be achieved by applying any non-
identity transform to one of ciphertext blocks 33–41. Although
the resulting value is unknown, it suffices for the attack that the
client recovers u′ 6= u := q−1 mod p. In our implementation
of the attack, we modify the second to last ciphertext block
of [skencoded

share ]kM to maintain correct length encodings and to
avoid garbling the padding. The former ensures that the client’s
decoding succeeds. The latter increases the robustness of the
attack in case client versions that we did not analyze were to
perform a format check on the padding.

2) RSA-CRT Case Distinction Oracle: In the second step
of the attack, the adversary chooses a message m, encrypts
it to [m]pkshare and sends to the client in the place of the
encrypted SID. When the client uses the modified RSA private
key sk′share to decrypt [m]pkshare , the result allows the attacker
to distinguish the case m < q from m ≥ q. We analyze
each case separately to show how the oracle arises. A slight
challenge – and notable difference to previous work on fault
attacks – is that the adversary only sees part of the result of
the decryption, due to the unpadding performed by the client.9

Case m < q. In this case, [m]pkshare correctly decrypts to
m, despite the fact that the modified key sk′share is used in
place of skshare . To see this, first note that if m < q, then
m′q = m, because by the Chinese remainder theorem (CRT)
m ≡q m′q, and since m < q we have m mod q = m. For m′p,
we again have by the CRT that m ≡p m′p. Therefore, there
exists α ∈ Z such that m = m′p + α · p. Combining these
observations on m′q and m′p, we have on Line 5 of Figure 5
that t← −α ·p mod p = 0. Therefore, h = 0, independent of
the value of u′. In other words, the client recovers the correct
result m′ ← h·q+m′q = m despite the modified u′ value. This
results in sid′ = 0 because m < q < 21024. (Recall that q is
a 1024-bit prime.) The client left pads the decrypted m′ with
zero bytes to 256 B and then removes the rightmost 211 B.
Therefore, m is hidden in the padding, and the client recovers
and uses sid′ = 0.

Case m ≥ q. In this case, the message m will not be
correctly decrypted, allowing the adversary to detect that the

9Recall that in an honest execution, the plaintext m contains the padded
session ID, which the client truncates to 43 B before returning it to the server.

value returned by the client is different from the one sent. To
see this, we consider each step of the RSA-CRT decryption
procedure again.

By definition, there exist α, β ∈ Z such that m′p = m−α ·p
and m′q = m−β ·q. Then, t← m′p−m′q mod p = β ·q mod p.
Since p and q are coprime, t 6= 0 iff gcd(β,p) = 1. This hap-
pens with overwhelming probability 1−1/p for primes chosen
uniformly at random. Thus, with high probability (w.h.p.),
h ← t · u′ mod p 6= 0 and m′ ← h · q +m′q 6= m. Although
m′ ≡q m′q, we have m′ 6≡p m′p because u′ 6= q−1 mod p and,
therefore, Lines 5–7 of Figure 5 no longer apply the CRT.
We observe that m′ ≥ 256211 w.h.p. because of the summand
h·q. The integers h and q are random numbers of approx. 1024
bits. Therefore, h · q has approx. 2048 bits. Thus, w.h.p., m′

is larger than 256111, giving sid′ 6= 0.
In conclusion, despite the truncated decryption oracle, the

adversary can distinguish whether q < m or m ≥ q with
overwhelming probability based on whether the session ID
sid′ returned by the client is 0 or not.

3) Binary Search: Using the RSA-CRT case distinction
oracle, the adversary can perform a binary search for the
RSA prime factor q. For each login attempt by the victim,
the adversary chooses m to the middle value of the remaining
search interval for q and then uses m instead of the padded
SID. Note that due to the lax padding format used by MEGA,
clients accept any integer m ∈ [0,N − 1] as a valid padded
SID. Once the RSA factor q has been determined this way,
the adversary can easily recover the remaining private key as
p ← N/q and d ← e−1 mod (q − 1)(p − 1).

C. Impact

A compromised RSA private key allows the adversary to
break the confidentiality of all files shared with the victim by
other MEGA users. Furthermore, chat keys that are exchanged
using the RSA public key as a fallback can be compromised.
Of even higher interest than the direct consequences of the
recovering the RSA key, however, is the impact of this attack
on the overall security of MEGA’s key hierarchy. The attacks
described in Sections IV and V show how the confidentiality
and integrity of user data can be broken by chaining this attack
with other vulnerabilities.

D. Complexity and Optimizations

Without optimizations, the attack requires 1023 queries due
to the binary search on an interval of the size 21023. In the
MEGA web client, a user needs to perform one login (i.e.,
enter their password) for every query. If the adversary is the
service provider, it can stealthily mount the attack by accepting
any SID returned by the victim. In this case, the client may
still fail later due to the garbled RSA private key. However,
decryption errors caused by the faulty key are not always
exposed to the user; on some occasions, the client simply
removes and re-fetches the private key.

We briefly discuss how the number of required login re-
quests can be reduced to make the attack faster in practice.
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1) Lattice-Based Optimizations: When the most significant
bits of the RSA prime factor have been recovered using
the technique described above, the remaining bits can be
determined without further interaction with the client by using
lattice cryptanalysis. This allows the binary search to be
terminated early, requiring fewer login attempts from the user.
In Appendix A we describe the straightforward application
of a low-dimensional lattice attack adapted from Gabrielle
and Heninger [31] to the setting of our RSA key recovery
attack. This approach recovers up to 341 unknown bits and
therefore reduces the required number of queries for the attack
from 1023 to 683. With more complex lattices described
by Howgrave-Graham [32] and May [33], it is possible to
recover up to 512 unknown bits (i.e., the attack needs only
512 queries).

2) Malicious Client Modifications: MEGA’s current web
clients store user key material and the SID in the browser’s
local storage by default. Users remain logged in, and the
browser can access this key material without the need for
the user to enter their password. We remark that a malicious
provider could easily modify current clients to re-establish a
new SID in the background instead of storing it locally. With
such a seemingly harmless code change, the adversary could
perform queries whenever the user accesses the MEGA cloud
storage, entirely unbeknownst to the user.

IV. PLAINTEXT RECOVERY ATTACK

As we have seen in the previous section, MEGA’s authen-
tication protocol can be used as an oracle to recover a user’s
private RSA share key skshare , even though it is encrypted
with the user’s master key using AES-ECB. MEGA encrypts
the chat, sign, and node keys in the same manner, reusing
the master key and without adding integrity protection for any
of the encrypted keys. This leads to the natural question of
whether, having recovered skshare , the adversary can go on to
also recover the other keys.

In this section, we show that this can be done: after inserting
target AES-ECB ciphertext blocks encrypted under the master
key kM into the AES-ECB ciphertext for skshare and choosing
the SID in a special way, the session ID returned from the
client during authentication leaks the corresponding plaintext
blocks. For technical reasons explained below, this method can
be used to recover up to two plaintext blocks for each run of
the authentication protocol.

A. Threat Model and Adversary

Our threat model considers an adversary that controls
MEGA’s servers. Additionally, we assume that the adversary
knows the client’s RSA private key. For instance, it can recover
this key by running the RSA private key recovery attack from
Section III or performing a forensic investigation of the user’s
unattended device (e.g., dumping the memory).

The adversary aims to decrypt two (not necessarily consec-
utive) ciphertext blocks ct1 , ct2 ∈ {0, 1}128 that are encrypted
with AES-ECB under the master key kM .

B. Attack Description

The attack consists of three steps: key overwriting, simpli-
fying RSA-CRT and recovering the plaintext.

1) Key Overwriting: Recall from Section II-E the encoding
of the RSA private key exchanged during client authentication:

skencoded
share ← l(q)‖q‖l(p)‖p‖l(d)‖d‖l(u)‖u‖P

The client encrypts this key using AES-ECB under the master
key kM before uploading [skencoded

share ]kM to MEGA. The adver-
sary can modify this ciphertext at AES block granularity since
AES-ECB encrypts blocks independently. The [skencoded

share ]kM
can be split into 41 AES ciphertext blocks c1 , c2 , . . . , c41 :

c1‖c2‖ . . . ‖c41 ← [skencoded
share ]kM ,

where |ci | = 16 bytes for all i ∈ [1, 41]. Of particular interest
to the attack are the last 9 blocks, which contain the encryption
of u.10 Specifically, block c33 encrypts the concatenation of
the last 6 bytes of d, the length-encoding l(u), and u[1:8] (the
first 8 bytes of u). Blocks c34–c41 contain the ciphertext for
u[9:128] including 8 bytes of trailing padding.

For the plaintext recovery attack, we avoid modifying c33
to preserve l(u) and enable successful client-side key parsing.
Instead, we overwrite c34 and c35 with the target ciphertext
blocks ct1 and ct2 . That is, the adversary sends the following
tampered encryption of the RSA key to the client.

[skencoded
share ]′kM ← c1‖ . . . ‖c33‖ct1‖ct2‖c36‖ . . . ‖c41 ,

This replacement results in a new RSA private key component,
u′, which can be split into three parts u1‖x‖u2 ← u′,
where u1 = u[1:8], x is the decryption of ct1‖ct2 , and
u2 = u[41:128] is the remaining preserved plaintext bytes of
the original u. The adversary aims to recover x, which replaces
the 32 bytes u[9:40] of u in u′.

2) Simplifying RSA-CRT: To recover x, we leverage that
the RSA-CRT decryption of the session ID with the modified
sk′share uses u′. By assumption, the adversary knows the
original skshare , including u1 and u2 . By replacing the session
ID with a specific message m, the RSA-CRT decryption can
be simplified to enable the recovery of x.

The adversary chooses m ← u · q as the “session ID” and
encrypts it using the user’s RSA public key.11 The adversary
sends [skencoded

share ]′kM and [m]pkshare to the client, which runs
the RSA-CRT SID decryption described in Figure 5. The
particular choice of m gives

m′p ← ([m]pkshare )
dp mod p = u · q mod p = 1 and

m′q ← ([m]pkshare )
dq mod q = u · q mod q = 0.

This computation is not affected by the modified private key
since it only uses p, q, and d. Furthermore, m′p = 1 and

10In the following, we focus on the case where the private exponent d is
256 bytes and u is 128 bytes to simplify the analysis. This means that u spans
blocks 33–41. It would be straightforward to adapt our attack to corner cases
with shorter encodings of d or u.

11Although m does not have the expected form of a padded SID, the client-
side processing tolerates any message (cf. Figure 5).
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m′q = 0 lead to t = 1 and h = u′ mod p. Consequently, the
decryption of [m]pkshare simplifies to m′ = h · q.

We now argue that with high probability, m′ = u′ ·q. If the
adversary were given m′, it would be easy to recover u′, and
thereby x, by computing u′ ← m′/q. We discuss later how
the adversary can still recover x although it only receives 43
bytes of m′. First, for m′ = u′ · q to hold, we need that
u′ mod p = u′, i.e., u′ < p. To see that this is the case
w.h.p., recall that u < p by definition. Split the prime p into
p1‖p2 ← p, where |p1 | = |u1 | = 8 B and |p2 | = 120 B. By
construction, u and u′ both start with u1 . Since u < p, it can
only be the case that u′ ≥ p if u1 = p1 . Thus, we derive the
following lower bound on the probability.

Pr[u′ < p] ≥ 1− Pr[u1 = p1 ] = 1− p2 + 1

p
≥ 1− 2−63

Hence, m′ = u′ · q with probability at least 1− 2−63.
3) Recovering Plaintext: We show how an adversary can

recover x from the truncated SID m′[3:45]. We assume that
u′ < p such that m′ = u′ · q. Let y1‖y2‖y3 ← m′, where
y1 is the removed 2-byte prefix, y2 is m′[3:45], and y3 is a
211-byte unknown suffix. To recover x, the adversary tries all
possible prefix values ŷ1 ∈ {0, 1}16 and performs arithmetic
operations on ŷ1‖y2‖y3 to get u1‖x. The correct prefix guess
ŷ∗1 can be detected when the result starts with u1 .12

To compute u1‖x, interpret the involved byte strings as big-
endian encoded integers. Then, from m′ = u′ ·q, m′ = ŷ∗1 ‖y2 ·
256211 + y3 , and u′ = u1‖x · 25688 + u2 , we obtain

ŷ∗1 ‖y2 · 256211

q
= u1‖x · 25688 + u2 −

y3
q
.

The last term is bounded by y3
q < 2665. Therefore, at least 39

bits separate the prefix u1‖x from y3
q . Thus, the subtraction

of y3
q can only affect x if u′ has the prefix u1‖x‖039.

This happens with a probability of about 2−39 since u′ is
approximately uniformly distributed. Hence, with probability
1− 2−39,

u1‖x =

⌊
ŷ∗1 ‖y2 · 256211

q
· 256−88

⌋
,

where u2 is rounded away because it is smaller than 25688.

C. Complexity

The adversary recovers the two plaintext blocks (32 B)
corresponding to ct1 , ct2 with a probability of at least 1−2−39,
given that u′ < p. Let S be the event that the attack is
successful. Then, the overall success probability is

Pr[S] = Pr[S | u′ < p] · Pr[u′ < p] > 1− 2−38.

The adversary needs to iterate over the 216 prefixes ŷ1 , which
is computationally trivial and does not involve any interaction
with the victim. Additionally, a single login attempt of the

12This method has a small false positive probability of approximately 2−64

(since |u1 | = 64). However, this can be avoided in practice using additional
information to detect when the the correct plaintext x has been recovered
(e.g., by attempting to decrypt a file using x as a key).

user is required to perform the attack. Since each successful
instantiation of the attack recovers two AES-ECB plaintext
blocks, one query suffices to recover a full node key or 32
bytes of asymmetric key material. The attack cannot be used
to decrypt three or more blocks per login attempt because then
the prefix u1‖x is changed by the unknown term y3

q with high
probability. However, the adversary can iterate the attack to
recover as much plaintext as it desires.

D. Practical Considerations

In practice, the web client often executes a special case13

(not shown in Figure 5), where only a single prefix byte is
removed during SID decryption instead of two. The above
attack and analysis are straightforward to adapt to this case.
The adversary iterates over the 28 values ŷ1 ∈ {0, 1}8 and
recovers the prefix u1‖x with probability 1−2−31. The overall
success probability is Pr[S] > 1−2−30, and the computational
cost is slightly lower.

V. INTEGRITY ATTACKS

Having successfully recovered the node, share, chat, and
sign keys of any MEGA user using the attacks in the preceding
sections, it is clear that at this point all confidentiality of user
data is lost. We now turn our attention to integrity, to see
what guarantees MEGA’s system gives users in terms of file
authenticity. The result is – perhaps unsurprisingly – that after
recovering node keys, very little protection remains: access to
the keys means that the adversary can trivially modify existing
files by decrypting, changing, and then re-encrypting the files.
More interesting is the ability to add new files to the user’s
storage, without relying on existing node keys. We present two
versions of this stronger type of attack.

In the first, an attacker can create a node key ciphertext
by choosing any two AES-ECB ciphertext blocks, and use
the plaintext recovery attack from Section IV to decrypt the
obfuscated key. It may then use the knowledge of the resulting
key, nonce and metamac to forge a valid file ciphertext for a
plaintext of its choosing, up to one AES block. This enables a
framing attack on the victim, who will not be able to provide
cryptographic evidence that they did not upload the forged file.

The second attack exploits the structure of MEGA’s ob-
fuscated node keys to create a key ciphertext for the all
zero key: by repeating a ciphertext block the adversary can
ensure that the client derives the key kF = 0128. This attack
is less surreptitious than the framing attack because of the
low probability of the all-zero key appearing in an honest
execution. In return, it does not rely on the ability to decrypt
arbitrary AES-ECB ciphertexts; a single known plaintext-
ciphertext AES block pair suffices. With a known key, the
attacker can forge a valid ciphertext for a chosen plaintext.

A. Threat Model

The threat model considers an adversary controlling
MEGA’s core infrastructure. The first attack assumes access

13This special case is unlikely to occur during normal operation but happens
with probability 1− 2−8 for our choice m = u · q for the SID.
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Fig. 6. Reconstruction of a mostly chosen file using a known node key kF and nonce NF that produces a fixed metamac Tmeta.

to a decryption oracle Odec for AES-ECB encryption under
the master key kM . This oracle can be realized by exploiting
the attack in Section IV, for example.

The second attack requires knowledge of a single plaintext-
ciphertext pair (pt, ct) such that ct = AES-ECB.Enc(kM ,pt).
This can again be obtained from the plaintext recovery attack
in the preceding section, but can also be acquired in other
ways. For instance, the attacker can use MEGA’s protocol
for public file sharing to obtain the pair. When a user shares
a file or folder publicly, they create a link containing the
obfuscated node key in plaintext. Hence, a malicious cloud
provider who obtains such a link knows both the plaintext
and the corresponding ciphertext, since the latter is uploaded
to MEGA when the file is created (before being shared).

B. Attack Description

We first describe the two approaches to derive key material
for the file forgery, based on the assumed adversarial resources.
Apart from how the key is derived, both attacks then use
the same procedure to construct a file and corresponding
ciphertext which will pass all integrity checks.

1) Decryption Oracle: In this scenario, the adversary has
access to an AES-ECB decryption oracle Odec. To create
a key ciphertext for which the attacker knows the plaintext
obfuscated key, it proceeds as follows. The adversary selects
two AES ciphertext blocks ct1 , ct2 ∈ {0, 1}128 uniformly at
random. Next, it uses the decryption oracle to recover the
corresponding plaintext blocks pt1‖pt2 ← Odec(ct1‖ct2).
It then runs the key deobfuscation algorithm described in
Figure 4 to obtain the node key, nonce, and metamac:
kF ,NF ,Tmeta ← DeobfKey(pt1‖pt2). Note that because
of the random choice of ciphertext blocks, the resulting
encryption key, nonce, and tag are indistinguishable from those
of a genuinely uploaded file.

2) Single Plaintext-Ciphertext Pair: In this second sce-
nario, we assume that the adversary knows a plaintext-

ciphertext pair (pt, ct) where ct = AES-ECB.Enc(kM ,pt).
Given this, the adversary can forge a key ciphertext that
decrypts to a node key of all zero bytes. The forgery is
possible due to the structure of obfuscated keys combined
with AES-ECB encryption. The adversary chooses ct‖ct as
encryption for the obfuscated file key. By construction, this
key ciphertext decrypts to kobf

F = pt‖pt, since AES-ECB
decrypts the two blocks independently and with the same
key kM . For kF ,NF ,Tmeta ← DeobfKey(pt‖pt) this gives
NF‖Tmeta = pt and kF = pt ⊕ (NF‖Tmeta) = 0128.

Note that this works regardless of the plaintext content of
the AES blocks. Hence the attacker can use any plaintext-
ciphertext pair (pt, ct). The decryption and deobfuscation of
the key ciphertext will always succeed since node keys are not
integrity-protected.

3) File Reconstruction: The adversary now has a node
key kF , a nonce NF and a metamac Tmeta and wants to
forge a ciphertext for a file F such that it verifies under the
tag Tmeta. On a high level, the adversary achieves this by
working backward from the metamac and inserting a single
AES block at a convenient location in the malicious file F.
Note that many standard file formats such as PNG and PDF
tolerate 128 injected bits (for instance, in the file’s metadata,
as trailing data, or in unused structural components) without
affecting the displayed content. Hence the modified file F ′ can
be constructed to appear identical to F.

Figure 6 visualizes the construction of F ′ given kF ,NF ,
and Tmeta. The dark orange blocks are fixed and imply
constraints that must be satisfied for the forged file to pass
the integrity verification. The adversary starts by creating a
condensed MAC Tcond that produces Tmeta. For this purpose,
it splits Tmeta into two 32-bit chunks T1

meta and T2
meta. Next,

it chooses τ1, τ3←$ {0, 1}32 u.a.r. and sets τ2 ← τ1 ⊕ T1
meta

and τ4 ← τ3 ⊕ T2
meta. This ensures that the condensed MAC

Tcond ← τ1‖τ2‖τ3‖τ4 produces Tmeta when the metamac is
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computed.
Next, the file chunk MAC tags must be set to ensure that

the condensed MAC is Tcond . Let F1‖F2‖ . . . ‖Fn ← F be the
file chunks of the adversarially chosen file, each consisting
of lF AES blocks. Recall from Figure 2 that Tcond is the
CBC-MAC of the concatenation of all n chunk MACs Ti for
i ∈ [1,n]. Because of the structure of CBC-MAC, all but a
single chunk MAC tag can be chosen freely to give the desired
Tcond . The last tag can then be reconstructed from the other
tags and Tcond . Hence, to proceed, the adversary selects a
chunk index j ∈ [1,n] such that the file format of F tolerates
128 random bits (aligned to AES blocks) in the j-th chunk.
Then, it calculates all chunk MACs except Tj using MEGA’s
AES-CCM∗ encryption (cf. Figure 3):

For all i ∈ [1,n] \ {j} do :
[Fi]kF ,Ti ← AES-CCM∗.Enc(kF ,NF‖(i · lF),Fi)

Next, the adversary computes the condensed MAC tag
for chunk j by applying a “meet-in-the-middle” CBC-MAC
calculation, to ensure that the result of CBC-MAC over all the
chunk MACs is Tcond . That is, it computes the intermediate
condensed MAC Tcond,j−1 up to chunk j (the “forward di-
rection”) by calculating the CBC-MAC of T1‖T2‖ . . . ‖Tj−1.
It also computes the intermediate condensed MAC values for
chunks j + 1 to n backward, starting from the desired output
Tcond,n ← Tcond . That is, for i = n− 1,n− 2, . . . , j let

Tcond,i ← AES-ECB.Dec(kF ,Tcond,i+1)⊕ Ti+1.

The remaining tag Tj is defined by Tcond,j−1 and Tcond,j :

Tj ← Tcond,j−1 ⊕ AES-ECB.Dec(kF ,Tcond,j)

Now, the MAC tag Tj for file chunk j is fixed. For
analogous reasons as above, the adversary can construct and
insert a single AES block into Fj such that the MAC of the
resulting file chunk F ′j is Tj . The adversary then sets

F ′ ← F1‖ . . . ‖Fj−1‖F ′j‖Fj+1‖ . . . ‖Fn

and generates the file ciphertext CF by encrypting the file
chunks with the key kF . The adversary can also encrypt file
attributes of its choice using AES-CBC with key kF . Note
that any attributes may be chosen and that no modification
is necessary since file attributes are not integrity-protected by
MEGA. Finally, the attacker places the key ciphertext (either
ct1‖ct2 for the two randomly chosen ciphertext blocks in the
decryption oracle scenario, or ct‖ct for the known plaintext-
ciphertext pair (pt, ct)), the file ciphertext and the attribute
ciphertext in the victim’s cloud storage.

C. Impact

With either attack, the adversary is able to add a new file
to the user’s cloud. The file can be chosen by the adversary,
up to one AES block in a flexible location. The impact of this
fixed block is small in practice since many file formats tolerate
sufficiently long sections of arbitrary bytes.

In MEGA’s threat model, the expected file integrity protec-
tion is that only the user can upload files to their storage due to
the client-side user-controlled encryption. Hence an adversary
exploiting these vulnerabilities can frame a user for possession
of incriminating files, that, in theory, only the victim could be
the creator of. For example, a conceivable attack might frame
someone as a whistle-blower and place an extensive collection
of internal documents in that person’s account.

D. Complexity

The attacks require only a trivial amount of computation.
The file reconstruction solely uses simple bit operations and
fast AES block cipher applications. If the decryption oracle is
instantiated with the plaintext recovery attack from Section IV,
the attack needs a single user login attempt. The second
integrity attack does not require additional effort.

VI. GUESS-AND-PURGE BLEICHENBACHER ATTACK

In this section, we present a new Guess-and-Purge variant of
Bleichenbacher’s attack [4] (GaP-Bleichenbacher) to decrypt
RSA ciphertexts using a padding oracle exposed by the fall-
back chat key exchange for MEGAchat. The attack is adapted
from PKCS#1 v1.5 padding to the custom padding scheme
used by MEGA clients for RSA encryption of chat keys when
no Curve25519 key is available. Our attack devices a new
strategy that guesses the unknown two-byte prefix tolerated
by this padding scheme and quickly purges wrong guesses.
The overall GaP-Bleichenbacher attack requires 216.9 client
login attempts on average to decrypt one ciphertext.

Although this attack is weaker than the RSA key recovery
in Section III (in the sense that a key recovery implies
plaintext recovery), it is complementary in the vulnerabilities
that it exploits and hence requires separate countermeasures.
Additionally, the Bleichenbacher attack may be performed by
a weaker adversary.

A. Threat Model and Adversary

The threat model assumes an adversary with chosen-
plaintext capability for the RSA encryption used as a fallback
chat key exchange. The adversary needs a channel to the
victim over which it can send encrypted chat keys. The
client throws different errors depending on whether the RSA
decryption of the chat keys was successful or not. We assume
that the adversary is able to observe this error oracle.

We outline two possible realizations of this adversary. First,
a malicious service provider can send any message encrypted
with the target’s RSA public key to the user disguised as
encrypted chat keys. The client reports a different error mes-
sage to the server when RSA decryption fails and when chat
message decryption fails (because random bytes are used as
chat key after a successful RSA decryption).

Second, another user who has a direct chat with the victim
may execute the same attack by sending maliciously chosen
messages instead of chat keys during the key exchange. We
consider it possible that such an adversary can infer the target’s
decryption success. Error messages that the target sends to
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the server may be forwarded to the chat partner to inform the
sender that transmission failed. Otherwise, the adversary could
observe the encrypted network traffic between MEGA and the
target’s client and distinguish error messages sent to the server
based on timing and message sizes.

B. Attack Outline

Recall that Bleichenbacher’s attack [4] on PKCS#1 v1.5
padding maintains an interval of possible plaintexts. It exploits
the malleability of RSA to test the decryption of multiples
of the unknown target message. Successful unpadding leaks
the prefix of the decrypted message due to the structure of
the PKCS#1 v1.5 padding. This prefix allows an adversary
to reduce intervals efficiently and recover the plaintext.

MEGA’s padding scheme has an unknown prefix of two
bytes that prevents the direct application of Bleichenbacher’s
attack. Every successful decryption corresponds to many dis-
joint solution interval candidates leading to a state explosion.

Our attack guesses the unknown prefix and removes it
before updating the solution interval. We find empirically that
wrong guesses lead to an empty solution interval within a few
iterations of the GaP-Bleichenbacher attack steps. By using
practical optimizations – including dynamic programming and
early termination – we can avoid both repeating queries and
spending time to recover padding bits.

We provide a detailed description of GaP-Bleichenbacher,
including the intricate adaption of Bleichenbacher’s attack
steps, in Appendix B.

C. Complexity

Our experiments evaluated the attack to require 216.9 queries
on average, where 25% of all runs need less than 214 queries,
and the distribution has a long tail. We provide further details
in Appendix B.

D. Impact

An adversary can use a vulnerable client to decrypt any RSA
ciphertext due to the reuse of a single RSA key pair. Hence,
the attack enables the recovery of chat keys transferred using
RSA, as well as node keys shared with the victim.

VII. PROOF OF CONCEPT

We set up a test account on MEGA and implemented a
PoC of our attacks to test them in practice.14 Each PoC is
implemented in two settings: sim and real.

In sim, the entire attack is run against a local simulation
of the relevant parts of MEGA to avoid affecting MEGA’s
operation. In real, we verify that our simulation accurately
models MEGA’s system by carefully testing the components
of the attack on the MEGA web client v. 4.11.2.15 Since the
server code is not published, we cannot implement a PoC
where the adversary controls MEGA. Instead, we implement a

14The implementation of our PoCs is published on GitHub: https://github.
com/MEGA-Awry/attacks-poc.

15Since we exploit fundamental flaws in the cryptographic architecture, we
expect the vulnerabilities to apply to other clients and versions as well.

Fig. 7. Forged file with 128 chosen bits after IEND, the last PNG chunk.

MitM attack by installing a bogus TLS root certificate on the
victim. This setup allows us to impersonate MEGA towards
the user while using the real servers to execute the server code
(which is unknown to us). We can patch server responses and
perform our attacks on the fly since they do not rely on secrets
stored by the server.

For our RSA key recovery attack from Section III, we ran
the full binary search and simple lattice optimization described
in Appendix A in sim to ensure that the attack succeeds
reliably in 683 login attempts. The lattice recovery of 341
missing bits of the prime succeeded in 1000 out of 1000 runs.
Afterwards, we recovered the first and last few bits of the RSA
prime factor in the real setting. This way, we were able to
verify the correctness of the attack while avoiding having to
perform excessively many login requests on MEGA’s servers.

Our plaintext recovery attack from Section IV only requires
a single login query to recover a node key when the RSA
private key is known. Therefore, we implemented a full PoC
in both settings. We investigated the internal state of MEGA’s
command-line client to obtain the private key material of our
test account and the expected node key decryption.

Using the integrity attacks from Section V, we successfully
forged a valid ciphertext for the PNG image shown in Figure 7.
The PNG file format ignores any data appended to the image,
making it simple to modify the image to add the necessary
block needed to pass the integrity verification. In sim, we
verified that our reconstructed MEGA file decryption success-
fully recovered the forged file. For real, we implemented the
attacks only on the client-side to avoid uploading persistent
bogus material to MEGA. We injected the file in the file tree
hierarchy fetched by the web client and then intercepted the
load request caused by the user when opening our forged
image in the MEGA image viewer. Then, we served our forged
file and verified that it displayed correctly on the client.

For the fallback chat key transfer over RSA that the
GaP-Bleichenbacher attack from Section VI targets, source
code comments suggest that it is only used for accounts
registered before 2016. Downgrade attacks for newer accounts
cannot be ruled out but we did not attempt to implement
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this attack in the real setting due to the closed-source
server code and the substantial number of queries. Instead,
we only implemented it in sim to show that MEGA’s custom
padding scheme is fundamentally vulnerable to an adaption of
Bleichenbacher’s attack on PKCS#1 v1.5 padding.

VIII. COUNTERMEASURES

As part of our disclosure to MEGA, we detailed three sets
of countermeasures: immediate patches, suggesting backward-
compatible mitigations to temporarily protect against the most
severe consequences of our attacks, minimal patches, provid-
ing more robust protection while avoiding expensive opera-
tions like re-encryption of all user files, and recommended
measures, proposing steps toward a redesign of MEGA’s
cryptographic architecture.

Here, we focus on the root causes of the attacks and
discuss some immediate countermeasures for MEGA. We also
provide general recommendations and discuss best practices
for encrypted cloud storage systems.

A. Immediate Countermeasures

1) Integrity-Protect Key Ciphertexts: The most effective
countermeasure against our attacks is to add integrity pro-
tection for the encrypted user keys stored by MEGA. This
can be done in a non-invasive way by adding HMAC tags
to the key ciphertexts. By extending the existing encryption,
older clients can ignore the new authentication tags and remain
functional. We advise the use of distinct keys for separate
usages of HMAC, rather than re-using the master key, to avoid
further vulnerabilities from the lack of key separation.

This measure directly protects against the RSA key recovery
in Section III. Consequently, it also prevents our plaintext re-
covery and integrity attacks (Sections IV and V) because they
build on the RSA key decryption and rely on the lack of key ci-
phertext intergrity. However, this measure should only be con-
sidered a temporary patch, since AES-ECB-then-HMAC still
does not achieve authenticated encryption security. Neverthe-
less, we propose this as a temporary solution due to MEGA’s
challenging scale, the urgency of the issues, backward com-
patibility considerations, and the ease of implementation.

2) Separate Keys: MEGA broadly violates the principle of
key separation: the practice of using separate keys for separate
purposes. The most notable instance is the reuse of the master
key to encrypt all other user keys, enabling the AES-ECB
plaintext recovery attack in Section IV. As an immediate
measure, we propose to replace the master key with a new,
randomly chosen key derivation key, kD , and to use HKDF
to derive a set of key encryption keys (KEKs) from kD to
separately encrypt the share, chat, sign, and node keys.

This measure offers additional protection against the
AES-ECB plaintext recovery attack: the RSA private key
decryption can no longer be used to decrypt other encrypted
keys, since they are encrypted with distinct KEKs. However,
users should also change their passwords after this patch
is implemented, as a proactive measure to render the old
master key kM inaccessible. Without a password change, the

encryption key ke remains the same and can still decrypt kM .
Thus, if a user could be tricked into decrypting the master
key ciphertext (for instance, by using an outdated client), our
attacks could still be performed by a malicious entity that
stored earlier versions of key ciphertexts. Nevertheless, even
users who do not update their password would still benefit
from the proposed key separation, as the AES-ECB plaintext
recovery attack could no longer be used to compromise the
keys of newly uploaded files.

3) Use a Stricter RSA Padding Format: We propose to
enforce stricter client-side checks on MEGA’s custom RSA
padding to increase the number of queries needed for the
GaP-Bleichenbacher attack. Enforcing a fixed 2-byte padding
prefix would increase the number of queries needed for the
attack to approximately 233 because conforming messages are
then harder to find. This modification is a short-term measure
that does not remove the padding oracle. An attack requiring
233 queries is still worrisome as it could be improved. Nev-
ertheless, this measure would reduce the practicality of the
attack and make it easier to detect.

B. General Recommendations

1) Use Authenticated Encryption: An AEAD scheme such
as AES-GCM should be used to encrypt user keys and data, re-
placing the use of unauthenticated modes. For key encryption,
we advise following standard key-wrapping practices [34] and
using the associated data field to newly authenticate control
data such as expiration date and permitted usage of the key.
Additionally, for asymmetric primitives, the public key can be
added as associated data to avoid key confusion attacks.

This measure would address our attacks more adequately
than the minimal measures. However, AES-GCM needs to be
used carefully to avoid issues with nonce reuse [35], cache
side-channel attacks [36], [37], fragile authentication [38], [39]
and attacks from lack of key commitment [12], [13], [14].

2) Use Library Implementations of Standard Primitives:
Whenever possible, using a well-tested implementation of a
standardized primitive is recommended over “rolling your own
crypto”. In the case of MEGA, this would mean removing
the key obfuscation procedure and replacing the non-standard
implementation of AES-CCM. Concretely, we recommend
the use of HKDF [40] for key derivation, AES-GCM [41]
for file encryption and CMAC [42] to compute MACs over
variable-length messages. Furthermore, we suggest the use
of RSA-OAEP [43] for RSA encryption to protect against
Bleichenbacher-style attacks on the padding, and the aug-
mented PAKE OPAQUE [44] for user authentication.16

3) Consistently Separate Keys: Beyond the top-level key
separation introduced in the immediate countermeasures, we
recommend the use of distinct keys for separate purposes
throughout the system. For example, separate data encryption
keys should be used for files and attributes. Furthermore, when
the design of the system changes to introduce updates or new

16Even with OPAQUE, MEGA could still mount dictionary attacks against
individual user passwords, since the server would still store password-related
data, allowing guesses to be tested against the stored values.
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features, new keys should be used for new functions to avoid
vulnerabilities from legacy code. In MEGA’s case, separate
RSA key pairs should be used for the node sharing and the
legacy chat key transfer. Lastly, we recommend regular key
rotation for all key-encryption keys.

IX. DISCUSSION

MEGA is not the first – and almost certainly not the last
– system to contain critical security vulnerabilities. While se-
curity analyses like ours will remain important in establishing
and improving the privacy of users of cryptographic systems,
it is unfortunate that such attacks continue to be discovered.
When a system has grown popular enough to attract the atten-
tion of independent researchers, skilled adversaries may have
already compromised the system. Mitigating attacks cannot
undo the consequences of such compromises. Additionally,
the process to patch a large-scale system like MEGA is at
best cumbersome, at worst impossible.

The problem of bridging the knowledge gap between cryp-
tographers and implementers is a long-standing one, and
beyond the familiar advice to stick to well-tested implementa-
tions of standardized and provably secure primitives, we will
not discuss it further in general here. Rather, we choose to
highlight some specific lessons learned from our review of
MEGA and give recommendations for the future.

A. How and Why MEGA’s Design Fails
The attacks presented in this work arise from unexpected

interactions between seemingly independent components of
MEGA’s cryptographic architecture. They hint at the difficulty
of maintaining large-scale systems employing cryptography,
especially when the system has an evolving set of features and
is deployed across multiple platforms. The challenges involved
in a complete redesign of a cryptographic architecture can
make ad hoc fixes and short-term solutions attractive. In turn,
this can lead to even more complexity that becomes more dif-
ficult to maintain, due to the introduction of new dependencies
and the desire to provide backward compatibility.

As an example, our recommended transition to authenticated
encryption in MEGA would require all customers to download,
decrypt, re-encrypt, and upload all their data, due to the end-
to-end security features of the system. With 1000 PB of data
stored by MEGA, this would take more than half a year at
MEGA’s peak bandwidth of 1000 Gbit/s. It would also place
an immense load on MEGA’s storage infrastructure. Perhaps
because of challenges like this, MEGA decided to deploy a
more short-term approach, leading to additional complexity.

Hence, a design that anticipates cryptographic updates and
allows new features to easily be added without introducing
cross-domain vulnerabilities is crucial. A core feature of such
a design is good key hygiene. Careful key separation not
only minimizes the risk for unintended and dangerous interac-
tions between cryptographic components, but can also protect
against downgrading attacks and vulnerabilities in legacy code.

Another central issue in MEGA’s design is the lack of
consistent provision of integrity for ciphertexts: MEGA at-
tempted to provide integrity for stored files, but not for the

keys used to protect those files. This gave rise to a complete
breach of confidentiality of user data. We hypothesize that
this distinction in how integrity is provided arises from a
misunderstanding concerning the strength of the relevant threat
model for the analysis of MEGA. By now it seems to be well-
understood that both confidentiality and integrity are needed
when securing data at rest, but perhaps this is not so obviously
true when securing keys at rest when faced with a malicious
service provider. Some practitioners may also have the impres-
sion that security notions for authenticated encryption assume
unrealistically powerful adversaries. However, as our attacks
on MEGA show, (partial) decryption oracles can exist in prac-
tice, especially in the setting of a malicious service provider.
We observe that RSA-CRT is particularly vulnerable to key
overwriting attacks in a chosen-plaintext setting since the
decryption directly uses the prime factors of the RSA modulus,
potentially leaking useful information for factorization. Here,
establishing the use of AEAD as the default is an important
step in reducing the potential for attacks.

B. Consequences

Besides the effort and computational power required to
patch a large system, vulnerabilities like the ones presented
in this paper can have dire consequences for the system’s
users. The attacks presented here show that it is possible
for a motivated party to find and exploit vulnerabilities in
real world cryptographic architectures, with devastating results
for security. It is particularly concerning that services like
MEGA – which advertise privacy as a core feature and hence
particularly attract users in need of strong protection – fail to
withstand cryptanalysis. It is conceivable that systems in this
category attract adversaries who are willing to invest signifi-
cant resources to compromise the service itself, increasing the
plausibility of high-complexity attacks. Moreover, the cost of
finding and exploiting such vulnerabilities is amortized by the
large number of accounts to which they can be applied.

Once the system has been compromised, recovering security
(and trust) may be challenging even if the vulnerability is
discovered and countermeasures applied. Ideally, users should
be able to regain security after a compromise by updating their
key material, for example by resetting their password. How-
ever, even with such defensive mechanisms in place, in-depth
insight into the vulnerability would be needed for users to
assess what security guarantees remain, and how well patches
protect their old and new data. Of course, we cannot expect
consumers to make such assessments, and they may very well
lose trust in the provider or fail to (for example) reset their
password because they cannot judge the security implications.

C. Future Work

Given the popularity of cloud computing in general, and
outsourced storage in particular, it is safe to assume that the
demand for secure and private cloud services will continue to
rise. Rather than leaving the task of designing a secure system
to individual providers – which, paradoxically, would require
users to trust the (by assumption) untrusted cloud provider

158



with a secure design and correct implementation – we advocate
for a standardization of secure cloud storage.

Such a standard would ideally provide a secure and robust
foundation obviating the need for ad hoc designs, while still
leaving room for vendor-specific customization and improve-
ments. For instance, support for additional features should be
provided by design, and the specification should be crypto-
graphically agile. Developing a good standard would require
deep engagement with a broad spectrum of stakeholders,
including but not limited to cryptographers. We believe that
this would be the easiest path to avoid attacks stemming from
the lack of expert knowledge among developers, and that it
would enable users to finally have confidence that their data
remains just that – theirs.
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APPENDIX A
LATTICE CRYPTANALYSIS FOR RSA KEY RECOVERY

ATTACK

We briefly describe the straightforward application of a
low-dimensional lattice attack adapted from Section 4.2.2
of Gabrielle and Heninger [31]. The attack can be used to
recover up to 341 of the unknown least significant bits of the
RSA prime factor q after the most significant bits have been
determined using the key recovery attack in Section III.

Let q̂2 be the leftmost (1024 − l) bits of q and q1 the
remaining l unknown bits. Let q2 ← q̂2 · 2l such that q =
q2+q1. On a high level, we rewrite the problem of recovering
q1 to the task of finding small roots of a polynomial. For this
purpose, we consider the following three polynomials f1, f2,
and f3 over Z, which all have the small root q1 modulo q:

f1(x) = x · (q2 + x), f1(q1) = q1 · (q2 + q1) ≡q 0

f2(x) = q2 + x, f2(q1) = q2 + q1 ≡q 0

f3(x) = N , f3(q1) = N ≡q 0

We observe that every linear combination of these polynomials
has the same root q1 modulo q. We use this observation to
construct the following lattice basis B, where we put the
coefficient vectors of the previous polynomials in the rows
and scale the first column by L2 and the second by L for
L = 2l:

B =

 L2 Lq2 0
0 L q2
0 0 N


The column scaling ensures that the L1 norm of any vector
in the lattice is an upper bound on the value of the unscaled
polynomial corresponding to the coefficient vector when eval-
uated at q1. Consequently, if we can find a vector w with
||w ||1 < q in the lattice, then there is a corresponding unscaled
polynomial g , such that g(q1) < q. Since q1 is a root of g

modulo q by construction, it follows that g(q1) = 0 over the
integers.

We can efficiently recover the missing bits q1 of q by
factoring the polynomial. The LLL algorithm [45] finds an
exponential approximation of the shortest vector in polynomial
time. Nguyen and Stehlé showed in [46] that the vector w
found by LLL satisfies ||w ||2 ≤ 1.02n det(B)1/n on average
for random lattices. For our lattice basis B with dimension
n = 3 and determinate detB = L3 · N , we derive as the
condition for ||w ||1 < q that l ≤ log2(N

1/6). We can therefore
recover up to l = 341 bits for RSA-2048 using this simple
lattice. Higher-dimensional lattices would allow us to decrease
the number of queries to 512 as shown in [32], [33].

APPENDIX B
GUESS-AND-PURGE BLEICHENBACHER ATTACK:

DETAILED DESCRIPTION

We first specify MEGA’s custom padding and the oracle
that it exposes. Then, we extend Bleichenbacher’s attack steps
for PKCS#1 v1.5 padding [4] to work on MEGA’s custom
padding despite an unknown prefix. We conclude by analyzing
the correctness and complexity of our GaP-Bleichenbacher
attack.

A. MEGA’s Padding Scheme

When no long-term Curve25519 chat key is available,
MEGA uses RSA encryption as a fallback method to exchange
one or more 16-byte chat keys, concatenated together to K .
The encryption procedure applies the following padding:

MEGA PAD(K) := t‖L‖K‖P,

where t is a two-byte prefix, L encodes the byte length of the
chat key(s) K in two bytes (with big-endian encoding), and
P is random padding that extends the message to 256 bytes.
The server uses t← 016.

The client parses the above message after RSA-2048 de-
cryption as follows. First, it removes and ignores the prefix
t. Second, it recovers the key length and checks that it is
a multiple of 16, the byte length of a single chat key. If this
check succeeds, the client extracts the chat key(s) and discards
the padding. Otherwise, it throws an exception and reports the
error to the server.

The padding removal is successful iff L is of the form
08‖{0, 1}4‖04. Our GaP-Bleichenbacher attack mainly uses
the zero prefix. The rightmost four zero bits of L can poten-
tially be used for further optimizations.

B. Attack Description

This section explains our extension of the original attack
steps from [4] to account for MEGA’s leakage pattern and the
unknown prefix.

To stay close to the notation of [4], let c = me mod N be
the RSA ciphertext of a target message m. Let B ← 256252 be
the power of two that exceeds the largest possible unencoded
plaintext by one. We call a message conforming when it is
correctly padded. Let m0 be the conforming multiple of the
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Fig. 8. Visualization of the Guess-and-Purge strategy for our modified
Bleichenbacher attack with T = 216 prefix guesses t ∈ {0, 1}16. The blue
path up to iteration i corresponds to a workload w = (Mi,ti ,Hi,ti ), where
Mi,ti is the solution interval implicitly associated to the path that depends on
the previous choice of multipliers (s0,ε, s1,ε, s2,t2 , . . . , si,ti ) stored in Hi,ti .
Paths with empty intervals (marked by a cross) are not extended.

target plaintext. If m0 is of known byte length lm0
, then m0

has to be in the interval [lm0
· B, (lm0

+ 1) · B − 1] due to the
padding scheme.

The execution of our attack can be visualized as a tree
(see Figure 8), where nodes represent a multiplier and the
corresponding prefix guess. Every node has an associated set
of intervals of candidate decryptions of our target ciphertext
c. If the prefix guesses on the path to this node were correct,
then there is some interval that contains the decryption m
of our target ciphertext. In every iteration, we select a new
multiplier for every leaf node. Each multiplier has T = 216

possible prefixes. We add new successor nodes if the interval
of possible plaintext decryptions is still non-empty. Otherwise,
we know that there was a wrong prefix guess on this path, and
we no longer extend this path in the next iteration (marked
with a cross in Figure 8). The multipliers selected for different
leaves may differ since they depend on the previous multipliers
and prefixes.

We introduce the concept of workloads for our variant of
Bleichenbacher’s attack. A workload corresponds to a path
in the attack tree. In other words, it stores the state of one
possible solution path, including all prefix guesses that led to
the current state and a set of intervals. We formalize this as
follows. Let Hi,ti = (s0,t0 , s1,t1 , . . . , si,ti ) denote the history
of multipliers on the path. The guesses tj ∈ {0, 1}16 for all
j ∈ [0, i] are the leftmost two bytes of sj,tj ·m0 mod N after
left padding the result with zero bytes to 256 B. Let Mi,ti

denote the set of closed intervals after iteration i, resulting
from the choice of multipliers. We define a workload w
to be the tuple (Mi,ti ,Hi,ti ). Furthermore, we denote by
t0 = t1 = ε that there is no prefix guess for the first two
multipliers.

As explained in detail below, the multipliers are chosen in-
dependently of any prefix guess: Step 1 chooses s0,t0 randomly
and Step 2.a linearly searches for s1,t1 , starting from a value

derived from the initial bounds. For k ∈ [2, i], Step 2.c chooses
the multiplier sk,tk ∈ Z based on the shifted prefix guess
yk ← 2562 ·B ·tk of the conforming message sk,tk ·m0 mod N
and the previous intervals Mk−1,tk−1

such that sk,tk reduces
the size of the possible solution intervals adequately. We guess
the shifted prefix yk before selecting sk,tk .

We remark that our indices for multipliers and prefix
guesses are only unique within the same workload. We do not
use globally unique identifiers to avoid a cluttered notation. In
particular, the multipliers and prefixes for different workloads
in the same iteration do not have to be equal.

Finally, we introduce the oracle Oc0(s) which returns true
iff the RSA chat key decryption succeeds for the ciphertext c0
multiplied by se mod N .

For our GaP-Bleichenbacher attack, we perform Step 1
once at the beginning of the attack. For every itera-
tion i, we perform Step 2 to Step 4 for every workload
w = (Mi−1,ti−1 ,Hi−1,ti−1 ) ∈ Wi−1 .

Step 1: Blinding. Given a target ciphertext c = me mod N ,
we sample random multipliers s0,ε until Oc0(s0,ε)
returns true. For the first successful value s0,ε, we
set:

c0 ← (c · (s0,ε)e) mod N

M0,ε ← {[ptmin,ptmax − 1]}
H0,ε ← (s0,ε)

W0 ← {(M0,ε,H0,ε)}
i ← 1

where ptmin ← 0 and ptmax ← 241 ·B are the small-
est resp. largest possible plaintexts (including length
encoding) which conform to MEGA’s padding. The
subsequent attack recovers m0 ← (s0,ε ·m) mod N ,
which is the decryption of c0. We do not need any
prefix guess (as indicated by ε) as M0,ε contains
a single interval specifying the maximum range of
conforming plaintexts.

Step 2: Searching for a multiplier satisfying Oc0 .
Step 2.a: Starting the search. For i = 1, we have only

a single workload with M0,ε = {[a,b]} (in the
generic case, a = 0 and b = 241 · B − 1). We
search for the smallest s1,ε ≥ N/(b + 1) such
that Oc0(s1,ε) returns true.

Step 2.b: Sequential searching with
∣∣Mi−1,ti−1

∣∣ > 1. For
i > 1 and more than one interval left, where
si−1,ti−1

∈ Hi−1,ti−1
, we search for the smallest

si,ti > si−1,ti−1
where Oc0(si,ti ) returns true.

Step 2.c: Interval-based searching with
∣∣Mi−1,ti−1

∣∣ = 1.
For i > 1 and exactly one interval [a,b] left,
where si−1,ti−1 ∈ Hi−1,ti−1 , we iterate over all
possible prefix guesses ti ∈ {0, 1}16 with the
corresponding shifted values yi ← 2562 · B · ti
of the still unknown value si,ti ·m0 mod N . For
every prefix guess, we search the smallest pair of
variables ri and si,ti which satisfy the following
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two constraints as well as Oc0(si,ti ). Due to the
choice of ri and si,ti , we approximately halve the
interval [a,b] in Step 3.
We start incrementing ri from

ri ≥
2 · b · si−1,ti−1

− ptmin − yi

N
.

For every ri value, we try the following multipli-
ers:
ptmin + ri ·N + yi

b
≤ si,ti <

ptmax + ri ·N + yi
a

.

Section B-C discusses the reasoning for this
search procedure in detail. However, the intuition
is as follows: there exists at least one solution
because we are guaranteed to find a conform-
ing si,ti value for the workload with all correct
prefix guesses since our procedure then performs
Step 2.c from the original Bleichenbacher attack
without an unknown prefix. If we end up using
another multiplier si,ti for a wrong prefix guess,
this still reduces our intervals. Although this si,ti
might not eliminate as many plaintext candidates
as the one for the correct prefix, it is still a
correct multiplier because the oracle decision is
independent of our prefix guess.

Step 3: Narrowing the set of solutions. For all intervals
[a,b] ∈ Mi−1,ti−1

and the multiplier guess history
Hi−1,ti−1 = (s0,t0 , s1,t1 , . . . , si−1,ti−1 ), we update
the bounds for every prefix guess t∗ ∈ {0, 1}16
of (si,ti · m0) mod N and the corresponding y∗ ←
2562 · Bt∗. We update the intervals and prefix guess
history as follows, where si,t∗ ← si,ti :

Mi,t∗ ← ∪a,b,r {[a′,b′]}
Hi,t∗ ←

(
s0,t0 , s1,t1 , . . . , si−1,ti−1

, si,t∗
)
.

In the above equations, the bounds a′ and b′ are
specified as follows:

a′ ← max

(
a,

⌈
ptmin + r ·N + y∗

si,ti

⌉)
b′ ← min

(
b,

⌊
ptmax − 1 + r ·N + y∗

si,ti

⌋)
.

for all r values in the following range:

a · si,ti − ptmax + 1− y∗

N
≤ r ≤ b · si,ti − ptmin − y∗

N

We add a new workload (Mi,t∗ ,Hi,t∗) to Wi when-
ever Mi,t∗ 6= ∅.
It is necessary to consider all possible prefixes
t∗ ∈ {0, 1}16 to guarantee the existence of a fully
correct prefix guess history t0, t1, . . . , t

∗ (which is
implicitly stored in Hi,t∗ ). For instance, if we would
only use the prefix ti for which Step 2.c found the
multiplier si,ti , then the target plaintext m0 might not
be in any of the remaining intervals because the first

two bytes t∗ of si,ti ·m0 mod N are not equal to ti .
Step 4: Computing the solution. If there is only one work-

load Wi−1 = {(Mi−1,ti−1 ,Hi−1,ti−1 )} and only one
interval Mi−1,ti−1

= {[a, a]} containing a single
value, then we have a = m0 and return the solution
m← a · (s0,ε)−1 mod N .
Otherwise, we continue executing the attack. If we
did not yet iterate over all workloads in Wi−1 , we
go to Step 2 with the next workload from that set. If
there is no workload left for iteration i, then we set
i ← i + 1 and continue with Step 2 for the new set
of workloads Wi .
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Fig. 9. Density plot of the number of oracle queries.

C. Correctness

The extension of Bleichenbacher’s attack [4] to MEGA’s
padding scheme is challenging because of the unknown prefix
yi . We adapt the equations from [4] to account for yi as
follows:

Oc0(si) =⇒ ∃r ∈ Z,∃t∗ ∈ {0, 1}16 such that

ptmin ≤ si ·m0 − rN − 2562 · Bt∗ ≤ ptmax − 1. (1)

Let r ∈ Z and t∗ ∈ {0, 1}16 with the corresponding shifted
value y∗ ← 2562 ·Bt∗ be values satisfying the right-hand side
of the implication in Equation 1, for some si such that Oc0(si).
We solve the inequalities for m0 to derive the bounds for m0

used in Step 3 to narrow down the intervals:

ptmin + r ·N + y∗

si
≤ m0 ≤

ptmax − 1 + r ·N + y∗

si
. (2)

Furthermore, we can derive the bounds for r used in Step 3
from Equation 1 by using a ≤ m0 ≤ b for some interval
[a,b] ∈Mi,t and m0 ∈ [a,b]:

si · a− ptmax + 1− y∗

N
≤ si ·m0 − ptmax + 1− y∗

N
≤ r

r ≤ si ·m0 − ptmin − y∗

N
≤ si · b − ptmin − y∗

N
. (3)
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Fig. 10. Number of purged and remaining workloads for every multiplier.

The bounds for the multipliers used in Step 2 can be derived
similarly.

We can use the above statements to prove the correctness
of our algorithm by induction over i. Let

T(i) ≡ (∃ti ∈ {0, 1}16)(∃ [a,b] ∈Mi,ti ) s.t. m0 ∈ [a,b]

be our induction hypothesis stating that in every iteration, there
exists at least one interval containing the target message m0.
Since the last interval has length one, this implies that we find
the correct plaintext m0 and, thus, return the decryption m of
the target ciphertext c.

The base case T(0) trivially holds because M0,ε =
{[ptmin,ptmax ]} and m0 ∈ [ptmin,ptmax ] by definition since
ptmin and ptmax are the smallest, respectively largest, plaintext
values.

We assume T(i − 1) for the induction step and show T(i).
Step 2 uses some si with Oc0(si) by construction. Therefore,
by Equation 1 there exist r and t∗ ∈ {0, 1}16 such that the
right-hand side of the implication holds. By Equation 3, we
know that the range of r values used in Step 3 contains the
correct one. Furthermore, we iterate over all t∗ ∈ {0, 1}16
and add intervals to Mi,t∗ . Therefore, for the correct r and
t∗, we narrow [a,b] to [a′,b′] in Step 3 where the bounds
from Equation 2 guarantee that m0 ∈ [a′,b′]. We conclude
the induction proof by noting that [a′,b′] ∈ Mi,t∗ implies
T(i).

D. Complexity

The density histogram in Figure 9 shows that our
GaP-Bleichenbacher has a query complexity of µ ≈ 216.9

on average with a comparatively high standard deviation of
σ ≈ 217.3. A quarter of all runs only require 214 queries,
but the distribution has a long tail, and we aborted 71 out of
1000 runs because they exceeded our cutoff of 106 queries.
We use the Freedman-Diaconis binning rule to decide on an
appropriate number of bins of equal width.

The query complexity of our GaP-Bleichenbacher attack is
significantly lower than executing 216 classic Bleichenbacher

attacks for every prefix guess. Figure 10 visualizes the core
reason: every conforming multiplier si,ti allows us to detect
workloads with an invalid prefix guess in Hi,ti because they
result in an empty solution interval Mi,ti = ∅. The stacked
bar plot shows that the first multiplier s1,ε adds approximately
2500 plausible prefix guesses. The next multiplier s2,t2 elimi-
nates more than 95% of the wrong guesses shown with a blue
bar in Figure 9; the remaining workloads are gray with an error
bar showing the standard deviation. As the solution intervals
narrow, every multiplier adds fewer new workloads while
following multipliers eliminate wrong guesses quickly. We
do not require more queries than the classic Bleichenbacher
attack after approximately 28 multipliers because only a single
workload remains.

Our optimizations are another reason for this good per-
formance compared to the original attack. We use dynamic
programming to avoid repeated queries for different work-
loads. Furthermore, we utilize that MEGA’s padding ends in
random bytes, which we do not need to recover. Therefore,
we terminate the attack as soon as the interval of possible
plaintexts has a stable prefix that includes all message bits.

E. Conclusion

The GaP-Bleichenbacher attack extends the original attack
on PKCS#1 v1.5 padding to MEGA’s custom padding with
unknown prefixes. We evaluated this variant to require 216.9

queries on average despite guessing a two-byte prefix. The
attack is still challenging to exploit in practice because it
requires a substantial number of queries. The adversary is also
challenging to instantiate in practice. Despite the theoretical
nature of the GaP-Bleichenbacher attack, it still points out two
weaknesses of MEGA’s system. First, implementing custom
padding schemes instead of using provably secure standards is
dangerous. Second, key reuse allows the adversary to decrypt
arbitrary RSA ciphertexts using legacy code.
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