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Abstract—Identifying the origins of potentially injected
defects in implementation activities during requirement analysis
and design activities is challenging, but leads to the prevention
of defects, which are burdensome to correct. This study
investigates whether such defect injection risks can be
generalized and defined by risk occurrence conditions of the
objects in the existing analysis and design diagrams and whether
the defined defect injection risks are applicable to other analysis
and design diagrams. Specifically, we identify defect categories,
which are injected after analysis and design activities and
subsequently detected during system testing of commercial
products developed at Sony. Then, regarding the defect
categories as the exposed defect injection risks, we define defect
injection risks with the objects defined in the analysis and design
diagrams of the products. Each defect injection risk consists of
risk description, diagram type, and occurrence conditions of
objects in the diagrams. Afterwards, we evaluate whether the
defined defect injection risks appear in the analysis and design
diagrams of three different products under development and
five publicly available analysis and design diagrams. The results
showed that three defect injection risks were defined and that
the two risks appear in the analysis and design diagrams of the
three products and the remaining one appears in the analysis
and design diagrams of two products. The results also showed
that one defect injection risk is present in all five publicly
available analysis and design diagrams, and two risks appear in
four of the diagrams. The three defect injection risks are general
enough to identify risks in analysis and design diagrams from
other domains. Developers can be more cautious about the risks
and prevent defect injections with the defect injection risks.

Keywords— defect prevention, use case driven development,
model-based development, risk ontology

I. INTRODUCTION

Software quality has become more important as the
number of devices and appliances relying on software
increases. A promising quality improvement approach is
validation using requirement analysis and design artifacts.
Validating and correcting analysis and design artifacts and
identifying the origins of potentially injected defects can
prevent defects in subsequent coding and testing activities.
Raghuraman et al. compared the number of issue reports
describing bugs between GitHub repositories with and
without UML diagrams [1]. On average, repositories without
UML diagrams contain more issues on bugs than those with
UML diagrams.

Many studies have proposed analysis and design
validation approaches [2][3][4][5][6][7]. Conradi et al
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devised a method to detect omissions and inconsistencies by
comparing different kinds of UML diagrams [2]. Egyed
developed a method to detect inconsistencies by predefined
rules comparing sequence diagrams and class diagrams [3].
Lange et al. investigated detected defects in UML diagrams
and categorized the defects into defect types [4]. The results
showed that defect types include “method not called in
sequence diagram” and “use case without sequence diagram.”

Some studies have proposed methods to verify
consistencies in analysis and design diagrams with formalized
conditions. David et al. developed a formal verification
method to verify UML diagrams using a series of events and
pre- and post-conditions defined in the object constrained
language [6]. Menher et al. devised a method to detect a
critical pair of use cases by applying graph transformation
rules on activity diagrams [7]. Although these studies aimed
at detecting omissions and inconsistencies in analysis and
design diagrams and pairs of conflicting use cases, they did
not detect nor refer to potential defect injection risks in
subsequent development activities. Moreover, most of these
studies required a large effort because exhaustive verification
or formalization of the analysis and design diagrams was
assumed.

Other studies have identified risks from design diagrams
[81[9][10][11]. These risks include not only defects in the
design diagrams such as omissions and inconsistencies but
also the runtime risks and origins of potentially injected
defects in subsequent development activities without careful
considerations. UML HAZOP [8] detects risks by identifying
deviations in UML diagrams by applying guidewords to use
case diagrams, sequence diagrams, and state machine
diagrams. CORAS [9] identifies security risks by applying
guidewords to UML diagrams. VIKOR [10] detects reliability
risks by performing FMEA (Failure Mode and Effect
Analysis) on events included in a use case. Specifically,
VIKOR extracts events from a use case, performs FMEA on
each event, and identifies reliability risks such as noise
immunity of the communication channel. Oveisi et al.
proposed a method to identify reliability risks of objects and
events extracted from sequence diagrams by performing FTA
(Fault Tree Analysis) [11]. These studies identified risks of
potential defects, which were not defects when the design
diagrams were created, but could be injected in subsequent
development activities. Although these studies did not require
exhaustive formalization or evaluation, the deviation analyses
used brute force approach using guidewords, failure modes, or
fault trees to exhaustively enumerate potential deviations.
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Fig. 1. Example of a sequence diagram with a defect injection risk

Thus, analysts must determine whether each deviation may
occur. Such analyses are limited to high-cost absorption
domains such as safety- and security-critical domains because
they are burdensome.

Some studies have constructed ontologies for early risk
identification [12][13][14]. The risk ontologies consist of
general risks along with the software development lifecycle
such as a larger size of the software, requirement stability, and
domain knowledge of the development team. These studies do
not require exhaustive formalization or evaluation or brute
force deviation analysis.

No studies referred to the identification of general, not
specific to safety or security, defect injection risks in
subsequent development activities to design activities from
analysis or design diagrams. The defect injection risks are
risks of omitted or incorrect implementation. The risks can be
predicted from analysis and design diagrams but are not
defects in the diagrams at the point of analysis and design
activities. For example, a sequence diagram can include (a) a
message between objects in the same computer and (b) a
message between objects in different computers joined by an
unstable network connection. Although the messages require
different implementations, the sequence diagram represents
the messages as the same type of elements (arrows).
Programmers in subsequent development activities cannot
always pay attention to such implicit difference from the
sequence diagram. More specifically, the programmers must
consider resend and timeout for message (b) due to the
unstable network, whereas resend and timeout for message (a)
are not always necessary. Note that the sequence diagram does
not include a “missing resend and timeout” defect in the
design activity because detailed implementations (message
within the same computer and message via an unstable
network) are usually not determined at this point. However,
once the detailed implementations for the sequence diagram
are determined, the defect injection risk for missing the resend
and timeout in subsequent coding activity and failing to
validate the resend and timeout in subsequent testing can be
identified.

This paper aims to generalize the defect injection risks
using elements in the analysis and design diagrams. First, we
categorized defects detected in the testing of commercial
products at Sony to identify the candidates of defect injection
risks. Second, we generalized the categories of defects as
defect injection risks by defining risk occurrence conditions
using elements of the analysis and design diagrams developed
in the products. Finally, we evaluated whether the defect
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Fig. 2. Generalized example of a sequence diagram with a defect
injection risk

TABLE 1. EXAMPLE OF A DEFECT INJECTION RISK /,
Risk description d, Type of Occurrence conditions of
diagram #, objects 4
Incorrect  execution | S ® Execution specifications s, and
results due to an s, of Object2 have an execution
execution dependency. (Ex. Execution
dependency specification s, should finish

before execution specification s,
is started)

Execution specification s, is
asynchronously started.

injection risks are present in the analysis and design diagrams
of other commercial products at Sony and publicly available
ones. This study aims to answer the following research
questions:

RQI1: Can defect injection risks be identified and
generalized from analysis and design diagrams?

RQ2: Are defect injection risks applicable to other analysis
and design diagrams?

II. BACKGROUND AND RELATED RESEARCH

A. Defect Injection Risk

Defect injection risks indicate behaviors and structure that
are defined in analysis and design diagrams and need careful
implementation and validation in subsequent development
activities. Reviews with analysis and design diagrams can
detect defect injection risks, which predict the behaviors and
structure require careful implementation and validation in
subsequent development activities. After the reviews, being
cognizant of defect injection risks can prevent injecting
defects in subsequent coding activity and failing to detect
such defects in subsequent testing activity. Prevention should
eliminate the rework effort to correct defects.

Defect injection risks differ from defects, including
inconsistent and omitted objects, noted in analysis and design
diagrams. Although analysis and design diagrams are
accurate when they are created, they can be vulnerable to
defect injection risks because they cannot identify future
defects generated in subsequent development activities. Fig.
1 shows an example of defect injection risk in a sequence
diagram for EPG (Electronic Programming Guide) for TV
products. First, Decoder sends “l. store(part_of epg data)”
asynchronous message to EPG. EPG receives and updates
data in EPG. Second, Decoder sends “2. update()”
asynchronous message to PresentationEngine. Third,
PresentationEngine sends “3. get()” synchronous message to




TABLE IL

EXAMPLE OF ELEMENTS OF ANALYSIS AND DESIGN DIAGRAMS

U: Use case diagram

Diagram type Element Description
Class Class is a container of classifier whose features are attributes and operations. A class describes
C: Class diagram a set of objects that share the same specifications of features, constraints, and semantics.
Relationship Relationship represents an abstract interaction, including Association, Aggregation,
Dependency, and Generalization, between classes.
Class Class is a kind of classifier whose features are attributes and operations. A class describes a
L set of objects that share the same specifications of features, constraints, and semantics.
D: domain diagram Relat - - - - o - - P
elationship Relationship represents an abstract interaction, including Aggregation and Generalization,
between classes.
Actor Actor specifies a role played by a user or any other system that interacts with the subject.
Use case Use case specifies a set of actions performed by its subjects, which yields an observable result

for one or more actors or other stakeholders of the system.

Relationship

Relationship represents an abstract interaction, including Include and Extend, between use
cases.

Extension Point

Extension Point identifies a point in the behavior of a use case where the behavior can be
extended by the behavior of some other (extending) use case, as specified by an Extend

relationship.

Boundary Boundary is a type of object and interfaces with system actors
X Entity Entity is a type of object and represents system persistent data.
R: Robustness - - - - -
diagram Controller Controller is a type of object and mediates between boundaries and entities.
g Relationship Relationship represents an abstract interaction including communication associations, data
flow, and control flow among objects.
Lifeline Lifeline represents that an individual object participates in the interaction.
Message Message represents a flow from sender to receiver. Message type includes Asynchronous,

Synchronous, Reply, Object creation, and Object deletion.

S: Sequence diagram | Execution Specification

Lifeline.

Execution Specification represents the execution of a unit of behavior or action within the

Combined Fragment

Combined Fragment is defined by an interaction operator and corresponding interaction
operands including opt, loop, and break.

Robustness Diagram: R1 Robustness Diagram: R2

Class Diagram: C

el +c2

+cl ?

+c3

T

AN AN
Sequence Diagram: S1 Sequence Diagram: S2
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Fig. 3. Relationships between analysis and design diagrams

EPG and EPG sends ‘“entire epg data” message to
PresentationEngine. Fourth, PresentationEngine invokes “4.
display(entire epg data)” of PresentationEngine. In this
sequence diagram, if the execution specification after
receiving “l. store(part of epg data)” message does not
finish before EPG receives “3. get()” message, the results
“entire_epg_data” may be incorrect. If the asynchronous
message “1. store(part of epg data)” cannot be replaced
with a synchronous one, developers must pay attention to the
implementation and validation of “3. get()” and “I.
store(part_of epg data)” messages. If the asynchronous
message can be replaced with a synchronous one, developers
can detect the asynchronous message as a defect and correct
the message type in the sequence diagram. However, if the
message type cannot be changed due to other constraints such
that Decoder must send and notify other messages,
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developers must pay attention to the dependency between the
execution specification and the message.

Defect injection risk /; is defined as tuple Iy = (dk, &, ux),
where di denotes the description of defect injection risk /s, #
denotes the types of diagram, and u; denotes the occurrence
conditions of elements in the diagrams. Fig. 2 shows a
generalized example of a sequence diagram with the defect
injection risk /, shown in Fig. 1. In Fig. 2, Object2 receives
message 7 and starts execution specification s;. If Object2
receives message mp and starts execution specification s,
before Object2 finishes execution specification si, return
value “value” may be incorrect. Table I defines risk /, for this
example. Developers will be able to prevent injecting defects
indicated by defect injection risk 7, if they consider all of the
execution dependencies of each message. However, this will
be difficult in real use software because the number of
asynchronous message and execution specifications can be



much larger. The defect injection risk for a given sequence
diagram limits the consideration to specific area, whereas
without such a defect injection risk, developers must consider
all dependencies.

B. Analysis and Design Diagrams

Stepwise refinement approaches, including use case
driven development, elaborate the structure and behavior of
software using analysis and design diagrams. Specifically,
the structure is elaborated describing use cases U, domain
diagram D, and class diagram C. The behavior is elaborated
in the order of use case U= {U\, U, ..., Uy}, the robustness
diagram R = {Ry, Ra, ..., R,}, and then the sequence diagram
S={S1, S, ..., Su}. Use case Uy corresponds to robustness
diagram Ry and sequence diagram S;. Consistencies between
the structure and behaviors can be checked among these
diagrams.

Fig. 3 shows the relationships among diagrams R, C, and
S. Class diagram C includes classes corresponding to objects
(b1, c1, ¢2, €1, and e>) in robustness diagram R; and sequence
diagram S and classes corresponding to objects (b2, ¢3, cs, 1,
and e3) in R, and S>. Some objects appear in multiple
diagrams among the same type of diagrams. For example,
object e; appears in diagrams R; and R». Additionally, as
defined in class diagram C, the aggregation relationship
between objects e, and e3 hold in diagrams Ry, R, Si, and S>.

This study refers to the types of objects in a certain
diagram as its elements. Table Il shows an example of the
elements of analysis and design diagrams. To address RQI,
we attempt to define the defect injection risk using analysis
and design diagrams and their elements.

C. Related Research

1) Defect Detection in Design Diagrams

Previous studies have proposed methods to detect
omissions and inconsistencies in design diagrams [2]
[31[5][15]. Conradi et al. proposed a method to detect
inconsistencies by comparing two or more UML diagrams [2].
The results of the evaluation showed that their proposed
method detects defects other than those in usual UML diagram
reviews. Egyed proposed a method to detect inconsistencies
among UML sequence diagrams and class diagrams using 24
predefined rules, including “Name of message must match an
operation in receiver’s class.” [3] Rao et al. proposed a method
to detect inconsistencies among design diagrams by 13
predefined rules [16]. The redefined rules check for
inconsistencies among class and sequence diagrams, sequence
and collaboration diagrams, class and state machine diagrams,
sequence and state machine diagrams, use case and class
diagrams, and activity and class diagrams.

Kamalrudin et al. proposed a method to detect defects
from use case scenarios written in a natural language
employing a tool to match the templates and the written use
case scenarios [17]. The templates are common abstracted
interactions extracted from use cases. Hausmann et al.
proposed a method and implemented a tool to detect conflicts
in functional requirements by predefined graph transformation
rules. The graph transformation rules check for dependencies
and constraints among the objects described in use case
scenarios [18].

Jurkiewicz et al. proposed a method called H4U to detect
omissions of events in use cases [19]. H4U uses the eleven

423

guidewords defined by Redmill [20] to detect omissions of
events for alternative flows in the use case. An evaluation with
18 students and 82 practitioners showed that H4U can detect
numerous event omissions. Srivatanakul et al. proposed a
method to elicit security requirements using HAZOP [21].
Specifically, their method applies HAZOP guidewords to
clements of use case scenarios and use case diagrams. As an
example, they applied the guideword “more” to a use case
“purchase” and identified a security requirement “Excessive
order cannot be performed.”

Bazyan and Krashuak proposed a metric to measure the
number of UML document assessments by investigating the
update histories of UML documents, consistencies among
UML documents, and consistencies of the operator names
among UML diagrams [22]. They also implemented a tool for
the proposed method and evaluated their method via usability
interviews. David et al. implemented a tool to perform FMEA
on software components defined by UML or SysML [6]. Their
tool applies failure modes categorized by software component
types to the software components in UML or SysML using
pattern matching. Mens et al. proposed a method to detect
inconsistencies among UML diagrams by applying graph
transformation rules [23]. For example, the graph
transformation rules detect inconsistencies, including the
names of elements in the UML diagrams. Jurack et al.
proposed a method to indicate omissions and inconsistencies
in the activity diagrams by extracting pre- and postcondition
rules of the elements in the activity diagrams [24].

The above studies aimed to detect defects in use cases and
design diagrams themselves. In contrast, this study aims to
identify defect injection risks in subsequent development
activities from the design diagrams.

2) Risk Identification in Design Diagrams

Some studies detected risks in runtime or defect injection
risks in subsequent development activities after design
activities from design diagrams instead of detecting omissions
and inconsistencies in design diagrams. Such studies detected
security risks [9][21], safety risks [8], and reliability risks
[10][11]. CORAS [9] identifies security risks by applying
guidewords to the elements in the given UML diagrams. For
example, CORAS identified a risk of “unauthorized transfer
of money” by applying the guideword “other than” to a
sequence diagram specified from the use case “payment” for
an online shopping service.

Guiochet proposed UML HAZOP for human-robot
interactions [8]. It identified potential safety risk behaviors
described in the UML use case, sequence, and state diagrams
by applying six guidewords: “no/none,” “other than,” “as well
as,” “part of,” “early,” and “late.” For example, a safety risk
“the patient tries to stand up while the robot is not properly
positioned” was identified with a use case “the robot is in front
of the patient” and the guideword “no/none.”

Studies have identified risks in runtime [10][11]. VIKOR
identifies risks by performing FMEA for events extracted
from a use case. For example, identified risks from an
extracted event “data transmission from a sender to a receiver”
were: “A device sending data may malfunction,” “A device
receiving data may malfunction,” “Sent data may be
incorrect,” and “Communication bandwidth may be narrow
due to noise.” Oveisi et al. proposed a method to identify risks
by performing FTA on events and objects described in
sequence diagrams [11]. An example of their risks was



missing considerations for the startup order of the sub-
components in the runtime. Mehner et al. proposed a method
to detect critical pairs among use cases by applying graph
transformation rules to activity diagrams [7]. As an example,
a use case conflict was detected in the use cases “paying flight
tickets” and “redeeming flight tickets.”

3) Code Smell

Code smell is a set of design anti-patterns (design risks)
identified from the source code. Refactoring the identified
design anti-patterns allows the source code to be easily
evolved or modified. Fowler defined refactoring as “the
process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves
its internal structure.” The main idea is to improve the internal
structure (design), while avoiding future problems, especially
for maintenance [25]. Kim et al. investigated the benefit of
eliminating code smells [26]. Mofa et al. proposed a tool to
detect code smell patterns to recommend refactoring [27].
Some studies prioritized identified code smells for refactoring
[28][29]. While these studies focused on change risks, our
study aims at identifying defect injection risks from design
diagrams.

4) Ontology

Some studies have constructed ontologies for early risk
identification [12][13][14]. Menezes et al. identified general
software development project risks [12]. The project risks
include the size of the software, requirement stability, and
development experience in the same domain. Abioye et al.
proposed an approach to estimate software development risks
along with their risk ontology. The risk ontology consists of
potential risks along with the software development lifecycle,
including requirement elicitation and requirement analysis
[13]. Tsoumas and Grizalis proposed a security risk
management method with risk ontology [14]. Because these
studies employed risk ontology, they did not require
comprehensive defect detection or risk identification.
However, none of them identified defect injection risks in
subsequent development activities using analysis or design
diagrams.

III. CASE STUDY

A. Goal and Research Questions

The goal of this study is to investigate whether defect
injection risks can be identified from analysis and design
diagrams and whether the identified risks are applicable to
other analysis and design diagrams. Specifically, this study
answers the following research questions:

e RQI: Can defect injection risks be identified and
generalized from analysis and design diagrams?

e RQ2: Are defect injection risks applicable to other
analysis and design diagrams?

To answer these research questions, this study conducted
a case study at Sony. For RQIl, an analyst manually
categorized defects detected during system testing to find
exposed defect injection risks. Afterwards, the analyst
investigated whether the defect injection risks could be
identified in analysis or design activities. This investigation
assumed that the defect injection risks can be identified in
analysis or design activities when the risks are defined with
occurrence (exposure) conditions using the elements in the
analysis or design diagrams developed for the products. For
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TABLEIIl.  PRODUCTS FOR RQ1

o

._‘._‘_‘_‘._‘._a._.
RNV EN SIS

Product
Professional video camera A
Professional video camera B
Professional video camera C
Professional video camera D
Consumer camera
Security camera
Medical display

Components
User interface components
User interface components
User interface components
All components
All components
All components
All components

TABLEIV. PRODUCTS FOR RQ2
D Product Components
2-1-1 | Blu-ray disc player & recorder A All components
2-1-2 | Blu-ray disc player & recorder B All components
2-1-3 | Professional video camera E All components
TABLEV.  PUBLICLY AVAILABLE DIAGRAMS FOR RQ2
ID Domain Diagram Number of Reference
Type diagrams
2-2-1 | Online bookstore R 7 | [30]
2-2-2 | Automated teller N 4 | [31]
machine
2-2-3 | Address book N 10 | [32]
2-2-4 | Library system N 4 | [33]
2-2-5 | Employee R 6 | [34]
attendance system

RQ2, an analyst evaluated whether the defined risks are
applicable to analysis or design diagrams developed in other
products and whether the defined risks are applicable to
publicly available analysis and design diagrams.

B. Case Study Selection

For RQI, we selected analysis and design diagrams and
defect repositories of seven commercial products developed at
Sony. Each product contains analysis and design diagrams and
a defect repository. Table III summarizes the selected
products. Each software consists of sub-components with the
corresponding development sub-teams. As shown in Table III,
we did not select the entire software of a product but sub-
components for software 1-1, 1-2, and 1-3 because we could
easily ask questions and have discussions with the
corresponding development teams. We considered that these
conversations with the developers were more important than
analyzing all the components.

For RQ2, we selected the analysis and design diagrams of
three commercial products under development at Sony and
five publicly available analysis and design diagrams. Here,
products under development were used because the software
was not exposed to defect injection risks and the developers
also considered and recalled such risks. Table IV summarizes
the selected products. Similar to the criterion for RQ1, we
selected products that we can easily ask questions and have
discussion with the development teams. Additionally, we
selected five publicly available analysis or design diagrams
via a search engine to investigate whether the identified risks
are applicable to other software than that developed at Sony.
Table V summarizes the selected analysis and design
diagrams.

C. Data Collection

For defect injection risks in RQI, we used the defects
detected during system testing of products shown in Table II1.
Table VI shows the recorded items in the defect repositories.
We selected defects, which were injected in subsequent
activities after requirement analysis and were detected in



TABLE VL.  RECORD ITEMS IN DEFECT REPOSITORIES FOR RQ1
Name Type Description
Defect description | Free text Explanation of the defects, including
phenomena, reproduction procedure,
and expected results
Detected activity Choice One of the following: requirements,
design, coding, integration testing, or
Injected activity Choice system testing
Cause Free text Cause of the defect
Correction Free text Explanation to fix the defect
Component Choice Name of sub-component of software
TABLE VII.  DEFECT TYPES DEFINED IN [37]
Type Description
Logic Defects made with comparison operations, control flow, and
computations and other types of logical mistakes
Interface Mistakes made when interacting with other parts of the
software such as an existing code library, a hardware device, a
database, or an operating system
Timing Defects that are possible only in multi-threaded applications
where concurrently executing threads or processes use shared
resources
Resource | Mistakes made with data, variables, or other resource
initialization, manipulation, and release
Function | Functionality is missing or designed incorrectly

<

system testing using the “detected activity,” “cause,” and
“injected activity” records defined in Table VI. Specifically,
we selected defects detected in system testing using the
“detected activity” record. Then, we narrowed down the
defects to defects injected after requirement activity using the
“injected activity” record. Finally, we further narrowed down
the defects to defects that could be detected prior activities
using the “cause” record. In Sony, some detected defects were
analyzed in retrospective meetings (Kaizen meetings) after the
development to investigate prevention or detection in prior
activities to improve the practices and processes. The “cause”
record included the analysis results of the meetings.
Additionally, we limited the defects by the “component”
record for products 1-1, 1-2, and 1-3. For RQ1 and RQ?2,
analysis and design diagrams were use case, robustness,
sequence, domain, and class diagrams.

We selected publicly available analysis and design
diagrams to answer RQ2 using the following procedure:

1) Web search with a search engine: We searched books
and articles with search keywords “use case driven,”
“ICONIX,” or “UML development” using Google scholar. If
the books or literature in the search results referred to
diagrams in other books or articles, we referred to these books
or articles.

2) Sufficient diagrams: We checked whether the required
diagrams (diagram type) defined by the defect injection risks
# were included or not.

D. Analysis Procedure

For RQ1, Analyst A initially identified and generalized
defect patterns, which can be regarded as exposed defect
injection risks. The analyst used ODC (Orthogonal Defect
Classification) [35], which is a major analysis technique to
identify frequent defect patterns (Procedure 1-1). Then
Analyst B validated the results. Afterwards, Analyst A
generalized the defect patterns as defect injection risks using
the analysis and design diagrams and their elements
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(Procedure 1-2). Analyst B validated the results of Procedure
1-2.

For RQ2, Analyst A evaluated whether the defect injection
risks in RQI1 were applicable to the analysis and design
diagrams in products in development at Sony (Procedure 2-1).
Developers of each product validated the results of Procedure
2-1. Furthermore, we evaluated whether the defect injection
risks were applicable to publicly available analysis and design
diagrams (Procedure 2-2). Analyst C validated the results of
Procedure 2-2. All analysts were practitioners with product
domain knowledge and five or more model-based
development experience. Analysts A and B are the authors of
this paper. The developers of the products and Analyst C are
not.

Procedure 1-1: Defect pattern identification Analyst A
identified defect patterns using ODC in defects described in
Section III.C for each product shown in Table III. The analysis
used the ODC attribute “defect type” and recorded item
“component,” which are common attributes to reveal
categories of defects in specific components [36]. We used the
ODC attribute “defect type” defined in the literature [37]
(Table VII). Analyst A selected defect categories, which were
common among the products. Analyst B validated the
identified defect patterns. If Analyst B had questions or
concerns about the defect patterns, Analysts A and B
discussed until a consensus was reached. If necessary, the
defect pattern was changed.

Procedure 1-2: Defect injection risk definition Analyst A
defined defect injection risks using the analysis and design
diagrams and their elements for the defect patterns identified
in Procedure 1-1. Analyst B validated the defined defect
injection risks. If Analyst B had questions or concerns about
the defect injection risks, Analysts A and B discussed until a
consensus was reached. If necessary, the defect injection risk
was changed.

Procedure 2-1: Evaluation with diagrams developed at
Sony Analyst A evaluated whether the defect injection risks
defined in Procedure 1-2 were present in the analysis and
design diagrams developed for the products shown in Table
IV. For each product, the results included which defect
injection risk was applicable to the analysis and design
diagrams and their elements. Two or more developers of the
products validated the results for their own products. If the
developers had questions about the results or disagreed, they
discussed with Analyst A until a consensus was reached. If
necessary, the result was changed.

Procedure 2-2: Evaluation with publicly available
diagrams Analyst A evaluated whether the defect injection
risks defined in Procedure 1-2 appeared in the publicly
available analysis and design diagrams shown in Table V. If
publicly available diagrams included omissions or ambiguity,
Analyst A complemented or corrected the diagrams because
we observed omitted and incorrect objects in publicly
available analysis and design diagrams in our preliminary
survey. The evaluation results employed the same format as
that in Procedure 2-1. Analyst C validated the results. Analyst
C also validated the complements and corrections, if
applicable. If Analyst C had questions or concerns, Analysts
A and C discussed until a consensus was reached. If necessary,
the results, complements, and corrections were changed.



TABLE VIIL IDENTIFIED DEFECT PATTERNS
ID Description Product ID
1-1 1-2 1-3 1-4 1-5 1-6 1-7
D, | Data access confliction 15% 9% 20% 14% | 23% 9% 0%
D, | Insufficient performance due to resource shortages 0% 0% 0% 12% | 12% | 11% | 14%
D; | Insufficient exceptional or alternative implementations for specific 26% | 27% 26% 10% 0% 7% | 38%
parameter values

TABLE IX. DEFECT INJECTION RISKS
ID Risk description dx Type of Occurrence condition ux
diagrams #
1 Insufficient implementation to prevent U, Rand either ' Two use cases U, and U, in use case diagram U can be concurrently executed.
data access confliction (Implementation | CorD . .
of an object or controller should consider ® (1) or (2) is applicable. . . .
the possibility that the value is changed (1) Controller ¢; in robustness diagram R; (corresponding to U;) and controller ¢; in
by another implementation of the object robustness diagram R, (corre§ponding_to Uz) have connect{on to the same entity e;.
(2) Controller ¢, has connection to entity e, in robustness diagram R, and controller
or controller) . . . . : .
¢, has connection to entity e, in robustness diagram R, Class diagram C or domain
diagram D defines a relationship between entities e; and e,.
U, Sand either ' Two use cases U, and U, in use case diagram U can be concurrently executed.
CorD
® (1) or (2) is applicable.
(1) Message m; in sequence diagram S (corresponding to U,) and message m, in
sequence diagram S, (corresponding to U) are sent to the same object o;.
(2) Message m; in sequence diagram S| is sent to object 0, and message m, in
sequence diagram S; is sent to object 0,. Class diagram C or domain diagram D
defines a relationship between objects 0, and 0».
L Insufficient implementation for | Rand either Cor e Controller ¢, has a connection to entity e; in robustness diagram R;.
performance or resource shortage D . Lo . . .
(Implementation of receiver should ® Class diagram C or domain diagram D defines that entity e, has various sizes of data.
consider the variance gfthe time rgqulred S and either C or o Object o; in sequence diagram S, has execution specification s, for data manipulation.
by the sender, depending on data size) D
® Class diagram C or domain diagram D defines that the object o, has various sizes of
data.
I Insufficient exceptional or alternative R and cither C o Controller ¢, has a connection to entity e; in robustness diagram R;.
implementations for specific values of orD o . .
parameters (Implementations of a ® Domain diagram D or class diagram C defines the value range of entity e;.
controllgr or object shou]d consider @ Controller ¢, defines the operation requiring the consideration for the value of entity
alternative or exceptional cases, er¥
depending on the specific values)
S and either C or @ Execution specification s; of object o, receives message m; in sequence diagram S;.
D
® Domain diagram D or class diagram C defines the value range of attribute a; of
object 0.
® Execution specification s, defines the operation requiring the consideration for the
value of attribute a. **

* If the operation defined in controller ¢; refers to the value of entity ei, the operation must consider exceptional or alternative implementations depending on the value. If the operation updates the value of
entity e, the operation ¢; must verify whether the value is appropriate or not.
** If the implementation of execution specification si refers to the value of attribute @i, the implementation must consider exceptional or alternative implementations depending on the value. If the
implementation updates the value of attribute a1, the implementation must verify whether the value is appropriate or not.

IV. RESULTS

A. Defect Injection Risk (RQO1)

The analysts identified eleven defect categories and selected
three defect categories among the eleven categories in
Procedure 1-1. The analysts categorized twenty-seven percent
of the defects for ODC (see Section I11.C) into one of the three

defect categories. Table VIII shows the three defect categories.

The column “Description” indicates the description of the
identified defect patterns. The column “Product ID” indicates
the product ID shown in Table III. The values in the columns
“Product ID” are the percentages of the number of defects
categorized into the corresponding defect pattern to the
number of defects categorized into one of the identified eleven
defect categories.

Table IX shows the result for Procedure 1-2. Defect
injection risk /; corresponds to defect category Dy (k= 1, 2, 3).

TABLE X.  IDENTIFIED DEFECT INJECTION RISKS
Risk Product ID
2-1-1 | 2-1-2 | 2-1-3
I 7.5 13.5 1.0
3 NA 7.5 11.5
L 3.0 12.5 2.5
TABLE XI.  IDENTIFIED DEFECT INJECTION RISKS
Risk Diagram ID
2-2-1 | 2-2-2 | 2-2-3 | 2-2-4 | 2-2-5
I 2 0 2 3 3
L 3 0 3 2 2
L 4 2 2 1 1
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Fig. 6. Robustness diagram applicable to identified risk /7

Defect injection risk /; is found in two ways: a combination of
use cases, robustness diagrams, and either a domain diagram
or class diagram or a combination of use cases, sequence
diagrams, and either a domain diagram or class diagram.
Defect injection risks /» and /3 are found in two ways: a
combination of robustness diagrams and either a domain
diagram or class diagram or a combination of sequence
diagrams and either a domain diagram or class diagram.
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B. Application of Defect Injection Risk (RQ2)

Table X shows the results for Procedure 2-1, where the
values are the ratios of the numbers of identified risks to
minimum number of identified risk (the number of identified
risk /; for product 2-1-3). For product 2-1-1, the analyst did
not evaluate defect injection risk /> because the data size in



domain or class diagram (C or D) may have changed. Thus,
the value is NA for /; in product 2-2-1.

Table XI shows the result for Procedure 2-2. The values in
the table represent the number of risks identified in the
analysis and design diagrams.

Fig. 4 and 5 show the parts applicable to defect injection
risk /> for product 2-1-3, and /5 for 2-1-1. Fig. 6 show the part
applicable to /; for diagram 2-2-5. In Fig. 4, the dotted red line
indicates defect injection risk />. In the conditions defined in
Table IX, controller ¢; corresponds to the “Convert” controller
in Fig. 4, and entity e; corresponds to the “Converted Image”
entity. In product 2-2-3, class diagram that corresponds to C
for I in Table IX refers to the variance of the size of the
“Converted Image” entity.

The actual defect injection risk in the robustness diagram
in Fig. 4 is the following. Device2 usually displays an image
sent from Devicel. Device2 occasionally displays a converted
image to protect Device2 from hardware degradation. The
“Devicel” boundary continuously sends the “Image” entity to
the “Device2” boundary. The “Sensor” boundary occasionally
sends a trigger to generate the “Converted Image” entity to the
“Convert” controller. The “Convert” controller sends the
“Converted Image” entity to the “Device2” boundary. Then

the “Converted Image” entity is sent to the
“Device2 boundary. Consequently, the execution time to
generate the “Converted Image” depends on the

implementation of the “Convert” controller and the size of the
“Image” entity. If the execution time is longer than expected,
Device2 may be damaged. If damaged, “Device2” hardware
must be repaired. Thus, developers of subsequent
development activities must pay attention to the execution
time of the “Convert” controller in implementation and
validation.

In Fig. 5, the dotted red line indicates defect injection risk
I;. Object oy in the defect injection risk /3 defined in Table IX
corresponds to the “Image” object in Fig. 5. Message m
corresponds to “storelmages(Images)” message. Sequence
diagram S; is defined as follows: When a user executes
operation A, the system reads the “Images” data in its external
storage and stores the data. When a user executes operation B,
the system reads the “Image” data and displays the data on the
“Display Device.” The format type of the “Image” object is
defined in attribute a; of object 0, in the class diagram C.

In the sequence diagram in Fig. 5, the size of the “Image”
object must be in the value range defined in the class diagram
to meet the performance specifications of the “Display
Device.” If the resizing function for the data stored in the
“External Storage” object is omitted, the size of the “Images”
object exceeds the value range. If this occurs, the “Display
Device” may fail to execute “display(Image).” For example,
“Display Device” that does not support displaying 4K images
(exceeding the performance specification) cannot finish the
“display” feature within the allotted time. Thus, developers of
the subsequent development activities must pay attention to
the size of the “Image” object within the value range in
implementation and validation.

Fig. 6 shows the identified defect injection risk /; in
robustness diagrams for diagram 2-2-5. It should be noted that
the “employee data” entity and the arrow indicated by the
dotted black line are newly added by Analyst A because the
entity was lacking in the publicly available diagram. The
upper side of the robustness diagram corresponds to the
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“Attendance” use case, while the lower side of the robustness
diagram corresponds to the “Managing Employee Data” use
case. In the robustness diagram corresponding to the
“Attendance” use case, when the “Employee” actor taps their
ID card on the card reader, their attendance is recorded in the
“employee data” entity. In the robustness diagram
corresponding to the “Managing Employee Data” use case,
the “Admin” actor adds, changes, or deletes the “employee
data.” The dotted red line indicates risk /;.

In the robustness diagram in Fig. 6, the “attendance is
successful” entity and “employee data” entity correspond to
entity E defined by /; in Table IX because the “Attendance is
successful” entity is included in “employee data.” “Do
attendance” controller corresponds to ci. “Manage employee
data” controller corresponds to ¢>. Two use cases correspond
to the “Attendance” and “Managing Employee Data” use
cases. Thus, developers in subsequent development activities
must consider the case of the concurrent execution to update
the “attendance is successful” entity and changing the
“employee data” entity because “employee data” can cause
data corruption.

V. DISCUSSION

A. RQI: Can defect injection risks be identified and
generalized from the analysis and design diagrams?

The answer to RQ1 is yes. Three defect injection risks
were defined using the analysis and design diagrams and their
elements. Defect patterns D) Data access confliction and D;
Insufficient exceptional or alternative implementations for
specific parameter values were observed in the defect
repositories for six products used in Procedure 1-1. Defect
category D, Insufficient performance due to resource
shortages appeared in the defect repositories for four products.
Defect pattern D, was not observed in defect repositories for
Products 1-1, 1-2, and 1-3 because the defects categorized into
defect pattern D, were not common among user interface
components. Defects categorized into these patterns were not
immediately detected at injected activities because their
“injected activity” was after “requirement analysis” and
before “system testing” and their “detected activity” was
system testing. This means that defects in these defect patterns
were difficult to find across the products in Procedure 1-1.
Thus, the defect injection risks efficiently can help developers
prevent and validate defect categories Dy, D, and Ds.

In the discussions between the analysts provided the
following opinions. For defect pattern D, developers should
pay attention to an object, whose behaviors are referred to by
two or more use cases. If the design and implementations for
one use case are assigned to one developer and the design and
implementations for another use case are assigned to a
different developer, defects categorized into D; are rarely
found. Thus, defect injection risk /; was helpful to detect these
defects especially in such situations, which are common
among software for large products. For defect pattern D,
although it is not easy for developers to estimate the execution
time depending on the data size of the entities in analysis and
design activities, they can identify the entities and carefully
consider the execution time with defect injection risk 1
Insufficient implementation for performance or resource
shortage.

The defect injection risks were identified from defects
detected in system testing, implying that these defects and
risks have larger impacts on the correction effort compared to



defects detected in earlier development activities.
Furthermore, the effort for considering such risks should be
small compared to existing comprehensive defect or risk
detection methods because our risks do not always require
exhaustive validation as described in occurrence conditions #.

Defect injection risks can be identified from other artifacts
than analysis and design diagrams. If elements defined in the
occurrence conditions u#x can be identified from other
notations including free descriptions in natural language,
defect injection risks can be identified. As a free description
example for Fig. 4, the behavior can be described as follows.
(a) Device 1 sends images to Device 2. (b) Device 2 displays
a sent image from Device 1. (¢) Sensor sends a signal to
Device 2 when the display time limit is reached. (d) Device 2
converts and displays another image sent from Device 1 when
Device 2 receives the signal. (e) The image size is either 640
* 360 pixels, 1920 * 1080 pixels, or 7680 * 4320 pixels. In
this example, the image data described in (a), (b), (d), and (e)
corresponds to the entity e; defined in defect injection risk /5.
Controller ¢; performs the conversion described in (d). The
image sizes described in (e) correspond to the “various sizes
of data” defined in defect injection risk /.

B. RQ2: Are defect injection risks applicable to other
analysis or design diagrams?

The answer to RQ2 is yes. Defect injection risks were
applicable to the analysis and design diagrams developed in
both the commercial products and publicly available
diagrams, even though the development teams of the diagrams
of commercial products in RQ1 and those in RQ2 differed.
Furthermore, publicly available analysis and design diagrams
were those in the different domains including ATM and
library systems. Thus, the defect injection risks are expected
to be general risks for other software. Specifically, the results
showed that defect injection risk /3 was applicable to the all
eight diagrams and that defect injection risk /; and /> were
applicable to six or more diagrams. Although more
replications and investigations are necessary to generalize the
results, this study suggests that the risks are not specific to the
product domain of Sony.

The discussion with the analysts and developers provided
the following opinions. First, the risks are general enough to
identify risks in diagrams from other domains because the
defined conditions u; for the existence of potential risks are
common to various types of software. Second, if the risks are
identified in analysis or design activities, developers may be
more cautious about the risks because they can easily track
concerns by localized potential defect injections indicated by
the occurring conditions. Third, although the publicly
available diagrams included incomplete and incorrect objects,
the analysts were able to identify risks because the occurring
conditions u; were clear and localized. Fourth, the impacts of
risks (the effort to correct the defects, if injected) should be
smaller than those in real-use software because the publicly
available ones in our evaluation were educational materials or
samples.

Diagram 2-2-2 was part of a banking system for education
material. The publicly available diagrams were limited to an
ATM subsystem. Conditions u; and u; for risks /; and /> did
not apply to any part of the diagrams. Thus, no defect injection
risks were identified. If the diagrams included other parts of
the banking system such as back office subsystems, the
number of the applicable defect injection risks may increase.
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C. Threats to validity

1) Internal validity

The analyst may affect the results for RQ1 and RQ2. In
this study, one analyst assessed the results, and the other
confirmed them. If necessary, the results were changed.
Specifically, the results by Analyst A were verified by Analyst
B for Procedures 1-1 and 1-2. For Procedure 2-1, the analyst
evaluated the defect injection risks. Then at least two
developers verified the evaluation. The number of identified
risks by the analyst in the results was the number of risks that
all the developers agreed upon. For Procedure 2-2 evaluation
with publicly available diagrams, two analysts evaluated the
defect injection risks separately. More than 90% of the results
were consistent between the analysts. For the inconsistent
results, the analysts discussed until a consensus was reached.

The identified defect injection risks might be risks for
specific products. The overlaps of the products for Procedures
1-1 and 1-2 and the products for Procedures 2-1 were small.
The distribution of the applicable defect injection risks was
not skewed (Table X). Moreover, conditions u; was
represented with combinations of analysis and design
diagrams and their elements. Additionally, the defect injection
risks were applied to the publicly available diagrams for a
different kind of software.

2) External validity

The identified defect injection risks may not be applicable
to diagrams for other software. For risk /i, condition u is that
two or more use cases refer to the same or aggregated objects
or entities. Such conditions apply to various situations,
including access to data in a database management system.
For risk I, condition u; is that the attribute size of the entities
or objects varies. Such attributes are observed in various
implementations, including content delivery servers. For risk
I3, condition w3 is that certain values of an attribute require
alternative and exceptional handling. Such attributes are
common in many software systems, including server-side
systems, which change the response depending on the
submitted parameters.

The defect injection risks may depend on the specific
development style or practice. However, the defect injection
risks only require analysis and design diagrams. The defect
injection risks can be used in various stepwise refinement
developments with analysis and design diagrams, including
upfront plan and iterative approach. Moreover, defect
injection risk can easily incorporate with existing practices
and processes including test-driven development (TDD)
practices and the ICONIX development process [30][38].

VI. CONCLUSION

This paper defined the defect injection risks from
requirement analysis and design diagrams to prevent defects
in implementation and validation activities. Defect injection
risks indicate specific criterion or parts where developers must
carefully consider in the implementation and validation
activities. A defect injection risk consists of a risk description,
diagram type, and occurrence conditions of objects in the
diagram. First, we identified defect patterns, which were
injected after the requirement analysis and design activities
and detected during system testing for the development of
commercial products at Sony. Second, regarding the defect
patterns as exposed defect injection risks, we defined three
defect injection risks with the analysis and design diagrams of
the products. Finally, we evaluated whether these three defect



injection risks were observed in three other sets of analysis
and design diagrams developed at Sony. The results of the
evaluation showed that two risks were found in the analysis
and design diagrams for the three products. The remaining one
risk was found in the analysis and design diagrams for two
products and could not be evaluated in the analysis and design
diagrams for one product due to requirement volatility.
Moreover, we evaluated whether the risks were applicable to
five publicly available analysis and design diagrams for
different software in other domains. The result showed that
one risk was found in all sets of the analysis and design
diagrams, and the other two risks were identified in four sets
of the diagrams.

Future works include defining the procedures to identify
defect injection risks. Such procedures will aid novice and
intermediate software engineers in identifying defect injection
risks. Investigating the defect prevention effectiveness by the
defect injection risks is also an important future work. In
discussions with the developers of the products in this
evaluation, expert engineers have knowledge and experience
on other defect injection risks. Defining such defect injection
risks will realize an ontology of defect injection risks. Future
works include constructing a defect injection risk ontology.
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