
SoK: A Critical Evaluation of Efficient Website
Fingerprinting Defenses

Nate Mathews∗�, James K Holland†, Se Eun Oh‡�, Mohammad Saidur Rahman∗,
Nicholas Hopper†, Matthew Wright∗

∗Rochester Institute of Technology, †University of Minnesota, ‡Ewha Womans University
{njm3308, mr6564, matthew.wright}@rit.edu, {holla556, hoppernj}@umn.edu, seoh@ewha.ac.kr

Abstract—Recent website fingerprinting attacks have been
shown to achieve very high performance against traffic through
Tor. These attacks allow an adversary to deduce the website a
Tor user has visited by simply eavesdropping on the encrypted
communication. This has consequently motivated the develop-
ment of many defense strategies that obfuscate traffic through
the addition of dummy packets and/or delays. The efficacy and
practicality of many of these recent proposals have yet to be
scrutinized in detail. In this study, we re-evaluate nine recent
defense proposals that claim to provide adequate security with
low-overheads using the latest Deep Learning-based attacks.
Furthermore, we assess the feasibility of implementing these
defenses within the current confines of Tor. To this end, we
additionally provide the first on-network implementation of the
DynaFlow defense to better assess its real-world utility.

Index Terms—website fingerprinting; defense; privacy; anony-
mous system; deep learning;

I. INTRODUCTION

Tor [1], the most popular anonymous networking service,
prevents overt disclosure of the link between servers and
clients by routing traffic through chains of relays, called
circuits, with layered encryption. The privacy of Tor may,
however, be undermined by traffic analysis attacks. One such
attack, known as Website Fingerprinting (WF) [2]–[10], allows
a passive local eavesdropper to deduce information about Tor-
protected traffic using traffic metadata. In a WF attack, the ad-
versary seeks to determine what website a Tor user has visited
in a browsing session. An eavesdropper positions themselves
somewhere on the link between the client and the guard –
the first Tor node on the circuit – to perform the attack, such
as observing the user’s wireless connection, compromising the
user’s wireless router or cable/DSL modem, sniffing the user’s
ISP or workplace traffic, viewing the traffic on any network
between the user and guard [11], or volunteering a node and
the requisite bandwidth to serve as the guard itself. While
the data collected by the adversary is encrypted, the packet
timestamp, size, and directional information are still exposed.
Using patterns in this information, usually with the aid of
machine learning, an adversary can often unmask the client’s
activities.

Several defenses have been proposed in recent years to
mitigate the threat of WF attack [12]–[21]. These defenses
change the traffic patterns produced when accessing sites by

�Nate Mathews and Se Eun Oh are the corresponding authors.

adding fake packets (padding) or delaying real packets. Strong
defenses can be prohibitively expensive, however. Recent WF
research has focused on creating padding schemes that remain
effective when bandwidth and latency overheads are kept low.
Unfortunately, these lightweight defenses can fail when new
attacks [8] are introduced, or implementation challenges [9]
may make deployment impractical. However, several recent
WF defense proposals have yet to be examined in depth by
the research community, so their shortcomings are unknown.

In this paper, we explore nine of the most notable re-
cently proposed efficient WF defenses: DynaFlow [20], Bi-
Morphing [22], Deep Fingerprinting Defender (DFD) [23],
FRONT [19], HyWF [24], TrafficSliver [25], Spring [26],
Interspace [26], and Blind Adversarial Network Perturbations
(BANP) [27]. These are the most efficient and effective
defenses developed to date, and they deploy a wide range of
strategies. In a detailed set of evaluations, we revisit these
techniques using the latest deep-learning-based WF attacks
and more realistic data settings. We further examine the
information leakage of hand-crafted features using the WeFDE
technique [28]. Finally, we consider how the defenses may be
implemented in the current Tor framework and identify their
limitations.

From this study, we identified the following key findings:

– The most effective defense with reasonable overheads is
TrafficSliver [25], which cuts attack accuracy to 5% in the
closed-world setting in which the user only visits a fixed
set of sites. The main disadvantage of TrafficSliver is that it
only works against certain attackers in our attacker model
due to its technique of splitting the traffic across multiple
connections.

– Among non-splitting defenses, the best security was of-
fered by Interspace [26], which cuts closed-world attack
accuracy to at most 76.1% with 98% bandwidth overhead
and no added delays. The best overheads were offered by
FRONT [19], which requires just 48% bandwidth overhead
and no added delays in order to cut closed-world attack
accuracy to at most 81.8%. These two defenses, plus
TrafficSliver, form a Pareto front among those we studied.

– We examined several novel methods to adapt attacks to
specific defense techniques. Most of our methods are
straightforward, such as being the first to use timing infor-
mation [9], using simple data augmentation strategies, or

969

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Nate Mathews. Under license to IEEE.
DOI 10.1109/SP46215.2023.00020

20
23

 IE
EE

 S
ym

po
si

um
 o

n 
Se

cu
rit

y 
an

d 
Pr

iv
ac

y 
(S

P)
 | 

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

28
9



just assuming that the adversary knows about the defense
and its default parameters. Our findings show that numerous
recent defenses are much less secure under close inspection
than described in the published papers, suggesting that the
bar for WF defense papers should be raised to include more
adaptive attackers and better experimental designs.

– We develop novel attack strategies against DynaFlow,
where we leverage available course-grained information,
and FRONT, where we modify the training method to create
a model that better generalizes to the noisiness of defended
samples.

Our findings indicate a need for further research into more
effective and efficient WF defenses. Interspace and FRONT
may offer acceptable security – in the more realistic open-
world setting, they cut recall rates to 69% and 71%, respec-
tively, for a fixed rate of 97% precision. Nevertheless, paying
48-98% in bandwidth overhead when the attacker can still get
that level of accuracy may not be palatable to Tor developers
and users. Thus, more work is needed to clarify what would
be an acceptable tradeoff and move existing solutions in that
direction.

II. ATTACK AND DEFENSE MODELS

A. Attack Model

Fig. 1: Website Fingerprinting Attack Model.

A schematic representation of the website fingerprinting
(WF) attack model is presented in Figure 1. In the WF attack
model, we assume that a client uses Tor to access the Internet
so that she can protect her privacy by hiding her activities.
The adversary (WF attacker) is considered to be a local
attacker – he is capable of monitoring the network traffic
between the Tor client and the Tor entry node. In addition,
the adversary is a passive eavesdropper, only observing and
recording the network traffic and cannot insert, modify, or drop
any packets in the traffic stream. As a local eavesdropper, he
can see the victim’s IP address, but his goal is to identify
which website the client is visiting via Tor. This local passive
eavesdropper could be the client’s local system administrator,
Internet service provider, a traffic sniffer between the client
and the guard, or a malicious guard.

Note that for evaluating defenses based on traffic splitting,
namely TrafficSliver [25] and HyWF [24], we follow the
modified attacker models of those papers. In particular, the
attacker can only be a malicious guard, unless the user has
the ability to send traffic over multiple ISPs, in which case
local eavesdroppers who can only see traffic on one of the
ISPs may be included as well. We discuss these assumptions
further in Section VII-C.

The WF attack involves a two-step process – i) training
the classifier and ii) executing the attack. In the training
process, the attacker collects network traces from monitoring
his own connections through Tor to websites of interest, such
as sensitive or censored sites, and then uses these labeled traces
to train a machine-learning or deep-learning classifier. Since
it is not feasible to collect the network traffic of the billions
of sites on the Internet, the list of sites of interest must be
reduced and is known as the monitored set. Other Internet
sites not belonging to this list belong to the unmonitored set.

Traditionally, WF attacks are evaluated in two settings –
closed-world and open-world. In the closed-world setting, the
classifier is trained and tested with only the traces from sites
in the monitored set, and the client is assumed to only visit
this limited set of sites. This setting is clearly unrealistic in
practice, but it provides a basis for easy comparisons among
attacks and defenses. Open-world evaluation represents a more
realistic scenario, where a client may visit any of the sites on
the Internet. In this setting, the attacker trains the classifier
with the sites of the monitored set and with a representative,
though not exhaustive, set of sites from the unmonitored set.
In the testing set, a trained open-world classifier is evaluated
against the monitored sites and also against a non-overlapping
representative set of sites of the unmonitored set.

B. Defense Model

WF defense aims to prevent a WF attacker from correctly
determining the site a collected trace belongs to. To achieve
this objective, the network traffic pattern of a site needs to be
distorted by either padding dummy packets, delaying some
packets, or doing both. However, this traffic manipulation
must be simultaneous and in real-time. As network traffic is
bidirectional, simultaneous traffic manipulation from the client
and a participating node on the Tor circuit is required for
the defense. This participating node in the defense process,
called the cooperating node, can be any node between the WF
attacker and the client’s destination server so that the attacker
can only observe the distorted traffic stream. The middle node
is perhaps the best candidate for this role because it is the first
Tor relay in the circuit that is unaware of the identity of the
client.

C. Defense Evaluation

We evaluate the defenses based on the following metrics,
and summarize our findings in Table I.

Accuracy, Precision, & Recall. We use accuracy to evaluate
the performance of our attack models in the multi-class closed-
world setting, but use precision and recall for the binary open-
world setting.

Information Leakage. Accuracy, precision, and recall are
limited to an all-or-nothing approach, where near hits and near
misses are discounted [28], [29]. Li et al. [28] propose to
address this using a technique titled WeFDE to estimate the
amount of information leaked (in Shannon bits) by a defense.
The WeFDE technique estimates information leakage by find-
ing the mutual information (MI) between the distribution of

970



sites and the information contained in the fingerprints of those
sites. Kernel density estimators (KDEs) are used to model
the dataset’s distribution of fingerprints. The dimensionality
of the data is reduced using feature clustering to improve
KDE accuracy before calculating the final information leakage.
In this study, we use the Information Leakage technique to
provide further insight into the types of features that make
effective and ineffective defenses. We elect not to use the
Bayes Error estimation technique of Cherubin [29], as it does
not provide information that is meaningfully different from the
combination of accuracy and information leakage.

Overheads. Bandwidth and time overheads are critical to
the acceptability for deployment in Tor [30], [31]. We thus
report measurements of the amounts of padding needed (BW
overhead) and artificially added delay (Time Overhead) per
site download. Note that reported Time Overhead likely un-
derstates the impact of any defense on the user experience,
as sending additional padding can create congestion both at
Tor nodes and in the network. Furthermore, defenses often
encounter unconsidered limitations when implemented outside
of simulation that can have dramatic effects on overheads [9].
For this analysis, we focus on the overheads reported using
the simulated defense samples.

Qualitative Properties. We study a few other key properties
of defenses, as summarized in Table I. Low Overheads:
Although overhead results are quantitative, their impact is up
to interpretation. We rate a defense as having Low Overheads
if BW Overhead is less than 50% and Time Overhead is
less than 25%, and we otherwise rate a defense as mixed
if BW is less than 100% and Time Overhead is less than
50%. No Delays: Next, we consider the binary property of
whether a defense requires delaying packets. Adding delays
requires queuing packets at both the client and at a Tor node,
which requires more significant changes in the implementation
of Tor [30], [31] and may be difficult to ensure is done
with precise timing. Thus, it represents an implementation
hurdle for the defense. No Database: Another binary property
we check is whether the defense needs a database of traffic
patterns or other information for a number of sites. Keeping
such a database requires significant effort to gather and regu-
larly update the patterns, plus the bandwidth to communicate
those patterns and updates to all clients. If defenses rely on
these database entries for either security or efficiency, there
is pressure to include many websites to protect many users,
further exacerbating these costs. Overall, requiring a database
may be a major hurdle to implementation.

Defense Strategy. All defense strategies can use three basic
mechanisms to obfuscate traffic. The first two, (#1) adding
dummy traffic and (#2) adding traffic delays, have been fre-
quently applied in many defense proposals. These mechanisms
also always incur an overhead of either bandwidth or latency,
which may negatively affect the user experience and health of
the Tor network. There is however a third mechanism that can
be leveraged and this is (#3) moving traffic from one stream to
another. This mechanism has been introduced and to-date has

only been applied by the traffic splitting category of defenses.
From here, we can organize defenses into groups based on
what mechanisms and how those mechanisms are used, which
we refer to as strategies. Current WF defense strategies include
sending traffic at fixed rates (F), random sampling to add
padding (R), modifying traffic to produce collisions with
targeted traffic samples or patterns (C), splitting traffic across
multiple streams (S), and using adversarial perturbations to
fool machine-learning models [32] (A).

In this study, sending traffic at fixed rates (F) defenses
use mechanisms #1 and #2, and include BuFLO [12], Tama-
raw [13], and DynaFlow [20]. The main characteristic of these
defenses is the fixed rate at which packets are transmitted
during the connection which effectively can distort the timing
and burst level information. These sets of defenses have shown
high success rates against all known WF attacks, however, that
comes with a very high timing and bandwidth overheads.

Random padding (R) defenses use mechanism #1, and
many defenses employ this strategy due to its flexibility. These
defenses commonly use probabilistic state machines or sample
times to add padding from a selected distribution.

Defenses that aim to produce targeted traffic collision (C)
often use mechanisms #1 and #2 [15], [18], [33], but may
use just #1 such in BiMorphing [22]. These defenses are best
characterized by their need for developing and maintaining a
database of traffic samples or patterns.

Current traffic splitting (S) defenses use only mechanism
#3 to divide traffic into multiple simultaneous but separate
streams that follow different network routes. Consequently,
these defenses add no overhead to the traffic (however new
requirements for stream creation and stream merging may
negatively impact traffic and the network in ways that are
difficult to quantify). The ability to effectively remove the
presence of some traffic from one perspective can be incredibly
powerful, but comes with the limitation that a sufficiently
powerful attacker may collect all streams and recombine them
to completely undermine the strategy.

Finally, adversarial perturbation (A) defenses target vul-
nerabilities in attacker models to ’trick’ the model to mis-
classify a sample with as little changes to the underlying
traffic as possible. These defenses have so far leveraged both
mechanisms #1 and #2 to add adversarial noise to the traffic
patterns. These defenses would appear to have strong potential,
but must overcome specific challenges which we will discuss
further in later sections of this paper.

III. BACKGROUND AND RELATED WORK

A. WF Attacks

WF attacks are performed by first collecting a represen-
tative dataset containing both sites the adversary wishes to
identify (the monitored set) as well as other sites (the un-
monitored set). This dataset is used to train a classifier that
can identify unknown traffic belonging to a monitored site.
Broadly speaking, WF attacks can be classified into those
using Machine Learning (ML) [2]–[5], [35]–[38] and those
using Deep Learning (DL) [6]–[8], [10], [39]. These attacks

971



Properties Results Analysis

Defense Year Description L
ow

O
ve

rh
ea

ds

N
o

D
el

ay
s

N
o

D
at

ab
as

e

St
ra

te
gy

D
at

as
et

B
es

t
A

cc
ur

ac
y

Pr
ec

is
io

n

R
ec

al
l

In
fo

.L
ea

ka
ge

B
W

O
ve

rh
ea

d

Ti
m

e
O

ve
rh

ea
d

BuFLO 2012 Fine-grain traffic features are hidden by sending packets at a
fixed-rate interval. F S [8] 13.5% [8] - - - 246% 137%

Tamaraw 2014 Extends the BuFLO design to provide better security by padding
traffic sequences to a multiple of parameter L3. F S [8] 16.8% [8] - - 24% [34] 328% 242%

WTF-PAD 2015 An efficient defense that uses a stochastic padding state machine
to fill empty gaps in traffic bursts with dummy packets. R S [8] 93.5% [9] 98% 96% 100% [34] 64% 0%

Walkie-Talkie 2017 Performs traffic molding to create perfect collisions between
traffic samples of different classes. C S [8] 97.0% [9] - - 95% [34] 31% 34%

Mockingbird 2020 Molds traffic sequence to match Adversarial Example sequences
generated against an effective Deep Learning classifier. A+C S [8] 62.0% [9] - - - 58% 0%

DynaFlow 2018
Similar to Tamaraw and CS-BuFLO, this defense optimizes
overheads by adjusting the fixed-rate for incoming and outgoing
packets at various intervals in the sequence.

F BE 38.3% 96% 4% 56% 141% 6%

BiMorphing 2019 Uses a stochastic state machine to extend burst sizes to resemble
the PMF of burst sizes a different website class. R+C BE 78.1% 97% 93% 70% 61% 0%

DFD 2020 Stochastically extends the size of traffic bursts to confuse the
classifier. R BE 94.2% 97% 92% 98% 54% 0%

FRONT 2020 Generates cover traffic sampled from a Rayleigh distribution to
heavily pad the early portions of the traffic. R BE 81.8% 97% 71% 86% 48% 0%

HyWF 2020 Traffic is probabilistically split between two Internet connec-
tions serviced by different ISPs. S BE 56.8% 97% 17% 37% 0% 0%

TrafficSliver 2020 Traffic is probabilistically split between several Tor circuits or
connections. S BE-TS 5.4% 50% 1% 46% 0% 0%

Spring 2020 Padding is performed using a stochastic state-machine similar
to WTF-PAD, and was developed using a genetic algorithm. R BE 80.0% 99% 93% 78% 93% 0%

Interspace 2020 A modification of the Spring state-machine, hand-tuned to
provide better security and overheads. R BE 76.1% 97% 69% 79% 98% 0%

BANP 2021 DL model is trained to produce adversarial noise vectors that
map undefended traffic into an adversarial domain. A BE 89.6% 99% 99% 99% 20% 411%

TABLE I: Overview of notable WF defenses: We directly evaluate defenses below the dashed line on the BigEnough
dataset (BE). Precision and recall values are based on the best results in the open world as tuned for high precision.

Low Overheads – high overheads, moderate overheads, low overheads
No Delays – adds delays to real traffic, no delaying of real traffic

No Database – requires a database of sample properties, no extra information required

Strategy – (F) send traffic at fixed rates, (R) use random sampling to add padding or delay, (C) modify traffic to produce
collisions for a target pattern, (S) split traffic across multiple streams, (A) use adversarial perturbations

are differentiated by the underlying techniques used for their
classifiers and how they represent website traces. ML-based
classifiers require an additional step before training in which
the raw data representations are processed into meaningful
features based on expert analysis. DL-based attacks automate
this process by using feature-extracting layers in the model.

ML-based attacks. The state-of-the-art ML-based attacks
are CUMUL [4], k-fingerprinting (k-FP) [5], and Wfin [40],
[41], which achieve closed-world accuracies on undefended
Tor traffic of 76.8%, 87.3%, and 96.8%, respectively, when
evaluated against the same dataset [40]. These attacks train
Random Forest (RF) and Support Vector Machine (SVM)
classifiers using custom feature representations of the trace
data. While these attacks are effective against undefended
traffic, their performance is much weaker against defended Tor
traffic. Furthermore, their reliance on expert-defined features
may limit their effectiveness, evidenced by the improved
effectiveness of DL-based attacks.

DL-based attacks. Abe and Goto were the first to use
deep learning to perform a WF attack [6], leveraging Stacked
Denoising Autoencoders (SDAE) to get 86% closed-world
accuracy on a small dataset. Rather than using handcrafted
features, this attack represented traffic samples as a vector of
±1 values, where each data point represents either an incoming
(+1) or outgoing (−1) packet. Rimmer et al. [7] later showed
that a simple CNN architecture is also effective, achieving
96% accuracy on a very large dataset. Sirinam et al. proposed
using a deeper and more complex CNN model in their Deep
Fingerprinting (DF) attack [8]. This attack, notable for its
state-of-the-art accuracy in the closed-world setting (98.3%),
also proved effective against the WTF-PAD defense [16]. Bhat
et al. [42] proposed the Var-CNN model, which achieves state-
of-the-art performance with less training data than DF. This
model uses two ensembled networks, one using directional
information (a vector of ±1) and the other using timing data
(a vector of inter-packet arrival times). Similarly, Rahman et
al. [9] examined the value of raw timing information using

972



the DF model and demonstrated vulnerabilities in the Walkie-
Talkie defense [15]. More recent works have explored WF in
low-data scenarios. The Triplet Fingerprinting (TF) attack [10]
leverages few-shot learning with triplet loss – it pretrains a
feature extractor on a large set of stale traffic samples that can
later be used to effectively extract features from just a few
fresh samples per class and use them to train a simple nearest-
neighbors classifier. Oh et al. proposed a semi-supervised
learning technique using GANs, called GANDaLF [43], which
allows for higher maximum attack accuracy with similarly few
training samples as TF.

In our study, we evaluate defenses with CUMUL [4] – the
best non-DL model, a multi-layer perceptron (MLP) [7], [39],
the DF model [8], and Rahman et al.’s Tik-Tok model [9].
We note that experiments with Var-CNN showed it to be less
stable over various datasets, while other models did not offer
sufficient accuracy to be worth exploring.

B. WF Defenses

The fundamental goal of a WF defense is to distort the
patterns in website traffic through the introduction of fake
packets or delays so as to confuse the attacker’s classifier.
A defense must, however, be judicious when affecting the
client’s traffic stream so as to not cause significant bandwidth
or latency overheads that will affect Tor’s usability.

The earliest effective defenses belong to the fixed-rate class
of defenses, which include BuFLO [12], Tamaraw [13], and
CS-BuFLO [14]. These defenses send traffic in fixed time
intervals and patterns so as to achieve a high resistance against
fingerprinting. This defense mechanism effectively hides fine-
grained traffic features, such as packet ordering, because all
traffic appears in a uniform pattern. Coarse features such as
total volume, size, and load time remain difficult to conceal.
Consequently, a very high bandwidth and latency overhead
is required, and these defenses are thus unappealing for
deployment in Tor [30], [31].

During this same period, early work had begun on de-
veloping a theoretically provably secure defense. The Super-
sequence defense [44] proposes that websites be organized
into anonymity sets and a super-sequence of the traffic be
computed so that the packet directional sequence of any
member belonging to the set is represented in the super-
sequence. Similarly, the Glove defense [33] clusters websites
using a Dynamic Time Warping distance [45] and computes
super-sequences for a tunable percentage of samples within
the cluster. Both of these defenses offer nominally better
overheads than the fixed-rate class of defenses, but still have
large overheads and require databases of traffic patterns and
adding delays, which restrict wide-spread adoption.

Due to these limitations, defense developers have since
focused on developing defenses that are both efficient and
effective. We now briefly review a number of notable proposals
for efficient defenses, many of which have yet to be rigorously
evaluated outside of their initial proposal.

WTF-PAD. WTF-PAD uses the Adaptive Padding [46] tech-
nique to probabilistically fill periods of low transmission rate

with dummy packets. This defense is based on the understand-
ing that traffic streams are composed of periods of rapid packet
transmission followed by lulls, and that this pattern can be
used to characterize the stream. Manipulating these activity
patterns proved to be effective against ML-based attacks,
but was shown to fail against DL-based attacks [8]. The
automated feature extraction used by DL models allows them
to learn features that are robust against the noise introduced
by adaptive padding, leading to vastly improved performance.
A key lesson from WTF-PAD is that defenses must not be too
dependent on defeating particular features, or improvements
in feature design may undermine them. We do not discuss
WTF-PAD further in this paper.

Walkie-Talkie. The Walkie-Talkie (W-T) defense builds
upon the previous traffic super-sequence defenses Superse-
quence [44] and Glove [33]. W-T pairs sites and molds the
traffic so that the directional sequence for each site is identical.
This is achieved by organizing traffic sequences into bursts,
defined as groups of consecutive packets following the same
direction, and padding each burst so that the resulting burst
sequence is a super-sequence of the burst sequence of both
sites. This defense claims a maximum attacker accuracy of
50%, because the traces of the two sites appear identical in
their directional sequences. On the W-T simulated dataset,
Sirinam et al. achieved nearly that 50% maximum rate, as
well as a top-two accuracy of 98.4% [8]. Rahman et al. [9]
further demonstrated that timing information allows accurate
classification against simulated W-T with over 90% closed-
world accuracy, and that W-T’s burst-molding padding could
not be realistically implemented in the real Tor network
without serious compromise. Because of these limitations, we
do not discuss W-T further in this paper.

Mockingbird. In 2014, Szegedy et al. discovered that DL
models are broadly vulnerable to a class of attacks known
as adversarial examples [32]. These attacks aim to produce
misclassifications by adding small amounts of adversarial
noise to model inputs. Inspired by adversarial examples, the
Mockingbird defense [18] generates adversarial traces by iter-
atively perturbing a source trace until it leaves the source class.
Unlike standard adversarial example techniques, Mockingbird
does not chase the gradient of a loss function, but instead takes
small linear steps towards a randomly selected target trace. Af-
ter a suitably perturbed trace is found, burst-molding (similar
to Walkie-Talkie) must be performed to adjust the live traffic
to match the target adversarial trace. While the Mockingbird
defense achieves good performance and efficiency results, we
discuss critical implementation issues in our defense analysis.

BiMorphing. The BiMorphing defense [22] alters the bi-
directional burst patterns of a trace to match that of a target
website. It first creates profiles of the distribution of burst size
and timing for potential target websites. It then chooses a target
site and begins sending the trace associated with the user’s real
website, the source. It samples burst sizes and timing from the
target site’s distribution and partially matches the source site’s
activity to the target by adding padding as needed. Note that if

973



a source burst is larger than the sampled target burst, the match
cannot be made. Once the source trace has finished sending,
BiMorphing adds dummy bursts to match the number of bursts
in the target. The authors report a maximum accuracy of 19%
accuracy with CUMUL. BiMorphing has not been evaluated
with deep-learning-based defenses, which we test in our study.

Traffic Splitting Defenses. Two recent papers – HyWF [24]
and TrafficSliver [25] – have devised an entirely different ap-
proach to WF defense that incurs no overheads: split the traffic
produced by a visit across multiple connections or circuits. In
HyWF, the client connects to two independent access points
(e.g., a cellular network and home WiFi) and sends traffic
to a multipath-compatible Tor bridge that merges the traffic
before sending it to Tor. TrafficSliver, on the other hand,
comes in two versions: TrafficSliver-App and TrafficSliver-
Net. TrafficSliver-App operates on the unmodified Tor net-
work; it proxies HTTP requests from the user’s browser over
multiple independent Tor circuits. Alternatively, TrafficSliver-
Net modifies the Tor network to split TCP traffic over multiple
entry nodes before merging traffic at the middle relay.

Both HyWF and TrafficSliver examined various splitting
strategies. TrafficSliver reported their best performance when
using the batched weighted random strategy. In this strategy,
Tor cells are sent in batches of n cells to the assigned
entry node which is selected by sampling from a generated
distribution. The batch size n is resampled after every batch.
HyWF uses a similar approach, where for each website access,
the number of consecutive packets sent is drawn from a
geometric distribution, while the network is chosen uniformly
at random. TrafficSliver (with 5-way splitting) reports reducing
accuracy to below 16% while HyWF (with 2-way splitting)
reports cutting recall to just 40%. In this paper, we examine
how HyWF can be more effectively attacked using timing
information and adding more training samples. Furthermore,
we examine TrafficSliver performance in the real-world.

Spring & Interspace. The Spring and Interspace de-
fenses [26] are evolutions of the state-machine-based Adaptive
Padding defenses like WTF-PAD. Spring is the product of a
genetic evolution algorithm run over several months, starting
with a population of ten randomly generated adaptive-padding
state machines. The resulting state machine was further hand-
tuned into Interspace [26], with two major changes: (i) on ini-
tialization, there is a 50% chance that the client state-machine
will have an additional state transition back to the initial non-
padding state, when non-padding packets are received, and
(ii) on initialization, the relay machine will either become the
Spring machine or an entirely-handcrafted machine with 50%
probability. Both of these machines are particularly notable
for being implemented within Tor’s pre-existing state-machine
padding interface and, consequently, are the closest of any
of the defenses discussed so far to being deployable in Tor.
Spring and Interspace reportedly reduce attacker performance
to at most 46% and 35% recall, respectively. We study how
both defenses can be more effectively attacked using timing
information and adding more training samples.

Deep-Fingerprinting Defender (DFD). Abusnaina et al.
propose DFD [23], which extends each burst by a random
percentage of the total burst size. They evaluated their defense
against a fully-connected neural network and a CNN similar to
the DF model. They report high misclassification rates (>85%)
for their attacker models at low BW overheads (<50%). We
examine, however, how the evaluation by Abusnaina et al.
misrepresents the attacker’s abilities, and how the attacker
could reach higher accuracy in practice.

Blind Adversarial Network Perturbations (BANP). Re-
cently, Nasr et al. proposed BANP [27], which like Mocking-
bird, uses the idea of adversarial examples as the basis of its
design. BANP supersedes Mockingbird by addressing some of
the implementation issues that make Mockingbird impractical.
Unlike Mockingbird, BANP does not need to know the traffic
pattern of the trace to generate an appropriate perturbation vec-
tor. Instead of optimizing adversarial perturbations on a per-
sample basis, BANP optimizes a generator to produce arbitrary
perturbation vectors to confuse the attacker’s classifier. BANP
trains three separate generators to perturb packet size, timing,
and direction. The authors evaluate their defense against Var-
CNN [42] and report reducing attacker accuracy to 16% with
just 2% bandwidth overhead and at most 1% attacker accuracy
at 66% bandwidth overhead. Like DFD, however, BANP does
not account for an attacker’s true capabilities. In our study of
BANP, we explore how adversarial training can be leveraged
to significantly undermine the effectiveness of the defense.

DynaFlow. DynaFlow [20] is a WF defense inspired by the
constant-rate class of defenses. Like those defenses, DynaFlow
sends traffic as a constant stream following a fixed pattern.
Unlike previous defenses, however, DynaFlow periodically
adjusts the traffic rate using the average inter-packet arrival
time from the previous period. Using this design, DynaFlow
achieves effective defense against ML-based attacks, reducing
attacker accuracy of k-Fingerprinting to 45% against a dataset
of 100 sites, while also claiming reasonable bandwidth and
time overheads. However, DynaFlow has yet to be evaluated
using any DL-based attack. Because DynaFlow adjusts its
traffic rate to best match the properties of a trace, it is likely
that the behavior of the dynamic adjustments can be used to
fingerprint traces. We investigate this potential weakness and
develop a novel attack in our study of DynaFlow.

FRONT. FRONT [19] is a no-latency, low-bandwidth-
overhead defense achieving its efficiency by targeting the early
part of a website trace. Prior ML-based attacks showed that
features produced from the beginning of the trace were highly
weighted by the classifiers, and this motivates FRONT’s de-
sign. FRONT works by inserting fake packets with timestamps
drawn from two Rayleigh probability distributions dynami-
cally generated for each trace. It achieves strong performance
against ML and DL attacks, reporting a maximum precision
of 71% with a recall of 43%. Since the injected noise has
predictable features, however, we explore a novel approach to
train a model effectively to better generalize and learn how to
extract the signal from the noise added by FRONT.

974



IV. DEFENSE ANALYSIS

In this section, we analyze previously underexplored WF
defenses for vulnerabilities and other shortcomings that may
allow a sophisticated adversary to achieve greater performance
than the baseline WF attacks. We used the authors’ code to
simulate each defense on Tor traces, with only the minimal
changes needed to operate on the dataset we used.

Methodology. The process we use to evaluate each defense is
straightforward, but is important to understand. When training
and testing a model for each defense, we separate out a fraction
of the samples to act as our testing set. We next use the
author’s defense simulator code to apply their defense on all
the samples in our training and testing sets. When evaluating
some defenses, we simulate multiple times on each sample in
the training set to augment the training set. Finally, we train
our attacker’s classification model on the defended training
data, followed by testing on the defended testing data. The
attacker trains their model using a flexible number of epochs,
and stops training only when the model converges to its
maximum performance. It is important to note that the attacker
always trains on only the latest defense samples generated by
the defender (e.g. the attacker always uses the same defense
parameters and/or generator to produce their training samples).
This is key to properly evaluating a website fingerprinting
defense, as it is the attacker that always acts last and will
make decisions that grant them the most advantage.

Datasets. We collect new datasets to evaluate all defenses
in equivalent settings. We adopt the collection process and
tools used by Pulls et al. [26] for their GoodEnough dataset.
GoodEnough consists of three separate datasets based on the
three security configurations available in the Tor Browser
Bundle (TBB): Standard, Safer, and Safest. The Standard
configuration is the default and is what is most likely to be
used by TBB users. The Safer operation mode blocks some
webscripts from running, while the Safest operation mode goes
an additional step further and blocks most dynamic content
from loading. It is important to note that both GoodEnough
and our datasets differ significantly from previous popular
datasets, such as the WF set collected by Sirinam et al. [8],
which contained samples from 95 websites represented by
only their index page. The use of multiple subpages to
represent each website in this dataset increases the inter-class
variance, while the smaller number of websites increases the
random guessing accuracy, so performance metrics on different
datasets should not be directly compared.

Using these tools and configurations, we first collected
the new BigEnough dataset from November 2021 to January
2022. In BigEnough, for each configuration, the monitored
set consists of a total of 19,000 samples from 95 websites,
in which 10 subpages were visited 20 times each for a total
of 200 samples to represent each site. The targeted websites
are selected as the most popular websites as ranked by the
Open PageRank Initiative. The unmonitored set consists of
19,000 unrelated index-pages sampled from the remaining
top websites. Compared to the GoodEnough dataset, BigE-

Standard Safer Safest

Undefended 95.1% 94.8% 95.2%

DynaFlow 38.3% 29.4% 24.5%
BiMorphing 81.0% 74.1% 69.4%
DFD 94.2% 93.2% 94.2%
FRONT 81.8% 80.6% 83.8%
HyWF 56.8% 49.4% 50.6%
TrafficSliver 5.4% 4.3% 5.3%
Spring 80.0% 81.6% 82.6%
Interspace 76.1% 78.7% 74.7%
BANP 89.6% 90.1% 93.1%

TABLE II: Closed-World: Attack performance against de-
fenses for the Standard, Safer, and Safest TBB security modes.

nough has nearly twice as many classes (95 versus 50). We
also observe that BigEnough has samples that are generally
smaller (both by cell count and load time) when compared
to GoodEnough. Table II shows the closed-world defense
performance against each security mode in the BigEnough
dataset. We separately evaluated defenses on the GoodEnough
dataset [26], and provide these results and a comparison with
the BigEnough results in Appendix A.

We also collected the new BigEnough-TrafficSliver (BE-TS)
dataset in January and February of 2022 using the same URL
lists and security modes as the BigEnough dataset, but with
the Tor TrafficSliver implementation provided by De la Cadena
et al. [25]. We updated their Tor implementation from 3.5 to
4.7 to be compatible with our crawler, and use this collected
dataset for our TrafficSliver analysis.

A. BiMorphing

BiMorphing had not been evaluated against DL-based clas-
sifiers, which we now examine. We evaluated BiMorphing
using the Tik-Tok attack on the BigEnough dataset with
randomly chosen web page targets and achieved 81%, 74%,
and 69% accuracy across the different security modes. When
using the GoodEnough dataset in the Standard setting [26], we
found even better performance for both Tik-Tok and DF (see
Appendix A). While BiMorphing performs better in the higher
security modes, the bandwidth overheads were also higher.
Overall, BiMorphing should have been tested before against
DL-based attacks, as it is much less secure than the reported
result of just 19% accuracy [22] would suggest.

B. HyWF & TrafficSliver

Next we look at the traffic splitting results, which reported
very good results in their proposals. In this study, we follow
the attacker model assumed in these papers, where the adver-
sary can only view one of the traffic splits. This is suitable for
attackers such as malicious guards that observe just one circuit
among, e.g., two to five total circuits. Note that this does not
apply to an eavesdropper that can see all the splits at once, such
as an ISP against TrafficSliver or a local wireless eavesdropper
with both cellular and WiFi antennas against HyWF.

A potential vulnerability of these approaches, even in this
constrained attacker model, is that the traffic is not padded

975



or delayed at all. Thus, all traffic is effectively a sample
of the real traffic, with some of the same burst and timing
information. DL-based attacks may be able to learn to extract
signals from such samples for reliable classification. Since
the randomness of traffic splitting creates significant variance
within the samples of each class, we propose to augment the
number of training samples. For each real trace in the training
data, we apply the traffic splitting defense multiple times to
create more training data for the associated class. Using this
approach, we can increase the accuracy of the attacks.

We first examined the performance of the HyWF defense
against DL-based attacks, as it was previously only tested
using ML-based attacks [24]. We produced training samples
by applying the defense 10 times on each training trace. Using
the default configuration for the defense with traffic split across
two connections, we found that we can get up to 57% accuracy
against the split samples, up from the originally reported 36%
achieved by k-Fingerprinting (albeit on a different dataset).

For TrafficSliver, we initially evaluated the defense using
the GoodEnough dataset and achieved 22% accuracy using
Tik-Tok, which could be further improved to 41% when
running the defense simulator multiple times to produce 16
copies of the split traffic instances. Using the BE-TS dataset,
however, we find very different results. Tik-Tok can achieve
only 5% accuracy across the three security modes. This
marked improvement for the defense is likely due to a number
of factors. First, our new dataset contains nearly twice the
number of websites, increasing the chance that samples may
be confused with those of another site. Second, since we are
using real collected split samples, we are unable to generate
additional copies of defended samples as we did in simulation,
and consequently our training effectiveness is more limited.
Finally, by performing splitting on the real network, these
traces are subject to additional real network noise that will
affect packet ordering and timing, as different sub-circuits
operate with different latencies. All these elements greatly
increase the difficulty of classifying traces in practice.

And so, despite the significant improvements from our
training techniques, the traffic splitting methods remain fairly
robust against a limited attacker model. Furthermore, when
applied on real-world traffic, the efficacy of TrafficSliver is
even further increased.

C. Spring & Interspace

Now we will examine how the Spring and Interspace
defenses can be attacked more effectively with timing infor-
mation and data augmentation. To evaluate these, we com-
piled the latest Tor code with the circuit padding framework
and added the Spring and Interspace state-machines into the
padding framework’s simulator. Pulls warned that timestamps
generated by the defense simulator are too precise and may
therefore leak information that would typically not exist
in real networks [26]. To address this potential issue, we
rounded timestamps to 10 ms increments. To best evaluate
the defense, we once again used the Tik-Tok model to incor-
porate timing information. We used a simple augmentation

technique, producing multiple defended samples for every
sample in our training dataset (up to 20) to ensure that the
model learned using many examples of how the defense may
affect a particular sample’s traffic patterns. We found that
inclusion of timing information in Tik-Tok notably improved
the attacker’s efficacy, with 80.0% accuracy against Spring
and 76.1% against Interspace on the Standard security mode.
Interspace and Spring maintain similar efficacy across the
different security modes. The modifications of Interspace over
Spring seems to help modestly, likely due to its probabilistic
selection between two different server-side state-machines.

D. DFD

We now turn to two defenses that failed to account for the
attacker’s true capabilities and access: DFD and BANP.

The DFD defense operates by extending directional bursts
by a percentage. The percentage for extension is determined by
uniformly sampling a number within the interval (pert rate∗
variation, pert rate ∗ (1 + variation). While this simple
scheme does make it unclear what the precise size of any
one burst could be, the general picture of the traffic remains
unchanged. Large bursts will remain relatively large, and small
bursts will remain relatively small. Furthermore, this defense
does nothing to hide timing information, so the position in time
of these bursts will remain relatively constant between site
visits. Based on these observations, the strong results reported
by Abusnaina et al. [23] may seem surprising.

To evaluate the DFD defense, we ran the author’s simulator
code on the BigEnough dataset. We allowed the defense to
run using the parameters that were configured by default,
which were a perturbation rate of 50% and variation of
50%. More critically, we configured the scenario such that
both the training and the testing dataset were generated with
these parameters, as any adversary models could similarly
do the same. Under this scenario, the defense was entirely
undermined, allowing for approximately 94% accuracy in all
security modes when using the default Tik-Tok attack model
against the defended samples. This compares to less than 15%
accuracy for any attack tested in their paper [23].

We observe that the discrepancy between the high perfor-
mance we achieved and the significantly lower performance
reported in the original paper is likely due to two reasons:
(1) the authors of DFD trained the attacker model on traces
simulated with a variation of zero (each burst was padded
by the same fixed percentage), and tested on samples with
variation in the perturbation rate. This is not a fair scenario
to evaluate the adversary, who knows the range that the
parameters may take and can consequently train his model
on samples representing the full range of possibilities. And
(2) the use of timing information in the attacker model further
improves performance, as the original timing information of
real packets is exposed in this defense.

E. Blind Adversarial Network Perturbations

Much like the DFD paper fails to account for the attacker’s
capabilities, the BANP paper fails to account for the possibility

976



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
isi

on

Undefended
Spring
Interspace
FRONT
DFD

BiMorphing
BANP
HyWF
TrafficSliver
DynaFlow

(a) Standard

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Undefended
Spring
Interspace
FRONT
DFD

BiMorphing
BANP
HyWF
TrafficSliver
DynaFlow

(b) Safer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Undefended
Spring
Interspace
FRONT
DFD

BiMorphing
BANP
HyWF
TrafficSliver
DynaFlow

(c) Safest

Fig. 2: Open-World: Precision and recall of the most effective attack against each defense for the three security modes.

of adversarial training [47], where the classifier is made more
robust by training on adversarial examples. Note that, unlike
most settings with adversarial examples, the WF attacker is the
model owner and can make his model more robust after the
defense is deployed. By using adversarial training, the model
becomes resistant to the previous adversarial samples, and thus
is able to overcome BANP. Defense developers must make
their adversarial noise robust against adversarial training to
make this an effectual approach to WF defense.

For our evaluation, we use the BANP generator to produce
arbitrary adversarial perturbation vectors for the traffic. This
generator is optimized against the Var-CNN model trained
against the undefended traffic samples of the BigEnough
dataset. We then used the optimized generator to perturb
the undefended samples into adversarially defended samples,
demonstrating high effectiveness against the previously trained
Var-CNN model. Up to this point, this methodology follows
the same defense methodology and configuration used by the
BANP authors. To take advantage of adversarial examples,
however, we deviated from BANP’s evaluation in the follow-
ing way: after optimizing the generator and producing the
defended samples, a new WF model was trained using the
adversarially perturbed samples. Under this scenario, we made
the assumption that the attacker has access to the same or sim-
ilar perturbation generator used by the defender. When a new
model was trained in this manner, the performance improved
significantly, reaching 89.6% accuracy in the standard security
mode. We also see a small drop in attacker accuracy in the
Safer security mode, but the attack still remains concerningly
effective.

This way of evaluating the defense more closely represents
the real-world threat of an adversary, who should be able to
get the model from any operating Tor client.

F. DynaFlow

We end with the examination of two defenses that required
bespoke methods to improve upon existing attack results:
DynaFlow and FRONT.

We evaluated the DynaFlow defense using the more efficient
parameter settings described in Configuration 1 of Table 3
in their original paper [20]. In our initial investigations, we
used a custom set of handcrafted features with a simple

Multi-Layer Perceptron (MLP) model to classify samples. This
model performed well against some earlier dataset, achieving
up to 71% accuracy when applied against a 95-site dataset
collected by Sirinam et al. [8] in 2017, but we saw the accuracy
drop to 18% on the BigEnough dataset with the Standard
security mode. This performance drop may have been due to
the presence of shorter webpage traces in our dataset and the
inclusion of different subpages for each website, increasing
confusion within each class.

Using insights gained from these experiments, we tweaked
the DF attack to specifically target the DynaFlow defense. To
do this, we needed to make changes to the way traffic samples
are represented and fed to the model. DynaFlow sends traffic
following a fixed pattern, with only its variable traffic send
rate and trace length leaking fingerprintable information. To
capitalize on this, we break the trace into 25-cell slices. We
then take the average inter-packet arrival time (IAT) across
each slice, and use the resulting vector of average IAT values
as the input sequence to the DF model. This change improved
our attack accuracy up to 38%. When we evaluate DynaFlow
under the Safer and Safest security settings, we further see the
accuracy drop to 29% and 24%, respectively. This is likely due
to the fact that these security settings result in smaller samples,
increasing the likelihood that DynaFlow produces traces with
similar or identical IAT switching patterns. Nevertheless, Dy-
naFlow remains an effective defense, although with significant
traffic overhead, as we will discuss further in Section VII.

G. FRONT

FRONT reports reasonably effective defense against DL-
based attacks [19], despite the fact that the broad traffic
padding behavior of FRONT is predictable. While individual
packets cannot be easily identified as either real or fake, we can
estimate the approximate number of fake packets that should
appear in a burst of traffic based on the Rayleigh PDF used for
padding. Each time-interval burst under FRONT is determined
by a simple calculation, b = r+f where b is burst size, r is the
number of real packets, and f is the number of fake packets.
We speculate that the baseline DL-based models would overfit
to the noisy defended data samples, rather than generalizing
to better extract the informative patterns still available in the
data. To accurately classify samples, the model must learn the

977



way to extract features that are resistant to this predictable
noise.

To achieve this, we propose to attack FRONT using a special
training regimen that trains it to generalize on few classes at
first before incorporating more classes gradually. During the
early training epochs, we exposed the model to many possible
defended variants of a sample.As the training continued, after
every few epochs, we increased the number of real samples and
decreased the number of simulated samples generated from
each real sample. In this way, we can ensure that the model
cannot memorize the samples. It was at this point that the
model began to learn to properly discriminate between classes.
This allowed the model to first build an understanding of how
to ignore the padding effects of the fake packets during feature
extraction in the convolutional layers. By using this approach,
we attained 81%, 80%, and 83% closed-world accuracy against
the three security modes in the BigEnough dataset. In addition,
despite an increase in overheads for higher security settings,
the efficacy of the defense does not appear to improve.

We note that the maximum attack performance against
FRONT—as well as HyWF, Spring, and Interspace—are pred-
icated on the use of data augmentation to expose the model
to a larger variety of training samples. Research on data
augmentation in other domains notes that data augmentation
acts as implicit regularization (to prevent overfitting) and
allows for more forgiving hyperparameter selection [48]. We
hypothesize that WF attacks against stochastic defenses gain
additional benefits, as these defenses pull much of their added
noise from distributions whose parameters are set randomly
between sample instances. This then means that the network
requires a much greater number of examples to approximate
the more complex noise distributions applied to the traffic. We
note that attacks against stochastic defenses with naive and
predictable noise distributions (e.g. DFD) achieve very high
performance without needing this augmentation.

V. OPEN-WORLD EVALUATIONS

In this section, we investigate the defenses in the open-
world setting using the same attacks used in the closed-world
experiments. We trained different models for each defense
using both a monitored and an unmonitored set with an
additional unmonitored label. Then, we evaluated each model
using the precision and recall metrics as if it were a binary
classification problem that distinguishes monitored sites from
unmonitored sites. The performance of each defense using the
BigEnough dataset and under the three TBB security modes
in the open-world setting is presented in Figure 2.

In the open world and with the Standard security mode,
TrafficSliver performs very well when traffic is split across five
circuits, achieving less than 1% recall and terrible precision.
Both DynaFlow and HyWF perform extremely well, reducing
recall to 4% and 17%, respectively, when precision reaches
near 97%. The other no-latency defenses do not perform
as well. At similar levels of precision, Interspace, Spring,
FRONT, BiMorphing, and DFD achieve recall of 69%, 93%,
71%, 93%, and 91%, respectively. From these results, it is

clear that the random padding based defenses struggle to pro-
vide adequate defense in the open-world setting. These trends
persist across the three security modes. Using a higher security
mode does not appear to improve fingerprinting security for
most defenses in any case.

VI. INFORMATION LEAKAGE

We performed Information Leakage analysis on the defenses
to gain further insight, using the WeFDE implementation pro-
vided by [9]. As with prior works [9], [28], we used the same
feature set and pruned redundant features using a threshold of
0.9. We performed combined leakage analysis over the top 50
remaining features.When evaluating the information leakage
for feature sub-groups, we included up to 50 features and did
not perform clustering, as computation complexity is not an
issue at this reduced set size. We also calculated the percentage
of information leaked by the defended samples, ID, relative to
the amount of information leaked by the undefended samples
IU . Since the units are bits of information, we calculated
the percentage as 2ID/2IU . Table III presents the informa-
tion leakage results for all combined features and category-
specific features in the Standard mode. Categorical leakages
for the Safer and Safest modes can be found in Appendix
Tables VI & VII. Individual feature leakage results can be
found in Appendix C. Finally, we also perform information
leakage analysis on the internal feature representation of our
trained DL attacker models. To do this, we extract the feature
outputs from the final convolutional layer of our model after
flattening. We then treat these outputs as the feature set and
repeat our information leakage analysis process. We report the
multivariate leakage results in Table III

Breaking down the information leakage results in the Stan-
dard mode, we see that two defenses have above 90% leakage
(DFD & BANP), seven defenses have above 75% leakage
results (the remaining random padding defenses), and only
three defenses have below or near 50% total ML leakage
(DynaFlow, TrafficSliver, and HyWF). We also see that the
DL feature leakage produces similarly to ML features across
most defenses. Again we see that the random padding strategy
poorer defense outcomes than alternatives. We also see that
some certain categories (Interval-I, Interval-II, Interval-III, Pkt.
Distribution, and Pkt. per Second) produce high information
leakage across almost all defenses, with only DynaFlow,
HyWF, and TrafficSliver offering some protection for some
of those categories.

VII. IMPLEMENTABILITY & OVERHEADS

A. Overheads Overview

The overheads incurred by a defense are also important.
We perform our estimations using the BigEnough dataset
with total dataset overhead and mean per-trace overheads. We
estimate the Total bandwidth and time overheads by computing
the total number of packets and load time across all samples in
the dataset both before and after the defense is applied. The
Total overhead can then be found by taking the difference
of total packet and time counts of the defended data from

978



Standard mode Undefended Interspace Spring FRONT TrafficSliver HyWF DynaFlow DFD BiMorphing BANP

% 100% 79% 78% 86% 46% 37% 56% 98% 70% 99%
ML Features 6.569 6.235 6.206 6.354 5.471 5.134 5.729 6.547 6.051 6.562
DL Features 6.569 6.414 6.483 6.414 5.462 5.388 6.433 5.685 6.274 5.740

Pkt. Count 6.201 6.015 6.130 6.345 4.762 5.798 4.256 6.191 5.481 5.782
Time 5.089 0.656 0.656 4.452 3.566 4.903 3.476 4.793 4.048 4.522
Ngram 2.131 1.541 1.652 1.298 0.870 1.491 2.687 2.026 5.246 5.845
Transposition 6.535 3.992 4.979 2.955 2.236 2.940 1.377 4.333 4.035 6.527
Interval-I 6.569 6.399 6.092 6.060 3.898 3.980 1.185 6.551 6.555 6.569
Interval-II 6.569 6.451 6.569 6.569 6.553 6.569 1.429 6.566 6.567 6.563
Interval-III 6.507 6.369 6.569 6.569 6.553 6.568 1.429 6.569 6.568 6.478
Pkt. Distribution 6.455 6.123 6.166 5.776 6.494 4.223 3.268 6.363 6.394 6.468
Burst 5.360 5.182 5.406 3.738 2.558 3.366 2.983 4.289 4.302 5.730
First 20 4.545 1.802 1.129 3.446 1.889 1.750 0.656 0.983 2.248 0.656
First 30 1.847 0.459 0.684 0.083 0.043 0.318 0.656 1.288 0.720 2.505
Last 30 1.153 0.478 0.437 0.283 0.056 0.369 0.669 1.003 0.630 1.787
Pkt. per Second 6.565 1.679 1.793 6.294 4.042 6.535 6.080 6.556 6.564 5.352
CUMUL 5.177 4.463 4.507 3.214 3.407 3.242 3.814 5.149 4.036 4.882

TABLE III: Information Leakage: Bits of information leakage for all features and features by-category. Cells
are colored by the severity of leakage separated as described below.

Coloring – (x > 6.0) red, (6.0 < x < 5.0) orange, (5.0 < x < 4.0) yellow, (x < 4.0) uncolored

Overheads
Standard Total Total A.M. A.M. G.M. G.M.
mode BW Time BW Time BW Time

Interspace 98% 0% 214% 0% 150% 0%
Spring 93% 0% 220% 0% 146% 0%
FRONT 48% 0% 339% 0% 191% 0%
BiMorphing 61% 0% 389% 0% 116% 0%
TrafficSliver 0% 0% 0% 0% 0% 0%
HyWF 0% 0% 0% 0% 0% 0%
Dynaflow 141% 6% 461% 16% 183% 11%
DFD 54% 0% 54% 0% 54% 0%
BANP 20% 411% 370% 773% 54% 549%

TABLE IV: Defense Overheads: Total, average, and geomet-
ric mean of the bandwidth and latency overheads (Standard
security mode).

the undefended data, and dividing by the counts from the
undefended data. An alternative method is to use the mean
per-trace overhead across every defended/undefended sample
pair in the dataset. We apply both the arithmetic mean (A.M)
and geometric mean (G.M.).

The overheads for each defense for the Standard security
mode are presented in Table IV. The overheads for the Safer
and Safest security modes are available in Appendix Ta-
bles VIII & IX. The Total overhead estimates are consistently
lower than both the A.M and G.M. estimates. This is because
most defenses optimize their overall overheads by limiting
the amount of padding added for large traffic samples, since
these samples contain more information and are particularly
distinctive and difficult to protect. These large webpages may
constitute many times the amount of traffic as small sites, and
as such, they dominate the total overhead estimates.

B. Implementation Overview

When designing a defense, due consideration must be made
on how the defense can be realistically integrated into the Tor
network. At present, there are two mechanisms in Tor that
developers can use to implement their defense – Pluggable
Transports [49] via Tor Bridges, or through the Tor Circuit
Padding framework [50]. In this section, we examine and
critique the practicality of implementing each defense.

Pluggable Transports. The Tor Pluggable Transport (PT)
system allows users to obfuscate properties of their traffic
to avoid censorship. To use PTs, a Tor client must connect
through a Bridge before entering the network. Both the client
and bridge install and enable their selected PT to obfuscate
traffic on the link between them. This system may also
be used to obfuscate traffic to confuse WF attackers [51].
Unfortunately, a PT-based defense only provides protection
against attackers between the client and bridge (e.g., a local
eavesdropper), with no protection against a malicious bridge.
Also, PTs are an opt-in option for users; the majority of users
are unlikely to use bridges and will thus remain vulnerable.

Circuit Padding framework. Tor also provides developers
with an interface to inject padding cells into a circuit’s traffic
with the express intent of mitigating fingerprinting attacks.
Defenses implemented in this framework use state machines
to schedule their padding. Each state in the padding machine
defines either a histogram or probability distribution of times
from which delays are sampled to schedule the next padding
packet to be sent. This system was inspired by the Adaptive
Padding defense [30], [31], and consequently adopts some of
its limitations. Most notably, the Circuit Padding framework
does not allow for the sending of real cells to be delayed
or perturbed in any way, and implementations must follow
a relatively rigid state-machine design. However, this system

979



provides numerous advantages over the use of PT for WF
defenses. For one, padding may be configured to occur be-
tween the client and any node within the circuit, allowing
for protection against malicious guard nodes if the padding is
configured to stop at the middle node. It also does not require
using a bridge, which is a limited resource in Tor. Finally,
Tor can be configured to run padding machines by default,
providing widespread general WF protection to all Tor users.

C. Analysis

Mockingbird. As previously mentioned, the Mockingbird
defense inherited many of the same issues as the Walkie-Talkie
defense, and added some of its own strategies. Rahman et
al. [9] demonstrated that the implementation of Walkie-Talkie
had significant issues that can be extended to the implemen-
tation of any burst-molding-based defenses. They showed that
it is difficult to identify the last packet in a directional burst
sequence from the perspective of a cooperating Tor relay. The
client may identify the final packet in a burst sequence by
considering when all currently pending browser requests have
been satisfied. This information is not accessible, however,
to the Tor relay. Furthermore, repeated visits to the same
page rarely produce identical burst sequences, so even if this
information were collected and stored beforehand, having it
would not allow for accurate identification of the end of the
burst. Consequently, when Rahman et al. implemented Walkie-
Talkie as a Pluggable Transport in the live Tor network [9], a
time-out mechanism was used to identify the end of a burst and
add dummy packets to expand the size of the burst to match
the target sequence. This technique adds considerable latency
to the connection, as small delays are added for each burst,
which subsequently delays the following bursts, resulting in
a large accumulation of delays. In addition, Mockingbird
is computationally expensive, as adversarial traces must be
generated before each visit, which would add additional delay
to each connection.

DynaFlow. The constant-rate padding used by DynaFlow
makes it impossible to implement within the Circuit Padding
framework, but it is possible to do so within the PT framework.
We demonstrate a prototype implementation in Appendix B.
All the primary functions of DynaFlow are feasible when
implemented as a PT. While DynaFlow achieves good defense,
particularly in the open-world setting, the primary concern of
DynaFlow is the large overheads incurred compared to other
efficient defenses. Furthermore, the packet queueing system
required by DynaFlow (as well as other fixed-rate defenses)
exposes relays to possible memory exhaustion if the queues
become too large due to large traffic influxes.

BiMorphing. BiMorphing is inspired by Adaptive Padding
and uses a similar state machine. Consequently, it is largely
compatible with the Circuit Padding framework. However,
BiMorphing configures its state machine to sample padding
delays targeted towards the timing and burst distribution of
a particular target site. The Circuit Padding framework does
not have a mechanism that would allow particular distributions

on-the-fly, nor does it have a way for the client to negotiate
with the cooperating relay to communicate the selected dis-
tribution. Furthermore, BiMorphing requires maintenance and
distribution of a database of potential target distributions. It is
unclear how often this database would need to be refreshed to
remain relevant and keep its original effectiveness.

FRONT. The FRONT defense can easily be implemented
as a PT due to its simple and straightforward approach to
scheduling padding. Unfortunately, adapting FRONT to work
within the current Circuit Padding framework is difficult, as
FRONT padding depends on the ability to schedule padding at
a rate that is a function of the current elapsed time within the
trace. The circuit padding framework needs to add support for
adding padding at arbitrary times in order to support FRONT.

Traffic Splitting. Both HyWF and TrafficSliver can be
implemented without any dummy packets or packet delays.
TrafficSliver is the stronger defense, due in large part to
its five-way splitting. However, if implemented to multiplex
across Tor circuits, the process of building the additional
circuits would incur significant delays and may impose a large
burden to the Tor network if deployed at scale. It also may
be unreasonable to expect typical Tor users to run multiple
Internet access points simultaneously given the cost of cellular
data. Neither defense works in either the PT or Circuit Padding
frameworks, but De la Cadena et al. demonstrated that with a
custom Tor modification, it is possible to operate TrafficSliver
on the live network [25].

Spring & Interspace. The Spring and Interspace defenses
are ready-made for the Circuit Padding framework and are
consequently the closest of any defense to being immediately
deployable as a general WF defense on Tor. The Spring
padding machine offers no tangible benefit over the Interspace
padding machine, as both appear to produce roughly the
same bandwidth overheads, so Interspace should generally be
preferred due to its better closed-world performance.

BANP. BANP is incompatible with the Circuit Padding
framework, although the authors have created a publicly
available PT implementation named BLANKET [52]. As
previously noted in Section II, BANP has a critical flaw:
both the client and bridge use a BANP generator that must
be distributed publicly for the defense to work at scale.
This allows an attacker to easily train their model against
the adversarially perturbed samples and achieve rather high
accuracy. In terms of overheads, BANP produces a very high
time overhead using the author-suggested defense parameters.
A fraction of this reported latency overhead will not be felt
by the end user, as it is produced by padding added to the
trace after the page has finished loading. Much of the delay,
however, is delays on real packets within the main portions of
the traffic produced by the timing perturbation generator, and
this would have a significant impact on the user experience.

VIII. LAYERING DEFENSES

There has been little exploration of the efficacy of layering
WF defense strategies. In particular, applying both a padding

980



Defense Order CW
1st 2nd Acc.

FRONT HyWF 59.1%
FRONT TS 50.5%
Spring HyWF 32.4%
Spring TS 32.7%
Interspace HyWF 28.7%
Interspace TS 31.0%
HyWF FRONT 37.1%
TS FRONT 29.4%

TABLE V: Layered Defenses: Closed-world attack accuracy
against traffic defended by both traffic padding and traffic
splitting defense strategies.

and traffic splitting defense has the potential to provide strong
protection against malicious guard nodes, along with modest
protection against ISP-level adversaries. To this end, we inves-
tigate the impact of combining traffic splitting and lightweight
padding defenses. We run several experiments combining the
HyWF and TrafficSliver splitting strategies with the FRONT,
Interspace, and Spring padding strategies. When evaluating
FRONT, we consider two cases: FRONT padding is applied
(i) before and (ii) after the splitting strategy. The Interspace
and Spring simulator is incompatible with the split traffic
logs, so we only examine when padding is applied before the
splitting for these defenses. To minimize hypothetical circuit
construction requirements, we restrict TrafficSliver to two-
channel traffic splitting (similar to HyWF). When FRONT
is applied after the traffic splitting defense, we reduce the
maximum padding count parameter from 2500 to 1250 for
each split (in this way, the total maximum overhead is the
same for the overall trace).

Our experimental results are presented in Table V. We see
that, when applied before traffic splitting, FRONT does not
meaningfully improve security. Interspace and spring, how-
ever, significantly decrease attacker performance. Interestingly,
attacker performance with FRONT can drop to similar levels
as Interspace and Spring when applied to traffic post-splitting,
and at a lower overhead. We also see that, when configured
to operate using two streams, both HyWF and TrafficSliver
perform similarly when layered with padding defenses. This
leaves the door open for future lightweight padding defenses
designed from the ground up to be integrated with traffic
splitting to get the advantages of both.

IX. DISCUSSION

User experience. Previous works have indicated that network
delays are a critical barrier to the widespread adoption of
anonymity systems [53], [54]. Node congestion has also been
shown to be a major contributor to added delays [55]. An im-
portant metric to consider may be the time to load the first byte
of the webpage (e.g. time to first byte)—which is commonly
used to evaluate the performance of Tor circuits [56]–[58]—
as this may better represent the snappiness of the experience.
Website fingerprinting literature has yet to adopt this metric,
and it is unclear how traffic padding and delays impact this

property. Further, researchers have not studied how padding
overheads would impact congestion at Tor routers. Future work
should examine both how the added overheads of WF defenses
would impact Tor network performance as a whole and how
such changes would impact the Tor user experience.

Do we need a perfect defense? Our study has so far
demonstrated that a number of preeminent defenses offer lower
efficacy than originally reported. It may then seem ideal to
wait until more effective defenses are proposed and evaluated
before committing to the wide-spread adoption of a defense
strategy to combat the threat of WF. This is not our intention.
Even a modest reduction in attacker performance will result in
a significant increase in false positives and may discourage the
adoption of website fingerprinting attacks by censors and other
adversaries. Furthermore, if even an arguably inferior defense
were in place, this would provide an easy benchmark and
direction for the development of future defenses that surpass
it. So it is important that the pursuit of the best defense does
not impinge on our willingness to adopt an adequate defense
until a better defense can be found.

X. CONCLUSION

This paper presents a study of the currently proposed
efficient website fingerprinting defenses proposed for Tor.
We have shown shortcomings of several defenses to using
deep-learning-based attacks, the use of timing information in
those attacks, more extensive training of the attack model,
and simply following the consequences of assuming that the
attacker has knowledge of the defense and its default or widely
distributed parameters. We also explore novel attack tech-
niques against both DynaFlow and FRONT. Additionally, we
have examined the limitations affecting defenses’ deployability
in Tor. From our analysis, we can crown no king of WF
defenses, as each defense is subject to its own limitations and
shortcomings. Interspace, FRONT, and TrafficSliver appear to
form a Pareto front of the best techniques so far.

It is clear that the Tor developers favor the Adaptive Padding
style of defense due to its relative ease of integration into the
Tor code and no latency overheads [30], [31]. Despite this,
relatively few efficient defenses proposed have been built with
this system in mind. Interspace, for example, has relatively
high G.M. bandwidth overhead at 150% and still only limits
the closed-world attacker accuracy to 76.1%. Thus, it is clear
that there is much work further to be done before Tor users can
feel confidently safe from the threat of traffic fingerprinting.

XI. ACKNOWLEDGEMENTS

This research was funded in part by the National Sci-
ence Foundation under Grants nos. 1816851, 1433736, and
1815757, the Ewha Womans University Research Grant of
2022, and the Institute of Information & communications
Technology Planning & Evaluation (IITP) grant No.RS-2022-
00150000 funded by the Korean government (MSIT).

981



REFERENCES

[1] R. Dingledine, N. Mathewson, and P. F. Syverson, “”Tor: The second-
generation Onion router”,” in USENIX Security Symposium, 2004, pp.
303–320.

[2] T. Wang and I. Goldberg, “Improved website fingerprinting on Tor,” in
ACM Workshop on Privacy in the Electronic Society (WPES), 2013, pp.
201–212.

[3] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in USENIX
Security Symposium, 2014, pp. 143–157.

[4] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle,
and T. Engel, “Website fingerprinting at internet scale,” in Network &
Distributed System Security Symposium (NDSS), 2016, pp. 1–15.

[5] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique,” in USENIX Security Symposium, 2016, pp.
1–17.

[6] K. Abe and S. Goto, “Fingerprinting attack on tor anonymity using deep
learning,” in in the Asia Pacific Advanced Network (APAN), 2016.

[7] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in Network
and Distributed System Security Symposium (NDSS), 2018.

[8] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep Fingerprinting:
Undermining website fingerprinting defenses with deep learning,” ACM
Conference on Computer and Communications Security (CCS), 2018.

[9] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and
M. Wright, “Tik-Tok: The utility of packet timing in website fingerprint-
ing attacks,” Proceedings on Privacy Enhancing Technologies (PETS),
vol. 2020, no. 3, pp. 5–24, 2020.

[10] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
Fingerprinting: More practical and portable website fingerprinting with
n-shot learning,” in ACM Conference on Computer and Communications
Security (CCS), 2019, p. 1131–1148.

[11] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal, “RAPTOR: Routing attacks on privacy in Tor,” in USENIX
Security Symposium, 2015, pp. 271–286.

[12] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-Boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
IEEE Symposium on Security and Privacy (S&P), 2012, pp. 332–346.

[13] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A congestion
sensitive website fingerprinting defense,” in ACM Workshop on Privacy
in the Electronic Society (WPES), 2014, pp. 121–130.

[14] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in ACM Conference on Computer and Communications
Security (CCS), 2014, pp. 227–238.

[15] T. Wang and I. Goldberg, “Walkie-Talkie: An efficient defense against
passive website fingerprinting attacks,” in USENIX Security Symposium,
2017, pp. 1375–1390.

[16] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward an
efficient website fingerprinting defense,” in European Symposium on
Research in Computer Security (ESORICS). Springer, 2016, pp. 27–
46.

[17] M. Imani, M. S. Rahman, and M. Wright, “Adversarial traces for
website fingerprinting defense,” in ACM Conference on Computer and
Communications Security (CCS), 2018, pp. 2225–2227.

[18] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mockingbird:
Defending against deep-learning-based website fingerprinting attacks
with adversarial traces,” IEEE Transactions on Information Forensics
and Security (TIFS), vol. 16, pp. 1594–1609, 2020.

[19] J. Gong and T. Wang, “Zero-delay lightweight defenses against website
fingerprinting,” in USENIX Security Symposium, 2020.

[20] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “DynaFlow: An efficient
website fingerprinting defense based on dynamically-adjusting flows,”
ACM Workshop on Privacy in the Electronic Society (WPES), pp. 109–
113, 2018.

[21] N. Mathews, P. Sirinam, and M. Wright, “Understanding feature discov-
ery in website fingerprinting attacks,” in 2018 IEEE Western New York
Image and Signal Processing Workshop (WNYISPW), 2018, pp. 1–5.

[22] K. Al-Naami, A. El-Ghamry, M. S. Islam, L. Khan, B. Thuraisingham,
K. W. Hamlen, M. Alrahmawy, and M. Z. Rashad, “Bimorphing: A bi-
directional bursting defense against website fingerprinting attacks,” IEEE
Transactions on Dependable and Secure Computing (TDSC), vol. 18,
no. 2, pp. 505–517, 2021.

[23] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen,
“DFD: Adversarial learning-based approach to defend against website
fingerprinting,” in IEEE INFOCOM 2020 -IEEE Conference on Com-
puter Communications, 2020, pp. 2459–2468.

[24] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran,
Proceedings on Privacy Enhancing Technologies (PETS), vol. 2020,
no. 2, pp. 89–110, 2020.

[25] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter,
T. Engel, K. Wehrle, and A. Panchenko, “Trafficsliver: Fighting website
fingerprinting attacks with traffic splitting,” in ACM Conference on
Computer and Communications Security (CCS), 2020, p. 1971–1985.

[26] T. Pulls, “Towards effective and efficient padding machines for Tor,”
2020.

[27] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating dnn-based
traffic analysis systems in real-time with blind adversarial perturbations,”
in USENIX Security Symposium, 2021, pp. 2705–2722.

[28] S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in ACM Conference on
Computer and Communications Security (CCS), 2018.

[29] G. Cherubin, “Bayes, not Naı̈ve: Security bounds on website finger-
printing defenses,” Privacy Enhancing Technologies Symposium (PETS),
2017.

[30] M. Perry, “A critique of website traffic fingerprinting attacks,”
Tor Project Blog. https://blog.torproject.org/blog/critique-website-traffic-
fingerprinting-attacks, 2013.

[31] ——, “Padding negotiation,” Tor Protocol Specification
Proposal. https://gitweb.torproject.org/torspec.git/tree/proposals/
254-padding-negotiation.txt, 2015.

[32] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations (ICLR), 2014.

[33] X. Cai, N. Rishab, and R. Johnson, “Glove: A bespoke website fin-
gerprinting defense,” in ACM Workshop on Privacy in the Electronic
Society (WPES), 2014, pp. 131–134.

[34] N. Mathews, M. S. Rahman, and M. Wright, “Poster: Evaluating security
metrics for website fingerprinting,” in ACM Conference on Computer
and Communications Security (CCS), 2019.

[35] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in IEEE Symposium
on Security and Privacy (S&P), 2010, pp. 191–206.

[36] L. Lu, E. Chang, and M. Chan, “Website fingerprinting and identification
using ordered feature sequences,” in European Symposium on Research
in Computer Security (ESORICS). Springer, 2010, pp. 199–214.

[37] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fin-
gerprinting in onion routing based anonymization networks,” in ACM
Workshop on Privacy in the Electronic Society (WPES), 2011, pp. 103–
114.

[38] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a dis-
tance: Website fingerprinting attacks and defenses,” in ACM Conference
on Computer and Communications Security (CCS), 2012, pp. 605–616.

[39] S. E. Oh, S. Sunkam, and N. Hopper, “p-FP: Extraction, classification,
and prediction of website fingerprints with deep learning,” Proceedings
on Privacy Enhancing Technologies (PETS), vol. 2019, no. 3, pp. 191–
209, 2019.

[40] J. Yan and J. Kaur, “Feature selection for website fingerprinting,” in
Proceedings on Privacy Enhancing Technologies (PETS), 2018.

[41] ——, “Feature selection for website fingerprinting,” Tech. Rep. 18-001,
2018, http://www.cs.unc.edu/techreports/18-001.pdf.

[42] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: A data-efficient
website fingerprinting attack based on deep learning,” Proceedings on
Privacy Enhancing Technologies (PETS), vol. 2019, no. 4, pp. 292–310,
2019.

[43] S. E. Oh, N. Mathews, M. S. Rahman, M. Wright, and N. Hopper,
“GANDaLF: GAN for data-limited fingerprinting,” Proceedings on
Privacy Enhancing Technologies (PETS), vol. 2021, no. 2, pp. 305–322,
2021.

[44] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective
attacks and provable defenses for website fingerprinting,” in USENIX
Security Symposium, 2014, pp. 143–157.

[45] D. J. Berndt and J. Clifford, “Using dynamic time warping to find pat-
terns in time series,” in Proceedings of the 3rd International Conference
on Knowledge Discovery and Data Mining, ser. AAAIWS’94. AAAI
Press, 1994, p. 359–370.

982



[46] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix
networks: Attacks and defenses,” in European Symposium on Research
in Computer Security (ESORICS). Springer, 2006, pp. 18–33.

[47] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

[48] A. Hernández-Garcı́a and P. König, “Further advantages of data augmen-
tation on convolutional neural networks,” in Artificial Neural Networks
and Machine Learning – ICANN 2018, V. Kůrková, Y. Manolopoulos,
B. Hammer, L. Iliadis, and I. Maglogiannis, Eds. Cham: Springer
International Publishing, 2018, pp. 95–103.

[49] “Tor at the heart: Bridges and pluggable transports,” https://blog.
torproject.org/tor-heart-bridges-and-pluggable-transports, 2016.

[50] “Circuit padding developer documentation,” https://github.com/
torproject/tor/blob/main/doc/HACKING/CircuitPaddingDevelopment.
md, 2020.

[51] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in ACM Conference on
Computer and Communications Security (CCS), 2014, pp. 263–274.

[52] “BLANKET,” https://github.com/SPIN-UMass/BLANKET, 2021.
[53] S. Köpsell, “Low latency anonymous communication – how long are

users willing to wait?” in Emerging Trends in Information and Commu-
nication Security, G. Müller, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 221–237.

[54] B. Fabian, F. Goertz, S. Kunz, S. Müller, and M. Nitzsche, “Privately
waiting – a usability analysis of the tor anonymity network,” in Sus-
tainable e-Business Management, M. L. Nelson, M. J. Shaw, and T. J.
Strader, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
63–75.

[55] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware path
selection for tor,” in Financial Cryptography and Data Security, A. D.
Keromytis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 98–113.

[56] R. Jansen and N. J. Hopper, “Shadow: Running tor in a box for accurate
and efficient experimentation,” 2011.

[57] C. Wacek, H. Tan, K. S. Bauer, and M. Sherr, “An Empirical Evaluation
of Relay Selection in Tor,” in Network & Distributed System Security
Symposium (NDSS), 2013.

[58] M. Imani, M. Amirabadi, and M. Wright, “Modified relay selection and
circuit selection for faster tor,” IET Communications, vol. 13, no. 17,
pp. 2723–2734, 2019.

[59] “WFPadTools,” https://github.com/mjuarezm/wfpadtools, 2018.
[60] “Obfsproxy,” https://github.com/isislovecruft/obfsproxy, 2014.

APPENDIX

A. Comparisons with GoodEnough

During preliminary investigations we evaluated the defense
efficacy using the GoodEnough dataset in the Standard se-
curity mode. This dataset contains a monitored dataset of 50
websites each represented by 10 subpages and 20 instances per
subpage. These experimental results are presented in Table XI.
Additionally, we calculated the arithmetric mean and quartile
statistics of the trace lengths and load times for all security
modes of both the GoodEnough dataset and our collected data.
These metrics are presented in Table X.

When we compare GoodEnough to BigEnough, we notice a
few differences. The most noticable difference is that the traces
in our dataset are generally smaller and finish loading faster
than the traces in the GoodEnough dataset. The differences in
trace lengths is likely due to using a different set of webpages
for BigEnough, which happen to be of a smaller average
size. We also use a newer TBB, version 10.0.18, whereas
GoodEnough was collected using TBB version 9.0.2, which
may further impact traffic statistics. The generally smaller
size of our samples also affects the overheads incurred by
defenses, increasing the BW overheads of Interspace, Spring,

FRONT, BiMorphing, and BANP. The small trace size and
increase number of classes in our dataset has also led to
a greater than 5% increase in CW performance for Spring,
TrafficSliver, HyWF, FRONT, BiMorphing, and DynaFlow.
Conversely, the OW attack performance instead improved for
many defenses. This is likely due to the differences in how the
OW URL lists were compiled. As mentioned in Section VII-C,
we follow the common practice of selecting OW URLs from
Top ranked website landing pages. However, since our CW
dataset contains many subpage URLs (each site is represented
by the landing page URL and nine subpage URLs), traffic
distributions of our OW URLs may be more dissimilar than
the GoodEnough dataset practice of selecting URLs sampled
from links on reddit.com, which likely do not include many
landing pages.

Finally, we have a few notes about the three TBB security
levels. We see that, in both datasets, that the trace length of
samples in Safest is drastically less than that of Standard and
Safer. This is most likely due to the fact that Javascript is
entirely disabled in Safest, effectively blocking most dynamic
content from loading. These smaller trace sizes result in a
higher bandwidth overhead for many defenses when examined
under the Safest mode (as seen in Table IX). We note few
differences between the Standard and Safer security modes,
with the only notable difference being that the loading time
statistics are slightly lower for the Standard mode.

GoodEnough BigEnough
Standard Safer Safest Standard Safer Safest

L
en

gt
h Mean 5664 5600 1720 4188 4025 1665

Q1 2428 2511 569 1529 1471 298
Q2 5772 5690 1008 3309 3216 681
Q3 9071 8655 1819 6378 6005 1916

Ti
m

e

Mean 36s 35s 18s 28s 35s 22s
Q1 20s 18s 7s 12s 19s 12s
Q2 39s 40s 12s 26s 37s 17s
Q3 52s 52s 27s 42s 49s 31s

TABLE X: Data Statistics: Sample data statistics for the three
security modes of the GoodEnough and BigEnough datasets.

Standard CW OW Tot. Overhead
mode Acc. Pre. Rec. BW Time

Undefended 95.8% 97% 89% 0% 0%

DynaFlow 45.3% 97% 7% 181% 19%
BiMorphing 91.1% 93% 84% 53% 0%
DFD 95.5% 99% 81% 55% 0%
FRONT 87.8% 98% 56% 40% 0%
HyWF 77.9% 98% 11% 0% 0%
TrafficSliver 41.7% 94% 1% 0% 0%
Spring 87.9% 99% 41% 82% 0%
Interspace 78.6% 99% 47% 77% 0%
BANP 94.5% 99% 85% 13% 312%

TABLE XI: GoodEnough Evaluations: Results on the Good-
Enough dataset in the Standard security mode.

983



Safer mode Undefended Interspace Spring FRONT TrafficSliver HyWF DynaFlow DFD BiMorphing BANP

% 100% 52% 96% 100% 31% 22% 69% 100% 99% 100%
ML Features 6.569 5.616 6.512 6.565 4.901 4.376 6.048 6.564 6.515 6.569
DL Features 6.569 6.414 6.483 6.414 5.521 5.388 4.692 6.442 6.524 6.522

Pkt. Count 6.170 5.983 6.105 6.327 4.970 5.718 4.090 6.145 5.450 5.724
Time 4.592 0.656 0.656 4.190 3.305 4.621 3.282 4.214 3.222 4.879
Ngram 2.162 1.585 1.563 1.139 0.950 1.442 2.406 2.041 5.218 5.783
Transposition 6.538 4.230 4.135 3.619 1.584 2.810 0.909 3.966 3.735 6.551
Interval-I 6.569 6.569 6.374 6.203 1.733 4.239 0.688 6.566 6.446 6.569
Interval-II 6.475 6.451 6.418 6.563 6.569 6.296 1.228 6.568 6.569 6.568
Interval-III 6.420 6.360 6.418 6.563 6.548 6.296 1.228 6.568 6.569 6.568
Pkt. Distribution 6.050 5.942 6.207 5.982 6.563 4.110 2.614 6.203 6.514 5.854
Burst 5.291 5.285 5.470 3.974 2.758 3.794 3.916 4.309 4.391 4.813
First 20 4.615 1.810 1.331 3.479 1.856 1.877 0.656 0.984 2.240 0.663
First 30 1.859 0.440 0.710 0.070 0.044 0.268 0.656 1.319 0.713 0.656
Last 30 1.017 0.551 0.459 0.413 0.055 0.329 0.664 0.894 0.662 1.385
Pkt. per Second 6.569 1.738 1.704 6.561 3.182 6.566 6.300 6.563 6.261 6.171
CUMUL 4.977 4.471 4.144 3.088 3.379 3.225 3.168 4.901 3.733 4.869

TABLE VI: Leakage results for defenses under the Safer TBB security mode.
Coloring – (x > 6.0) red, (6.0 < x < 5.0) orange, (5.0 < x < 4.0) yellow, (x < 4.0) uncolored

Safest mode Undefended Interspace Spring FRONT TrafficSliver HyWF DynaFlow DFD BiMorphing BANP

% 100% 17% 35% 19% 34% 88% 78% 87% 53% 99%
ML Features 6.565 4.057 5.053 4.179 5.032 6.390 6.213 6.378 5.664 6.562
DL Features 6.566 6.285 6.460 6.569 6.550 6.267 6.485 6.469 6.526 6.563

Pkt. Count 6.320 6.117 6.035 6.363 4.724 5.957 4.121 6.255 4.586 5.849
Time 5.060 0.656 0.656 4.064 3.089 4.614 3.254 4.561 3.828 5.040
Ngram 2.454 1.350 1.300 0.960 1.252 1.818 2.508 2.311 6.277 6.221
Transposition 6.548 4.167 4.322 3.265 1.684 2.069 1.250 4.034 2.892 6.548
Interval-I 6.511 6.504 6.567 5.773 3.233 3.610 0.923 4.409 6.513 6.569
Interval-II 6.560 6.362 6.300 6.391 6.568 6.563 1.340 6.562 6.461 6.456
Interval-III 6.554 6.552 6.453 6.362 6.569 6.564 1.340 6.567 6.461 6.461
Pkt. Distribution 3.015 4.278 4.215 4.461 6.556 4.256 3.530 6.118 6.535 5.723
Burst 5.290 5.124 5.164 3.536 2.744 3.752 3.992 4.081 4.350 5.370
First 20 4.631 1.646 1.260 3.398 1.912 1.944 0.656 0.756 2.477 2.370
First 30 1.888 0.407 0.706 0.103 0.045 0.217 0.656 1.279 0.610 2.133
Last 30 1.216 0.152 0.185 0.322 0.057 0.262 0.665 1.113 0.707 1.375
Pkt. per Second 6.565 1.483 1.427 6.567 3.763 6.569 5.740 6.569 6.563 6.441
CUMUL 5.456 3.647 3.767 3.312 3.592 4.168 5.749 5.463 3.428 5.170

TABLE VII: Leakage results for defenses under the Safest TBB security mode
Coloring – (x > 6.0) red, (6.0 < x < 5.0) orange, (5.0 < x < 4.0) yellow, (x < 4.0) uncolored

Overheads
Safer Total Total Avg. Avg. G.M. G.M.
mode BW Time BW Time BW Time

Interspace 91% 0% 284% 0% 157% 0%
Spring 93% 0% 266% 0% 154% 0%
FRONT 56% 0% 469% 0% 112% 0%
BiMorphing 62% 0% 483% 0% 121% 0%
TrafficSliver 0% 0% 0% 0% 0% 0%
HyWF 0% 0% 0% 0% 0% 0%
Dynaflow 202% 4% 657% 7% 296% 6%
DFD 54% 0% 54% 0% 54% 0%
BANP 20% 293% 478% 461% 59% 447%

TABLE VIII: Defense Overheads: Computed metrics for the
Safer security mode.

Overheads
Safest Total Total Avg. Avg. G.M. G.M.
mode BW Time BW Time BW Time

Interspace 153% 0% 550% 0% 339% 0%
Spring 146% 0% 519% 0% 314% 0%
FRONT 113% 0% 759% 0% 279% 0%
BiMorphing 92% 0% 559% 0% 163% 0%
TrafficSliver 0% 0% 0% 0% 0% 0%
HyWF 0% 0% 0% 0% 0% 0%
Dynaflow 378% 5% 1425% 7% 597% 6%
DFD 55% 0% 55% 0% 55% 0%
BANP 51% 308% 623% 473% 164% 379%

TABLE IX: Defense Overheads: Computed metrics for the
Safest security mode.

984



B. Dynaflow Case-Study
To supplement our study of defenses, we developed a real-

world prototype implementation of the DynaFlow defense
using the Tor Pluggable Transport (PT) system. The prototype
was implemented using a modified wfpadtools PT [59],
which was, in turn, a modification of the obfsproxy [60]
PT. Our implementation uses the buffering system built into
wfpadtools to schedule traffic at the timed intervals.

We implemented DynaFlow as faithfully as we could by
following the code as written in the original DynaFlow
simulator as closely as possible. We did, however, deviate
from the original DynaFlow design in one small way.The
original DynaFlow design specifies that traffic be sent in a
repeat sequence of one outgoing packet and three incoming
packets from the perspective of the client.The design presents
something of a conundrum as it is difficult to ensure that
incoming and outgoing packets will exactly form this pattern
at the client. Achieving this would require performing an
estimation of the latency between the client and Tor bridge
and attempting to correctly time the start of the client and
bridge traffic streams such that the client packets correctly fit
into the time gap left open after every three packets in the
bridge stream. We instead implement a more practical and
simple solution that does not leak any additional information.
Both client and bridge streams send their traffic at different
fixed rates computed using the global flow rate selected for
the current interval and the ratio of incoming/outgoing packets
defined for the direction pattern. For the client the flow rate is
1
4∗flow rate and for the bridge the flow rate is 3

4∗flow rate.
The provides the same protection as the original DynaFlow
design, without worrying about the exact pattern of traffic as
it arrives at the client.

To collect data samples, we configured four local machines
at our institution to connect to websites using Tor through
our DynaFlow PT. Before connecting to the Tor network, our
hosts first relay traffic to Bridges also running our prototype
PT. These Bridges were hosted through a cloud provider
based in North America. We used this setup to collect 20,000
samples from 100 sites during the month of May, 2021. It
is important to note that this dataset uses a different set of
URLs, no subpages, and an entirely different traffic crawler
than the BigEnough dataset (Sec. VII-C), so results should
not be directly compared. On this closed-world dataset, we
can achieve up to 63.6% accuracy, which is consistent with
our results against the simulated defense when applied to the
similar dataset from Sirinam et al. [8].

To investigate the overheads produced by the prototype, we
collected a few samples of each website within this DynaFlow
dataset again without the DynaFlow PT active. The host was
configured to continue to use the same cloud host as the bridge
into the Tor network so as to avoid unnecessary amounts of
additional latency. We estimate average bandwidth and latency

Fig. 3: DNN Leakage: Information leakage for individual
convolutional features of the trained DF model.

overhead by computing the average packet count and total time
of traces for each site in the defended and undefended samples.
This allows us to estimate the overheads on a per-site basis,
and we then take the average of these results to produce our
final overheads estimate for the PT. This procedure produces
an average bandwidth overhead of 123% and average time
overhead of 379%.

This result is interesting due to the very high reported
time overhead, and there are a few potential causes of this.
First, it may be due in part to a mismatch of the flow-rates
defined in the original DynaFlow specifications and the rate
of traffic in present-day Tor with our network conditions.
Another potential cause is that in real network communication,
if an HTTP request packet was delayed with an offset o,
the response generated by the receiving webserver will also
generally be delayed by at least o, since it received the
request later due to the sender’s delay. This will consequently
further delay additional requests from the client when those
requests are contingent upon the resolution of the previous
request. This dynamic can cause a single relatively small
delay to accumulate into a much more significant overall
delay of the traffic. While this dynamic will occur in real
network traffic, naive traffic defense simulators cannot model
this behavior. This means that when it comes to time overheads
produced by simulated traffic defenses, the results are most
likely underestimated, and potentially to a significant degree,
as seen in this case-study.

C. Information Leakage Cont.

Of curious note, there are several cases in which the esti-
mated leakage of a category is greater than the estimated leak-
age of the overall defense. For example, under the TrafficSliver
defense we see that three feature subcategories report above
6 bits of information leakage. However, we run the processed
features through a Random Forest classifier (see Table XII)

985



Fig. 4: Feature Leakage: Information leakage by individual features.

Features Top-1 Top-2 Top-5

All 2.2% 3.4% 7.8%
Pkt. Count 1.1% 2.4% 6.3%
Time 2.4% 4.1% 8.7%
Ngram 1.4% 2.6% 6.7%
Transposition 1.9% 3.1% 7.0%
Interval-I 1.8% 3.0% 7.2%
Interval-II 1.8% 3.5% 7.5%
Interval-III 1.5% 2.9% 6.5%
Pkt. Distribution 1.6% 2.8% 6.5%
Burst 1.5% 2.7% 6.7%
First 20 1.2% 2.5% 5.5%
First 30 1.3% 2.4% 5.2%
Last 30 1.1% 2.7% 5.2%
Pkt. per Second 2.2% 3.6% 8.2%
CUMUL 1.8% 2.7% 6.2%

TABLE XII: Feature Performance: TrafficSliver Top-N per-
formance with RF trained using the Information Leakage
features.

and see those feature categories are actually outperformed
by several others that reportedly leak less information. This
anomaly likely appears due to limitations in multivariate kernel
density estimation. As the dimension of the feature vector
increases, a higher number of samples is needed to produce
an accurate density estimator. Further more, some distribu-
tions will just be more difficult to model. When estimators
are poorer, the estimated conditional entropy of the feature
distribution appears to trend towards zero which consequently
can result in near maximum leakage. Since we apply the same
process to all defenses the relative significance of leakage
provides valuable information none-the-less.

Figure 4 shows the information leakage for each individual

feature for each of the defenses we examined in the Standard
security mode. The information leakage values within each
feature category are independently sorted for each defense so
that the feature leakage trends per category are more clearly
visible. In general, the individual leakage values compare
similarly to the joint leakages per category as seen in Table III.
The maximum leakage of any individual feature is usually
much less than that of the joint leakage for the given category,
however when the information leakage behavior of all the
features within the category are considered it is clear why
some categories indicate much higher leakage than others.

Figure 3 shows the information leakage for individual
convolutional features produced by our model in the Standard
security mode. At the final convolutional layer of the DF
model there are 256 feature maps. The width of the feature
maps differ based the input dimension of our model. When
flattened, this results in a pattern in which each block of 256
sequential features activate based on the same chunk of input
space. This allows us to interpret the feature importance spa-
tially and identify general regions that are more important for
discrimination. Looking at the individual leakage for the DNN
features we can make a few observations. We notice that the
Undefended feature leakage shows generally higher leakage on
features in the initial and middle regions of the sample. We see
that most padding defenses avoid this leakage pattern, however
the traffic splitting defenses still exhibit generally increased
importance in the central portion. FRONT, Spring, Interspace,
and DynaFlow show an even spread of leakage all throughout
the input space with very flat trend lines. DFD and BANP have
strikingly similar leakage patterns which is noticeably lower
than the Undefended leakage despite both defenses performing
very poorly in CW and OW evaluations.

986


