
Measuring Secure Coding Practice and Culture:
A Finger Pointing at the Moon is not the Moon

Ita Ryan
ADVANCE Centre for Research Training
School of Computer Science and IT

University College Cork
Cork, Ireland

ita.ryan@cs.ucc.ie

Utz Roedig
Connect Research Centre

School of Computer Science and IT
University College Cork

Cork, Ireland
u.roedig@cs.ucc.ie

Klaas-Jan Stol
Lero, the SFI Research Centre for Software
School of Computer Science and IT

University College Cork
Cork, Ireland
k.stol@ucc.ie

Abstract—Software security research has a core problem: it
is impossible to prove the security of complex software. A low
number of known defects may simply indicate that the software
has not been attacked yet, or that successful attacks have not been
detected. A high defect count may be the result of white-hat hacker
targeting, or of a successful bug bounty program which prevented
insecurities from persisting in the wild. This makes it difficult
to measure the security of non-trivial software. Researchers
instead usually measure effort directed towards ensuring software
security. However, different researchers use their own tailored
measures, usually devised from industry secure coding guidelines.
Not only is there no agreed way to measure effort, there is
also no agreement on what effort entails. Qualitative studies
emphasise the importance of security culture in an organisation.
Where software security practices are introduced solely to ensure
compliance with legislative or industry standards, a box-ticking
attitude to security may result. The security culture may be weak
or non-existent, making it likely that precautions not explicitly
mentioned in the standards will be missed. Thus, researchers
need both a way to assess software security practice and a way to
measure software security culture. To assess security practice, we
converted the empirically-established 12 most common software
security activities into questions. To assess security culture, we
devised a number of questions grounded in prior literature. We
ran a secure development survey with both sets of questions,
obtaining organic responses from 1,100 software coders in 59
countries. We used proven common activities to assess security
practice, and made a first attempt to quantitatively assess aspects
of security culture in the broad developer population. Our results
show that some coders still work in environments where there
is little to no attempt to ensure code security. Security practice
and culture do not always correlate, and some organisations with
strong secure coding practice have weak secure coding culture.
This may lead to problems in defect prevention and sustained
software security effort.

Index Terms—Security, secure coding, security compliance

I. INTRODUCTION

Software security was defined in 2004 as ‘the idea of
engineering software so that it continues to function correctly
under malicious attack’ [1]. Since then, our world has become
increasingly connected, and the hacker community has morphed

into a global criminal industry. Insecure software is now

routinely exploited for ransomware, cybercrime and cyber-

espionage purposes, so that software security is an increasingly

urgent requirement [2].

Academia has not reached consensus on a way to measure

the level of secure coding in an organisation or open source

team. Ethnographic studies provide rich qualitative data, but by

their nature [3] do not produce quantitative measurements

or generalisable conclusions. Most researchers attempting

quantitative secure coding research synthesise a number of

practices from industry methodologies and assess participants’

use of them. These synthesised secure coding practice lists

tend to be used only by their authors. They are not empirically

evaluated, and if fine-grained may be too rigid to be re-used

over time, as software security is a quickly-evolving field.

To explore these issues, we conducted a large-scale survey

of software developers. In a recent analysis of a large trove

of industry secure-coding data, twelve security activities were

identified by Weir et al. [4] as being those most commonly

adopted in secure coding initiatives by large organisations.

Given their empirical backing, we adopted these 12 Common

Activities (CAs) as our core measurements for secure software

coding practice.

To measure security culture we devised a list of questions

grounded firmly in prior literature.

In this paper we seek to address the following research

questions:

Research Question 1: What are the secure-coding character-
istics of our sample group?

Research Question 2: What are the security culture character-
istics of our sample group?

Research Question 3: Do secure coding practice and culture
correlate, and if not, what lessons can we learn to help
support the development of secure coding?

This paper makes the following contributions: first, we

present the ‘CA Score’, a lightweight instrument for assessment
of the level of software security practice in a work environment.

Second, we provide an overview of the current state of security

practice based on our survey results. Third, we introduce

a group of questions designed to probe security culture.

Fourth, we assess security culture in our participants’ working

Work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/

1622

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

DOI 10.1109/ICSE48619.2023.00140

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
01

40

environments. Finally, we explore the interplay between security

practice and security culture.

The paper is organised as follows: background and related

work are discussed in Section II, method is discussed in Section

III, an overview of the sample is given in Section IV, results

are given in Section V. Section VI contains the discussion and

threats to validity, and concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Measuring Secure Development

While assessing the security of software developed in

controlled studies is feasible and repeatable [5]–[7], measuring

secure development in organisations and open source environ-

ments is an ongoing issue in academia. As far back as 2012,

Jaatun [8] discussed whether software security can be measured

at all. Counts of known security defects for publicly available

applications could be used; however, some applications are

subject to considerably more analysis and attack than others.

An absence of known vulnerabilities could simply indicate that

the application has not been closely studied. An example of an

attempt to demonstrate a correlation between use of assurance

techniques and decreased levels of security issues in code comes

from Weir et al. [9]. They surveyed 335 Android app developers

on their use of security assurance techniques, downloaded a

free app from each developer, and used automated analysis

to detect instances of three categories of security issue in the

apps. Surprisingly, app analysis showed no increased security

for apps whose creators claimed to use assurance techniques,

and more cryptographic security issues for apps whose creators

had access to security experts. The authors concluded that

issues with analysis tools and missing cryptography may have

skewed the analysis. This study illustrates the complexity and

difficulty inherent in determining whether secure coding efforts

are correctly reported, and whether they result in secure code

outcomes.

BSIMM reports [10] on contemporary software security

activities are compiled semi-annually by Synopsys, who inter-

view contributing organisations about their security practices.

For example, in 2021 BSIMM 12 collated data from 128

organisations. The contributing organisations are usually large

and have active software security strategies. Jaatun [8] discussed

adopting a BSIMM-like analysis method for academic studies.

Variations on this approach of measuring activities from

BSIMM and other industry practices and guidelines such

as OWASP’s Software Assurance Maturity Model (SAMM)

[11], Microsoft Security Development Lifecycle (MS-SDL)

[12] and Software Assurance Forum for Excellence in Code

(SAFECode) [13] have been widely used by the research

community [14]–[19]. BSIMM currently includes a total of

122 activities, with correspondingly large numbers of similar

activities in the other methods. This is cumbersome, therefore

a synthesised subset is usually generated. Each research team

measures different activities. New groups of activities to

measure are continually defined. None are empirically evaluated.

Research teams rarely reuse the groups defined by previous

teams, making results difficult to compare.

Similarly, Morrison et al. [20] found that 85% of 324 unique

security metrics had been proposed and evaluated solely by

their authors. They concluded that there is no convergence as

yet on an accepted set of metrics in the software life cycle

security metrics field.

B. Security Culture

It might be argued that engaging in security practices would

naturally entail a good security culture. However, many ob-

servers have noted that organisations may follow recommended

practices (perhaps for compliance) but have a box-ticking

attitude to security. Although mentioned in several papers

[21], [22], and implied in others [23]–[25], this phenomenon

and its implications are rarely explored. It may lead to the

implementation of security activities purely to demonstrate

compliance with regulations or standards such as the payment

card industry’s DSS [26]. Such standards may have a narrow

focus [25], and security investment which focuses solely on

compliance is not sufficient to ensure secure software [27]. The

significance of the organisation’s security posture in the area

of secure coding is widely acknowledged in academia [28]–

[30]. Assal et al. [31] found that most deterrents to developers

coding securely relate to the absence of clear secure-coding

plans, resources and priorities in the developers’ working

environments. Concluding that it is important for companies

to build a security culture and offer learning opportunities

for secure coding, they suggested that a research focus on

problems in the organisational approach to security would

increase understanding of software security deterrents.

Recent ethnographic studies have provided useful insights

into the software security posture in organisations. Lopez et al.

[32] immersed themselves in the software development unit

of a large company, examining how non-experts treat security

during their daily tasks and focusing primarily on developer

security motivation. They concluded that the organisation

had put procedures and activities in place to ensure software

security, and that the developers accepted these and attempted

to implement them in good faith. This resulted in ‘mostly
secure’ software. By contrast, Morales et al. [24] published
a devastating paper on a well-funded project using Agile

and implementing DevSecOps without rigorous adherence to

DevSecOps principles, and the resulting security implications.

It is a valuable reminder that no development method can

compensate for bad management. Broken pipelines, adversarial

subcontractor relationships, inadequate definitions of done, poor

test resources, a failure to emphasise security and more all

combined to produce a product with poor security assurance. On

paper, this dysfunctional project adopted appropriate security

practices. So where did it go wrong?

The differentiating factor between these two organisations is

security culture, defined by Haney et al. [22] as ‘a subculture
of an organization in which security becomes a natural aspect
in the daily activities of every employee.’ Haney et al. found
that all of the cryptography-focused organisations they studied

placed a high value on a strong security culture. Tuladhar et

al. [33], having worked embedded in an organisation adopting

1623

secure coding practices, concluded that key security culture

enablers were upper management setting security as a goal,

and the team applying security knowledge in context. In a

longitudinal study, Tøndel et al. [21] noted the adverse effect

of managerial lack of interest in security. They also observed

that developer security work was often invisible to others and

therefore did not help build security culture.

Managerial attitude affects the question of how individual

developers’ security enthusiasm is regarded within their work

environment, an important aspect of security culture that has

not been much explored by the research community. Jaatun et al.

[14] noted organisations’ dependence on individual developers’

enthusiasm. Tahaei et al. [34] examined the experience of

privacy ‘champions’ in software teams, finding that they play
an important advocacy role. Ryan et al. [35] identified a ‘hero’
software security archetype; a coder struggling to introduce

secure coding practices in a security-hostile environment. Such

environments are difficult to study, since most security experts

work in roles where security is already a focus [36]. Security

interventions, such as those introduced to organisations by

Weir et al. to attempt to empower developers to code securely

[37], require prior organisational agreement. Thus a level of

management support is assured.

Developers’ tool adoption behaviour may give useful insights

into the work environment with which they must contend.

Papers on tool adoption have focused on social influences [38].

Although Witschey et al. [39] observed that many developers

seek out information on security tools when needing to write

secure code, they did not examine how developers can introduce

such tools into their working environment, and what constraints

they encounter when attempting to do so. An ethnographic

study by Palombo et al. [40] shed some light on how heroes

can succeed in improving security in a ‘security inattentive’
[18] environment. Two researchers used and advocated a ‘co-
creation’ model for secure development in which they added
security checks seamlessly, with no developer friction for other

team members. While this required considerable investigation

and work, other team members then adopted the checks,

possibly because of their frictionless nature.

The interplay between developer and work environment is

the key to security culture. Therefore, ways to measure it are

of interest. One suggested measurement tool is the Secure

Software Development Self-Efficacy Scale (SSD-SES) [19],

although a developer’s self-efficacy can arise from previous

employment or personal motivation rather than their current

work environment.

C. Organisational Climate Theory

Academic work on organisational culture originated from

anthropology and considers shared myths, beliefs and ritual

[41]. The term ‘security culture’ as used in software security
literature is adopted from industry [22], and may have more

in common with organisational climate theory, which provides

a way to consider and evaluate the organisational ‘climate’ for
differing organisational ‘facets.’ For example, an organisation
may demonstrate a consistent commitment to the software

security facet by halting releases when there is a security

concern. Arizon-Peretz et al. [42] applied this theory to

software security, asking developers about privacy and security

activities in their organisation and interpreting the answers

via organisational climate theory. They categorised activities

into seven climate themes which provide cues to developers

as to the relative importance of security and privacy within

the organisation, and what is expected of them in these areas.

They found that the cues that developers get can be confusing

and do not clearly indicate that security and privacy should

be prioritised in their daily work. They proposed that climate

theory can be used to change this and to promote security and

privacy by design within organisations. In a follow-up paper

[43], they measured organisational climate for the software

security facet using questions derived from the seven climate

themes and tailored to a multinational organisation. They found

an interplay between security self-efficacy, proactive security

behaviour and a positive organisational climate for software

security within the organisation.

III. METHOD

We conducted a large-scale cross-sectional survey. In this

section we discuss the design of the questionnaire, data

collection procedures, data screening procedures, and data

analysis procedures. Data and scripts are available online [44].

Surveys that constrain respondents’ answers to specific

values can impose forced choice bias, which is inappropriate in

a context where increased understanding of context is sought

[45]. Therefore we allowed free text in many questions, and

asked a question towards the end looking for comments on

any aspect of the survey or of the respondent’s secure software

development experience. The free text aspect of the survey

provided us with many interesting insights. As the use of ‘(sic)’
can be seen as condescending, we do not use it when quoting

respondents. Any quote from respondents is presented exactly

as entered in the questionnaire.

A. Survey Questions

Initial questions concerned demographics and participants’

personal relationship with secure coding. These questions are

not the focus of this paper and most are not discussed. Some

standard secure coding questions were asked; answers are

discussed in Section IV.

1) Screening Questions: One concern in sample research
is that the sample is representative. We were only interested

in responses from people who were coding frequently at the

time of answering the questionnaire, so we began by asking

respondents ‘Do you write computer code frequently, either
professionally or open source?’ Those who answered ‘No’
were excluded from further participation.

Researchers running secure software development surveys

have encountered issues with respondent quality when offering

payment for completion. Witschey et al. [46] cleaned 313

suspiciously-speedy participants from their survey, leaving

only 61 usable responses. Danilova et al. [47] found that

of 129 respondents sourced from Qualtrics, 96 did not pass

1624

programming tests. As a result, Danilova et al. [48] assessed a

number of screening questions to filter out non-developers

from paid studies. The Danilova paper recommended two

programming comprehension questions as the best screening

choices in surveys where a time penalty is acceptable. These

two questions have since been used successfully, for example

by Kaur et al. [49]. We adopted the two questions, adapting the

wording slightly since the answers documented by Danilova et

al. are in the public domain. We had some interesting findings

on them, discussed in section III-C.

Since our questionnaire was relatively long with 62 questions,

we wanted to ensure that participants were paying attention all

the way through. Rather than ask complex attention questions

with opposing answers, we borrowed a simple strategy from

Murphy-Hill et al. [50], simply stating for example ‘This is
an attention question. Please select a little.’ We had two such
questions, designed to blend with adjacent questions so that

participants who were simply clicking blindly would not notice

them. This strategy caused some amusement; for example, one

participant noted as a comment at the end of the survey ‘The
attention questions are funny ˆˆ.’
2) Measuring Security Practice: We asked our participants

whether they were aware of each of the 12 CAs in their working

environments. These questions can be found in Table III. More

detail on the rationale for these questions can be found in

section V-A.

3) Measuring Security Culture: Security culture questions
were based on an extensive literature review of software security

papers since 2016. These questions can be found in Table IV.

More detail on how these questions were devised can be found

in section V-B.

4) Pilot Testing: The questionnaire was pilot tested in two
phases. First, we asked for criticism and feedback from a

developer with over two decades of experience. After making

recommended changes, we pilot tested again with the same

developer and two other highly experienced developers. Small

adjustments suggested by these testers were made before

launching the questionnaire. Their responses were not included

in reported results.

B. Data Collection

The survey was publicised via personal contacts, a conference

talk by the first author, and social media platforms such as

LinkedIn, Facebook, and Twitter. We found that it was possible

to generate significant interest by asking for retweets on Twitter,

posting to Facebook development groups, and promoting the

survey on LinkedIn. The survey was open for just over 3

months, to the end of January 2022. This long window provided

time to publicise the survey, and helped build momentum. At

closing time we had received 1,100 responses.

Given the considerable interest we succeeded in generating in

our survey, we did not need to offer financial incentives or use

platforms such as Prolific to source participants. This removed

the danger of non-developers participating for financial gain.

It remained important to carefully screen responses to ensure

high quality analysis; we discuss the screening process next.

C. Screening Process

As only the questions on programming expertise were

mandatory, and some people think more quickly than others,

we did not remove responses that were completed quickly.

Fifty-two respondents answered ‘No’ to the initial screening
question on frequent coding and were brought directly to the

end of the survey, leaving 1,048 respondents. We then pro-

ceeded to the two mandatory programming expertise questions.

We had intended to reject all participants who got either of the

programming questions wrong. However, a tranche of six or

seven survey entries was obtained immediately after the first

author gave a software security talk to an audience of SQL

programmers. These respondents included SQL in their list of

programming languages, and some got the second programming

question wrong. Upon reviewing the questions, we realised

that these included pseudo-code that would be typical of C++

or Java interview questions but is meaningless in SQL. The

questions’ limitations were confirmed later, when a survey

participant communicated with the first author, commenting

that Python programmers could have difficulty with these

questions. Fifty-five respondents answered one or both of the

programming screening questions incorrectly. Similarly, we had

planned to remove any respondent from the data set who got an

attention question wrong. This seemed like an uncontroversial

position, but one participant, answering Question 60 which gave

an opportunity to comment on the survey, responded ‘Ididint
understand q56. Attention? No idea what you are wanting from
this poor question.’ Thirty-seven respondents failed one or both
of the attention questions.

Having considered the feedback on our screening questions,

we decided to consider two groups of respondents during

analysis. Group 1 (‘all valid participants’) includes all respon-
dents who confirmed that they write computer code frequently

(n=1,048). Group 2 (‘all correct participants’) additionally
omits respondents who got programming and/or attention

questions wrong (but retains the respondent who explicitly

told us that they didn’t understand the attention questions),

giving a total of 962. Statistical results reported in the paper

are based on Group 2; however, we also ran tests on Group 1.

We found no significant differences between the two groups.

D. Ethics

Our questionnaire involved research on human subjects, and

therefore we obtained approval for the questionnaire from our

institution’s Social Research Ethics Committee. Participants

were advised that taking the questionnaire was not obligatory,

and were asked to consent to taking the questionnaire. All

submissions were anonymous.

E. Data Analysis

Statistical analysis was done using R [51]. Positive answers

to the 12 CA questions were summed to create a CA score

between 0 and 12, representing the secure coding level in

an environment. The Pearson correlation coefficient was used

to assess correlations between this score and security culture

indicators, measuring correlation of increasing scores with

1625

160

389

327

137

32
3

0

100

200

300

400

18 24 25 34 35 44 45 54 55 64 65+

Fig. 1. Age distribution of survey respondents

TABLE I
GENDER DISTRIBUTION OF SURVEY RESPONDENTS

Gender Frequency Percent

Man 852 81
Woman 94 9
Non-binary 63 6
Prefer not to say 34 3
Other 4 0.4

increasing levels of these indicators [52]. Participants were

asked to choose ‘Not Applicable’ where relevant; for example,
if they worked alone and the practice required co-operation. For

the Common Activities, participants were also provided with an

‘I don’t know’ option. Levels of ‘I don’t know’ responses varied
from 5.93% (CAQ1) to 22.6% (CAQ12). Since levels were high

for some questions, we ran correlations excluding NA and ‘I
don’t know’ responses. We did not find any differences in these
results that would affect the paper’s conclusions. Therefore,

the correlations given in the results section do not omit ‘Not
Applicable’ or ‘I don’t know’ answers. Qualitative data from
open-ended survey questions was used to provide context for

our quantitative results.

IV. SAMPLE DESCRIPTION

A. Demographics

Respondents ranged in age from 18 to over 65 (see Fig. 1).

We asked respondents what gender they most identified with.

The majority of respondents answered ‘Man.’ The numbers
seemed to correspond with approximate gender balance num-

bers in the industry (see Table I). We asked developers what

country they live in, allowing them to add their country if it

was missing. We obtained responses from 59 different countries

across all continents except Antarctica. The highest numbers

of respondents came from the United States (453), United

Kingdom (110) and Germany (92).

B. Programming Languages and Tools

We provided developers with a list of programming lan-

guages and other technologies and asked which they used

frequently, also allowing free text entries. We ended with 73 pro-

gramming languages, of which JavaScript (454), Python (447)

and HTML/CSS (332) were the most popular. Some single-user

languages, such as CHICKENscheme and MoonScript, were

entirely new to us. We asked about other technologies; 129

were entered. Git (966) was by far the most popular, followed

by Docker (470), PostgreSQL (349) and Amazon Web Services

(AWS) (336). Sixty-eight unusual technologies appeared only

once, including Cassandra, ScyllaDB, and Godot, which is

apparently ‘The game engine you waited for.’
The field of tools used to enhance code security is rapidly

evolving. We wanted to get a sense of which are in general

use. Asked which security tools they use, developers entered

over 100 different tools. SonarQube (196) and Clang Analyzer

(175) were by far the most popular, but the large number of

tools indicates little convergence in the tools market.

C. Adoption of Secure Coding Standards

We asked developers what secure coding initiatives or

standards they are aware of in their organisations or teams.

We provided a list of well-known initiatives, and allowed

developers to add their own. By far the most common response

was ‘None’ (304), followed by ‘Not applicable’ (212). PCI-
DSS, used in the payments industry, followed at 78, with FIPS

140-2 (43), Common Criteria (37) and US-CERT’s Top 10

Secure Coding Practices (33) also fairly common. Although

included in the predefined list, industry secure-coding standards

referenced in academia fared badly; the BSIMM got only three

mentions, OWASP’s SAMM two, and SAFECode five, and of

the commonly-referenced general approaches only MS-SDL

hit double digits at 29.

The free text section provided further insights. MISRA,

standards set by the Motor Industry Software Reliability

Association, appeared seven times. Mention was also made of

government standards from France, Germany, the US and the

UK. We had inadvertently omitted an ‘I don’t know’ option;
18 people added this in free text. We received other thoughtful

entries such as ‘Standards are artificial, we try to focus on
actual security (incidentally we probably apply some of them)’
and some less thoughtful ones: ‘Yes there is some I don’t care.’

D. Adoption of Development Methods

We asked participants about the development methods in

their organisation, providing 15 common options (allowing

selection of multiple options), and a free text option. We found

that Agile (650), DevOps (445), Scrum (358) and Kanban (296)

were the most common responses. Some of the 28 participants

who used the free text option were positive, with comments

such as ‘Good practices but no dogmatic application of any
of these.’ The majority of free-text respondents delighted in
letting off steam, for example: ‘...They claim it’s scrum / agile.
It is not, it’s waterfall with extra meetings,’ ‘Fake cargo cult
agile,’ and ‘RDD (Resume-Driven Development).’

E. Secure Coding Policy

Asked whether their organisation or team has a written

secure coding policy, less than a fifth of our participants (184)

answered ‘Yes.’ Other preset options were ‘No’ (537), ‘I’m
not sure’ (238) and ‘Not applicable’ (65). Testament to the
positive impact of security surveys, one free text respondent

wrote: ‘I’m going to write one today.’

1626

F. Security Priorities

We asked people what aspects of software security are

important. Data protection (978), Preventing vulnerabilities

(954), Customer privacy (877) and Customer confidentiality

(829) were widely chosen. Most other aspects were selected by

at least 30% of respondents. Only two people chose ‘I do not
think that software security is important.’ There were 49 free
text entries comprising a wide range of priorities and experience,

usefully summed up by the single entry ‘It Depends™.’

G. Training

We asked participants whether they had ever been offered

security or privacy training, and the majority answered ‘No’
(see Table II). We then asked for training details, and received

over 300 individual free text entries. They ranged from negative

comments such as ‘Boring’ to more positive feedback: ‘Nothing
formal. It happens ad hoc (usually directed by me) as a part
of code review.’ A reminder of the reluctance of individuals

who take security seriously to part with confidential infor-

mation, several answers were inscrutable, e.g. ‘Confidential,’
‘Information refused,’ and ‘Internal training.’

TABLE II
RESPONDENT HAS BEEN OFFERED SECURITY OR PRIVACY TRAINING

Response Frequency Percent

Yes 416 40
No 525 51
Not applicable 98 9

V. RESULTS

One of our survey participants, asked about the importance

of security activities, responded that ‘External checks are a
“finger not the moon” problem, but a useful diagnostic.’ This is a
reference to a Buddhist saying on dogma, ‘A finger pointing at
the moon is not the moon,’ suggesting that it is easy to confuse
descriptions of a thing for the thing itself. Given the difficulty

in ascertaining whether software is secure, and the comparative

simplicity of evaluating lists of software security activities, it is

easy to confuse the activities with the goal. Evaluating security

culture alongside security activities may get us a little closer

to secure coding reality.

A. Research Question 1: What are the secure-coding charac-
teristics of our sample group?

As discussed in Section II, there is no agreed measurement

of software security practice in academia. Different groups of

academics roll their own, based on BSIMM, SAMM, MS-SDL

and other practices. Measurement tools are thus not empirically

validated, are not easily comparable between studies, and tend

not to be reused across studies.

Our empirical approach was motivated by Weir et al. [4],

who analysed the BSIMM assessments dataset to study how

security activities were introduced in organisational settings

over a period of 12 years. They found that there were 12

activities that were adopted ‘most often, together and first’ by

a majority of organisations, with at least half of them found

in 92% of the assessments. There was ‘a marked jump’ of 18
percentage points between the frequency of use of the other

developer activities studied, of which the highest frequency

was 47% (i.e. less than half), and these 12 activities, which had

frequencies from 65% (CAQ5) to 89% (CAQ10). We judged

that determining the presence or absence of these activities in an

environment would give a contemporary objective assessment

of the environment’s software security practice. (Note that

although named and categorised by the BSIMM investigators,

these activities are common in industry and their adoption does

not depend on familiarity with the BSIMM).

We asked respondents about the presence of these 12 known

most Common Activities (CAs) in their environment. See Table

III for the exact text of each of the 12 questions. We evaluated

the number of the CAs that they identified as in use in their

working environments (see Fig. 2). We assigned a score of 0-12

to work environments by counting the number of CAs they

were undertaking from the 12 we asked about in the survey.

We call this the ‘CA Score.’ This score is empirically justifiable,
practical, and repeatable, and thus fills a gap in secure coding

measurement.

Percentages of respondents choosing ‘True’ to the CAs are
in Table III. A full breakdown of answers can be found in

the online supplemental material. While a small number of

participants stated that all 12 CAs were used, most used fewer,

and quite a few participants indicated that none or very few

of the activities were undertaken in their work context.

B. Research Question 2: What are the security culture charac-
teristics of our sample group?

We asked a series of questions about security culture which

can be found in Table IV. The questions were based on themes

related to security culture mentioned in multiple papers in the

existing literature but which appeared to be largely unexplored.

The rationale for each question is given in the discussion of

the questions below.

1) Support for Secure Coding (SCQ1): Support from the

organisation has been found to be a significant aspect of security

culture in multiple studies [18], [22], [31], [33]. We asked

to what extent participants felt supported to code securely

(SCQ1). Fig. 3 presents the answers to this question. As can be

observed, answers are fairly evenly divided between those who

feel supported, those who do not feel supported, and neutral

45 40
61

94

119
103

118
108

72 81

55
43

23

0

50

100

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of Common Activities (CA) (n=962)

N
um

be
r

of
 r

es
po

nd
en

ts

Fig. 2. Number of security Common Activities (CAs) undertaken in
respondents’ coding environments.

1627

TABLE III
QUESTIONS ON TWELVE COMMON ACTIVITIES

No. True Question

CAQ1 58.5% Static analysis tools are brought into the code review
process to make the review more efficient and consistent.

CAQ2 41.1% Compliance constraints are translated into software require-
ments for individual projects and are communicated to the
engineering teams.

CAQ3 36.2% QA efforts go beyond functional testing to perform basic
adversarial tests and probe simple edge cases and boundary
conditions, with no particular attacker skills required.

CAQ4 31.3% QA targets declarative security mechanisms with tests
derived from requirements and security features. A test
could try to access administrative functionality as an
unprivileged user, for example, or verify that a user account
becomes locked after some number of failed authentication
attempts.

CAQ5 28.7% Penetration test tools are used internally.

CAQ6 62.1% Emergency codebase response can be done. The organ-
isation or team can make quick code and configuration
changes when software (e.g., application, API, microser-
vice, CAQ infrastructure) is under attack.

CAQ7 67.8% Defects found in operations are entered into established
defect management systems and tracked through the fix
process.

CAQ8 77.5% Bugs found in operations monitoring are fed back to
development, and may change developer behaviour. For
example, viewing production logs may reveal a need for
increased logging.

CAQ9 36.5% Penetration testing results are fed back to engineering
through established defect management or mitigation
channels, with development and operations responding
via a defect management and release process.

CAQ10 65.8% Host and network security basics are in place across any
data centers and networks and remain in place during new
releases.

CAQ11 34.9% Security-aware reviewers identify the security features in
an application and its deployment configuration (authenti-
cation, access control, use of cryptography, etc.), and then
inspect the design and runtime parameters for problems
that would cause these features to fail at their purpose or
otherwise prove insufficient.

CAQ12 31.7% External penetration testers are used to identify security
problems.

responses. Answers to this question had a weak to moderate

correlation of .46 with CA scores (p<.001).

31% 39%30%

100 50 0 50 100
Percentage

None at all A little A moderate amount A lot A great deal

Fig. 3. SCQ1: How much support do you feel that you get from your employer
or open source team to code securely? (n=877).

2) Raising Security Concerns (SCQ2): We asked participants
whether, if they had a security concern at work, they would

raise that concern. This question is part of our investigation

into how security-motivated developers can influence their

TABLE IV
SECURITY CULTURE QUESTIONS

ID Question

SCQ1 How much support do you feel that you get from your employer
or open source team to code securely?

SCQ2 If you had security concerns about your current project, how
likely would you be to raise them with someone?

SCQ3 Security tools are tools that help to ensure source code is free
from security vulnerabilities. For example, they may analyse
code for known issues or check configurations for problems.
Some examples are Coverity, CodeSonar and SonarQube. Some
security tools like SonarLint integrate with the IDE. Are there
security tools available in your environment?

SCQ4 If you saw a free tool that you felt would help you to code more
securely, how likely would you be to install and use it without
asking anyone for permission?

SCQ5 If you needed permission to use the tool, how likely would you
be to ask for permission?

SCQ6 If you asked, how likely do you think it is that you would get
permission?

SCQ7 If you asked, how likely do you think it is that you would get
funding for a paid tool?

SCQ8 Have you ever heard people say that there is a software security
culture in your working environment?

SCQ9 Would you agree that there is a security culture in your working
environment?

SCQ10 How highly do you think your team prioritises software security?

SCQ11 How often is software security mentioned in team communica-
tions?

SCQ12 Roughly how much time do you spend on software security in
an average week? This would include any tasks aimed at making
or keeping a product secure, such as fixing vulnerabilities that
could cause a breach, keeping third-party components updated
and assessing code for security issues.

3%

9%

20%

30%

32%

96%

82%

70%

52%

52%

1%

9%

10%

18%

16%

SCQ7: Expects would get
funding to use paid tool

SCQ6: Expects would get
permission to use free tool

SCQ5: Would ask for
permission to use free tool

SCQ4: Would use free
security tool without asking

SCQ2: Would raise security
concerns

100 50 0 50 100
Percentage

Very unlikely
Somewhat unlikely
Neither likely nor unlikely

Somewhat likely
Very likely

Fig. 4. Results from questions SCQ2 (n=959), SCQ4 (n=959), SCQ5 (n=858),
SCQ6 (n=860) and SCQ7 (n=891). Questions concern the reactions respondents
anticipate if they were proactive about security.

working environment. Fig. 4 shows that the vast majority of

participants would be somewhat or very likely to raise the

concern. Those who would not may work in organisations or

teams where raising security concerns is actively discouraged,

a phenomenon that has previously been observed [18]. This

question can be a useful way to detect coding environments

1628

that are extremely unfavourable to security. Answers to this

question had a correlation of .25 with CA scores, with p<.001.
3) Whether there are Security Tools in the Working Envi-

ronment (SCQ3): Security tool use is a fundamental aspect of
secure coding, mentioned in most of the relevant literature

on the subject [53]–[55]. While it may also be used to

assess security practice, tool use is an effective proxy for the

cultural value of expending effort, time and money on security.

Therefore, we asked whether security tools are present in the

developer’s environment. See Fig. 5, which shows that 33%

of respondents had no security tools present in their working

environment. Answers to this question had a low correlation

of r = .36 with CA scores (p<.001).

33% 48%19%

100 50 0 50 100
Percentage

No I don't know Yes

Fig. 5. SCQ3: Are there security tools available in your environment? (n=932).

4) Introducing Free Tools (SCQ4): Previous research on
reasons why developers adopt security tools focused on their

motivations and inspiration to do so. In this survey we wanted

to explore the level of support for finding and integrating such

tools that developers are likely to find within their environment.

Xiao et al. [38] noted that several participants in their widely-

cited interview study on how developers adopt security tools

were self-motivated, seeking out tools because they needed

them, and finding them online. Those developers would then

need to introduce the tools to their work environment. This

process of introduction was not a focus of the Xiao et al. or

related Witschey et al. [39] paper, and remained unexplored.

In a follow-up survey by Witschey et al. [46], the authors

expressed surprise that although statements expressing ‘security
concern’ were predictors for security tool use, they had weak
effects. We suspected that this could relate to a difficulty for

developers in introducing security tools. In security-conscious

environments, there could be a prolonged approval process or

outright prohibition on new practices and tools. In security-

hostile environments, they could be seen as a waste of time.

The interaction of security-motivated developers with their

environment influences their security activities [47], [56],

yet the degree of support or resistance they are likely to

encounter has not been investigated. Therefore we asked several

questions in our survey about attempting to introduce new

security tools. Questions SCQ4-SCQ7 explore how developers

would go about introducing such tools, and what reaction they

anticipate they would get within their environment. Developers’

subjective expectations are important, since a perception that

tools would be rejected could result in their not seeking out or

proposing them [42]. An organisational climate that is positive

for software security has been shown to be positively related

to proactive developer behaviour [43].
SCQ4 asked whether the respondent would use a free security

tool without asking for permission. See Fig. 4 for the results;

52% of those surveyed would use such a tool, while 32%

would not. Note that while it might be expected that security-

aware organisations would encourage experimentation with

security tools, use of a free tool could itself introduce security

vulnerabilities. Ironically, many security tools run with elevated

privileges and can be sources of risk. Answers to this question

did not correlate at all with CA scores (r = −0.08, p = .009).
5) Asking for Tool Permissions (SCQ5-SCQ7): In SCQ5,

we asked participants how likely it was that they would ask for

permission to use a free tool (see Fig. 4). Those selecting ‘Not
Applicable’ were discounted. 70% of respondents would ask,

10% were neutral and 20% were unlikely or very unlikely to

ask. Thus, 20% of respondents apparently have a particularly

low interest in security, particularly low expectations from their

management team, or both. (Answers to this question did not

correlate with CA scores (r = .15, p<.001)).
However, SCQ6 indicated that a large 82% of respondents

thought that it was somewhat or very likely that, if they did

ask, they would get permission for a free tool. The figure for
funding for a paid tool (SCQ7) was much lower at 52%. It can
be argued that paid security tools are often better supported

than free tools, so that they should be preferred. The only

negative difference between a free and paid tool is financial

outlay. The contrast between the answers to these two questions

may indicate a poor security culture in the relevant participants’

organisations. Haney et al. [22] included spending money on

security in their list of attributes needed for a positive security

culture in a development environment. The signals and cues

received by employees influence their understanding of the real

priorities in their work environments [31], [42]. In this case,

participants have concluded that security is not a management

priority.

Answers to SCQ6 did not correlate with CA scores (r = .11,
p = .001), but SCQ7 answers showed a weak correlation of

.27 (p<.001), indicating that paid tools are slightly more likely
to be considered if other security precautions are in place.

6) Perceptions of Security Culture (SCQ8-SCQ9): Although
the importance of security culture is emphasised in numerous

papers on organisations and teams with secure coding processes

[21], [23], [33], [57], [58], there can be a disconnect between

management and developers when it comes to security [23].

Some researchers have found that developers can be cynical

about management drives for a security culture [58], perhaps

perceiving them as lip service. Therefore we first asked whether

the developer is aware of a claim to security culture in the

environment, and then asked whether the developer would

agree with this claim. Asked whether they had heard it said

that there was a security culture in their working environment

(SCQ8), only 261 respondents said ‘Yes’; 633 selected ‘No,’
with 133 selecting ‘Not applicable.’ We allowed free text
contributions; one was: ‘no real people say stuff like that,’
a reminder that the term ‘security culture’ can seem like

just more management speak or propaganda [58] if its use

is not accompanied by concrete steps towards prioritising

security. Another contribution was ‘We’re a small firm, shipping
working software at all is the priority.’ Answers to this question

1629

correlated weakly with CA scores, (r = .40, p<.001).
The following question (SCQ9) was whether participants

would agree that there was a security culture in their work

environment. As can be seen in Fig. 6, 48% of participants

agreed or strongly agreed with this statement. 28% disagreed

or strongly disagreed, while 24% were neutral. This question

correlated with the CA score, with a weak to moderate

correlation (r = .41, p<.001).

28% 48%24%

100 50 0 50 100
Percentage

Strongly disagree
Somewhat disagree

Neither agree nor disagree
Somewhat agree

Strongly agree

Fig. 6. SCQ9: Would you agree that there is a security culture in your working
environment? (n=946).

Of particular interest is whether there is a strong correlation

between how security culture is portrayed in a work envi-

ronment (SCQ8) and how respondents themselves view the

environment’s security culture (SCQ9). In fact, there is only

a moderate correlation of .52 (p<.001) between these values.
Developers may not be buying in to security culture claims.

7) How Highly the Team Prioritises Security (SCQ10):
Security is often treated as an NFR (non-functional requirement)

in the software development process, and is not explicitly

prioritised by management or teams [53], [59]. Continuing

to probe the security culture in the developers’ working

environment, we asked them how highly they thought their

team prioritised software security. See Fig. 7; while 39% felt

that their team prioritised it a lot or a great deal, 25% felt

that they prioritised it only a little, or not at all. Correlation

between answers to this question and the CA score is low to

moderate (r = .48, p<.001).

25% 39%36%

100 50 0 50 100
Percentage

Not at all
A little

A moderate amount
A lot

A great deal

Fig. 7. SCQ10: How highly do you think your team prioritises software
security? (n=896).

8) How Often Security is Mentioned in Team Communi-
cations (SCQ11): A developer may perceive their team’s

prioritisation of software security inaccurately, or their reporting

may be subject to social desirability bias. Haney et al. [22]

discussed how a security culture involves a ‘commitment to
address security’ and the ‘perpetuation of a security mindset.’
Communication of priorities is essential within working en-

vironments [33], [60]. Furthermore, if indications of concern

for secure coding are missing, that in itself allows developers

to infer that secure coding is not considered important on the

team [42]. In order to explore security prioritisation further, we

asked participants approximately how often software security is

mentioned in team communications. Fig. 8 presents the results,

which differ markedly from some of the previous answers.

21% of respondents said that security was mentioned on the

team about once a week or more often, and 21% said it was

mentioned a few times a month. However, a large 58% said it

was mentioned about once a month or less, with 9% stating

that it is never mentioned. Correlation between answers to

this question and the CA score is low to moderate (r = .44,
p<.001).

58% 21%21%

100 50 0 50 100
Percentage

Never
Less than once a month
About once a month

A few times a month
About once a week
A few times a week

At least once a day

Fig. 8. SCQ11: How often is software security mentioned in team communi-
cations? (n=862).

9) Time per Week Spent on Secure Coding (SCQ12): Time
is a scarce resource, and time spent should give further insight

into the real emphasis on security in the work environment

[42], [61]. We asked participants how much time they spent

on security during the week, supplying options from ‘None,’
‘Less than half an hour,’ etc., to ‘A week,’ and also allowing
free text replies. This question can be criticised on the basis

that security should come with quality. For example, one

respondent replied: ‘impossible to quantify this way; all work
that leads to higher quality software also usually leads to
more secure software.’ However, developing secure software
entails many security-specific activities; threat modelling is

considered an essential component of secure coding [62]–[64].

Security conscious respondents could be expected to have

an approximate mental model of how much time they spend

on concerns that are primarily security motivated. Therefore,

answers to this question are of interest, giving us additional

insight into the security culture in the developer’s working

environment.

Even bearing in mind the qualification above, the answers

to this question are not encouraging; Fig. 9 is dominated by

red and orange blocks. Less than two hours a week is spent

on security by 55% of respondents, with nearly 20% spending

none. One free text response was: ‘Fluctuates on whether
my project is blocked by security review. Usually not at all,
sometimes a few hours.’ Another participant added ‘less than
half an hour a month.’ Correlation between answers to this
question and the CA score is low (r = .38, p<.001).

C. Research Question 3: Do secure coding practice and culture
correlate, and if not, what lessons can we learn to help support
development of secure coding?

As we examined the answers to our security culture questions

we noted the correlation score of each question’s answers to

1630

55% 17%28%

100 50 0 50 100
Percentage

None
Less than half an hour

Less than two hours
Half a day

A day
2 4 days

A week

Fig. 9. SCQ12: Roughly how much time do you spend on software security
in an average week? (n=878).

the overall CA score for software security practice. In many

cases, there was no correlation. Where it did exist it was weak

to moderate. By contrast, if good security practice entailed

good security culture we would expect to find high correlations

between culture answers and practice findings. In an attempt

to attain a greater understanding of our results, we broke down

some of the answers by CA score. Fig. 10 shows the degree

to which the participant thinks their team prioritises security,

broken down by CA score. There is clearly a correlation, and

for high CA scores we are led to believe that security is very

highly prioritised by the team.

60%
62%
45%
45%
36%
28%
16%
19%
10%
8%
7%
0%
0%

16%
12%
16%
15%
24%
25%
38%
44%
57%
62%
70%
76%
91%

24%
25%
38%
40%
40%
47%
46%
37%
33%
30%
22%
24%
9%

100 50 0 50 100
0
1
2
3
4
5
6
7
8
9

10
11
12

Percentage

Not at all A little A moderate amount A lot A great deal

Fig. 10. SCQ10: How highly do you think your team prioritises software
security? (n=896) This graph shows the value broken down by the number of
common security activities undertaken in the environment. The correlation is
visible.

However, when we look at how frequently the team commu-

nicates about security, a prioritisation of security is not at all

clear (see Fig. 11). Even in the teams with the highest security

practices, security is mentioned within the team relatively

infrequently. At the very highest level of twelve CAs, security

is mentioned less than once a week in 36% of teams. Low levels

of communication about a topic is an indicator that the topic

is low-priority for a team [42]. We suggest that this question

gives some insight into environments where, although security

is apparently high-priority, the security culture is unfavourable.

The minimum work necessary for security compliance is done.

Similarly, when we look at the amount of time spent on

security per week it is surprisingly low at all CA levels. At

the zero-CA level, 95% of respondents spend less than half

an hour a week on security-related activities, with two thirds

of these choosing ‘None.’ Even at the highest level, 59% of

participants spend an average of less than two hours per week

81%
96%
82%
78%
76%
67%
50%
49%
49%
35%
41%
21%
18%

10%
0%
4%
6%
11%
12%
23%
24%
28%
42%
30%
47%
64%

10%
4%

14%
16%
13%
21%
26%
27%
23%
23%
30%
33%
18%

100 50 0 50 100
0
1
2
3
4
5
6
7
8
9

10
11
12

Percentage

Never
Less than once a month
About once a month

A few times a month
About once a week
A few times a week

At least once a day

Fig. 11. SCQ11: How often is software security mentioned in team
communications? (n=862). This graph shows the value broken down by the
number of common security activities undertaken in the environment. Even at
the highest CA scores, team security communication is relatively infrequent.

on security activities. Fig. 12 suggests that this question could

be useful when attempting to identify a compliance-focused

mentality.

92%
97%
93%
92%
90%
88%
84%
74%
82%
77%
67%
66%
59%

3%
0%
2%
2%
2%
3%
10%
9%
11%
7%
24%
12%
32%

5%
3%
6%
6%
8%
9%
7%

17%
8%

16%
10%
22%
9%

100 50 0 50 100
0
1
2
3
4
5
6
7
8
9

10
11
12

Percentage

None
Less than half an hour
Less than two hours

Half a day
A day
2 4 days

A week

Fig. 12. SCQ12: Roughly how much time do you spend on software security
in an average week? (n=878). Even at the highest level of common security
activities, many participants spend less than two hours a week on security.

VI. DISCUSSION AND CONCLUSION

Asked to comment on the survey, one participant said of the

12 CAs: ‘A lot of the questions about bugs or security issues
being tracked are kind of missing the point; the system exists,
but often times fails. Bugs and bug fixes are in the correct
system, but there is not enough time allocated for reporters to
verify or validate fixes or for regression.’
This is an excellent illustration of the importance of assessing

security culture alongside security activities. If the organisa-

tion’s employees are going through the motions, producing

paperwork and audit trails for compliance purposes, but are

not allowed time to do the job properly, a good security culture

is missing. In this environment it is inevitable that security

issues will slip through the cracks, adversely affecting the

1631

organisation or open source team, impacting their clients, and

sometimes posing a systemic threat to their very existence.

Detailed understanding of organisational culture requires

longitudinal ethnographic research. In many contexts (such as

surveys) this is not achievable, but relative values are of benefit.

Our questions are designed to probe core cultural indicators

in an organisation. Where values are low, security culture is

lacking.

A. Threats to Validity

The questions we used to objectively assess environmental

secure coding practice are based on the secure coding activities

identified by analysis of BSIMM results as those adopted first

and most frequently by security-aware organisations. These

activities might not be suited or appropriate to all coding

environments. However, the BSIMM data is the largest trove

of such data available at this time. It is the closest approach we

have identified to finding an empirically-established objective

measure of secure coding in environments developing complex

applications. The CA Score is a simple measure which does

not explore how activities are performed or whether they

are implemented correctly. In the necessary research trade-

off between cost and detail, it is a lightweight measurement

suitable for surveys and quantitative comparisons. For a more

thorough measurement of secure software development, more

detailed analyses [21] are appropriate.

The questions used to provide insight into participants’ under-

standing of the security culture of their working environment

were centred around topics that are prevalent in academic

software security literature. Some include ideas that can also be

found in organisational climate theory. It is possible that other

wordings or additional questions exist which would further

enhance our understanding of security culture. Finding and

evaluating such questions can be the subject of further research.

As with all questionnaire-based studies, another risk to

validity is social desirability bias: the danger that developers

will tell us what they think we want to hear. Respondents were

self-selecting, and the data cannot be verified. We attempted

to mitigate this risk by emphasising in recruitment materials

and in the survey consent form that participants did not need

to be interested in security and did not need to know anything

about it.

Our interpretations of the answers to our questions could

be mistaken. For example, the time spent on security by our

respondents could in fact be appropriate in an environment with

a good security culture. Future research should explore this.

In a discussion of assessing software security in the field, it is

necessary to bear in mind that the direction of causation cannot

be determined. However, correlations and relative emphasis

can be observed and can be instructive, which is the approach

we have taken here.

B. Conclusion

In this study we add to the existing body of knowledge on

how to identify environments where secure coding is prioritised

and interest in code security is valued. We wish to ensure that

the correct thing is being measured. In our research, we want

to focus on the moon, not on the finger pointing at the moon.

We adopted a list of 12 secure coding activities which have

been empirically established as being those adopted first and

most often in software security drives. We found that while

many of our respondents identified some of these activities in

their work environments, in some workplaces none of them

were present.

It is well known that security activities can be undertaken

for compliance reasons. Researchers into secure coding have

established that to achieve secure coding success, a security

culture should be established. Based on a thorough literature

review, we asked a number of questions designed to evaluate

security culture. For example, we asked how much time the

respondent spends on secure coding, and how often, on average,

secure coding is mentioned in team communications in a week.

In this paper we discuss the answers to 12 such questions. We

find indications of poor security culture at all levels of security

practice. Even where participants state that all 12 common

security practices are undertaken in their working environments,

communication about security and time spent on security can

be very low.

Our results may have an impact in several areas.

Academia: Research on software security practice does not
always attempt to measure organisational security [40], and

even when this is measured, culture is not quantified. When

studying developer behaviour, for example in ethnographic

studies, it is important to also consider the security processes

and culture in the environment. If this is not done, the research

may miss fundamental influences on the developer or team

under study. The CA Score provides a simple but empirically

validated measure for practice. Our culture questions, especially

questions SCQ11 and SCQ12, introduce a way to do a quick

litmus test for security culture.

Organisations: For organisations that are serious about
encouraging secure coding, it is not enough to introduce

practices and follow processes. In addition, time, budget and

space for security must be provided.

Industry: Changes to regulation, law and industry standards
must look beyond the checkbox approach [25] and consider

the holistic background.

The results of this survey show that when evaluating security

posture it is not enough merely to measure activities. Security

culture must also be evaluated. Understanding the time, money

and support available for secure coding activities is crucial to

assessing how thoroughly they will be implemented.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, the pilot testers, and all

the survey participants for their time and insights. This work is

supported by Science Foundation Ireland grants 18/CRT/6222,

13/RC/2077 P2, 13/RC/2094 P2, 15/SIRG/3293.

REFERENCES

[1] G. McGraw, “Software security,” IEEE Security and Privacy, vol. 2,
no. 5, p. 80–83, 2004.

1632

[2] I. Ryan, U. Roedig, and K.-J. Stol, “Insecure software on a fragmenting
Internet,” in 2022 Cyber Research Conference - Ireland (Cyber-RCI),
2022.

[3] K.-J. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Transactions on Software Engineering and Methodology, vol. 27,
no. 3, p. 1–51, Sep 2018.

[4] C. Weir, S. Migues, M. Ware, and L. Williams, “Infiltrating security
into development: exploring the world’s largest software security study,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2021, p. 1326–1336.

[5] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand, and
M. Smith, “Why do developers get password storage wrong? A qualitative
usability study,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, p. 311–328.

[6] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and M. Smith,
“‘If you want, I can store the encrypted password’: A password-storage
field study with freelance developers,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. ACM, May
2019.

[7] A. Naiakshina, A. Danilova, E. Gerlitz, and M. Smith, “On conducting
security developer studies with CS students: Examining a password-
storage study with CS students, freelancers, and company developers,” in
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. ACM, 2020.

[8] M. G. Jaatun, “Hunting for aardvarks: Can software security be
measured?” in Multidisciplinary Research and Practice for Information
Systems, ser. Lecture Notes in Computer Science, G. Quirchmayr, J. Basl,
I. You, L. Xu, and E. Weippl, Eds. Springer, 2012, p. 85–92.

[9] C. Weir and B. Hermann, “From needs to actions to secure apps? The
effect of requirements and developer practices on app security,” in 29th
USENIX Security Symposium, August 12, 2020 - August 14, 2020, ser.
Proceedings of the 29th USENIX Security Symposium. USENIX
Association, 2020, p. 17.

[10] M. W. Sammy Migues, John Steven, “BSIMM,” https://www.bsimm.com/,
2022.

[11] OWASP, “SAMM,” https://www.opensamm.org/, 2021, [Online; accessed
13-April-2021].

[12] Microsoft, “Microsoft Security Development Lifecycle,” https://www.
microsoft.com/en-us/securityengineering/sdl/, 2022, [Online; accessed
01/09/2022].

[13] SAFECode, “SAFECode Homepage,” https://safecode.org/, 2022, [Online;
accessed 01/09/2022].

[14] M. G. Jaatun, D. S. Cruzes, K. Bernsmed, I. A. Tøndel, and L. Røstad,
“Software security maturity in public organisations,” in Information
Security, ser. Lecture Notes in Computer Science, J. Lopez and C. J.
Mitchell, Eds. Springer International Publishing, 2015, p. 120–138.

[15] P. Morrison, “A security practices evaluation framework,” in Proceedings
of the 37th International Conference on Software Engineering - Volume
2. IEEE Press, 2015, p. 935–938.

[16] T. D. Oyetoyan, D. S. Cruzes, and M. G. Jaatun, “An empirical study on
the relationship between software security skills, usage and training needs
in agile settings,” in 2016 11th International Conference on Availability,
Reliability and Security (ARES), 2016, p. 548–555.

[17] K. Rindell, J. Ruohonen, and S. Hyrynsalmi, “Surveying secure software
development practices in Finland,” in Proceedings of the 13th Interna-
tional Conference on Availability, Reliability and Security, ser. ARES
2018. ACM, 2018, event-place: Hamburg, Germany.

[18] H. Assal and S. Chiasson, “Security in the software development lifecycle,”
in Proceedings of the Fourteenth USENIX Conference on Usable Privacy
and Security. USA: USENIX Association, 2018, p. 281–296.

[19] D. Votipka, D. Abrokwa, and M. L. Mazurek, “Building and validating
a scale for secure software development self-efficacy,” in Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems.
ACM, 2020, p. 1–20, event-place: Honolulu, HI, USA.

[20] P. Morrison, D. Moye, R. Pandita, and L. Williams, “Mapping the
field of software life cycle security metrics,” Information and Software
Technology, vol. 102, no. May, p. 146–159, 2018.

[21] I. A. Tøndel, D. S. Cruzes, M. G. Jaatun, and G. Sindre, “Influencing
the security prioritisation of an agile software development project,”
Computers and Security, vol. 118, p. 102744, 2022.

[22] J. Haney, M. Theofanos, Y. Acar, and S. Spickard Prettyman, “‘We
make it a big deal in the company’: Security mindsets in organizations
that develop cryptographic products,” in Proceedings of the Fourteenth

Symposium on Usable Privacy and Security. USENIX Association,
2018, p. 357–373.

[23] D. Ashenden and D. Lawrence, “Security dialogues: Building better
relationships between security and business,” IEEE Security Privacy,
vol. 14, no. 3, pp. 82–87, 2016.

[24] J. A. Morales, T. P. Scanlon, A. Volkmann, J. Yankel, and H. Yasar,
“Security impacts of sub-optimal devsecops implementations in a highly
regulated environment,” in Proceedings of the 15th International Confer-
ence on Availability, Reliability and Security. ACM, 2020.

[25] S. Rahaman, G. Wang, and D. D. Yao, “Security certification in
payment card industry: Testbeds, measurements, and recommendations,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19. New York, NY, USA: ACM,
Nov 2019, p. 481–498.

[26] “PCI DSS,” https://www.pcisecuritystandards.org/document library/
?category=pcidss&document=pci dss, [Online; accessed 26 July 2022].

[27] C. Heitzenrater and A. Simpson, “A case for the economics of secure
software development,” in Proceedings of the 2016 New Security
Paradigms Workshop, ser. NSPW ’16. New York, NY, USA: ACM,
Sep 2016, p. 92–105.

[28] I. Rauf, M. Petre, T. Tun, T. Lopez, P. Lunn, D. Van der Linden,
J. Towse, H. Sharp, M. Levine, A. Rashid et al., “The case for adaptive
security interventions,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 1, pp. 1–52, 2021.

[29] I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study of
dependency management and its security implications,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. ACM, Oct 2020, p. 1513–1531.

[30] I. A. Tøndel, D. S. Cruzes, M. G. Jaatun, and K. Rindell, “The security
intention meeting series as a way to increase visibility of software
security decisions in agile development projects,” in Proceedings of the
14th International Conference on Availability, Reliability and Security,
ser. ARES ’19. New York, NY, USA: ACM, 2019.

[31] H. Assal and S. Chiasson, “‘Think secure from the beginning’: A survey
with software developers,” in Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. ACM, 2019, p. 1–13.

[32] T. Lopez, H. Sharp, T. Tun, A. K. Bandara, M. Levine, and B. Nuseibeh,
“‘Hopefully we are mostly secure’: Views on secure code in professional
practice,” in Proceedings of the 12th International Workshop on Cooper-
ative and Human Aspects of Software Engineering. IEEE Press, 2019,
p. 61–68.

[33] A. Tuladhar, D. Lende, J. Ligatti, and X. Ou, “An analysis of the role of
situated learning in starting a security culture in a software company,” in
Seventeenth Symposium on Usable Privacy and Security (SOUPS 2021),
2021, p. 617–632.

[34] M. Tahaei, A. Frik, and K. Vaniea, “Privacy champions in software
teams: Understanding their motivations, strategies, and challenges,” in
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. New York, NY, USA: ACM, 2021, p. 16.

[35] I. Ryan, U. Roedig, and K.-J. Stol, “Understanding developer security
archetypes,” in International Workshop on Engineering and Cybersecurity
of Critical Systems (EnCyCriS). Association of Computer Machinery,
Aug. 2021.

[36] J. M. Haney and W. G. Lutters, “‘It’s scary. . . it’s confusing. . . it’s dull’:
How cybersecurity advocates overcome negative perceptions of security,”
in Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018),
2018, p. 411–425.

[37] C. Weir, I. Becker, and L. Blair, “A passion for security: Intervening
to help software developers,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2021, p. 21–30.

[38] S. Xiao, J. Witschey, and E. Murphy-Hill, “Social influences on secure
development tool adoption: Why security tools spread,” in Proceedings of
the 17th ACM Conference on Computer Supported Cooperative Work and
Social Computing. New York, NY, USA: ACM, 2014, p. 1095–1106.

[39] J. Witschey, S. Xiao, and E. Murphy-Hill, “Technical and personal factors
influencing developers’ adoption of security tools,” in ACM Workshop
on Security Information Workers. ACM Press, 2014, p. 23–26.

[40] H. Palombo, A. Z. Tabari, D. Lende, J. Ligatti, and X. Ou, “An
ethnographic understanding of software (in)security and a co-creation
model to improve secure software development,” in Sixteenth Symposium
on Usable Privacy and Security (SOUPS 2020), 2020, pp. 205–220.

[41] B. Schneider, M. G. Ehrhart, and W. H. Macey, “Organizational climate
and culture,” Annual Review of Psychology, vol. 64, no. 1, p. 361–388,
2013.

1633

[42] R. Arizon-Peretz, I. Hadar, G. Luria, and S. Sherman, “Understanding
developers privacy and security mindsets via climate theory,” Empirical
Software Engineering, vol. 26, no. 6, p. 34, 2021.

[43] R. Arizon-Peretz, I. Hadar, and G. Luria, “The importance of security is
in the eye of the beholder: Cultural, organizational, and personal factors
affecting the implementation of security by design,” IEEE Transactions
on Software Engineering, vol. 48, p. 4433–4446, 2022.

[44] I. Ryan, U. Roedig, and K.-J. Stol, “Measuring secure coding practice
and culture: A finger pointing at the moon is not the moon,” Feb 2023.
[Online]. Available: osf.io/mz29b

[45] W. Foddy and W. H. Foddy, Constructing Questions for Interviews and
Questionnaires: Theory and Practice in Social Research. Cambridge
University Press, 1994.

[46] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C. Mayhorn, and
T. Zimmermann, “Quantifying developers’ adoption of security tools,”
in 2015 10th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE 2015 - Proceedings, 2015, p. 260–271.

[47] A. Danilova, A. Naiakshina, and M. Smith, “One size does not fit all:
a grounded theory and online survey study of developer preferences
for security warning types,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. ACM, 2020, p.
136–148.

[48] A. Danilova, A. Naiakshina, S. Horstmann, and M. Smith, “Do you really
code? Designing and evaluating screening questions for online surveys
with programmers,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), May 2021, p. 537–548.

[49] H. Kaur, S. Amft, D. Votipka, Y. Acar, and S. Fahl, “Where to recruit for
security development studies from: Comparing six software developer
samples,” in 31st USENIX Security Symposium (USENIX Security 22),
Aug 2022, p. 24.

[50] E. Murphy-Hill, C. Jaspan, C. Sadowski, D. Shepherd, M. Phillips,
C. Winter, A. Knight, E. Smith, and M. Jorde, “What predicts software
developers’ productivity?” IEEE Transactions on Software Engineering,
vol. 47, no. 3, pp. 582–594, 2019.

[51] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2022. [Online].
Available: https://www.R-project.org/

[52] G. Norman, “Likert scales, levels of measurement and the “laws” of
statistics,” Advances in Health Sciences Education, vol. 15, no. 5, p.
625–632, Dec 2010.

[53] J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make security
errors?” in 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2011, p. 161–164.

[54] O. Pieczul, S. Foley, and M. E. Zurko, “Developer-centered security and

the symmetry of ignorance,” in Proceedings of the 2017 New Security
Paradigms Workshop, 2017, pp. 46–56.

[55] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security during
application development: An application security expert perspective,” in
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. New York, NY, USA: ACM, 2018.

[56] I. Rauf, D. van der Linden, M. Levine, J. Towse, B. Nuseibeh, and
A. Rashid, “Security but not for security’s sake: The impact of social
considerations on app developers’ choices,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, ser. ICSEW’20. ACM, 2020, p. 141–144, event-place:
Seoul, Republic of Korea.

[57] M. Tahaei, A. Jenkins, K. Vaniea, and M. Wolters, “‘I don’t know too
much about it’: On the security mindsets of computer science students,” in
Proceedings of the 2019 ACM Conference on Innovation and Technology
in Computer Science Education, 2019, pp. 350–350.

[58] N. Tomas, J. Li, and H. Huang, “An empirical study on culture, automa-
tion, measurement, and sharing of DevSecOps,” in 2019 International
Conference on Cyber Security and Protection of Digital Services (Cyber
Security), Jun 2019, p. 1–8.

[59] M. Tahaei and K. Vaniea, “A survey on developer-centred security,” in
2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2019, pp. 129–138.

[60] A. Poller, L. Kocksch, K. Kinder-Kurlanda, and F. A. Epp, “First-time
security audits as a turning point?: Challenges for security practices in
an industry software development team,” in Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in Computing
Systems, ser. CHI EA ’16. ACM, 2016, p. 1288–1294, event-place: San
Jose, California, USA.

[61] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and Y. Zhuang,
“It’s the psychology stupid: how heuristics explain software vulnerabilities
and how priming can illuminate developer’s blind spots,” in Proceedings
of the 30th Annual Computer Security Applications Conference. ACM,
2014, p. 296–305.

[62] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl,
“Developers need support, too: A survey of security advice for software
developers,” in 2017 IEEE Cybersecurity Development (SecDev). IEEE,
2017, p. 22–26.

[63] C. Weir, I. Becker, J. Noble, L. Blair, M. A. Sasse, and A. Rashid,
“Interventions for long-term software security: Creating a lightweight
program of assurance techniques for developers,” Software - Practice
and Experience, vol. 50, no. 3, p. 275–298, 2020.

[64] J. Whitmore and W. Tobin, “Improving attention to security in soft-
ware design with analytics and cognitive techniques,” in 2017 IEEE
Cybersecurity Development (SecDev), 2017, p. 16–21.

1634

