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Abstract—Deploying machine learning models in production
may allow adversaries to infer sensitive information about
training data. There is a vast literature analyzing different
types of inference risks, ranging from membership inference
to reconstruction attacks. Inspired by the success of games
(i.e. probabilistic experiments) to study security properties in
cryptography, some authors describe privacy inference risks in
machine learning using a similar game-based style. However,
adversary capabilities and goals are often stated in subtly
different ways from one presentation to the other, which makes
it hard to relate and compose results. In this paper, we present a
game-based framework to systematize the body of knowledge
on privacy inference risks in machine learning. We use this
framework to (1) provide a unifying structure for definitions
of inference risks, (2) formally establish known relations among
definitions, and (3) to uncover hitherto unknown relations that
would have been difficult to spot otherwise.

Index Terms—privacy, machine learning, differential privacy,
membership inference, attribute inference, property inference

I. INTRODUCTION

Since the pioneering studies of attribute inference [23, 69]
and membership inference [38, 57], research on the infer-
ence risks of deploying machine learning (ML) models has
bloomed. There is a growing interest in understanding and
mitigating the leakage of information about training data under
various threat models that capture different adversarial capa-
bilities (e.g., observing model outputs, model parameters, or
transcripts of iterative optimization methods) and goals (e.g.,
membership inference [57], attribute inference [23, 69], prop-
erty inference [24, 43, 59, 74], and data reconstruction [4, 11]).

An emerging trend in the literature is to capture threat
models using privacy games. This originates from the seminal
work of Wu et al. [69] on formalizing attribute inference. A
privacy game is a probabilistic experiment where an adversary
interacts with a challenger. The challenger drives the experi-
ment, invoking the adversary to provide them with information
and to allow them to make certain choices, possibly while
interacting with oracles controlled by the challenger. The
adversary eventually produces a guess for a confidential value.

‡ Corresponding author

This experiment defines a probability space where the success
of the adversary can be measured in terms of the probability
of their guess being correct.

The use of games for privacy in ML is inspired by the well-
established use of games to define and reason about security
properties in cryptography. Cryptographic games are used to
standardize and compare security definitions [26, 58], and to
structure [7] and even mechanize proofs of security [5, 9]. In
comparison, the use of privacy games in the ML literature is
still in its infancy:

(1) there are no well-established standards for game-based
definitions,

(2) relationships between different privacy games have only
been partially explored, and

(3) games are rarely used as an integral part of proofs,
despite being especially convenient for this task.

This has resulted in many game variants in the literature
that attempt to formalize the same adversary goal but have
subtle yet important differences. This fragmentation leads to
confusion and hinders progress—for membership inference
alone, we found variants that differ in details that can change
their meaning and substantially alter results. To address this
problem, we present the first systematization of knowledge
about privacy inference risks in machine learning, going
above and beyond the problem left open since 2016 by Wu
et al. [69] of merely devising rigorous game-based definitions.
Concretely,

• We break down the anatomy of game-based privacy
definitions for ML systems into individual components: ad-
versary’s capabilities and goals, ways of choosing datasets and
challenges, and measures of success (Section II).

• Based on this anatomy, we propose a unified representa-
tion of five fundamental privacy risks as games: membership
inference, attribute inference, property inference, differential
privacy distinguishability, and data reconstruction (Section III).

• Using the game-based framework, we establish and rig-
orously prove relationships between the above risks. Similarly
to the study of concrete security in cryptography [6], we define
a quantitative notion of reduction between privacy properties.
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Fig. 1. Relations among adversary goals (under selected threat models). A solid arrow from node A to B means that security against A (i.e. a nontrivial
advantage bound) implies security against B. A struck-through arrow from A to B means that security against A does not imply in general security against
B; we show this separation with a construction that is secure against A but completely insecure against B. Dashed arrows are implied by solid arrows. Labels
over solid arrows refer to the theorem showing the relationship. Some separations stem from differences in adversary capabilities, e.g. MI ̸→ RC.

Using this notion, we prove a set of relations among the
above five privacy risks. This allows us to establish, for
every possible ordered pair of risks A,B, either a reduction
showing that security against A implies security against B,
or a separation result showing the impossibility of a generic
reduction from A to B. Figure 1 summarizes the conclusions
of this systematization effort for selected games.

• We present a case study (Section V), where we prove that
a scenario described as a variant of membership inference in
the literature can actually be decomposed into a combination
of membership and property inference. Importantly, in this
case we exploit code-based reductions, structured as a se-
quence of games; i.e., our arguments rely on transforming code
with a formal semantics. This way of conducting proofs has
seen great success in cryptography. However, before our work,
it had not reached the same level of rigor when reasoning about
privacy inference risks in ML.
Scope The focus of this SoK is to formalize and systematize
game-based definitions that capture the risk of leaking in-
formation about the training data of ML models. We used
the following methodology to identify existing game-based
definitions from the literature: starting from the seminal works
of Wu et al. [69] and Yeom et al. [70], we surveyed all peer-
reviewed publications in Google Scholar as of August 2022
that cite either of these works. We examined these publications
and collected all game-based definitions of attacks that aim
to infer information about the training data of ML models.
Our primary objective is to systematize games appearing in
the literature. However, we also demonstrate the versatility of
our framework by presenting new game-based definitions of
attacks that have not been previously formulated as games.
Summary of contributions We propose a unifying game-

based framework for formalizing privacy inference risks of
training data in ML, which we use to systematize definitions
from the literature and to establish relations between them.
Our work aims to reduce ambiguity and increase rigor when
reasoning and communicating about ML privacy, and gives a
solid foundation to future research and decision-making.

II. ANATOMY OF A PRIVACY GAME

Privacy games are parametrized by an adversary (A) and a
training pipeline that specifies the training algorithm (T ), data
distribution (D), and the size of the training dataset (n). A
challenger simulates the ML system. The adversary uses their
capabilities—defined by a threat model—to interact with the
system and infer information about the training dataset.

Game 1: Membership Inference
Input: A, T , n,D

1 S ∼ Dn // sample n i.i.d. points from distribution D
2 b ∼ {0, 1} // flip a fair coin
3 if b = 0 then
4 z ∼ S // sample a challenge point uniformly from S

5 else
6 z ∼ D // sample a challenge point from D
7 end
8 θ ← T (S) // train a model θ

9 b̃← A(T ,D, n, θ, z) // adversary guesses b = b̃

Game 1 formalizes the membership inference experiment
of Yeom et al. [70], which we use as a running example. The
challenger samples a training dataset S (line 1) and flips a fair
coin b (line 2). Depending on the outcome, they either sample a
challenge point z from the training dataset S, or from the data
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distribution D (lines 3–7). We discuss alternatives for choosing
training datasets and challenges in Section II-B. The challenger
then trains a target model θ (line 8), and asks the adversary to
make a guess b̃ for b (line 9). In this game, the adversary is
given the training algorithm (T ), data distribution (D), dataset
size (n), target model (θ), and the challenge point (z). We
discuss alternatives for adversary’s capabilities in Section II-B
and Section II-C. The success of the adversary in making a
correct guess (b̃ = b) is measured with respect to the baseline
of a random guess. Any advantage over this baseline indicates
leakage of membership information. We discuss other ways to
quantify the adversary’s success in Section II-D.

We now discuss in more detail the building blocks of games
described above and highlight common choices.

A. Adversary Goals

We identify five adversary goals from the literature that
enable an adversary to directly infer information about the
training dataset of an ML model. We describe these goals
informally below and formalize them as games in Section III.
Membership Inference (MI) The adversary aims to determine
whether a specific record [57, 70] or subject [42, 60] (an
entity who may contribute more than one record) was present
in the training dataset of the target model. For example,
a successful MI attack against a model trained on clinical
records of patients with an infective disease can reveal that
a target patient was infected.
Attribute Inference (AI) The adversary aims to use the model
to infer unknown attributes of a record in the training dataset
given partial information about the record [70]. A successful
AI attack can result in the reconstruction of sensitive attributes
of a target individual.
Property Inference (PI) The adversary aims to learn sensitive
statistical properties of the target model’s training distribution.
For example, in a malware classifier, the training dataset may
have been generated using a particular testing environment,
and it may benefit the adversary to learn certain properties of
this environment [24]. From an auditing perspective, property
inference could be used to assess the training dataset for harms
(e.g., under-representation) [74].
Differential Privacy Distinguishability (DPD) The adversary
aims to determine which of a pair of adjacent datasets (e.g.
differing in the data of one record) of their choosing was used
to train the target model. This goal recasts differential privacy
in a game-based setting by making the adversary explicit. This
connection can be used to estimate the differential privacy
budget of training pipelines [44, 47, 72].
Data Reconstruction (RC) The adversary aims to reconstruct
samples from the training dataset of a target model [4, 10,
11]. A successful attack can partially reconstruct the training
dataset, potentially violating confidentiality requirements.
Beyond training data inference Other adversary goals, such
as model stealing [49, 62] and hyperparameter stealing [66] are
beyond the scope of this SoK because they do not enable the
adversary to directly infer information about the training data.
However, the effects of these other goals are readily captured

by our game-based analysis. For example, a successful model
stealing attack that is used as a precursor to membership
inference can be represented by changing the adversary access
from black-box to white-box (Section II-C).

B. Selecting Challenges and Datasets

An important aspect of any privacy game is how the
challenges and datasets are selected. In Game 1, the challenge
point is a single record z; in other games, the challenge could
comprise multiple points or even a data distribution. For the
discussion below, we simplify the language by talking about
a single challenge point. We discuss below three methods
commonly used in the literature.
Randomly sampled The challenge is sampled from a dis-
tribution by the challenger as part of the game [32, 67, 70].
A randomly sampled challenge provides a measure of average
case privacy. While average case privacy measures the risk for
average users, the risk for outliers can be significantly higher.
Externally provided The challenge is provided as a parameter
of the game [32, 42]. This may be used to measure privacy of
specific points, i.e., it provides individual case privacy.
Adversarially chosen The challenge is selected by the ad-
versary during the game [13, 44, 47]. Since the adversary
can select the most advantageous challenge based on the
information provided, this provides a measure of worst case
privacy, i.e., measuring the risks for all users including outliers.
For example, a strong membership inference adversary could
choose a challenge that is an outlier w.r.t. the training data
distribution, so that a target classification model is unlikely to
classify it correctly unless it is included in the training dataset.
This setting is usually considered when auditing a system to
identify risks.
Additional considerations When the challenge is externally
provided or adversarially chosen, the parameters of the game
cannot completely determine a correct adversary guess. Other-
wise, security statements that universally quantify over adver-
saries are void because the quantification includes adversaries
with a hardcoded correct guess. This is similar to the difficulty
of defining collision resistance of hash functions [52].
Selecting datasets The training dataset can also be selected
using any of the three options above: it can be randomly
sampled by the challenger, externally provided, or (partially)
chosen by the adversary. The latter can be used to represent
the case where the model has been trained on (poisoned) data
contributed by potentially malicious users [43, 64].

C. Adversary Access

Depending on the scenario, the adversary may have different
levels of access to the target model, training algorithm, training
distribution, and training dataset. This allows the game to
capture different threat models, which should ideally match
the known or assumed capabilities of real-world adversaries.
Most games assume one of two settings: black-box or white-
box access.
Black-box In this scenario, the adversary only has query
access to the target model (e.g., a cloud-hosted model with an
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inference API) [12]. To formalize this setting, we give the ad-
versary access to the model through an oracle Oracle Oθ(x) :
return θ(x). This allows the adversary to query the model θ
on inputs of their choosing and observe the responses, but
does not reveal internal workings of the model, such as its
architecture or weights. Depending on the scenario, the oracle
can return a confidence for each label, or only the highest-
confidence label [17, 39]. The latter setting matches inference
APIs that do not reveal confidence values, like some email
spam classifiers or auto-completion systems. Additionally, the
oracle can be instrumented to post-process responses, or to
only emit responses for queries satisfying a (stateful) predicate,
e.g., to enforce a bound N on the number of allowed queries
the challenge can initialize q0 = 0 and provide

Oracle Oθ
N (x)

qθ ← qθ + 1
if qθ ≤ N then return argmax θ(x) else return ⊥

White-box The white-box setting represents the strongest
adversary, who has full direct access to the target model
i.e., A(θ, . . .). This obviously provides the adversary with all
the capabilities of the black-box setting, but also allows the
adversary to inspect the internals of the model including its
trained weights [37, 53]. For instance, a model deployed on
clients’ devices gives white-box access to malicious clients.
Alternatively, a successful black-box model stealing attack
would enable an adversary to operate in a white-box setting.
Grey-box In between the black-box and white-box settings,
there is a range of grey-box threat models in which the
adversary has more than black-box but less than full white-box
access to the target model. For example, the adversary could
know the architecture of a target model, some of its training
hyperparameters, or the public model from which the model
has been fine-tuned [54, 57]. Such extra information can be
the output of a hyperparameter stealing attack [66].
Auxiliary information In addition to having access to the
target model, an adversary may have auxiliary information
that could be useful for certain attacks. For example, most
MI attacks assume the adversary has access to auxiliary data
distributed similarly to the target model’s training data, e.g.,
for building shadow models. This is captured in games by
giving the adversary the distribution from which the training
data was sampled.
Resource constraints Most game-based formulations do not
explicitly limit the resources available to an adversary, i.e.,
they consider information-theoretic adversaries. It could be
important to consider resource-limited adversaries that can
only issue a specific number of queries to an oracle, or can use
a certain amount of memory, or are otherwise computationally
bounded. Intuitively, limiting these resources can reduce the
effectiveness of an attack. These limitations can be specified
outside the game as constraints on the adversary, enforced by
instrumenting the code of the game (as in Oracle Oθ

N above),
or incorporated into the measure of success.

D. Measuring Adversary Success

There are various ways of quantifying the adversary’s
success in games. We discuss commonly used metrics next.

Attack Success Rate: The attack success rate (ASR) mea-
sures the expected number of times the adversary succeeds
(i.e., wins the game) over multiple runs. ASR is arguably the
most intuitive and widespread metric for quantifying adversary
success; for example, it matches the attacker’s accuracy in
membership inference.

However, the main drawback of ASR is that it does not
take into account the baseline success probability for a given
task. For example, if we evaluate an ML model’s resilience
to attribute inference, the prior distribution of that attribute
will play a role in the adversary’s success. For instance, if the
attribute can only take one value, it is trivial for an adversary to
achieve 100% ASR, but this will not be a meaningful measure.
Similarly, the prior probability that an example belongs to the
training set affects membership inference accuracy.

Ideally, the metric should quantify the success of an ad-
versary relative to a suitable baseline. The baseline should
represent the a priori adversary success rate; that is, it should
quantify the adversary’s success rate if they used only their
prior knowledge and had no access to the model.

Adversary Advantage: The notion of advantage is a com-
monly used metric in cryptography, which relates an adver-
sary’s success rate to a baseline. This gives a better intuition
of how much an adversary gains by having access to the
model (in any of the forms defined in Section II-C). In
general terms, suppose the adversary is trying to infer some
variable p; this could be the membership of a data record
or the value of a coin toss. If Pr[A = p] is the adversary’s
success rate (probability to guess p correctly), and G is the
baseline success rate, the advantage can be expressed as
Adv(A) = Pr[A=p]−G/1−G. Assuming Pr[A = p] ≥ G, this
metric quantifies the adversary’s advantage on a scale of [0, 1]
relative to the baseline G; 0 represents no advantage over the
baseline and 1 is a perfect attack. When the secret information
p is binary with a uniform prior, G = 1/2. This leads to the
familiar expression Adv(A) = 2Pr[A = p] − 1. Advantage
is commonly used as a metric for ML privacy attacks. For
example, Yeom et al. [70] define the MI advantage for an
adversary A as follows:

AdvMI(A, T , n,D) = 2Pr
[
MI(A, T , n,D) : b̃ = b

]
− 1,

where MI is the membership inference experiment in Game 1,
and Pr[G :E] denotes the probability of event E in the
probability space defined by game G.

Providing an adequate baseline may be difficult because
it may not be possible to accurately model the adversary’s
knowledge. This issue can often be bypassed by careful design
of the game. For example, instead of asking the adversary
to reconstruct an arbitrary attribute’s value, the game can be
designed such that the adversary must distinguish between two
equally-likely values of the attribute.
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Beyond advantage: Average case metrics such as ASR fail
to capture inference risks for individuals or subpopulations.
For example, a MI attack against a model may achieve
roughly 50% accuracy (with a 50% baseline) on average
across the population, yet the same attack may perform better
when targeting specific individuals or subpopulations [13, 36].
Having raised similar concerns, Carlini et al. [12] suggest that
an adversary should be considered successful if it reliably
succeeds even on small number of cases. For instance, a MI
attack that achieves a high true positive rate (TPR) at some
low false positive rate (FPR) could be consequential even if it
has low accuracy.

In this paper, we focus on advantage as a metric, since it
has the following benefits: (1) it has an easy interpretation—
it represents the gain of an adversary from having access to
the system under scrutiny versus an adversary with only prior
knowledge; (2) it is directly related to other metrics, such as
ASR (which can be derived directly from it), true and false
positive rates (e.g., [70]), and Differential Privacy [14, 32];
(3) if the attacker’s challenge is binary (e.g., distinguishing
between members and nonmembers), the advantage computed
when assuming the two choices have a uniform prior gives
a bound for any other prior [14]. Nevertheless, given a game
formulation, one can consider other metrics of interest: e.g.,
area under the ROC curve (AUC-ROC), F1-score, and TPR at
fixed FPR thresholds [12].

E. Consequences of Attacks

The anatomy we presented can be used to specify threat
models and quantify the chances that an adversary successfully
achieves their goal. However, the consequences of a successful
attack depend less on the threat model but rather on the
adversary’s goal (Section II-A) and on the design of the ML
system, e.g., the sensitivity of the training data. For example,
the consequences of successful membership inference will be
the same irrespective of whether it was performed in a black-
box or white-box setting.

III. GAME-BASED FORMALIZATION OF INFERENCE RISKS

In this section we present privacy games for the five
adversary goals introduced in Section II-A. We summarize
the notation in Table I and the threat models considered in all
games in Table II.

TABLE I
SUMMARY OF NOTATION

Notation Description

T A stochastic training algorithm
D A distribution over examples
Dn Distribution of n independent examples from D
A, A′ Adversary procedures sharing mutable state
z ∼ D Draw an example z from D
S ∼ Dn Draw n examples S independently from D
b ∼ {0, 1} Sample a bit b uniformly
b ∼ 0⊕p 1 Sample 0 with probability p, 1 with probability 1− p
y ← P(x⃗) Call P with arguments x⃗ and assign result to y

A. Membership Inference

Membership inference aims to predict the participation of
an entity in the training dataset of the model. The first (record-
level) membership inference attack on supervised learning was
proposed by Shokri et al. [57] against ML-based classifiers.
Subsequent work has explored membership inference attacks
with differing degrees of access to the model (e.g., white-
box [37, 53] or label-only attacks [17, 39]), against different
types of models (e.g., generative models [16, 28, 30], image
segmentation [29], contrastive learning [41], recommender
systems [73], and Graph Neural Networks (GNN) [68]), and
under entirely different threat models [31, 54, 56].

We present MI variants that have been formalized as games.
We divide the games into two categories depending on whether
they focus on a single record (record-level) or a user repre-
sented by a collection of records (user-level).

Record-level Membership Inference: The most common
interpretation of record-level membership inference is given by
the game introduced by Yeom et al. [70], which we presented
as Game 1 in Section II. Game 2 below presents a semantically
equivalent reformulation MI. The reader can verify that b, θ, z0
are distributed identically to b, θ, z in Game 1 and thus the
joint distribution of b, b̃ is the same in both games. This
game considers an adversary with white-box access to the
model—they have the model at their disposal and can query it
freely, analyze its architecture and parameters, and observe its
dynamic behavior. Since the training dataset and the challenge
z0 are sampled from D, this game measures average case MI
resilience.

Game 2: MI MIskew MIAdv

Input: T ,D, n, p , A′ ,A
1 S ∼ Dn−1

2 b ∼ {0, 1} 0⊕p 1 {0, 1}

3 z0 ∼ D D A′(T ,D, n)
4 z1 ∼ D
5 θ ← T (S ∪ {zb})
6 b̃← A(T ,D, n, p , θ, z0)

Several variants of the basic MI game have been consid-
ered in the literature; some are semantically equivalent (e.g.,
[32, 36]) whilst others alter its semantics. We next systematize
these latter variants using the anatomy presented in Section II.

Jayaraman et al. [35] consider game MIskew which gener-
alizes MI by introducing a parameter p representing the prior
membership probability (Game 2, line 2). The original MI
game assumes a balanced prior and is recovered as a special
case when p = 1/2.

Chang and Shokri [13] consider game MIAdv in Game 2
which strengthens the adversary by allowing them to select
the challenge point (line 3). This game measures worst case
MI resilience for an average dataset, i.e., resilience against
this variant protects all records—even outliers—against MI.
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See SMI in Game 10 for an even stronger attack where S is
adversarially chosen.

Carlini et al. [12] consider game MIBB which differs in two
aspects from MI. Firstly, it assumes a black-box adversary who
is given only inference access to the model through an oracle,
Oracle Oθ(x) : return θ(x) (modifying line 9 in Game 1).
This is appropriate when the target model is hosted in the
cloud or in a trusted execution environment that ensures its
confidentiality. Secondly, rather than sampling the challenge
point from D when b = 1, the challenger samples it from
D \ S (modifying line 6 in Game 1), thus excluding the case
where the challenge happens to be in S by chance. This is
in contrast to game MI, where nonmembers are sampled from
the complete distribution and may be contained in S. While
doing this seems intuitive, Yeom et al. [70, p.41] note that
it is problematic since an adversary could gain advantage
not through access to the model but rather by analyzing D
to infer which points are more likely to have been sampled
into S. For instance, consider a distribution D with support
{x0, . . . , xm} that assigns probability 1/2 to x0 and 1/2m to each
of x1, . . . , xm. An adversary that ignores θ and guesses b̃ = 0
if and only if z = x0 has advantage greater than 1/2− 1/2n.

Tramèr et al. [64] introduce a generic privacy game where
the goal of the adversary is to guess which point from a
universe U has been included in the training dataset of the
target model. They present variants with (MIPois) and without
(MIDiff) poisoning, shown in Game 3. MIPois lets the adversary
statically poison part of the training dataset (Section II-B).
By considering U = {ẑ,⊥}, where ⊥ indicates the absence
of an example, the generic game can represent a black-box
membership inference attack for a fixed externally provided
target example ẑ. Compared to variants of membership in-
ference discussed previously, this results in training datasets
of different sizes depending on the outcome of sampling
the challenge z: e.g. in MIDiff the model may be trained on
S∪{ẑ} or just on S. This usually does not make a significant
difference as training datasets are large and models do not leak
the size of their training dataset. As in MIBB, values in S are
excluded when sampling z, which leads to similar problems.

Game 3: MIDiff MIPois

Input: T ,D,U , n,A, A′, n′

S ∼ Dn

z ∼ U \ S
S′ ← A′(T ,D,U , n′) // |S′| = n′

θ ← T (S ∪ {z} ∪S′ )

z̃ ← A(T ,D,U , n,Oθ(·), S′ )

Oracle Oθ(x): return θ(x)

Other variants Humphries et al. [32] sample the train-
ing dataset and challenge point from different distributions
(Game 11); we use this variant as the basis for our case study
in Section V. Tang et al. [61] define single-query membership

inference games where the adversary is only given the output
of the trained model on the challenge point, but where the
adversary selects the set of examples from where the training
dataset is subsampled (see Section A in the Appendix). Gao
et al. [25] consider deletion inference, a variant of membership
inference in the setting of machine unlearning, where the
adversary is given access to a model before and after one of
two examples is deleted and is asked to guess which example
was deleted.

User-level Membership Inference: Privacy laws such as
GDPR require generalizing the goal of MI. Instead of focusing
on a single record, the interest is now the complete data of
an individual. For instance, an auditor would be interested
in learning if a user’s data—usually modeled as a collec-
tion of records—was used to train a target model. User-
level membership inference was introduced to model such
scenarios. Mahloujifar et al. [42] formalize user-level MI as
in Game 4. They consider a meta-distribution D from where
m user distributions are sampled. The adversary targets a
particular user contributing a dataset S∗. This game presents
the adversary with a task easier than Game 1 since they must
infer whether an entire group of records is within the training
dataset, i.e., it measures group privacy.

Game 4: MIUser

Input: T ,D, n,A, S∗,m
b ∼ {0, 1}
D1, . . . ,Dm ∼ D
for i = 1, . . . ,m− 1 do

Si ← Dn
i

end
if b = 0 then

Sm = S∗

else
Sm ← Dn

m

end
θ ← T (

⋃m
i=1 Si)

b̃← A
(
T ,D, n,Oθ(·), S∗,m

)
Oracle Oθ(x): return θ(x)

B. Attribute Inference

In attribute inference (AI) attacks, the adversary aims to
infer a sensitive attribute of a target record. Wu et al. [69] were
the first to formalize AI, confusingly under the name of model
inversion. We follow here the more general formalization given
by Yeom et al. [70] shown in Game 5. Recently the scope of
AI expanded to other settings [34, 75].

In the AI game, φ(z) denotes the adversary’s knowledge
about the challenge z, and π a function that extracts the in-
formation targeted by the attack, e.g., if t represents the target
sensitive attributes, then π(z) = t. The experiment is similar to
the basic membership inference experiment (Game 1) except
for the information that the adversary is given and the winning
condition. The adversary is given φ(z) and aims to infer π(z).
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Game 5: AI Inv

Input: T ,D, n,A, φ, π
S ∼ Dn

b ∼ {0, 1}
if b = 0 then

z ∼ S D
else

z ∼ D
end
θ ← T (S)
ã← A(T ,D, n, θ, φ(z))

The adversary wins if it correctly predicts these attributes,
i.e., ã = π(z). Training data poisoning can be considered by
including adversarially chosen data when training the target
model as done for MI in Game 3 (MIPois), an instance of the
generic game of Tramèr et al. [64].
Model inversion Another adversary goal with a similar aim
to AI is model inversion [67]. Model inversion attacks were
introduced by Fredrikson et al. [23] and subsequently formal-
ized by Wang et al. [67] (Inv in Game 5). The difference
between attribute inference and model inversion according to
Wang et al. [67] is in how the challenge is sampled: in AI
it is sampled from the training dataset, while in Inv it is
sampled from the distribution D. While AI measures privacy
risk for members of a model’s training dataset, model inversion
measures the privacy loss of publishing the model for members
of the underlying population. Whether this is considered a
privacy risk is up to debate: a successful attack may lead to the
adversary learning information from records that are not part
of the training dataset or that do not even exist. Model owners
concerned only with the privacy of the training dataset would
use the AI game, whilst those concerned about population
privacy would prefer Inv.

C. Reconstruction

Reconstruction attacks aim to recover entire examples in the
training dataset of a model. Reconstruction has been studied in
various settings, including Graph Neural Networks [75], image
classification [55], and text generation [10, 11, 71]. A distilled
scenario, where the adversary learns the training data of the
target model except for a target example was first formalized
by Balle et al. [4] as experiment RC in Game 6.

Game 6: RC RCRan

Input: S , D, n , π, T ,A
S ∼ Dn−1

z ∼ π
θ ← T (S ∪ {z})
z̃ ← A(T , θ, D, n , S)

Reconstruction robustness is parametrized by bounds on the
error and success probability and defined as follows.

Definition 1 (Balle et al. [4], Definition 2). A training pipeline
is (η, γ)-reconstruction robust with respect to a prior π and
reconstruction loss ℓ if for any dataset S and any reconstruc-
tion adversary A,

Pr[RC :ℓ(z, z̃) ≤ η] ≤ γ

The adversary is given the model θ, training algorithm T ,
and the training dataset S except for one point z which they
need to reconstruct. Game RCRan models how other points in
the training dataset are sampled, instead of considering a fixed
dataset S. The advantage of an adversary A against RC w.r.t.
to a baseline that ignores θ and just samples z̃ from D is

AdvRC(A) = Pr[RC : z̃ = z]− Pr[z, z̃ ∼ D : z̃ = z]

Alternatively, one can consider the baseline success of an
adversary that picks z̃ according to π,

sup
z̃∈supp(π)

Pr[z ∼ π :ℓ(z, z̃) ≤ η] (1)

Both games can be adapted to consider a poisoning-capable
adversary as demonstrated in Game 3.
Reconstruction in language models Recent work focused on
large language models and evaluated reconstruction attacks
against them. Attacks can be categorized as untargeted [11]
or targeted [10]. Untargeted attacks aim to reconstruct any
training data from the generative model, whilst targeted attacks
aim to reconstruct specific training data records, which may
have been inserted as canaries during training. To demonstrate
the flexibility of privacy games, we formalize an example from
each category, as shown in Game 7.

We formalize a black-box untargeted data reconstruction
attack by Carlini et al. [11] tailored to large generative
language models as RCUntarg. The authors measure the success
of an attack by its true positive rate or recall, that is, the
fraction of examples in S̃ that are in the training dataset S.

We formalize a black-box targeted reconstruction attack by
Carlini et al. [10] as RCTarg. The authors insert a canary multi-
ple times into the training data as a way to measure unintended
memorization in generative models. Canaries are specified by
a format sequence s[·] that fixes some tokens and leaves holes
to be filled with secrets sampled from a randomness space R.
For example, s = “the PIN is ” with R being the
space of 4-digit decimal numbers. Carlini et al. [10] measure
the success of targeted canary reconstruction as the reduction
in the guessing entropy of secrets in canaries given the model.
Selecting a game Game RC is appropriate when evaluating
the worst case risk of reconstructing an example in the training
dataset. It conservatively considers an informed adversary
that knows all examples but the target, and incorporates the
adversary’s background knowledge in a prior. Game RCRan

considers an equally informed adversary, but averages the
reconstruction risk over the choice of other training examples.
Game RCUntarg represents a more realistic threat model and
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Game 7: RCUntarg RCTarg

Input: T ,D, n,A, R, s,m
S ∼ Dn

r ∼ R
θ ← T (S ∪{s[r]}m )

S̃ ← A(T ,D, n,Oθ(·), R, s )

Oracle Oθ(x): return θ(x)

should be chosen when evaluating the risk of indiscriminately
reconstructing training data, while RCTarg is appropriate for
auditing the risk of extracting data following certain patterns.
Other variants Similar to MI, reconstruction attacks have
been adapted to the machine unlearning setting. Gao et al.
[25] consider deletion reconstruction, where an adversary is
given access to a model before and after a random training
example is deleted and is asked to reconstruct it.

D. Distribution Inference

Distribution inference attacks do not focus on specific data
records, but instead aim at inferring properties about the
training data distribution. We next describe two variants of dis-
tribution inference. The first is property inference, e.g., where
the adversary is interested in learning about the prevalence of
specific sensitive attributes in the training data, such as sex
or ethnicity. The second is subject-level distribution inference,
where the training data is sampled from a mixture of distri-
butions, each corresponding to a subject that may participate
in training. The adversary’s goal is to infer whether a subject
has participated knowing the subject’s data distribution rather
than concrete samples like in game MIUser in Game 4.

Property Inference: Property inference attacks were first
proposed by Ganju et al. [24] in the white-box setting and
by Zhang et al. [74] in the black-box setting. Zhou et al. [76]
showed them to be effective against generative models and
GANs specifically. Suri and Evans [59] formalized property
inference attacks as PI in Game 8, parametrized by two
functions G0,G1 that transform an underlying distribution.

Game 8: PI PIGen

Input: D,G0,G1 D0,D1 , n, T ,A
b ∼ {0, 1}
S ∼ Gb(D)n Dn

b

θ ← T (S)
b̃← A(T , D,G0,G1 D0,D1 , n, θ)

PIGen is an equivalent formulation parametrized by two
distributions corresponding to the application of G0, G1 to the
base distribution D in PI. Hartmann et al. [27] generalize this
to more than two distributions.

Similarly to MI and AI, poisoning can be modelled as in
Game 3 by letting the adversary choose part of the train-
ing dataset of the target model. Mahloujifar et al. [43] and
Chaudhari et al. [15] show that poisoning increases inference
risk by injecting data to maximize leakage of properties of
the training dataset. For instance, in multi-party learning, a
malicious participant may contribute poisoned data crafted to
amplify property leakage of data from other participants.

Subject-level Distribution Inference: Subject-level distribu-
tion inference broadens the scope of user-level membership
inference by not assuming access to the user’s exact data that
may have been used to train a model. Instead, it only requires
the adversary know the distribution from which the target
user’s data is sampled. Suri et al. [60] present subject mem-
bership inference as a special case of distribution inference.
We similarly formalize subject-level inference in Game 9.

Game 9: MISubj

Input: T ,D,D∗, n,m,A
1 b ∼ {0, 1}
2 D1, . . . ,Dm ∼ D
3 for i = 1, . . . ,m− 1 do
4 Si ∼ Dn

i

5 end
6 if b = 0 then
7 Sm ∼ Dn

∗
8 else
9 Sm ∼ Dn

m

10 end
11 θ ← T (

⋃m
i=1 Si)

12 b̃← A (T ,D,D∗, n,m, θ)

The training data distribution is structured as a mixture
of distributions corresponding to a set of subjects. This is
a property inference attack because the adversary seeks to
infer which of two distributions the training data is sampled
from. However, conceptually, the adversary’s goal is to infer
membership of a subject’s data since the only difference
between the two distributions is the presence of the target
subject in the mixture.

A successful subject-level distribution inference attack can
identify if a user’s data was used to train the target model
without knowing which exact examples were used; i.e., with
access to only the user’s data distribution and not the sampled
dataset as in Game 4.

E. Differential Privacy Distinguishability

Differential Privacy Distinguishability (DPD) formalizes the
threat model underlying the definition of DP, where the adver-
sary aims to distinguish between models trained on adjacent
datasets. We formalize as game DPD in Game 10 the variant
corresponding to the substitute one adjacency relation, where
two datasets are adjacent if one can be obtained from the
other by substituting a single record. The DPD game repre-
sents a worst-case variant of the membership inference game
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MI where the training data and challenges are adversarially
chosen.

Prior work used DP distinguishing attacks to statistically
estimate or audit the privacy of training pipelines [33, 47, 63,
72]. Marathe and Kanani [45] define subject-level differential
privacy by considering datasets as adjacent when they differ
in the data of a user, which can be seen as a counterpart to
user-level membership inference. Humphries et al. [32] and
Balle et al. [4] discuss strong membership inference, a threat
model in between DPD and MI. In this game, formalized as
SMI in Game 10, the adversary knows but does not choose
the two adjacent datasets. As mentioned in Section II-B this
narrows the scope of the measured privacy, e.g., from worst
to individual case privacy.

Game 10: DPD SMI

Input: T ,A, A′, n , S, z0, z1

S, z0, z1 ← A′(T , n) // |S| = n− 1

b ∼ {0, 1}
θ ← T (S ∪ {zb})
b̃← A(T , θ, S, z0, z1)

IV. RELATIONS AND PROOFS

In this section we establish relationships between privacy
games. To this end, we define a notion of reduction and
use it to translate attacks and guarantees between the five
fundamental games from the previous section, or show that
no generic connection can exist.

A. Reductions for Privacy Games

Inspired by notions of reduction from complexity theory
and cryptography [1], we introduce reductions between privacy
games as a means of comparing the various inference risks.
Whilst reductions in cryptography are traditionally based on
asymptotic behavior governed by a security parameter, the
reductions we define here are closer to those used in concrete
security proofs, in that the constants underlying the loss
incurred in the reduction are made explicit.

Definition 2. We say that game G1 is reducible to game G2

if there is a constant c > 0 such that, for any adversary A
against G2, there exists an adversary B against G1 such that

AdvG1
(B) ≥ c · AdvG2

(A)

We denote this using the shorthand G1 ⪯c G2 and sometimes
drop the constant c.

The intuition behind the shorthand is that game G1 is at
most as hard to win as G2—modulo the constant c. This
intuition holds for c around or larger than 1. For c ≪ 1,
however, the lower bound on AdvG1

(B) can get close to 0, in
which case the intuition may be misleading.
Resilience to attacks Reductions between privacy games
imply that attacks against one game translate into attacks

against the other. An equivalent reading is the contrapositive,
that resilience against attacks in one game implies resilience
against attacks in the other.

Definition 3. A game G is p-resilient if for all adversaries A
against G,

AdvG(A) < p

Proposition 1. If G1 ⪯c G2 and G1 is p-resilient then G2 is
p/c-resilient.

Proof. By contradiction: If there is an attack on G2 with
advantage more than p/c, then there is one on G1 with
advantage more than p.

Proofs of resilience are rare in the literature. Prime examples
are results that establish upper bounds on the advantage of a
DP distinguisher when the model is trained with differential
privacy [22, 32, 70]. The tightest known bound is given in the
following proposition.

Proposition 2 (Humphries et al. [32, Theorem 3.1]). Let T
be an (ϵ, δ)-differentially private training algorithm. Then

AdvDPD(A) ≤
eϵ − 1 + 2δ

eϵ + 1

Therefore, any game the DP distinguisher inference game
can be reduced to (see Figure 1 for an overview) inherits
the security benefits of training with differential privacy via
Propositions 1 and 2.
Separation Results No reductions exist between several
games. For them, we show separation results of the form
G1 ̸⪯ G2. We establish such results by showing that there
is an instance of G1 that is resilient to attacks whereas its G2

counterpart is not, and use Proposition 1 to conclude that no
reduction exists.

B. Overview of Relations between Games

Figure 1 shows the relations between the five fundamental
privacy games. Each node in the figure and in the following
theorems refers to the basic game-based definition of the
corresponding inference risk, i.e., MI, AI, RC, DPD, and PI.

As expected, PI is fully disconnected: there exists a sepa-
ration result between it and every other game. This can be
attributed to the PI adversary’s goal of learning properties
of the training data distribution rather than about individual
records as in the other games. RC and DPD have the strongest
threat models, where the adversary controls the entire training
dataset except for one example, and hence are unsurprisingly
the hardest to reduce from other games. Finally, MI and AI are
reducible to each other and their relatively weak threat models
make both RC and DPD reducible to them. For this reason,
we use the MI game as the anchor for our proofs. We next
present results for a set of edges (solid lines) in Figure 1 that
imply all other relations. We defer the proofs to the Appendix.
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TABLE II
AN OVERVIEW OF DIFFERENT GAMES AND FEATURES OF THEIR CORRESPONDING THREAT MODELS.

✓ indicates the game has this feature, – indicates the game does not have this feature, × indicates that the feature is not applicable.

Adversary Access Challenge Training Dataset Adversary Interest

Game Definition Black-box White-box Rand Adv Param Rand Adv Param Record Subject Distribution

Membership Inference
MI Game 2 [32, 36, 70] – ✓ ✓ – – ✓ – – ✓ – –
MIskew Game 2 [35] – ✓ ✓ – – ✓ – – ✓ – –
MIBB Game 2 [12] ✓ – ✓ – – ✓ – – ✓ – –
MIAdv Game 2 [13] – ✓ – ✓ – ✓ – – ✓ – –
MIDiff Game 3 [64] ✓ – ✓ – – ✓ – – ✓ – –
MIPois Game 3 [64] ✓ – ✓ – – ✓ ✓ – ✓ – –
MIUser Game 4 [42] ✓ – – – ✓ ✓ – – – ✓ –
MM Game 11 [32] – ✓ ✓ – – ✓ – – ✓ – ✓
MISQ Game 17 [61] ✓ – ✓ – – – ✓ – ✓ – –

Attribute Inference and Model Inversion
AI Game 5 [70] – ✓ ✓ – – ✓ – – ✓ – –
Inv Game 5 [67] – ✓ ✓ – – ✓ – – ✓ – –

Data Reconstruction
RC Game 6 [4] – ✓ ✓ – – – – ✓ ✓ – –
RCUntarg Game 7 [11] ✓ – × × × ✓ – – ✓ – –
RCTarg Game 7 [10] ✓ – ✓ – – ✓ – – ✓ – –

Distribution Inference
PI Game 8 [59] – ✓ × × × ✓ – – – – ✓
MISubj Game 9 [60] – ✓ ✓ – – ✓ – – – ✓ ✓

Differential Privacy Distinguishability
DPD Game 10 [44, 47] – ✓ – ✓ – – ✓ – ✓ – –
SMI Game 10 [4, 32] – ✓ – – ✓ – – ✓ ✓ – –

C. Reductions

Despite reductions in either direction, MI and AI are sep-
arable by constants in the reductions, with resilience against
AI easier to achieve than resilience against MI. The following
theorems proved by Yeom et al. [70] relate MI and AI.

Theorem 1 (MI ⪯1 AI [70, Theorem 6]). For any adversary
AAI against attribute inference, there exists an adversary AMI

against membership inference such that

AdvMI(AMI) = AdvAI(AAI)

Theorem 2 (AI ⪯1/m MI [70, Theorem 7]). Assume that for
all z ∈ supp(D), φ(z) and π(z) uniquely determine z. For
any adversary AMI against membership inference, there exists
an adversary AAI against attribute inference such that

AdvAI(AAI) =
1

m
· AdvMI(AMI)

where m is the number of possible values for the target
attribute π(z).

Resilience against DPD implies resilience against all other
attacks except PI. We present the necessary theorems below.
The remaining reductions (RC ⪯ AI,DPD ⪯ AI) are implied
by the ones we show.

Balle et al. [4, Theorem 3] show that training pipelines
satisfying Rényi DP (and thus (ε, δ)-DP) enjoy resilience
against reconstruction attacks. In contrast, a bound on AdvDPD

does not imply a nontrivial bound on ε in (ε, δ). In fact,

AdvDPD ≤ δ is equivalent to (0, δ)-DP. Thus, we require an
anti-concentration bound on the prior π and that reconstruction
succeeds with probability at least 1/2 to reduce DPD to RC.

Theorem 3 (DPD ⪯ RC). Let π be a prior over samples, S
a dataset of n− 1 samples, and ℓ a symmetric reconstruction
loss satisfying the triangle inequality. Let A be an adversary
against data reconstruction (RC) w.r.t. to S and π that recon-
structs its challenge within error η with probability γ ≥ 1/2.
Let

α = inf
z0∈supp(π)

Pr[z1 ∼ π :ℓ(z0, z1) > 2η]

There exists a DP distinguisher ADPD→RC such that

AdvDPD(ADPD→RC) ≥ 2α

(
γ − 1

2

)
DP distinguishability can be reduced to membership infer-

ence. This is an example of a generic class of reductions: In
both games the adversary has the same goal and their advan-
tage is identically defined, but in game MI the adversary has
strictly fewer capabilities than in DPD. Thus, any adversary
against MI can be turned into a valid adversary against DPD
with the same advantage. In general, a more informed/capable
adversary, such as a DP distinguisher, can be used to build a
reduction to games with a less informed/capable adversary.

Theorem 4 (DPD ⪯ MI). For any adversary AMI against
membership inference, there exists a DP distinguisher ADPD

such that
AdvDPD(ADPD) = AdvMI(AMI)
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Finally, we show that a membership inference attack can be
turned into a reconstruction attack, with a constant depending
on the size of the support of the training data distribution.

Theorem 5 (RC ⪯1/| supp(D)| MI). For any membership
inference adversary A against MI(T ,D, n) there exists a
reconstruction adversary B against RCRan(D, n,D, T ) (i.e.,
with prior π = D) such that

AdvRCRan(B) =
1

| supp(D)|
· AdvMI(A)

D. Separation Results

Theorem 6 (MI ̸⪯ PI). Resilience against membership infer-
ence does not imply resilience against property inference.

Theorem 7 (MI ̸⪯ DPD). Resilience against membership in-
ference does not imply resilience against DP distinguishability.

Theorem 8 (MI ̸⪯ RC). Resilience against membership
inference does not imply resilience against reconstruction.

This last counterintuitive separation result stems from a
discrepancy between adversary capabilities: The MI game is
based on an average case scenario, while the reconstruction
game assumes a more informed worst-case adversary. By
considering a membership adversary matching the capabilities
of the adversary in the RC game, we can build a reduction
to data reconstruction. We show this in Theorem 13 in the
Appendix, which reduces the strong membership inference
game SMI (Game 10) to game RC.

Theorem 9 (PI ̸⪯ MI). Resilience against property inference
does not imply resilience against membership inference.

Theorem 10 (RC ̸⪯ DPD). Resilience against reconstruction
does not imply resilience against DP distinguishability.

Theorem 11 (DPD ̸⪯ PI). Resilience against DP distin-
guishability does not imply resilience against property infer-
ence.

V. CASE STUDY: MIXTURE MODEL MEMBERSHIP
INFERENCE

We present a case study where we showcase the expressive
power and rigor of privacy games. In particular, we show that
a novel variant of membership inference can be decomposed
into a combination of membership and property inference.
This complex relationship goes beyond the direct reductions
presented in Section IV. In our proofs, we exploit code-
based reductions structured as a sequence of games; i.e., our
arguments rely on transforming code with a formal semantics.

The game we target is due to Humphries et al. [32], who
use it to model membership inference attacks in the presence
of dependencies in the training data. In their game (MM in
Game 11), the training data follows a two-stage mixture model.
Examples in the training dataset and the target example are
chosen independently from two data distributions, Dk and Dk′ ,

which are chosen uniformly at random without replacement
from K possible distributions D = {D1, . . . ,DK}.

Game 11: MM G0

Input: T ,D, n,A
k ∼ [K]
k′ ∼ [K] \ {k}
S ∼ Dn

k

θ ← T (S)
b ∼ {0, 1}
if b = 0 then

z ∼ S z ∼ Dk

else
z ∼ Dk′

end
b̃← A(T ,D, n, θ, z)

Game 12: G1

Input: T ,D, n,A
k ∼ [K]
k′ ∼ [K] \ {k}
z ∼ Dk

b ∼ {0, 1}
if b = 0 then

S ∼ Dn
k

else
S ∼ Dn

k′

end
θ ← T (S)
b̃← A(T ,D, n, θ, z)

We show that MM can be decomposed into a property
inference goal (inferring the training data distribution) and a
membership inference goal (inferring whether a target example
has been sampled from the training data distribution Dk or
from the training dataset S).

Theorem 12. For any adversary A against MM, there exist
adversaries Ai

MI and Ai,j
PI such that

AdvMM(A) ≤ max
i∈[K]

AdvMIi(Ai
MI) + max

i ̸=j∈[K]
AdvPIi,j (A

i,j
PI )

where MIi is the membership inference game with training
data distribution Di, and in PIi,j the property to infer is
whether the training data distribution is Di or Dj .

Proof. Let A be an adversary against MM. Consider G0

shown alongside MM in Game 11. Its only difference w.r.t.
MM is that when b = 0, the example z is freshly sampled
from the training data distribution Dk rather than from the
training dataset S. Conditioned on b = 0, k = i, distinguishing
between games G0 and MM is as difficult as winning a
membership inference game. We show this using a black-box
reduction: fixing k = i, we construct an adversary Ai

MI that
uses A as an oracle to guess the challenge bit b in game MIi
(see Game 13). Ai

MI simply forwards its inputs T , n, θ, z to
A, passing to it in addition the distribution set D.
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Game 13: MIi
Input: T ,Di, n,A
S ∼ Dn

i

θ ← T (S)
b ∼ {0, 1}
if b = 0 then z ∼ S else z ∼ Di

b̃← Ai
MI(T ,Di, n, θ, z)

Adversary 14: Ai
MI

Input: T ,Di, n, θ, z
return A(T ,D, n, θ, z)

Game MM conditioned on b = 0, k = i is equivalent to
MIi conditioned on b = 0. Likewise, game G0 conditioned on
b = 0, k = i is equivalent to MIi conditioned on b = 1. Hence,

AdvMIi(Ai
MI) = Pr

[
MIi :¬b̃ | ¬b

]
− Pr

[
MIi :¬b̃ | b

]
= Pr

[
MM :¬b̃ | ¬b, k = i

]
− Pr

[
G0 :¬b̃ | ¬b, k = i

]
(2)

Game MM conditioned on b = 1 is equivalent to G0 condi-
tioned on b = 1, and so we have

AdvMM(A) = Pr
[
MM :¬b̃ | ¬b

]
− Pr

[
MM :¬b̃ | b

]
=

1

K

K∑
i=1

Pr
[
MM :¬b̃ | ¬b, k = i

]
− Pr

[
MM :¬b̃ | b, k = i

]
=

1

K

K∑
i=1

AdvMIi(Ai
MI)+Pr

[
G0 :¬b̃ |¬b

]
−Pr

[
G0 :¬b̃ |b

]
(3)

where the last equation follows from (2) and the fact that b
and k are independent.

We reformulate G0 as G1 (see Game 12). To see why both
formulations are equivalent, note that conditioned on b = 0, in
both games S and z are sampled from the same distribution
chosen uniformly from D, while conditioned on b = 1, S
and z are sampled each from one of two distributions sam-
pled without replacement from D. Since b is independently
sampled in the same way, both games result in the same joint
distribution of θ, z, b, and therefore b̃, b:

Pr
[
G0 :¬b̃ | ¬b

]
= Pr

[
G1 :¬b̃ | ¬b

]
(4)

Pr
[
G0 :¬b̃ | b

]
= Pr

[
G1 :¬b̃ | b

]
(5)

Next, we show using a black-box reduction that distinguishing
between the case when b = 0 and b = 1 in G1 conditioned
on k = i, k′ = j is as hard as guessing the challenge bit in
the property inference experiment PIi,j shown in Game 15.
To do this, we construct an adversary Ai,j

PI that uses A as a
black-box. Ai,j

PI perfectly simulates the inputs to A in G1 by
forwarding its own inputs and freshly sampling z from Di.

AdvPIi,j (A
i,j
PI ) = Pr

[
PIi,j :¬b̃ | ¬b

]
− Pr

[
PIi,j :¬b̃ | b

]
= Pr

[
G1 :¬b̃ |¬b, k= i, k′=j

]
−Pr

[
G1 :¬b̃ |b, k= i, k′=j

]

Putting this and (3)–(5) together we obtain

AdvMM(A) =
1

K

K∑
i=1

AdvMIi(Ai
MI)

+
1

K(K − 1)

K∑
i=1

K∑
j=1,i̸=j

AdvPIi,j (A
i,j
PI )

≤ max
i∈[K]

AdvMIi(Ai
MI) + max

i ̸=j∈[K]
AdvPIi,j (A

i,j
PI )

Game 15: PIi,j
Input: T ,Di,Dj , n,A
b ∼ {0, 1}
if b = 0 then

S ∼ Dn
i

else
S ∼ Dn

j

end
θ ← T (S)
b̃← Ai,j

PI (T ,Di,Dj , n, θ)

Adversary 16: Ai,j
PI

Input: T ,Di,Dj , n, θ
z ∼ Di

return A(T ,D, n, θ, z)

VI. DISCUSSION

We discuss strategies for choosing privacy games, their
current and future uses, and their limitations.

A. Selecting Games

With the variety of privacy games in the literature, it is
natural to ask whether there is a canonical game that should
be used instead of others. We believe this is not the case,
i.e., no single game is the best choice in all circumstances
because subtle differences in threat scenarios can lead to
vastly different privacy evaluations (see, e.g., [47]). Instead, we
recommend that users of games leverage the building blocks
we provide in this paper to design games that accurately
capture their application-specific threat models. For a given
threat model, however, some differences between modelling
choices are less important (e.g., in MI, whether one samples
nonmembers from the full distribution or excluding the train-
ing set), and we highlight this distinction throughout the paper.

B. Current Uses of Privacy Games

The use of privacy games has become prevalent in the
literature on machine learning privacy. As of today, there
have been two main applications: 1) supporting the empirical
evaluation of machine learning systems against a variety of
threats, and 2) comparing the strength of privacy properties
and attacks. Reductions enable a third application: translating
provable guarantees from one property to another.

338



Game-based definitions of inference risks are presented in
often inconsistent form fragmented across the literature and
only a few of the reductions and separation results in Figure 1
were made explicit. We present a common vocabulary for
game-based definitions, formalize games for five fundamental
inference risks, and establish connections between them.

C. Prospective Uses of Privacy Games

We highlight two other promising uses for games.
Communicating privacy properties Reasoning about ML
privacy risks is not the exclusive purview of researchers.
Other personas, e.g., privacy managers and auditors, need to
make decisions about the compliance of training pipelines with
regulatory or contractual constraints. Based on our experience,
privacy managers currently base their reasoning on (1) empir-
ical privacy evaluations, (2) formal guarantees of mechanisms
such as DP-SGD, and (3) informal texts such as the Opinion
05/2014 [2] of the European Commission’s Article 29 Working
Party. They are then faced with the daunting task of combining
these pieces into a coherent picture to assess the privacy risks
of specific applications. Privacy games can help with this task:
by making the threat model and assumptions about dataset
creation and training explicit, they can disambiguate interpre-
tations and can abstract an application scenario with respect to
its (provable and empirical) privacy properties. Indeed, based
on our initial experience, games facilitate discussing privacy
goals and guarantees with stakeholders making guidelines and
decisions around ML privacy.
Mechanization of proofs An advantage of the game-based
formalism is that games can be given an unambiguous seman-
tics as probabilistic programs. This enables reasoning about
games using program logics and manipulating them using pro-
gram transformations. Reusable program transformations (e.g.,
procedure inlining) and proof techniques (e.g., conditioning on
events) arise naturally and make proofs more amenable. As we
show in Section V, our proofs exhibit some of these patterns.

We envisage techniques and frameworks to reason about
game-based cryptographic proofs (e.g., EasyCrypt, FCF) being
repurposed to reason about privacy games. The apparent com-
plexity of privacy games compared to cryptographic games
is not an obstacle since most proofs manipulate training
algorithms, models, and data as abstract objects with minimal
structure. For instance, we think it is possible to formalize
the proof in Section V in a tool like EasyCrypt. The main
challenge for mechanizing proofs about privacy games is that,
unlike cryptographic games, privacy games sometimes require
reasoning about continuous distributions (e.g., Gaussian noise
in DP-SGD), but logics implemented in existing frameworks
often assume a discrete probability space.

D. Limitations of Privacy Games

Privacy games are sequential probabilistic programs; they
are not an immediate fit for expressing concurrent computa-
tions. This prevents the direct application of games to im-
portant scenarios such as federated learning (FL). Intuitively,
this is due to the hardness of modeling the various possible

parallel interactions between the different parties. The situation
is similar for cryptographic games, where process calculi are
used instead of games for modeling more complex multi-party
interactions [8, 46]. It is an open question whether these calculi
could also be used in the context of concurrent ML scenarios
such as FL.

VII. RELATED WORK

Alternatives We discuss below informal and formal alterna-
tives to games to express privacy properties.

A key example of a formal property is Differential Pri-
vacy [21]. The definition of Differential privacy is relational,
in that it compares the probability of events in two alternative
worlds. DP abstracts from many details that are relevant for
threat modelling, such as adversary capabilities, goals, and
background knowledge, as well as the way datasets are created.
This has led to disagreements in the literature about the
consequences of differential privacy (see [65]).

A key example of an informal account of privacy properties
is the Opinion 05/2014 on Anonymization Techniques [2]
that complements the EU General Data Protection Regula-
tion (GDPR) with practical recommendations for the use of
anonymization techniques to meet the requirements set out
by the regulator. In this influential document, the authors
identify three privacy risks: singling out, linkability, and infer-
ence. They analyze the suitability of different anonymization
techniques—including k-anonymity and DP—for mitigating
these risks, but the discussion remains inconclusive due to the
lack of precise definitions. Subsequent research [18] rigorously
revisited the notion of singling out and suggested reconsider-
ing the Opinion recommendations.

Game-based definitions address shortcomings of both alter-
natives: They make the threat model and assumptions explicit
and precise, which helps disambiguate interpretations.
Game-based privacy proofs Nissim et al. [48] construct a
privacy game that reflects the requirements of the U.S. Family
Educational Rights and Privacy Act (FERPA) for protecting
privacy in releases of education records, and show in a proof
structured as a sequence of games that DP is enough to satisfy
these requirements. While constructing the game, they identify
dimensions similar to our anatomy in Section II.
Surveys and taxonomies on privacy Several papers propose
taxonomies of privacy attacks against machine learning sys-
tems [19, 40, 51]. Papernot et al. [50] focus on systematizing
the possible attack surfaces of standard machine learning
pipelines. Desfontaines and Pejó [20] systematically study
variants and extensions of differential privacy. Before attacks
against ML systems were demonstrated, Li et al. [38] proposed
a unifying framework for membership and differential privacy
definitions mainly applicable to database systems.
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[10] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song,
“The secret sharer: Evaluating and testing unintended
memorization in neural networks,” in 28th USENIX Secu-
rity Symposium. USENIX Association, 2019, pp. 267–
284.
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APPENDIX

A. Direct, Single-Query Membership Inference

Tang et al. [61] present single-query variants of membership
inference where the adversary is given only the model output
on the challenge point. In their base game (Game 17), the
adversary selects a universe of 2n points from where n points
are sub-sampled to construct the training dataset of the target
model. The adversary goal is to infer whether a challenge zj
uniformly sampled from the initial 2n points was used to train
the model, i.e., guess B[j], given just the model output on zj .
They also consider variants where the set of 2n points is fixed
externally, and a worst-case variant where the challenge zj is
selected by the adversary.
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Game 17: MISQ

Input: T , n,A,A′

{zi}i∈[2n] ← A′(T , n)
B ∼ {0, 1}2n s.t.

∑
i∈[2n] B[i] = n

S ← {zi |B[i] = 0}i∈[2n]

θ ← T (S)
j ∼ [2n]

b̃← A(T , n, {zi}i∈[2n], j, θ(zj))

B. Deferred Proofs

Theorem 13 (SMI ⪯ RC). Let z0, z1 be two samples, S a
dataset of n − 1 samples, and ℓ a symmetric reconstruction
loss satisfying the triangle inequality. Let A be an adversary
against data reconstruction (RC) w.r.t. to S and the uniform
prior on {z0, z1} that reconstructs its challenge with error
η < ℓ(z0, z1)/2 with probability γ. Then, there exists a strong
membership inference adversary ASMI→RC such that

AdvSMI(ASMI→RC) ≥ 2γ − 1

Adversary 18: ASMI→RC

Input: T , θ, S, z0, z1
z̃ ← A(T , θ, S)
if ℓ(z0, z̃) < ℓ(z1, z̃) then

return 0
else

return 1
end

Proof. Define ASMI→RC as in Adversary 18. For any z̃, we
have from the triangle inequality,

ℓ(z0, z̃) < ℓ(z0, z1)/2 < (ℓ(z0, z̃) + ℓ(z̃, z1))/2 =⇒
ℓ(z0, z̃) < ℓ(z1, z̃)

Therefore, when b = 0 in SMI and A succeeds in reconstruct-
ing z0 within error η, ASMI→RC guesses correctly. Similarly,
when b = 1 and A succeeds in reconstructing z1 within
error η, ASMI→RC guesses correctly. Thus, ASMI→RC guesses
b correctly at least with probability γ and

AdvSMI(ASMI→RC) = 2Pr
[
SMI(· · · ) : b̃ = b

]
−1 ≥ 2γ− 1

Theorem 3 (DPD ⪯ RC). Let π be a prior over samples, S
a dataset of n− 1 samples, and ℓ a symmetric reconstruction
loss satisfying the triangle inequality. Let A be an adversary
against data reconstruction (RC) w.r.t. to S and π that recon-
structs its challenge within error η with probability γ ≥ 1/2.
Let

α = inf
z0∈supp(π)

Pr[z1 ∼ π :ℓ(z0, z1) > 2η]

There exists a DP distinguisher ADPD→RC such that

AdvDPD(ADPD→RC) ≥ 2α

(
γ − 1

2

)

Proof. Observe that 1− α is the baseline success of a recon-
struction adversary with error 2η (see Equation 1).

Define A′
DPD→RC as in Adversary 19 and ADPD→RC as in

Adversary 20.

Adversary 19: A′
DPD→RC

Input: T , n
z0, z1 ∼ π
return S, z0, z1

Adversary 20: ADPD→RC

Input: T , θ, S, z0, z1
if ℓ(z0, z1) ≤ 2η then

b̃ ∼ {0, 1}
else

b̃← ASMI→RC(T , θ, S, z0, z1)
end
return b̃

In the DPD game, when ℓ(z0, z1) > 2η, which occurs with
probability at least α, a similar analysis as in Theorem 13
shows that ADPD→RC guesses b correctly whenever A suc-
ceeds in reconstructing its challenge within error η. Otherwise,
the adversary guesses with probability 1/2. Thus,

Pr
[
DPD : b̃ = b

]
≥ Pr

[
DPD : b̃ = b|ℓ(z0, z1) > 2η

]
α +

Pr
[
DPD : b̃ = b|ℓ(z0, z1) ≤ 2η

]
(1− α)

= γα+ 1
2 (1− α)

The DPD advantage of ADPD→RC is

AdvDPD(ADPD→RC) = 2Pr
[
DPD : b̃ = b

]
− 1

≥ 2α

(
γ − 1

2

)
Theorem 4 (DPD ⪯ MI). For any adversary AMI against
membership inference, there exists a DP distinguisher ADPD

such that
AdvDPD(ADPD) = AdvMI(AMI)

Proof. Let A be an adversary against MI(T ,D, n). We con-
struct an adversary against DPD(T , n) as in Adversary 21 and
22. These adversary procedures, when inlined in DPD(T , n)
(Game 10), result in an experiment semantically equivalent to
MI(T ,D, n,A) (Game 2). Thus,

AdvDPD(ADPD→MI) = AdvMI(A)

Adversary 21: A′
DPD→MI

Input: T , n
S ∼ Dn−1

z0, z1 ∼ D
return S, z0, z1
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Adversary 22: ADPD→MI

Input: T , θ, S, z0, z1
b̃← A(T ,D, n, θ, z0)
return b̃

Theorem 5 (RC ⪯1/| supp(D)| MI). For any membership
inference adversary A against MI(T ,D, n) there exists a
reconstruction adversary B against RCRan(D, n,D, T ) (i.e.,
with prior π = D) such that

AdvRCRan(B) =
1

| supp(D)|
· AdvMI(A)

Proof. Consider Game 23, which is equivalent to AI except
the adversary is also given S.

Game 23: AI′

Input: T ,D, n,B, φ, π
S ∼ Dn−1

z0, z1 ∼ D
b ∼ {0, 1}
θ ← T (S ∪ {zb})
z̃ ← B(T ,D, n, θ, S, φ(z0))

The reconstruction advantage of B coincides with its advan-
tage in AI′ in the special case where φ(z) = ⊥ and π(z) = z,
i.e., the adversary has to reconstruct all attributes. This is
because φ(z0) = ⊥ and thus the guess z̃ is independent of
z0 conditioned on b = 1.

AdvRCRan(B) = Pr
[
AI′ : z̃ = z0|b = 0

]
−Pr

[
AI′ : z̃ = z0|b = 1

]
The rest of the proof is similar to the proof of Theorem 2,

but we present it for the sake of completeness.
Let A be an adversary against MI(T ,D, n). We construct an

adversary B against RCRan(D, n,D, T ), shown in Game 24,
which uses A to reconstruct its challenge.

Adversary 24: B
Input: T , θ, S
z′ ∼ supp(D)
b̃← A(T ,D, n, θ)
if b̃ = 0 then

return z′

else
return ⊥

end

Denote D(zi) the quantity Pr[z ∼ D :z = zi], i.e., the prob-
ability mass of D at zi and let m = | supp(D)|. In the fol-
lowing, we use RC to denote the game RCRan(D, n,D, T ,B)
and MI to denote MI(T ,D, n,A).

Since B guesses z̃ = z if and only if z′ = z and b̃ = 0, for
any zi ∈ supp(D) we have for b̂ ∈ {0, 1}

Pr
[
AI′ : z̃=z|b= b̂, z=zi

]
=

1

m
Pr

[
AI′ : b̃=0|b= b̂, z=zi

]
(6)

Hence, the advantage of B is

AdvRCRan(B)

=
∑

zi∈supp(D)

D(zi)
(
Pr

[
AI′ : z̃ = z0|b = 0, z = zi

]
−Pr

[
AI′ : z̃ = z0|b = 1, z = zi

])
=

1

m

∑
zi∈supp(D)

D(zi)
(
Pr

[
AI′ : b̃ = 0|b = 0, z = zi

]
−Pr

[
AI′ : b̃ = 0|b = 1, z = zi

])
=

1

m

(
Pr

[
AI′ : b̃ = 0|b = 0

]
− Pr

[
AI′ : b̃ = 0|b = 1

])
=

1

m
AdvMI(A)

The penultimate equality holds because b and z are inde-
pendent. The last equality holds because game AI′(T ,D, n,B)
matches game MI(T ,D, n,A) and so the joint distribution of
b̃, b is the identical in both games.

Theorem 7 (MI ̸⪯ DPD). Resilience against membership in-
ference does not imply resilience against DP distinguishability.

Proof. We show that there are training pipelines that are
arbitrarily resilient against membership inference attacks but
completely insecure against DP distinguishing attacks.

We construct a training pipeline (T ,D, n) such that the MI
advantage of an adversary against it is at most 1/

√
n, and so

vanishes as n grows. Yet, we exhibit a DP distinguisher against
the pipeline that achieves perfect advantage.

Game 25: MI′

Input: T ,D, n,A
b ∼ {0, 1}
S ∼ Dn−1

z0, z1 ∼ D
θ ← T (S ∪ {zb})
b̃← A(T ,D, n, θ, z0, z1)

Let D = Bernoulli(p) and T (S) =
∑

x∈S x. Consider
Game 25. If the adversary were only given z0, this game
would be equivalent to the basic MI game (Game 1). Since the
adversary is given strictly more information, any bound on its
advantage in this game would also bound the MI advantage of
adversaries against the training pipeline. The adversary must
distinguish between two simple hypotheses:

• H0 : θ ∼ Binomial(n− 1, p) + z0
• H1 : θ ∼ Binomial(n− 1, p) + z1

When z0 = z1, these coincide and the advantage of the
adversary is 0. Otherwise, without loss of generality, assume
zb = b. By the Neyman-Pearson lemma, a likelihood ratio test
yields the most powerful test for a significance α (i.e., Type-I
error, false positive rate). Let f and F be the probability mass
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and cumulative distribution function of Binomial(n − 1, p),
respectively. The likelihood ratio is

Λ(θ = k) =


∞ if k = 0

0 if k = n
f(k)

f(k−1) =
(n−k)p
k(1−p) otherwise

The test rejects H0 when Λ(θ) < c, for some c. The false
positive rate α (the probability of rejecting H0 when H0 is
true) is

Pr
H0

(Λ(θ) < c) = Pr
H0

(
(n− k)p

k(1− p)
< c

)
= Pr

H0

(
k >

np

p+ c(1− p)

)
= 1− F

(
np

p+ c(1− p)

)
The false negative rate β is

Pr
H1

(Λ(θ) ≥ c) = Pr
H1

(
(n− k)p

k(1− p)
≥ c

)
= Pr

H1

(
k ≤ np

p+ c(1− p)
− 1

)
= F

(
np

p+ c(1− p)
− 1

)
Now, take p = 0.5 and assume that n ≥ 4 and that n is even so
that the mode of Binomial(n−1, p) is n/2. The MI advantage
of the adversary is

AdvMI(A) =
1

2
(f(0) + f(n− 1) + (1− α− β))

= f(0) +
1

2
f

(
np

p+ c(1− p)

)
≤ 1

2n−1
+

f(n/2)

2

≤ 1

2
√
n
+

1

2
√
n
=

1√
n

On the other hand, a DP distinguisher A that chooses z0 =
0, z1 = 1, an arbitrary S, and that guesses b̃ = θ −

∑
x∈S S,

has perfect advantage AdvDPD(A) = 1.

Theorem 6 (MI ̸⪯ PI). Resilience against membership infer-
ence does not imply resilience against property inference.

Proof. We construct a training pipeline (T ,Db, n) that is
arbitrarily resilient to membership inference for b ∈ {0, 1}.
Yet, we exhibit a property inference attack against it that
achieves perfect advantage.

Let Db = Bernoulli(pb) with p0 ̸= p1 and T (S) =
∑

x∈S .
As shown in Theorem 7, the advantage of a membership
inference adversary against (T ,Db, n) is at most 1/

√
n. How-

ever, as n grows, T (S)/n is an unbiased estimator for the
mean pb, which allows a property inference adversary to easily

distinguish between D0 and D1, particularly when p0 and p1
are far apart.

Theorem 8 (MI ̸⪯ RC). Resilience against membership
inference does not imply resilience against reconstruction.

Proof. It suffices to show that the training pipeline from
Theorem 7, which is resilient to membership inference attacks,
admits a reconstruction attack. For this, recall that in RC the
adversary knows the dataset S (but not the target sample z).
For the pipeline (T ,D, n) given in Theorem 7, z can be
perfectly reconstructed since z = θ −

∑
x∈S x.

Theorem 9 (PI ̸⪯ MI). Resilience against property inference
does not imply resilience against membership inference.

Proof. We exhibit a pipeline resilient to property inference that
is completely vulnerable to a membership inference attack.

Let D be an arbitrary distribution and define Db so that
z ∼ Db ≡ x ∼ D; z ← (x, b). Let n > 0 and define

T (S) = {x ∈ S|(x, y) ∈ S}

A membership inference adversary against MI(T ,D, n) that
given θ, z0 = (x, y) returns 0 if and only if x ∈ S achieves
the maximum advantage, i.e.,

1− Pr[S ∼ Dn; z ∼ D :z ∈ S]

However, a property inference adversary gets no information
about b as b and θ are independent, so its advantage is 0.

Theorem 10 (RC ̸⪯ DPD). Resilience against reconstruction
does not imply resilience against DP distinguishability.

Proof. Balle et al. [4, Theorem 5] show that resilience against
reconstruction w.r.t. all priors in a family of distributions
concentrated on all ordered pairs of distinct examples implies
(ε, δ)-DP, and hence via Proposition 2 resilience against DPD.

However, resilience against a single prior π, even if its
support includes all possible examples, is clearly insufficient
to guarantee resilience against DPD. To see why, consider
a deterministic DPD adversary that picks S, z0, z1. Given
error bound η and success probability γ, all reconstruc-
tion adversaries can have error larger than η when z /∈
{z0, z1} but reconstruct z ∈ {z0, z1} perfectly, as long as
Pr[z ∼ π :z ∈ {z0, z1}] < γ, i.e., the probability mass of
the prior on {z0, z1}. The situation is worse when z0, z1 /∈
supp(π), where resilience against reconstruction for arbitrary
η, γ is compatible with perfect DPD advantage.

Theorem 11 (DPD ̸⪯ PI). Resilience against DP distin-
guishability does not imply resilience against property infer-
ence.

Proof. Ateniese et al. [3, Section 4.2] provide a practical coun-
terexample: a differentially private network traffic classifier
that nonetheless leaks the presence of traces from Google.com
web traffic in their training dataset.
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