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Abstract—Compositional AI systems, which combine multiple
artificial intelligence components together with other application
components to solve a larger problem, have no known pattern
of development and are often approached in a bespoke and ad
hoc style. This makes development slower and harder to reuse
for future applications. To support the full rapid development
cycle of compositional AI applications, we have developed a novel
framework called (Bee)∗ (written as a regular expression and
pronounced as “beestar”). We illustrate how (Bee)∗ supports
building integrated, scalable, and interactive compositional AI
applications with a simplified developer experience.

Index Terms—rapid development, agile, compositional, artifi-
cial intelligence, framework

I. INTRODUCTION

Delivering applications to users quickly is a cornerstone

of agile development methodologies [1], allowing multiple

iteration cycles to identify and incrementally solve critical

stakeholder problems in response to working applications.

However, rapidly developing software requires a developer

to focus their effort on what is novel about an application,

without distraction from secondary or accidental tasks [2].

Rapidly developing novel systems is difficult today as

applications frequently incorporate various types of artificial

intelligence (AI) methods such as neural networks, symbolic

knowledge representations, reinforcement learning, and others.

Compositional AI systems, which combine multiple AI com-

ponents together with other application components to solve a

larger problem, have no known pattern of development and

are often approached in a bespoke and ad hoc style. This

makes development slower and/or error prone as time needs

to be spent on design or coding with no clear architecture,

distracting the developer’s attention from critical features.

Tools today support rapid development of AI programs to

some extent. For example, Streamlit [3] and Gradio [4] offer a

solution to rapidly create frontends by enabling the developer

of a Python program (the most common language of AI) to

automatically display static data in a web browser and interact

with it through a variety of widgets. However, they do not

solve several critical challenges in creating compositional AI

applications [5], [6]. They offer no support for integrating
multiple AI components, scaling these components on the

needed infrastructure, and building dynamically updating ap-

plications for rich AI and user interaction.

To support the full rapid development cycle of composi-

tional AI applications, we have developed a novel framework

called (Bee)∗ (written as a regular expression and pro-

nounced as “beestar”). This framework enables the developer

to declaratively build a representation of the entire application

(specifying AI components, component and user interactions,

visualizations, and desired scaling) in a graph structure that

(Bee)∗ interprets in order to automatically create and scale the

application. This approach supports rapid application develop-

ment by simplifying the developer’s responsibility to deciding

how to compose AI and GUI elements with declarations,

leaving the task of operationally composing the application

to (Bee)∗.

To leverage the graph created by the developer and operate

at scale, (Bee)∗ follows an agent-oriented [7], [8] approach to

programming, where agents are the computational components

of the program. (Bee)∗ agents are independent run-times that

can take messages to execute their code, coordinate with other

agents, and interact with the user with widgets, through the

graph. As the entire specification of the application is on

the graph, widgets and agents can update the application by

updating the graph and the (Bee)∗ runtime will dynamically

update the application. Further, the graph supports meta-

programming for very dynamic behavior, where agents and

widgets use it to change source code at runtime.

In Section II, we use a compositional AI application built

using (Bee)∗ to show how (Bee)∗ supports integrated,

scalable, and interactive compositional AI applications with a

simplified developer experience. In Section III, we discuss the

feasibility of building with (Bee)∗. In Section IV we discuss

related work. In Section V and VI we discuss future plans and

conclude.

II. (Bee)∗ SYSTEM

(Bee)∗ uses a graph representation to create and dynam-

ically update applications for compositional AI. Figure 1

shows a GUI (called a Dashboard) of a compositional AI

application created with such a graph. Figure 1, , shows

a gallery of training data, where each image has been labeled

as “bulldozer” (green frame) or not (red frame) by the AI

model CLIP [9], or by the user correcting CLIP by clicking

on an image to toggle the label. The CLIP agent is run to label

the images as “bulldozer” in response to the user typing this
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Fig. 1. Dashboard Example.

word into the prompt (Figure 1, ). Once the user is satisfied

with the labels, the user clicks the TranserLearn button (Figure

1, ) to trigger another process that fine-tunes the Xception

model [10] on the labeled data so that it can predict bulldozer

images (validation accuracy per epoch shown in 1, ). Status

(Figure 1, ) and logging (Figure 1, ) widgets show updates

from the AI components.

To create the application in Figure 1, a graph is spec-

ified and executed by the (Bee)∗ architecture (Figure 2).

The major components are (1) (Bee)∗ program, written

by the developer, which declaratively specifies a graph, the

(2) (Bee)∗ graph itself (hosted on some graph database),

(3) agents that are standalone run-times executing different

algorithms/programs and interacting through the graph, and

the (4) Dashboard that is populated with widgets, specified

in the graph, that the user can, in turn, use to view/update the

graph.

A. Graph Representation

We describe a (Bee)∗ graph through an example (Figure 3)

used to create the application shown in Figure 1. Nodes in a

graph are entities, which specify arbitrary concepts (similar to

objects in object oriented programming [11]) with properties

and values. For example, in Figure 3 we have an entity named

Training Data with property data and value link, where link
names where the value is stored (in this case we assume a path

on disk). This entity will be used by the AI components (i.e.,

agents) for training and inference. Further, (Bee)∗ provides a

primitive typing system, so we know that whatever value data
is, it is an array. (Bee)∗ knows the entity type of Training
Data using the edge with name “is a” to the entity named

Entity.

1) Integration with Agents and AgentEntities: In (Bee)∗,

all processes/algorithms/AI components are agents [7], where

an agent is a standalone Python runtime that can take messages

(using a remote procedure call server [12]) and map messages

to different behaviors. When an agent receives the message

“play” it runs its assigned source code, “stop” will stop

execution, and “debug” will run assigned source code with

the Python debugger [13]. The agent itself is specified as an

entity (i.e., AgentEntity) that (Bee)∗ uses to start the agent

and as a place to keep and update properties of the agent.

The agent also uses its AgentEntity specification to locate its

source code to execute on the message “play”. By specifying

the source code as a property of the agent, the agent is able

to reflect on its own source code as data or other agent’s

source code to support meta-programming [14]. Use cases for

this include code injection for logging [15], code optimization

[16], or genetic programming [17] for functional changes.

Further, source code as a property supports the user to debug

and change the agent’s source code at runtime with widgets

described in Section. II-A2.

AgentEntity inherits from Entity and has the properties

source code (defining a function), input and output that specify

an agent that (Bee)∗ can launch and run. In Figure 3, there are

AgentEntities CLIPAgent and CNNAgent, where CLIPAgent
has source code to run the CLIP model [9] to label arbitrary

images. CNNAgent’s source code trains a CNN model (Xcep-

tion [10]). When an agent executes its source code, it runs

by passing the value of its input property to the function and

maps the return value to its output property in its AgentEntity.

In this way, the source code, input, and output are “lifted out”

of the agent’s runtime and usable and modifiable by any other

agents at the graph level, where the agents could be running
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Fig. 2. (Bee)∗ Architecture.

very different source code and living across different servers

on a cluster. As such, agents are able to run code in different

languages (with operating system calls) but input and output
are independent of their language, supporting integration
across languages. This is helpful in scenarios, for example,

where we need to integrate probabilistic programming in Julia

[18] with a model in Python.

2) Display Entities and Input Entities for User Interaction:
(Bee)∗ provides what is called the Dashboard to the user to

interact with and view the state of the graph. Widgets on the

Dashboard are specified by the developer and, just like agents,

widgets are specified as Entities. The developer can specify

DisplayEntities (widgets for viewing), InputEntities (widgets

for changing properties on Entities), and ButtonEntites to

send messages to agents. Custom widgets are possible by

extending these types. Once these Entities are declared, the

Dashboard finds them on the graph and populates its interface

with them. In Figure 3, there is a TrainDataGallery entity of

type GalleryEntity that the Dashboard uses to setup the view

of construction data in Figure 1, , and customizes it’s back-

ground and border using the TrainDataGallery’s properties. A

GalleryEntity can display any images on the graph by adding

a relation specified by an edge (described in next section) from

it to the data source, allowing for changes of data sources at

runtime and dynamic behavior.

3) Agent and User Interaction with Watches and Sets:
Any kind of DisplayEntity (e.g., GalleryEntity) displays data

of interest by specifying an edge to the entity with the

property of interest, where the label on the edge is “watches

〈property name〉”. With this edge, the DisplayEntity is

notified to update on any change of that property’s value. For

example, TrainDataGallery displays the training data because

it “watches data” of the TrainingData Entity. When the data is

updated, (Bee)∗ notifies the TrainDataGallery to also update.

Similarly, an agent is triggered to run its source code if some

property it is interested in changes. In Figure 3, if the property

word of Prompt is changed, then CLIPAgent is triggered to

run its source code because it is watching that property. When

triggered, CLIPAgent’s input property is set to the value of

word and passed as an argument to CLIPAgent’s source code.

To support modularity, the output value of an agent can

update the value of other properties with the sets relation-

ship. In our example, there is an edge from CLIPAgent to

Training Data with label “sets data”, which will set the

value of the data property of Training Data to the output

of CLIPAgent. Using this relation has the advantage that it

decouples AgentEntities and DisplayEntities. For example,

TrainDataGallery, will update with new data without being

coupled to the CLIPAgent agent. Further, InputEntities can also

set values of properties. In Figure 3, we have an InputEntity,

CLIPInputEntity (displayed in Figure 1, ), that sets the value

of word. Since CLIPAgent is watching the value of word, it is

triggered to run when the user typed in “bulldozer” and not

tied to the CLIPInputEntity itself.

Continuing with the example in Figure 3, when the value of

data is set, the user clicks the TransferLearn button (Figure 1,

, but not shown in graph example) to send a message to the

CNNAgent to play its function (specified in its source code)

with data as input. In this case, a CNN model (Xception) used

for classification is fine-tuned with data, and the weights of

the model are stored as type beestar.tensor in the CNNAgent‘s
output property. A DisplayEntity of type GraphEntity (Figure

1, , but not shown in graph example) updates with the

validation accuracy per epoch during training.

B. Scale and Efficiency

Agents themselves run in parallel, supporting parallel com-

putation, and can be automatically deployed locally as pro-

cesses or pods on Kubernetes [19]. Deploying agents on

Kubernetes supports the cases where an agent needs a scaled
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Fig. 3. Part of Graph for Compositional AI Application Example.

1 from beestar.agent_functions import clip

2 prompt = Entity("prompt")

3 input = InputEntity(name="CLIPInputEntity")

4 input.sets(prop="word", entities=[prompt])

5 agt = AgentEntity(name="CLIPAgent", func=clip)

6 agt.watch(prop="word", entities=[prompt])

Listing 1. Example in (Bee)∗ API

environment and high bandwidth (e.g., GPUs and ≥ 10 Gbps

network). For Kubernetes, (Bee)∗ uses a predefined base

container to create an agent pod on Kubernetes, installs the

needed requirements from the agent’s requirements property,

and launches the agent inside the container (mapping ports as

needed at the cluster level). From the developer’s perspective,

they simply change a parameter to deploy locally or on

Kubernetes and specify requirements in the agent’s property,

making it easy for the developer to scale their application.

C. (Bee)∗ Interface and Developer Experience

While the graph can grow in complexity, all the specification

and update logic is handled through (Bee)∗ Interface library

to support a simpler developer experience and enforce the

watches and sets relationships. For declarative specification,

the developer declares they would like an agent, widgets,

entities, and update rules by calling methods in the (Bee)∗
Interface. Listing 1 shows the sequence of calls to create a

prompt Entity, an InputEntity that sets the prompt’s word after

the user types in their keyword, and a CLIPAgent that watches

the word or prompt. With six lines, the (Bee)∗ runtime is able

to create a web application that takes a word from an input

textbox and passes the word to a large foundational model

(CLIP) so that it can run inference.

The (Bee)∗ Interface library also handles update rules.

When any property value is being updated, it has to happen

through the (Bee)∗ Interface (as shown with the boxes on the

edges in Figure 2). On property change, the (Bee)∗ Interface

queries the graph for sets/watches relationships and, in turn,

updates values and notifies watchers as needed. The (Bee)∗
Interface library need not be centralized as long as the update

rules are consistent across all instances.

III. FEASIBILITY OF DEVELOPING WITH (Bee)∗
We looked at how efficient the application in Figure 1 is, to

understand overhead in (Bee)∗, and also explored a breadth of

game applications that can quickly be played by agents. When

running the (Bee)∗ application in Figure 1 on a machine with

one P100 GPU on Kubernetes, we found that the CLIPAgent
was able to label 4000 construction images in 52.1s and the

CNNModel agent trained in 111.7 seconds. Since labeling is

a labor intensive tasks, the speed of the agents speaks to the

feasibility of (Bee)∗ to create programs that are fast enough

to be useful.

We observed how feasible it might be to build a variety

of agents working together to play arbitrary games in Figure

4. In Figure 4, , the DOS [25] game called The Incredible

Machine [20] is being played by a variety of agents. Figure 4,

is a code editor widget for the VNCagent that takes screen

shots of the game (Figure 4, ), and Figure 4, is a code

editor widget for a ObjectDetectorAgent that identifies objects

from VNCagent’s screen shot. The objects detected are set as a

value for the Game Entity, which the gallery widget (Figure 4,

) watches and its images update as the objects update. From

this (Bee)∗ program, we were able to use the same agents and

widgets to play Monkey Island [21], Doom [22], Donkey [23],

and Manic Mansion [24], by only changing the URL of where

the game is being hosted in the graph. Further, the editors for

the agents let the programmer tweak the code in real time for

each game, showing the value meta-programming.
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Fig. 4. Same (Bee)∗ program different games [20]–[24].

IV. RELATED WORK

Borowski, et al. present the Varv [26] declarative program-

ming language that supports building a website live in the

browser, where components live in the DOM [27] of the

browser. Similarly, Perez De Rosso et al. present a declarative

framework for websites with components called concepts

[28]. While (Bee)∗ is declarative and supports dynamic

applications, it differs in that it can declaratively integrate

AI components, where the AI could be in other languages,

frameworks, and infrastructure that are outside the browser,

and, additionally, it can integrate agents with GUI elements

in a browser. Together, these features provide a framework

for integration, interaction, and scale of AI components not

previously supported.
In the AI literature, using a graph to integrate agents has

been demonstrated by Goertzel, et al. with the OpenCog

framework [29], where the focus is on collaboration among

agents. Our work addresses using a graph to also integrate

application components (e.g., GUI components).
Low code frameworks (e.g., Node-Red [30], ConveyorAi

[31], and Patterns [32]) use a directed graph to specify the

execution and information flow of services. In contrast, we

present a graph that is a shared knowledge representation,

using a blackboard architecture, that is used and reflected

on by agents and users for interaction and collaboration, but,

further, includes components to specify a rich user interface.

V. FUTURE PLANS

Future work includes both an in depth evaluation of (Bee)∗
to rapidly prototype compositional AI applications and also

demonstrations of using the framework to further illustrate the

power of the approach of agents collaborating over the graph.

For evaluation, we will measure the speed developers can

create AI applications with (Bee)∗ versus popular approaches

today. For demonstration, we will show agents searching the

graph for other agents to “outsource” work to them, show

gradients passed across agents so they learn together, and show

public graphs to share agents and widgets across developers.

VI. CONCLUSIONS

(Bee)∗ is a novel rapid development framework for compo-

sitional AI applications. We demonstrated how a developer can

declaratively specify agents, widgets, and their relationships

for rapidly integrating and scaling dynamic compositional AI

applications. With the sets and watches relationships between

agent and widget entities, (Bee)∗ provides a dynamic agent

and user interaction. For integration across different kinds of

agents, (Bee)∗ integrates agents and widgets at properties in

the graph and not inside the agent. (Bee)∗ supports scale and

parallelism by running agents in parallel and on Kubernetes.

We looked at examples to explore the feasibility of building

compositional AI with (Bee)∗. We showed CLIP and CNN

models collaborating as agents to label thousands of images

and train a CNN model in minutes. Further, we observed

the modularity of (Bee)∗ by showing game playing agents

cooperating across five different DOS games, where only the

URL of the game changed across each of the applications.
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