
CHESS: A Framework for Evaluation of
Self-adaptive Systems based on Chaos Engineering

Sehrish Malik∗ Moeen Ali Naqvi∗ Leon Moonen∗§

∗Simula Research Laboratory, Oslo, Norway §BI Norwegian Business School, Oslo, Norway
Email: {sehrish, moeen}@simula.no, leon.moonen@computer.org

Abstract—There is an increasing need to assess the correct
behavior of self-adaptive and self-healing systems due to their
adoption in critical and highly dynamic environments. However,
there is a lack of systematic evaluation methods for self-adaptive
and self-healing systems. We proposed CHESS, a novel approach
to address this gap by evaluating self-adaptive and self-healing
systems through fault injection based on chaos engineering (CE).

The artifact presented in this paper provides an extensive
overview of the use of CHESS through two microservice-based
case studies: a smart office case study and an existing demo
application called Yelb. It comes with a managing system service,
a self-monitoring service, as well as five fault injection scenarios
covering infrastructure faults and functional faults. Each of these
components can be easily extended or replaced to adopt the
CHESS approach to a new case study, help explore its promises
and limitations, and identify directions for future research.

Index Terms—self-healing, resilience, chaos engineering, eval-
uation, artifact.

I. INTRODUCTION

Self-adaptive systems (SAS) and self-healing systems (SHS)
are becoming increasingly important in fields such as the Inter-
net of Things, Industry 4.0, and smart cities [1]. These systems
are designed to operate in highly dynamic environments and
are expected to handle uncertainty and unanticipated behavior,
as well as provide fault tolerance and resilience. However,
due to the complexity and dynamic nature of these systems,
it is challenging to anticipate all possible scenarios that these
systems will encounter. This is particularly important for the
evaluation of these systems, which requires assessing the
correct behavior of these systems.

There has been a growing concern among researchers about
the lack of systematic evaluation for SAS and SHS [2–4]. A
recent systematic mapping study found that only a small per-
centage of studies in this field focus on evaluating previously
developed applications [3]. In addition, there are limited tools
available to support evaluations based on runtime measures,
with most studies focusing on evaluating the models used
to design the system [4]. These models, however, may not
take into account all potential scenarios that a system may
encounter during operation. While runtime models offer a
solution to these limitations, they also come with their own
challenges, such as maintenance and the need for model
creation [5]. Hence, there is a need for mechanisms to evaluate
SAS and SHS based on runtime measures that consider
potential scenarios a system may encounter during operation.

To fill this gap, our earlier work proposed CHESS, an
approach for the systematic evaluation of self-adaptive and

self-healing systems that build on chaos engineering princi-
ples [6]. CHESS systematically perturbates the system-under-
evaluation and records how the system responds to those
perturbations. The artifact1 presented in this paper provides
an extensive overview of the use of CHESS through two
microservice-based case studies: a smart office case study
and an existing demo application called Yelb. Concretely, the
artifact consists of (i) predefined functional and infrastructural
level fault injection scenarios, (ii) a self-monitoring service
that presents extensive logs for the deployed services’ normal
and abnormal behaviors, (iii) the managing system service that
reacts to the system’s abnormal behavior traces and brings
the system back to a stable condition, and (iv) a comparison
of the service failure and cascading effects with and without
deployment of the managing system service.

The remainder of this paper is organized as follows. In Sec-
tion II, we summarize self-adaptive and self-healing systems
for the microservice architecture, evaluation of these systems
based on CE, and position CHESS in the landscape of self-
adaptive system artifacts. Section III presents the design and
architecture of CHESS, along with the microservice-based case
studies and test scenarios considered for the fault injection.
Section IV describes how to use the artifact with both of
the case studies and presents the results of the fault injection
scenarios. We conclude in Section V, including discussions of
the artifact’s applicability and directions for future work.

II. BACKGROUND AND POSITIONING OF THE ARTIFACT

We briefly introduce the basics of SAS and SHS, and their
evaluation in the context of microservices architecture, and
highlight how CHESS complements the existing artifacts for
engineering self-adaptive systems.

A. Self-Adaptive System for Microservices Architecture

Self-adaptive software systems are a class of software systems
that can adapt to changes in their environment [7]. At a high
level, these systems can be seen as comprising a managed
system that is controlled by a managing system, generally
realized through a MAPE-K feedback loop [8].

Self-adaptive systems for microservices architecture can
bring multiple benefits, such as increased scalability, im-
proved reliability, and reduced maintenance costs. Studies
have suggested that there is an overall improvement in

1 CHESS artifact on Zenodo: https://doi.org/10.5281/zenodo.6817763

Work licensed under Creative Commons Attribution 4.0 License. https://
creativecommons.org/licenses/by/4.0/ 195

2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

DOI 10.1109/SEAMS59076.2023.00033

20
23

 IE
EE

/A
C

M
 1

8t
h 

Sy
m

po
si

um
 o

n 
So

ftw
ar

e 
En

gi
ne

er
in

g 
fo

r A
da

pt
iv

e 
an

d 
Se

lf-
M

an
ag

in
g 

Sy
st

em
s (

SE
A

M
S)

 | 
97

9-
8-

35
03

-1
19

2-
1/

23
/$

31
.0

0 
©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

SE
A

M
S5

90
76

.2
02

3.
00

03
3



the management of microservices-based applications, allo-
cation of microservices among the available servers, qual-
ity attributes such as performance, scalability, and resilience
through the introduction of self-healing, self-management, and
self-optimization properties [9]. Furthermore, an architecture-
based self-adaptation framework with a MAPE-K feedback
loop for a microservice as a managed system shows a reduced
cost of ownership and faster self-adaptation [10]. On the
other hand, the introduction of microservices architecture, as
a managing system, can improve the self-adaptation capabil-
ities of systems for various measures such as run-time data
analysis [11]. Some challenges in developing a self-adaptive
system based on microservices include developing monitoring
and adaptation mechanisms for ensuring quality attributes;
determining the level of distribution, observability, and gran-
ularity for deploying control components; and determining
mechanisms for evaluation of the given quality attributes [12].

B. Evaluation of SAS and SHS based on Chaos Engineering

The evaluation of self-adaptive and self-healing systems is
an important aspect of their design and deployment. In our
previous work [6], we defined the evaluation of self-adaptive
and self-healing systems as "an approach to determine if a
system meets objectives under operation, identify areas in
which the system performs as well as desired or predicted, and
provide evidence to the value and applicability of the system."

Several approaches to the evaluation of SAS and SHS
include model-based evaluation [13], metric-based evalua-
tion [14], model checking [15], and runtime testing and veri-
fication [16] each with its benefits and limitations. However,
none of these evaluation approaches are viable for evaluation
covering the execution of the system under real-life failure
scenarios. Therefore, to address this gap, we introduce a
mechanism that builds on chaos engineering principles. Chaos
engineering (CE) is the practice of intentionally causing and
studying controlled chaos within software systems operating in
realistic environments, with the goal of increasing the systems’
resilience and ability to handle unforeseen circumstances [17].
The core tenets of CE can be outlined as four main principles,
which include formulating hypotheses based on the steady-
state behavior of systems, introducing variations to real-world
events, conducting experiments in a production environment,
and automating these experiments for continuous execution.
Our approach evaluates the systems through a systematic
process that involves exposing the system to faults and testing
its ability to recover from such perturbations.

C. Positioning of the Artifact

Artifacts play a vital role in advancing the field of self-
adaptation. They serve as tangible examples of the algo-
rithms and techniques developed by researchers, allowing for
their evaluation and assessment. In addition, artifacts provide
problematic scenarios and solutions that can inspire further
research, as well as facilitate the comparison of results among
different studies. The self-adaptive exemplars website2 gives

2 http://self-adaptive.org/exemplars/

an overview of re-usable artifacts produced by researchers and
engineers in the self-healing and self-adaptive community.

Various existing artifacts focus on web-based systems, mi-
croservices architecture, or cloud environments that assist in
the evaluation of the managed systems. Znn.com [18] is a
web-based information system that mimics real-world systems
and provides an experimental environment to facilitate the
evaluation. The exemplar applies a self-adaptive framework,
Rainbow and presented an evaluation of the self-adaptive
system based on a benchmark. Hogna [19] is a platform for
deploying self-managing web applications on the cloud. It
automates operations, monitors the health of the applications,
extracts metrics, and analyzes performance data based on a
model to create and execute an action plan. K8-Scalar [20]
is an exemplar that allows the evaluation of different self-
adaptive approaches to autoscaling container-orchestrated ser-
vices. It is based on Docker, and Kubernetes, and extends
a generic testbed for scalability evaluation of large-scale
systems called Scalar. SEAByTE [21] enhances the automation
of continuous A/B testing of a microservice-based system.
Furthermore, exemplars such as SWIM [22], DARTSim [23],
and RDMSim [24] consist of managed systems which can
assist in the evaluation of external adaptation managers.

The present artifact represents a departure from existing ar-
tifacts in the field, as it prioritizes the evaluation of managing
systems by inducing faults within the managed system. Thus,
as opposed to primarily focusing on the creation of new self-
adaptive approaches, it supports one of the critical tasks of
software engineering research, i.e., the systematic evaluation
of novel approaches. This aligns with the growing desire
to produce artifacts in self-adaptation that support industry-
relevant research [25].

III. CHESS

This section presents the CHESS architecture, the demo appli-
cations used for testing, and the scenarios for fault injection.

A. Design and Architecture

Figure 1 presents a detailed architecture for the CHESS
approach. It consists of four main modules: containerized
deployment cluster (CDC), system monitor, system manager,
and fault injection. These modules are presented below.
Containerized Deployment Cluster (CDC): This artifact
discusses the process of introducing faults into microservice-
based applications deployed in a containerized environment
using Kubernetes (K8s). The environment details are shown
in Table I. The K8s cluster starts with a total of 20 GB
memory and 4 CPUs to ensure that it has sufficient resources
to run the demo applications. To make the demo applications
accessible from outside the cluster, we have configured the
K8s cluster with MetalLB, which is an addon that enables
external IP services in K8s. In addition, the Istio service
mesh is installed in the cluster to monitor the microservices
traffic flow and to provide an easy way to manage the traffic
between microservices. In order to visualize the data traffic
and services’ status, we have installed Grafana, Kiali, and

196



CDC:

Istio Injection Enabled 

Monitoring Tools Deployment

Data Storage

Monitoring UI

Service UI

MetalLB load balancer

Microservices 
Scripts

Microservices 
Images

System 
Manager

System 
Monitor

Fault 
Injection

Chaos 
logs

IN
G

RE
SS

Service Deployment N

Service Deployment 2

Service Deployment 1

Pod 
1

Pod 
N

Service

…

Fig. 1. Implementation Architecture for the applications deployment

Prometheus monitoring tools. Grafana is used to visualize the
data traffic, while Kiali is used to visualize the services’ status.
Prometheus is used to query data metrics from its database
and to store the data for later analysis. The combination
of these tools provides a complete solution for monitoring
microservices-based applications and for evaluating the fault
tolerance of these applications.
System Monitor: The system monitor module monitors the
status of the running services and performs necessary checks to
ensure their validity. Its purpose is to observe the behavior of
the system under various conditions, distinguish the system’s
normal behavior patterns from abnormal ones, and alert the
system manager in case of any abnormal behavior.
System Manager: The system manager module plays a
crucial role in ensuring the continuous operation of services
deployed in the CDC. The primary responsibility of the system
manager module is to receive abnormal system behavior alerts
from the system monitor module and handle the recovery

TABLE I
K8S CLUSTER DETAILS

K8s cluster Minikube
Cluster memory 20 GB
Cluster cpus 4
Load balancer MetalLB
Service mesh Istio
Monitoring DB Prometheus
Monitoring tools Grafana & Kiali
Chaos tools chaostoolkit-Kubernetes

TABLE II
CHAOS EXPERIMENT TEMPLATE

steady-state-hypothesis:
type probe
provider type python
provider module chaosk8s.probes
func {deployment_available_and_healthy},

{battery_charged}, {timely_response}
arguments service_name

namespace
tolerance true
chaos-method:
type action
func {inject_fault}, {deprecate_battery},

{inject_delay}, {terminate_pods},
{load_service}

arguments service_name
namespace

pause {before, after} in seconds

phase of the services that encounter faults. In this artifact,
the system manager adopts a rule-based approach for fault
recovery. The recovery process is automated and follows a
set of predefined rules, which have been configured for the
selected demo applications. The use of the system manager
module also enables us to compare the impact of faults, known
as the blast radius, for different fault injection scenarios, both
with and without the system manager. This helps us to evaluate
the effectiveness of the system manager in mitigating the
effects of faults in the running services.
Fault Injection: The fault injection module follows the
principles of Chaos Engineering (CE) to induce faults in the
deployed application services. A set of chaos experiments
is carefully designed and scripted, for each fault injection
scenario, in order to inject the desired faults into the services.
A chaos experiment template is shown in Table II. A chaos
experiment first defines the steady state with a probe function
and a check against a tolerance. Once the steady state is met,
the chaos action method is called to inject the respective fault,
using the service_name and namespace arguments to identify
the service. A pause before or after the fault injection can
also be added. A virtual environment in Python is prepared
with "chaostoolkit" and "chaostoolkit-Kubernetes" libraries to
execute the chaos injection scripts. Each chaos injection gen-
erates chaos logs, which can be used for system observation
purposes.

B. Demo Applications for Testing

The artifact uses the smart office case study from our earlier
paper [6] and an open source example application named Yelb3

as the demo applications for chaos injection and testing.
Smart Office Case Study: The smart office case study
consists of nine services, including three input services (tem-
perature sensor, motion sensor, and external weather), two
control services (heating control, light control), two actuator
services (heating actuator, light actuator), an MQTT broker,
and a user interface. The control services retrieve periodic

3 The Yelb application was reused from https://github.com/mreferre/yelb

197



Side C
ar Proxy

Pod 
1

Pod 
N

. . . Side C
ar Proxy

Pod 
1

Pod 
N

. . . Side C
ar Proxy

Pod 
1

Pod 
N

. . .

Side C
ar Proxy

Pod 
1

Pod 
N. . . Side C

ar Proxy

Pod 
1

Pod 
N. . . Side C

ar Proxy

Pod 
1

Pod 
N. . .

Side C
ar Proxy

Pod 
1

Pod 
N. . . Side C

ar Proxy

Pod 
1

Pod 
N. . . Side C

ar Proxy

Pod 
1

Pod 
N. . .

Temp-Sensor 
ServiceTemp-Sensor 
ServiceTemp-Sensor 
Service

Motion-Sensor 
ServiceMotion-Sensor 
ServiceMotion-Sensor 
Service

External-
Weather Service

User-Interface 
Service

MQTT-Broker 
Service

Heating-Control 
Service

Light-Control 
Service

Heating-
Actuator 
Service

Heating-
Actuator 
Service

Heating-
Actuator 
Service

Light-Actuator 
ServiceLight-Actuator 
ServiceLight-Actuator 
Service

Fig. 2. Service graph for the Smart Office case study

sensing data and weather data, then use rules to control heating
and lighting actuators. The service graph for the smart office
case study is shown in Figure 2.
Yelb Application: The Yelb application consists of four
services: a user interface service, an application server
(appserver) service, a redis server service, and a database
service. It allows users to vote for their preferred restaurant
among given options, and updates a pie chart based on the
number of votes received for each option. The Istio view of
the service graph for the Yelb application is shown in Figure 3.

C. Test Scenarios for Fault Injection

Chaos Engineering allows the injection of two types of faults
in a running application: infrastructure level and functional
level. In the context of microservices-based applications de-
ployed in a CDC cluster, the infrastructure level faults include
the faults that occur due to issues with CDC configurations
and resources. These faults can be mostly injected using
predefined functions available within various chaos toolkits.
The functional level faults are unique to the application and
require some additional knowledge of the application’s back-

UserUser

Fig. 3. Istio view of the service graph for the Yelb case study

TABLE III
TEST SCENARIOS FOR FAULT INJECTION

Fault Injection Fault Level Target Application

Sensor Down Infrastructure & Functional Smart-Office
Sensor Faulty Infrastructure & Functional Smart-Office
Service Delayed Infrastructure Smart-Office
Service Down Infrastructure Smart-Office
High SRR Infrastructure Yelb-App

end logic and data flow. Chaos Engineering provides support
for functional level faults, which can be injected by writing
custom probes and action methods for a specific scenario and
calling them in a chaos experiment script.

The artifact presents 5 fault injection scenarios, 4 using the
smart office case study and 1 using the Yelb app.

FS-1: a deployed sensor is down unexpectedly.
FS-2: a deployed sensor sends erroneous readings.
FS-3: a running service is down abruptly.
FS-4: a running service is delayed.
FS-5: a running service is loaded with a high service

request rate (SRR).

Table III presents an overview of faults injected with respect
to the fault level and the target application. The infrastructure
level fault injection is executed on the system service in a
black-box manner. The infrastructure & functional level fault
execution is performed in a grey-box manner where some
additional access to the service’s functional status is required.

IV. EXPERIMENTS

The artifact is available in a virtual machine. The directory
structure for artifact implementation is shown in Figure 4.

Fig. 4. Artifact’s directories’ hierarchy

198



TABLE IV
RUN SMART-OFFICE SCENARIOS

Step 1: Start K8s Cluster

python3 cluster.py

Step 2: Run Demo-App Scenario

python3 system_monitor.py X Y

Step 3: Run Chaos Virtual Env

~/.venvs/chaosEnv/bin/activate

Step 4: Run Chaos Script

chaos run scenario-X.yaml

Step 5: Kiali visualization [Optional]

istioctl dashboard kiali

Step 6: Grafana visualization [Optional]

istioctl dashboard grafana

A. How to use the artifact: Smart-Office Scenarios

There are four main steps, along with two optional steps for
online data visualization, to run the artifact for the smart-office
scenarios (refer to Table IV).

The first step is to create or start the K8s cluster by running
the script cluster.py. This will create a new minikube-based
K8s cluster with 4 CPUs and 2000 MB of memory. The newly
created cluster will be configured with metalLB load balancer
and have istio mesh installed, with istio-injection enabled and
monitoring tools installed. Next, you can deploy the demo
application’s services for a specified scenario by running the
script system_monitor.py X Y. The value for X represents the
scenario number and can be 1, 2, 3, or 4 to run FS-1, FS-2,
FS-3, or FS-4, respectively. The value for Y is either 0 if you
want to run the system monitor alone, or 1 if you want to run
the system monitor with the system manager to recover the
services from failures. To view the running deployments and
services in the k8s cluster, run the command: kubectl get all.
Step three involves activating the virtual chaos environment
for chaos injection. Then, run the chaos command chaos run
scenario-X.yml to inject a failure corresponding to the running
scenario. Where, scenario-X represents the chaos experiment
to be injected, and X can be 1, 2, 3, or 4 for FS-1, FS-2, FS-3,
or FS-4, respectively. Finally, you can use online monitoring
tools to examine the online monitoring data for service statuses
and traffic flow. If desired, the Kiali dashboard and Grafana
dashboard can be launched in separate terminals to observe
the service data metrics.

B. How to use the artifact: Yelb-App Scenario

The execution process for the Yelb application scenario in-
volves four main steps, with two additional optional steps for
online data visualization, as described in Table V.

The first step is to create the K8s cluster, followed by the de-
ployment of demo application services. The app-server service
can be enabled for auto-scaling using the horizontal pod auto-
scaling (HPA) functionality of K8s by running the following

TABLE V
RUN YELB-APP SCENARIO

Step 1: Start K8s Cluster

python3 cluster.py

Step 2: Run Demo-App Scenario

python3 system_monitor.py X 0

Step 3: Run pods logger

./numpods.sh

Step 4: Start overloading yelb-app

python3 fastvote.py <url>

Step 5: Kiali visualization [Optional]

istioctl dashboard kiali

Step 6: Grafana visualization [Optional]

istioctl dashboard grafana

command: kubectl autoscale deployment yelb-appserver –cpu-
percent=10 –min=1 –max=20. The parameters cpu-percent,
min, and max represent the dedicated CPU percentage, the
minimum number of replicas to be running, and the maximum
number of replicas that can run under heavy load, respectively.
These values can be adjusted based on the available resources
in the cluster. In the third step, the pods’ logger is executed
by running the shell script numpods.sh. This script records
changes in the number of replicas over time and writes the
results to a log file, which can later be analyzed to understand
the relationship between the number of active users and the
usage of CPU resources, and the increase or decrease in
replicas. The fourth step is to run the scripted chaos for the
fast voting onto the yelb-appserver. Finally, for real-time data
observation, the Kiali dashboard and Grafana dashboard can
be launched in separate terminals, as an optional step.

C. Results

Smart-Office Scenarios: The first four scenarios (FS1, FS2,
FS3, and FS4) are designed to evaluate the effect of chaos
injection and failures on a running system, both with and
without the deployment of a system management service. They
provide a comparison of the system’s behavior when it fails
to recover from an injected fault and when it successfully
recovers to evaluate the system’s behavior and recovery capa-
bilities. Figure 5 depicts the system monitor output for FS-1
when run without a management service (i.e., running python3
system_monitor 1 0). In this scenario, an injected fault in the
form of data corruption leads to a cascading failure that the
system is unable to recover. On the other hand, Figure 6
shows the system monitor output for FS-1 when run with
a management service (i.e., running python3 system_monitor
1 1). In this case, the system manager is able to quickly
identify and recover from the failed service, resulting in a
much smoother and more efficient recovery process.
Yelb-App Scenario: The FS5 evaluates the scalability of ser-
vices deployed in a Kubernetes cluster by imposing different
loads on the service. The resulting log file captures two types

199



Fig. 5. Running scenario 1 without system manager service

Fig. 6. Running scenario 1 with system manager service

of data: information about all running pods (obtained through
kubectl get pods) and data on HPA deployment (obtained
through kubectl get hpa). The log is updated every 30 seconds
and records the name, status, number of restarts, and age of
each running pod (as shown in Figure 7), and the name, CPU
targets, minimum and maximum number of pods, number
of replicas, and age of the HPA deployment (as shown in
Figure 8). This log can be analyzed to uncover patterns in
the service’s performance and resource utilization over time.
For example, Figure 9 presents sample data extracted from
observing generated log files. The extracted data depicts a
dramatic increase in CPU usage and the number of replicas
over a 22-minute period.

V. CONCLUDING REMARKS

Contributions: This paper presents an artifact that provides
a detailed overview of how the CHESS approach can be used
to evaluate a system’s resilience and ability to recover from
various types of faults. The implemented modules highlight the
effectiveness of the system monitoring and system managing

Fig. 7. Pods data view in logfile

Fig. 8. HPA data view in logfile

Fig. 9. Data extracted from numpods logfile

services in detecting and mitigating failures in the system. The
artifact consists of (i) predefined functional and infrastructural
level fault injection scenarios, (ii) a self-monitoring service
that presents extensive logs for the deployed services’ normal
and abnormal behaviors, (iii) the managing system service that
reacts to the system abnormal behavior traces and brings the
system back to the stable condition, and (iv) a comparison
of the service failure and cascading effects with and without
deployment of the managing system service. The artifact is
available on Zenodo,1 and a demo video is on YouTube.4

Applicability: The artifact provides the SEAMS commu-
nity with support for one of the critical tasks of software
engineering research, i.e., the systematic evaluation of novel
approaches. It aligns with the growing desire to produce self-
adaptation artifacts that support industry-relevant research [25]
by using chaos engineering to systematically observe con-
tainerized applications in Docker [26]. Artifact components
are reusable, extendable, and modifiable for new case studies.
Existing fault scenarios can be combined and expanded to
create complex ones. The custom fault injection scripts can
inspire exploration of grey-box level fault injection and testing.
Future work: Directions of interest include exploring the use
of observability data and system logs for chaos engineering-
controlled data synthesis. In addition, techniques for the
automated selection of regions for chaos experiments based
on the health and performance status of services are also of
interest. Finally, the inclusion of contextual information, such
as ontologies or knowledge graphs, can also be considered to
enhance fault injection targeting.

Acknowledgments: This research is supported by the
Research Council of Norway through the cureIT project
(#300461) and used resources provided by the Experimental
Infrastructure for Exploration of Exascale Computing (eX3),
supported by the Research Council of Norway (#270053).

4 Artifact demo video: https://youtu.be/CBcaPJgpi-o

200



REFERENCES

[1] T. Wong, M. Wagner, and C. Treude. “Self-adaptive systems: A
systematic literature review across categories and domains.” In:
Information and Software Technology (IST) 148 (Aug. 2022),
p. 106934. ISSN: 0950-5849. DOI: 10/gp6krm.

[2] I. Gerostathopoulos, T. Vogel, D. Weyns, and P. Lago. “How
do we Evaluate Self-adaptive Software Systems?: A Ten-Year
Perspective of SEAMS.” In: Int’l Symp. Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). IEEE, May
2021, pp. 59–70. ISBN: 978-1-66540-289-7. DOI: 10/gmvfd2.

[3] W. F. Passini, C. A. Lana, V. Pfeifer, and F. J. Affonso. “Design
of frameworks for self-adaptive service-oriented applications:
A systematic analysis.” In: Software: Practice and Experience
(SP&E) 52.1 (2022), pp. 5–38. ISSN: 1097-024X. DOI: 10 /
gpd4x4.

[4] A. O. de Sousa, C. I. M. Bezerra, R. M. C. Andrade, and
J. M. S. M. Filho. “Quality Evaluation of Self-Adaptive
Systems: Challenges and Opportunities.” In: Brazilian Symp.
Software Engineering. ACM, Sept. 2019, pp. 213–218. ISBN:
978-1-4503-7651-8. DOI: 10/gpd4xj.

[5] S. Ghahremani and H. Giese. “Evaluation of Self-Healing
Systems: An Analysis of the State-of-the-Art and Required
Improvements.” In: Computers 9.1 (Mar. 2020), p. 16. DOI:
10/gkgf26.

[6] M. A. Naqvi, S. Malik, M. Astekin, and L. Moonen. “On Eval-
uating Self-Adaptive and Self-Healing Systems using Chaos
Engineering.” In: IEEE Int’l Conf. Autonomic Computing and
Self-Organizing Systems (ACSOS). Sept. 2022, pp. 1–10. DOI:
10/grdjz4.

[7] D. Weyns. An introduction to self-adaptive systems: a contem-
porary software engineering perspective. Wiley, 2021. ISBN:
978-1-119-57494-1.

[8] J. Kephart and D. Chess. “The vision of autonomic comput-
ing.” In: Computer 36.1 (Jan. 2003), pp. 41–50. ISSN: 0018-
9162. DOI: 10/c3t3bc.

[9] M. Filho, E. Pimentel, W. Pereira, P. H. M. Maia, and
M. I. Cortes. “Self-Adaptive Microservice-based Systems -
Landscape and Research Opportunities.” In: Int’l Symp. Soft-
ware Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, May 2021, pp. 167–178. ISBN: 978-1-66540-
289-7. DOI: 10/gp6kr2.

[10] S. R. Boyapati and C. Szabo. “Self-adaptation in Microservice
Architectures: A Case Study.” In: Int’l Conf. Engineering of
Complex Computer Systems (ICECCS). Mar. 2022, pp. 42–51.
DOI: 10/gq35n3.

[11] A. Banijamali, P. Kuvaja, M. Oivo, and P. Jamshidi. “Kuksa*:
Self-adaptive Microservices in Automotive Systems.” In:
Product-Focused Software Process Improvement. Ed. by M.
Morisio, M. Torchiano, and A. Jedlitschka. Springer Interna-
tional Publishing, 2020, pp. 367–384. ISBN: 978-3-030-64148-
1. DOI: 10/gjpm6d.

[12] N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl. “De-
veloping Self-Adaptive Microservice Systems: Challenges and
Directions.” In: IEEE Software 38.2 (Mar. 2021), pp. 70–79.
ISSN: 0740-7459, 1937-4194. DOI: 10/gp6ksx.

[13] D. M. Barbosa, R. G. d. M. Lima, P. H. M. Maia, and E. C.
Junior. “Lotus@Runtime: A Tool for Runtime Monitoring and
Verification of Self-adaptive Systems (Artifact).” In: Dagstuhl
Artifacts Series 3.1 (2017), 7:1–7:5. ISSN: 2509-8195. DOI:
10/gk5ns9.

[14] J. Porter, D. A. Menascé, H. Gomaa, and E. Albassam.
“TESS: Automated Performance Evaluation of Self-Healing
and Self-Adaptive Distributed Software Systems.” In: Int’l
Conf. Performance Engineering. ACM, Mar. 2018, pp. 40–47.
ISBN: 978-1-4503-5095-2. DOI: 10/gkgf2n.

[15] J. Cámara and R. de Lemos. “Evaluation of resilience in self-
adaptive systems using probabilistic model-checking.” In: Int’l
Symp. Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). June 2012, pp. 53–62. DOI: 10/gp6kr9.

[16] T. M. King, A. A. Allen, Y. Wu, P. J. Clarke, and A. E.
Ramirez. “A Comparative Case Study on the Engineering of
Self-Testable Autonomic Software.” In: Int’l Conf. and Ws.
Engineering of Autonomic and Autonomous Systems (EASE).
Apr. 2011, pp. 59–68. DOI: 10/c75gr5.

[17] A. Basiri, A. Blohowiak, L. Hochstein, and C. Rosenthal. “A
Platform for Automating Chaos Experiments.” In: Int’l Symp.
Software Reliability Engineering Workshops (ISSREW). Oct.
2016, pp. 5–8. DOI: 10/gkf957.

[18] S.-W. Cheng, D. Garlan, and B. Schmerl. “Evaluating the
effectiveness of the Rainbow self-adaptive system.” In: ICSE
Ws. Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). May 2009, pp. 132–141. DOI: 10/dm9jmh.

[19] C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern. “Hogna:
A Platform for Self-Adaptive Applications in Cloud Environ-
ments.” In: Int’l Symp. Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). May 2015, pp. 83–87. DOI:
10/gk5ntg.

[20] W. Delnat, T. Heyman, W. Joosen, D. Preuveneers, A. Rafique,
E. Truyen, and D. V. Landuyt. “K8-Scalar: a workbench to
compare autoscalers for container-orchestrated services (Arti-
fact).” In: Dagstuhl Artifacts Series 4.1 (2018), 2:1–2:6. ISSN:
2509-8195. DOI: 10/gk5ns7.

[21] F. Quin and D. Weyns. SEAByTE: A Self-adaptive Micro-
service System Artifact for Automating A/B Testing. Apr. 2022.

[22] G. A. Moreno, B. Schmerl, and D. Garlan. “SWIM: An
Exemplar for Evaluation and Comparison of Self-Adaptation
Approaches for Web Applications.” In: Int’l Symp. Soft-
ware Engineering for Adaptive and Self-Managing Systems
(SEAMS). May 2018, pp. 137–143.

[23] G. Moreno, C. Kinneer, A. Pandey, and D. Garlan. “DART-
Sim: An Exemplar for Evaluation and Comparison of Self-
Adaptation Approaches for Smart Cyber-Physical Systems.”
In: Int’l Symp. Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). May 2019, pp. 181–187. DOI:
10/gkgfxr.

[24] H. Samin, L. H. G. Paucar, N. Bencomo, C. M. C. Hurtado,
and E. M. Fredericks. “RDMSim: An Exemplar for Evaluation
and Comparison of Decision-Making Techniques for Self-
Adaptation.” In: Int’l Symp. Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). May 2021, pp. 238–
244. DOI: 10/grqbj6.

[25] D. Weyns et al. “Guidelines for Artifacts to Support Industry-
Relevant Research on Self-Adaptation.” In: ACM SIGSOFT
Software Engineering Notes 47.4 (Sept. 2022), pp. 18–24.
ISSN: 0163-5948. DOI: 10/grnqx9.

[26] J. Simonsson, L. Zhang, B. Morin, B. Baudry, and M. Monper-
rus. “Observability and chaos engineering on system calls for
containerized applications in Docker.” In: Future Generation
Computer Systems 122 (Sept. 2021), pp. 117–129. ISSN: 0167-
739X. DOI: 10/gjqvps.

201


