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Abstract—Reactive synthesis is an automated procedure to ob-
tain a correct-by-construction reactive system from its temporal
logic specification. Two of the main challenges in bringing reactive
synthesis to practice are its very high worst-case complexity
and the difficulty of writing declarative specifications using basic
LTL operators. To address the first challenge, researchers have
suggested the GR(1) fragment of LTL, which has an efficient poly-
nomial time symbolic synthesis algorithm. To address the second
challenge, specification languages include higher-level constructs
that aim at allowing engineers to write succinct and readable
specifications. One such construct is the triggers operator, as
supported, e.g., in the Property Specification Language (PSL).

In this work we introduce triggers into specifications for
reactive synthesis. The effectiveness of our contribution relies
on a novel encoding of regular expressions using symbolic finite
automata (SFA) and on a novel semantics for triggers that, in
contrast to PSL triggers, admits an efficient translation into
GR(1). We show that our triggers are expressive and succinct,
and prove that our encoding is optimal.

We have implemented our ideas on top of the Spectra language
and synthesizer. We demonstrate the usefulness and effectiveness
of using triggers in specifications for synthesis, as well as the
challenges involved in using them, via a study of more than 300
triggers written by undergraduate students who participated in
a project class on writing specifications for synthesis.

To the best of our knowledge, our work is the first to introduce
triggers into specifications for reactive synthesis.

I. INTRODUCTION

Reactive synthesis is an automated procedure to obtain a

correct-by-construction reactive system from its temporal logic

specification. Two of the main challenges in bringing reactive

synthesis to practice are its high worst-case complexity and the

difficulty of writing specifications using basic LTL operators.

To address the first challenge, Piterman et al. [10], [41] have

presented GR(1), an assume/guarantee fragment of LTL, with

an efficient symbolic synthesis algorithm. GR(1) specifications

include assumptions and guarantees about what needs to hold

on all initial states, on all states and transitions (safety), and

infinitely often on every run (justice). GR(1) has been used in

several application domains, e.g., to specify and implement

autonomous robots [26], [29], control protocols for smart

camera networks [40], distributed control protocols for aircraft

vehicle management systems [39], and device drivers [45]. It

is supported by several tools [8], [15], [33], [52].

To handle the second challenge, specification languages

include higher-level constructs that aim at allowing engineers

write succinct and readable specifications. Two of these are

regular expressions (REs) and triggers, as supported, e.g., in

the Property Specification Language (PSL) [16], [23], an IEEE

standard widely used in industrial formal verification tools.

REs have many applications in computer science in general

and in programming and specification languages in particular.

The triggers operator, L|=>R, roughly specifies that whenever

a prefix of a run satisfies the RE on the left, the run starting

immediately after that should satisfy the expression on the

right. Triggers are considered useful and intuitive to read and

write. Live sequence charts [21] and triggered scenarios [46]

can be viewed as special cases of triggers.

In this work we introduce REs and triggers into specifi-
cations for reactive synthesis. Specifically, we define a rich

RE language including Boolean operators, grouping, quan-

tification, and wildcards, where ‘characters’ are propositional

formulas over the variables in the specification, and use REs as

operands for the triggers operator. Using our REs and triggers,

one can easily express many natural temporal properties that

are very difficult to express directly in either LTL or GR(1).

Consider a typical Obstacle Evasion specification, which

has been used as a benchmark in the literature. The general

setting is an n×m grid world with a robot moving between

cells, as illustrated in Fig. 1. A Spectra specification for an

8× 8 setting is shown in Lst. 1. The robot (position encoded

by variable rob) must make sure to evade a larger, moving

obstacle (variable obs) that occupies 2×2 grid cells. In each

move, the obstacle and the robot can stay in place or move to

any empty adjacent cell. The robot is more agile and can do

two steps upon each step of the obstacle.

The engineers developing the specification want to add a

guarantee that the robot patrols between pos1 , pos2 , and

pos3 in that order. This corresponds to an instance of the

Strictly Ordered Patrolling pattern from [37] and not directly

supported by GR(1) synthesis. It can however be expressed by

the trigger shown in lines 41-42. Since the empty word satisfies

the left side RE [true]∗ of this trigger, it immediately requires

the RE on the right to be satisfied. Thus, the robot will not

be at any of the named designated positions until it reaches
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pos1 , pos2 , and finally pos3 . After reaching pos3 the right

side RE is satisfied and the execution may satisfy the left side

again, restarting the process.

As another example, the trigger in lines 43-44 expresses

a violation (false) if the system does not charge for 20

consecutive states, or if the load is high and it does not charge

for 14 consecutive states. Note the use of rich assertions, e.g.,

load=HIGH & !charge, and powerful RE operators, e.g.,

Kleene star or union (operator |). Of course, both sides of a

trigger may consist of REs as in the final example in lines 45-

46, expressing that whenever loaded and called, the system

will only move or charge until it is unloaded. Finally, note

that the triggers are specified in addition to other elements in

the specification, i.e., different alw (always, G) and alwEv
(always eventually, GF) assumptions and guarantees. Thus, our

work is not about synthesis from specifications made only of

triggers but from GR(1) specifications with added triggers.

The use of REs as building blocks allows the expression of

a wide range of properties, from very simple to most complex.

We present the formal syntax and semantics of our REs and

triggers, with examples of the properties they can express.

The effectiveness and significance of our contribution
relies on three novelties. First, rather than a naive translation

of REs over assertions to automata, which would result in au-

tomata that are linear in the number of assertion valuations, we

use a pure symbolic translation into symbolic finite automata

(SFA) [50], which is linear in the number of assertions.

Second, the semantics of our triggers is simpler than that of

PSL triggers. Intuitively, while the simultaneous semantics of

PSL triggers requires tracking all (overlapping) occurrences of

the trigger’s left operand in parallel to its right operand, our

non-simultaneous semantics does not track additional occur-

rences of the left until the right has been satisfied. Importantly,

this difference in semantics results in a lower complexity.

While synthesis from PSL triggers is double-exponential [27],

pos1

pos2

pos3

moving 
obstacle

Figure 1: An illustration of the Obstacle Evasion example in a grid
world with a robot to visit dedicated cells, e.g., pos1, while avoiding
a 2x2 moving obstacle.

1 sys Int(0..7)[2] rob; //robot position
2 sys boolean charge;
3 sys {STOP, UP, DOWN, LEFT, RIGHT} moveCmd;
4 env Int(0..7)[2] obs; //obstacle position
5 env {NONE, LOW, HIGH} load;
6 env boolean called;
7 env boolean obsPause;
8

9 define pos1 := rob[0]=4 & rob[1]=0;
10 define pos2 := rob[0]=0 & rob[1]=3;
11 define pos3 := rob[0]=5 & rob[1]=5;
12 define atPos := pos1|pos2|pos3;
13 define loaded := load!=NONE;
14 define move := moveCmd!=STOP;
15

16 predicate evade(Int(0..7) rx, Int(0..7) ry,
17 Int(0..7) ox, Int(0..7) oy) {
18 (rx = ox | rx = ox+1) -> ry !=oy & ry !=ry+1
19 }
20 predicate moveOnGrid(Int(0..7) x, Int(0..7) y) {
21 (moveLOne(x) & stay(y) | moveLOne(y) & stay(x))
22 }
23 predicate moveLOne(Int(0..7) d) {
24 next(d) = d+1 | next(d) = d | next(d) = d-1
25 }
26 predicate stay(Int(0..7) d) {
27 next(d)=d
28 }
29 asm ini !loaded;
30 asm ini obs[0]=0 & obs[1]=0;
31 asm alw next(obsPause) =! obsPause;
32 // obs moves on grid but pauses every second step
33 asm alw moveOnGrid(obs[0], obs[1]) &
34 (obsPause | (stay(obs[0]) & stay(obs[1])));
35 asm trig [true]* |=>
36 [obs[0]=0 & obs[1]=0][true]*
37 [obs[0]=7 & obs[1]=7];
38 asm alwEv loaded;
39 gar alw moveOnGrid(rob[0],rob[1]);
40 gar alw evade(rob[0], rob[1], obs[0], obs[1]);
41 gar trig [true]* |=>
42 [!atPos]*[pos1][!atPos]*[pos2][!atPos]*[pos3];
43 gar trig [true]*([!charge]{20} |
44 [load=HIGH &!charge]{14}) |=> [false];
45 gar trig [true]*[loaded & called] |=>
46 [move | charge]*[!loaded];

Listing 1: An obstacle evasion specification with triggers.

like that of LTL [43], synthesis from our non-simultaneous

triggers requires only one exponent and thus enables efficient

embedding into GR(1).

Third, we prove that expressing a trigger property in GR(1)

requires the addition of fresh auxiliary variables and that

our encoding is optimal as it adds only the minimal number

of variables required. We further present properties that are

expressible using a trigger and cannot be expressed in LTL

without the addition of new variables, and properties that

are expressible using a rather simple trigger but cannot be

expressed in LTL without the nested use of the until operator.

These theoretical results explain why expressing trigger prop-

erties directly in GR(1) is very difficult to do manually, and

thus further strengthen the significance of our work.

We have implemented support for REs and triggers on top

of Spectra [1], [33], integrating into the language and the

synthesis IDE. In particular, the reduction to GR(1) is done

internally and is completely transparent to the engineers who
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write the specification. They never see the auxiliary variables

that the reduction to GR(1) adds to the problem.

For evaluation, we report on more than 300 triggers from

30 specifications written by 20 third-year CS undergraduate

students who participated in a semester-long project class

on writing specifications for synthesis, as well as more than

100 meaningful mentions of triggers from the class’s Slack

communications. We use all these to demonstrate the potential

usefulness of triggers in expressing various properties for

synthesis, as well as the limitations and remaining challenges

to make triggers more useful. See Sect. V.

Many have discussed the challenge of writing formal spec-

ifications, in particular in LTL context, see, e.g., [44]. To our

knowledge, we are the first to efficiently introduce triggers into

reactive synthesis specifications. See related work in Sect. VI.

II. PRELIMINARIES

We use standard definitions for languages, regular expres-

sions, DFAs and NFAs from [22] as well as for linear temporal

logic (LTL) [42], infinite path, and realizability, e.g., as found

in [10]. We provide background on GR(1), Spectra, and

symbolic finite automata.

a) GR(1) and Spectra: LTL synthesis is computationally

expensive (2EXPTIME-complete [43]). Thus, authors have

suggested LTL fragments with efficient synthesis algorithms.

GR(1) is a fragment of LTL with an efficient symbolic

synthesis algorithm [10], [41], whose expressive power cov-

ers most of the well-known LTL specification patterns [14],

[28]. GR(1) specifications include assumptions and guarantees

about what needs to hold on all initial states, on all states

and transitions (safety), and infinitely often on every run

(justice). A GR(1) synthesis problem consists of the following

elements [10]:

• X is a set of input variables controlled by the environment;

• Y is a set of output variables controlled by the system;

• θe is an assertion, i.e., a propositional logic formula, over

X characterizing initial environment states;

• θs is an assertion over V = X ∪ Y characterizing initial

system states;

• ρe is an assertion over V ∪ X ′, with X ′ a primed copy of

variables X ; given a state, ρe restricts the next input;

• ρs is an assertion over V ∪ V ′, with V ′ a primed copy of

variables V; given a state and input, ρs restricts the next

output;

• Je
i∈1..n is a set of assertions over V for the environment to

satisfy infinitely often (called justice assumptions);

• Js
j∈1..m is a set of assertions over V for the system to satisfy

infinitely often (called justice guarantees).

A GR(1) synthesis problem is strictly realizable1 iff the

1Note that many authors present the simpler and more intuitive formula
for implication realizability rather than the one for strict realizability. For a
comparison and a reduction between two see [10], [25].

following LTL formula is realizable:

ϕsr = (θe → θs) ∧ (θe → G((Hρe)→ ρs))

∧ (θe ∧ Gρe → (
∧

i∈1..n

GFJe
i →

∧

j∈1..m

GFJs
j ))

Spectra [1], [33] is a specification language and a synthesis

environment that includes a GR(1) synthesizer. Spectra extends

GR(1)’s Boolean variables to finite-type variables, e.g., enu-

merations and bounded integers. Beyond GR(1) with several

performance heuristics [18], it includes extensions that are

reduced into GR(1), e.g., patterns [28]. It comes with several

analyses, e.g., well-separation detection [30] and repairs [34].

b) Symbolic Finite Automata (SFA): An assertion over

a set of variables V is a Boolean valued expression

over variables in V and their respective operators, e.g.,

load=HIGH & !charge. A(V) is the set of all assertions

over V . A valuation val over V assigns each v ∈ V a value

val(v) in v’s type. V (V) is the set of all valuations over V .
A symbolic finite automaton (SFA) [50] is a finite au-

tomaton that employs assertions (rather than symbols) on

the transitions. An SFA over a set of variables V is a

tuple A = (Q,Δ, q0,F), where (1) Q is a finite set of

automata states; (2) Δ ⊆ Q × (A(V) ∪ {ε}) × Q is a finite

transition relation; (3) q0 ∈ Q is the initial state; and (4)

F ⊆ Q are the accepting states. An SFA is deterministic

(DSFA) if it has no ε-transitions, and for any two transitions

(q, assrt1 , q1), (q, assrt2, q2) with q1 �= q2, ∀val ∈ V (V),
¬(val |= assrt1 ∧ assrt2). We use δ to denote the transition

relation of a DSFA. Variants for standard constructions on

NFAs and DFAs exist for SFAs [50].

III. SYNTAX AND SEMANTICS

We describe the syntax and semantics of our REs and

triggers. The syntax and semantics we present match the way

we have implemented these in Spectra.

A. Regular Expressions Syntax and Semantics

The basic ‘characters’ of the REs we deal with are asser-
tions over the variables that appear in the specification. Asser-

tions are written inside [..] brackets. Naturally, the semantics

of an assertion is the language L([assrt ]) = {s ∈ V (V) :
s |= assrt}, whose words are sequences of valuations. On

top of the basic assertions, REs are defined by the following

operators and semantics:

(concatenation) L((re1)(re2)) = L(re1)L(re2);
(union) L((re1)|(re2)) = L(re1) ∪ L(re2);
(intersection) L((re1)&(re2)) = L(re1) ∩ L(re2);
(kleene-star) L((re1)∗) =

⋃∞
i=0(L(re1))

i;

(plus) L((re1)+) =
⋃∞

i=1(L(re1))
i;

(zero-or-one) L((re1)?) = {ε} ∪ L(re1);
(exact-repetitions) L((re1){k}) = (L(re1))

k;

(at-least-repetitions) L((re1){k, }) =
⋃∞

i=k(L(re1))
i;

(ranged-repetitions) L((re1){k,m}) =
⋃m

i=k(L(re1))
i;

(negation) L(∼(re1)) = (V (V))∗ \ L(re1).
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Example 1: The RE from the left side of the trigger shown

in Lst. 1 in lines 43-44 includes the operators Kleene star,

concatenation, exact repetition, and union.

Note that the RE operators we support are rich and enable

the expression of many other operators, including, e.g., SERE

non-length matching and PSL’s variants of consecutive and

non-consecutive counting [16].

B. Triggers Syntax and Semantics

For REs regexp1 and regexp2, a trigger is written

regexp1|=>regexp2. regexp1 is the prefix RE of the trigger,

and regexp2 is the suffix RE of the trigger. Roughly, triggers

express a conditional satisfaction between two REs: whenever

regexp1 holds, regexp2 should hold afterwards.

To formally define the semantics of the triggers operator,

we start by defining the first-of operator. Given a language L,
the language first-of L, denoted first(L), is the language that

includes all words in L that have no proper prefix in L. For
a language defined by an RE, the first-of operator intuitively

yields only those words that first match the RE.

Definition 1 (first of L): A word u is a proper prefix of

w, if w = uv for some word v �= ε. For a language L,
first(L) = {w ∈ L : w has no proper prefix in L}.

Example 2: Consider the following variants of RE examples

from Lst. 1 and their corresponding first-of languages:

• first(L([!charge]+)) = L([!charge])
• first(L([true]∗[loaded])) = L([!loaded]∗[loaded])
• first(L([true]∗)) = ε

To decide if a path satisfies a trigger regexp1|=>regexp2,

one can seek, consecutively, words in first(L(regexp1)) and

in first(L(regexp2)). The path satisfies the trigger if either

this process never ends, or it ends while seeking a word in

first(L(regexp1)). Formally:

Definition 2 (trigger semantics): Let π ∈ (V (V))ω , and
let regexp1 and regexp2 be REs over 2V . We say that π
satisfies the trigger regexp1|=>regexp2, and write π |=
regexp1|=>regexp2, if one of the following holds:

1) ε ∈ L(regexp2).
2) ε /∈ L(regexp2) and π = w0w1 . . . , where for each i,

w2i ∈ first(L(regexp1)) and w2i+1 ∈ first(L(regexp2)).
3) ε /∈ L(regexp2) and π = w0w1 . . . w2j+1w

′, where:
a) For each i ≤ j: w2i ∈ first(L(regexp1)) and w2i+1 ∈

first(L(regexp2)).
b) No prefix of w′ belongs to first(L(regexp1)).

Example 3: The trigger from Lst. 1 lines 41-42 must be

satisfied via case (2) where each w2i = ε and each w2i+1

visits pos1 to pos3. The trigger from lines 45-46 must be

satisfied via case (3) where π = w′ ([false] is not in V (V)).
Note that the semantics of our triggers is slightly different

than that of PSL triggers. Specifically, in contrast to PSL,

we consider a non-simultaneous semantics: whenever regexp1

is satisfied, our semantics ignores regexp1 until regexp2 is

satisfied. This simpler semantics enables an efficient encoding

of triggers into the GR(1) fragment, as we show in Sect. IV-B.

We further discuss PSL triggers vs. ours in Sect. VI.

Finally, any trigger can be added to a specification as an

assumption or as a guarantee (the full specification of our

example in Lst. 1 uses triggers as assumptions and guarantees).

C. Expressiveness and Succinctness

We now show that triggers are both expressive and succinct.

They can express properties that cannot be expressed in LTL,

and express complicated LTL properties in a succinct manner.

First, it is well known that no LTL formula can express

the property “proposition a holds at least in every second
step” [19] (without the addition of variables). Importantly, the

trigger [true]| => [a] expresses this property. This demon-

strates the eminent expressive power of triggers.

Second, triggers can easily express properties that are

very complex to express in LTL. Specifically, express-

ing the property “there is no subsequence of the run in
which a holds k-times, but b does not hold" in LTL is

fundamentally difficult, as it cannot be expressed without

k nested instances of the until (U) operator [17]. Nev-

ertheless, this property is captured by the rather simple

trigger [true]∗((([true]∗[a]){k})&([!b]∗))|=>[false]. This
demonstrates the succinctness of triggers.

IV. ENCODING

As both REs and triggers are not directly expressible in

GR(1), to integrate them into the synthesis problem we have

to find an encoding that preserves their semantics. We present

their encoding through finite automata.

A naive approach could translate REs into finite automata

using an existing state-of-the-art library like brics [38]. Indeed,

brics supports a translation from REs to NFA, as well as

minimization and determinization of NFAs. In our context,

however, where the REs are defined over assertions, this

approach would be computationally costly: in this naive ap-

proach, the size of the generated NFA would be linear in the

number of valuations of assertions. Therefore, instead, we use

a translation of REs into SFAs, which preserves the symbolic

nature of our specification, and involves automata whose size

is linear in the number of assertions, not valuations.

Below we present the encoding of REs as SFAs. We then

present the encoding of triggers as SFAs.

A. Encoding REs

The key to the symbolic approach is to transform each

assertion [assrt ] in the RE into an SFA consisting of two states

and a single transition between them: an initial state with a

single transition labeled by assrt , leading to an accepting state.
Example 4: As an example, the assertion

[load=HIGH & !charge] is translated into the two-state

SFA shown in Fig. 2.

After the translation of each of the assertions into SFAs, we

perform a construction over these SFAs, induced by the RE

operators, following [22].

Finally, we determinize and minimize the resulting SFA by

applying algorithms from [50]. Note that the complexity of

the translation of REs into SFAs is linear. Also note that the
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p0 p1
load=HIGH & !charge

Figure 2: A two-state SFA for the assertion

[load=HIGH & !charge]

complexity of SFA determinization and minimization does not

depend on the alphabet size as in the classical case [22], but

it involves Boolean operations and satisfiability checks over

assertions – operations that are natural and very efficient when

using symbolic BDD-based encodings.

Determinization is crucial for the correct encoding of trig-

gers into GR(1). Minimization is important in order to improve

the performance as it reduces the number of variables added

for GR(1) synthesis with triggers. See next.

B. Encoding Triggers

We encode triggers into the specification via the addition of

an auxiliary variable, several safety guarantees, and a justice

formula. The construction applies to triggers in general, the

only difference between their use as assumptions or guarantees

is in adding the justice formulas to Je or Js.

1) Overview: Our translation of a trigger trig =
regexp1|=>regexp2 consists of the three steps shown in Fig. 6.

First, in step I, we construct DSFAs for first(L(regexp1)) and
first(L(regexp2)), A1 and A2, respectively. Then, in step II,

we construct a DSFA, Atrig , which tracks past valuations. As

we show, the path satisfies the trigger iff the DSFA Atrig

reaches an accepting automata state infinitely often, i.e., iff a

Büchi acceptance condition [19, Chapter 1] over the DSFA is

met. Finally, in step III below, we add an auxiliary variable

aux to the synthesis problem, to track the automata state of the

DSFAAtrig , as done, e.g., in [28]. SinceAtrig is deterministic,

this added variable is indeed an auxiliary variable, i.e., its

value is determined by the values of all other variables. By

the property that the constructed DSFA satisfies, the trigger

holds iff GF(aux ∈ Ftrig) holds, where Ftrig is the set of the

DSFA Atrig accepting states.

2) Construction: We now describe the construction of the

trigger DSFA Atrig . We fix a synthesis problem GS =
(X ,Y, θe, θs, ρe, ρs, Je, Js), and a trigger formula that serves

as a guarantee or an assumption, trig = regexp1|=>regexp2.

Step I: DSFAs for first(L(regexp1)) and first(L(regexp2))
First, we construct DSFAs for the languages

first(L(regexp1)) and first(L(regexp2)), A1 =
{Q1 = {q10 , . . . , q1k1

}, δ1, q10 ,F1} and A2 = {Q2 =
{q20 , . . . , q2k2

}, δ2, q20 ,F2}, resp., following the construction

we described in Sect. IV-A. 2

2After constructing DSFAs for regexp1 and regexp2, we just remove out-
going edges with accepting sources to obtain DSFAs for first(L(regexp1))
and first(L(regexp2)).

q10 q11

!(loaded & called)

loaded & called

Figure 3: The deterministic SFA for the first-of language of

regexp1 = [true]∗[loaded & called]

q20 q21

q22

(move | charge) & loaded

!loaded

!(move | charge)
& loaded

true

Figure 4: The deterministic SFA for the first-of language of

regexp2 = [move | charge]∗[!loaded]

Example 5: Figure 3 shows the deterministic

SFA resulting from the translation of regexp1 =
[true]∗[loaded & called]. The deterministic SFA for

regexp2 = [move | charge]∗[!loaded] from the same

trigger is structurally similar with an additional sink state for

unrecoverable violations of regexp2. See Fig. 4.

Step II: Constructing Atrig

Given the two DSFAs, A1 and A2, we construct a DFSA

Atrig by concatenating them as follows. WheneverA1 accepts,

we go to the initial state of A2, and whenever A2 accepts, we

go to the initial state of A1. A path π satisfies the trigger iff its

computation (a) traverses between A1 and A2 infinitely often,

or (b) from some point on, never leaves A1 (compare to cases

(2) and (3) in Def. 2). Hence, we redirect transitions to F1

into q20 , redirect transitions to F2 into q10 , and mark all states

of A1 as accepting. 3 Formally: Let

• δ1F1 = {(q, assrt , q′) ∈ δ1 : q ∈ Q1 \ F1, q′ ∈ F1},
• δ1

q20
= {(q, assrt , q20) : ∃q′((q, assrt , q′) ∈ δ1F1)},

• δ2F2 = {(q, assrt , q′) ∈ δ2 : q ∈ Q2 \ F2, q′ ∈ F2}, and
• δ2

q10
= {(q, assrt , q10) : ∃q′((q, assrt , q′) ∈ δ2F2)}.

Then, Atrig = (Qtrig = (Q1 ∪ Q2) \ (F1 ∪ F2), δtrig =
((δ1\δ1F1)∪δ1q20 )∪((δ

2\δ2F2)∪δ2q10 ), q0 = q10 ,Ftrig = Q1\F1).

Example 6: Both REs of the trigger below, from Lst. 1, have

identical structures with different assertions, see Example 5:

[true]∗[loaded & called] | =>[move | charge]∗[!loaded]

Figure 5 shows Atrig obtained from Step II. The blue states

and transitions originate from the left RE and the black ones

from the right RE.

The single accepting state q10 of Atrig matches our intuition:

either the robot is never loaded and called or it must move or

charge until it is unloaded.

3Slightly different constructions are used in the special cases where ε ∈
L(A1) or ε ∈ L(A2). See [4].
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q10 q20 q22

!(loaded & called)

loaded & called

(move|charge) & loaded

!(move|charge)
& loaded!loaded

true

Figure 5: The deterministic SFA for A
trig

1 sys {q1, q2, q3} aux;
2 gar aux = q1;
3 gar G
4 (aux=q1 & !(loaded & called) & next(aux=q1)) |
5 (aux=q1 & (loaded & called) & next(aux=q2)) |
6 (aux=q2 & (move | charge) & loaded & next(aux=q2))

|
7 (aux=q2 & !(move | charge) & loaded & next(aux=q3)

) |
8 (aux=q2 & !loaded & next(aux=q1)) |
9 (aux=q3 & next(aux=q3));

10 gar GF aux = q1;

Listing 2: Spectra code of GR(1) translation (Example 7) of

Atrig from Example 6

Importantly, note that Atrig is a DSFA; since we change

transition targets but not sources, the transition relation re-

mains deterministic. In step III, see below, we add an auxiliary

variable aux that tracks the state of Atrig . If we would have

used an NSFA, we could have tracked via aux an “incorrect

path” which does not traverse Ftrig infinitely often. Then, we

could have wrongly decide that the path does not satisfy trig .

Step III: Updating the synthesis problem
Given Atrig , we augment the synthesis problem with a new

auxiliary variable aux that tracks the state of Atrig . aux stores

values from Qtrig , and its value is uniquely determined at each

step, based on its old value, the values of the other variables,

and the matching transition of Atrig .

Formally, we update the synthesis problem into (X ,Y ∪
{aux}, θe, θ̂s, ρe, ρ̂s, Ĵe, Ĵs), where4 θ̂s = θs ∧ (aux = q0),

ρ̂s = ρs ∧
∨

(q,assrt,q′)∈δtrig

(aux = q ∧ assrt ∧ aux ′ = q′)

and Ĵe = Je ∪ {aux ∈ Ftrig} if the trigger is an assumption,

or Ĵs = Js ∪ {aux ∈ Ftrig} if the trigger is a guarantee.

Example 7: For Atrig from Example 6, Step III adds the

elements shown in Lst. 2 (in Spectra code) where values q1,
q2, and q3 of variable aux correspond to states q10 , q

2
0 , and

q22 respectively.

This completes the construction. Note that the construction

is linear in the sizes of A1 and A2. We provide a rigorous

proof of correctness in [4].

C. Optimality of the Encoding

Our encoding adds auxiliary variables to the synthesis

problem. Specifically, for a trigger re1|=>re2, our encoding

4We abuse notation of assertions and values of variable aux to avoid clutter.

adds up to log(|Q1| + |Q2| − 2) Boolean variables, where

Q1, Q2 are the sets of states of the DFAs for re1, re2 resp.

We now claim that our encoding is optimal: log(Q1+Q2−2)
is both an upper bound and a (worst-case) lower bound on the

number of auxiliary variables required to encode triggers.

Theorem 1: No GR(1) encoding of triggers adds less than

log(|Q1|+ |Q2| − 2) auxiliary variables in the worst-case.

Proof sketch. For V = {v} and k > 1, use the trigger

[true]{2k−1}|=>[v], which formulates the requirement that

v must hold every 2k steps. Show that in this case our encoding

adds k variables, and that every GR(1) encoding adds at least

k variables. The complete proof appears in [4].

V. IMPLEMENTATION, VALIDATION, EVALUATION

Implementation We have implemented and integrated REs

and triggers in the Spectra language and synthesis environ-

ment, along with their translation into GR(1), as elaborated in

Sect. IV. Specifically, to support SFAs in Spectra, we imple-

mented automata with transitions equipped by BDDs [13] via

the CUDD 3.0 package [48], following the algorithms in [50].

We implemented our pure symbolic technique, in which we

transform the first and second REs into SFAs, as described in

Sect. IV-A, determinize and minimize the SFAs [50], and then

apply the construction elaborated in Sect. IV-B.

The addition of triggers is integrated to the Spectra code

which is available on https://github.com/SpectraSynthesizer.

Validation To validate our implementation’s correctness, we

created an alternative implementation using brics [38], a well-

known library for finite-state automata and REs, to be used

as a test oracle. We randomly generated hundreds of REs

and triggers, and verified that (1) brics’s NFA and our SFA

constructions output equivalent automata; and that (2) our two

trigger construction implementations output the same trigger

SFA. Furthermore, over small synthetic triggers, we manually

verified that the constructed trigger SFA is as expected.

Evaluation We consider the following research questions.

RQ1 Can triggers be useful in expressing properties in real-

world setting?

RQ2 What are some benefits, limitations, and remaining

challenges to make triggers more useful?

RQ3 What is the computational cost of supporting triggers?

User study setting: The Spectra Workshop Class
As the main instrument for answering our RQs, we used

data collected in a workshop class in our university. All the

participants were senior CS undergraduate students with a

strong background in programming and computer sciences:

they had already completed classes with Python, Java, and C

projects, and took courses in data structures and algorithms.

We chose to conduct our study on students since reactive

synthesis and Spectra are not widely used in the industry

yet, and since studies show that in many cases, students

are not a significant threat in empirical software engineering

studies [24]. Moreover, more than 50% of the participants

already have industry student positions as software engineers.

734



trig regexp1 |=> regexp2; DSFAs A1 and A2 DSFA Atrig GR(1) spec
Step IIIStep I Step II

Figure 6: An overview of the encoding of triggers into GR(1)

Twenty out of the twenty-two students who registered to

the workshop class signed the consent forms and agreed to

participate in this study. As compensation, and with approval

of the university’s IRB, we offered four bonus points for the

workshop’s final grade for those agreeing to participate in our

study. Participants were aware that we used data collected in

the workshop to evaluate Spectra; however, they were unaware

of which language features or analyses we evaluated.

The workshop spanned over the 13 weeks of a semester. In

the first four weeks, we introduced the students to reactive syn-

thesis and most of Spectra’s features. We taught the students

the syntax and semantics of triggers the same way we taught

all other language features, e.g., counters and patterns. Based

on our experience from pilot studies conducted in previous

years, we improved the documentation of using triggers, e.g.,

we gave participants Lst. 3, a list of idioms for using triggers,

which contains examples of possible usage. As homework

practice, we asked the students to view and complete the

exercises of the Spectra hands-on online tutorial [32].

After the first four weeks, we asked the students to complete

six development tasks in teams of two students each. The

development tasks were diverse, in different levels of difficulty,

and were based, in part, on common specification tasks in the

literature [37]. We described them at a rather high, semi-formal

level, in natural language. Students were free to implement

their specifications in any way they found appropriate, without

us guiding them to use or not to use certain Spectra language

features. In total, we collected at this stage 60 specifications,

written by 10 teams. On average, the length of a specification

was 141 lines (excluding blank lines and comments), and

it contained 16 environment variables, 35 system variables

(excluding auxiliary variables generated internally as part of

encoding), 10 assumptions, and 24 guarantees.

RQ1: Usefulness of triggers in expressing properties

We observed extensive use of triggers in specifications written

by the workshop participants. In total, we found 285 different
instances of triggers in 30 different specifications written

by 10 different teams (i.e., in 50% of the specifications)
(for comparison, the Dwyer et al. patterns [14], [28], an-

other Spectra language feature, appeared only in 19 different

specifications, i.e, in 31% of the specifications). Considering

triggers were introduced to the students as any other language

feature, we conclude that triggers can be appropriate to express

different properties.

We will show a few examples of triggers written by work-

shop participants alongside a text description of the property

they intend to describe (based on the documentation written

by the participants in the specification). The complete set of

triggers is available as part of the supplementary material

package of the paper [3], [4].

Property 1
Whenever there is an engine problem, the environment turns on
goHome and does not report any more engine problems until the
robot is at home, and there will not be another engine problem for
at least the next 16 states.

T2 (we will use Tx to refer to team-x) used 2 triggers

responding to an engine problem to specify this property:

asm trig [true]*[engineProblem] |=>
[goHome & !engineProblem]*[home];

asm trig [true]*[engineProblem]|=>
[!engineProblem]{16,};

Property 2
When a car arrives in a traffic light, the junction will eventually
have a green light.

T10 specified this property using the following trigger:

gar trig [true]*[vehiclesNorth[0] = CAR] |=>
[true]*[greenNorthVehicles[0]];

This is an example of a “response” pattern. We have seen

many instances of this pattern in the specifications written by

the students.
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Property 3
The robot does not stall too much when it needs to go back to start.

T4 specified this property using the following trigger:

gar trig [true]*[needToVisitStart] |=>
[true]{0, 9}[atStart];

This is an example of a “bounded eventuality” pattern, i.e.,

describing that some state occurs at no more than a certain

number of steps after another state. It is an instance of the

one before last idiom in Lst. 3.

Property 4
After every 5 consecutive states in the orange zone, the robot should
stay in place for at least 2 states and then wait for a green light before
it continues to move.

T1 specified this property using the following trigger:

gar trig [start]*[orangeZone]{5} |=>
[shouldStay]{2,}[!shouldStay -> greenLight];

Property 5
When a robot visits a location, the location color is changed to red
for between 3 to 5 turns.

T5 specified this property using the following trigger:

gar trig [true]*[at_targetA & !engine_problem] |=>
[targetA_color = RED]{2,4}[targetA_color = GREEN];

Property 6
When the robot visits a target location, it should stay there for at
least 5 states (for cleaning) before it may move to another cell.

T1 specified this property using the following trigger:

gar trig [start]*[atTarget] |=> [shouldStay]{5,};

Finally, as with any language feature, we observed some

“smells”, i.e., usages of triggers that negatively impact design

quality. We demonstrate two of them. First, consider the

following property:

Property 7
The robot should rotate if and only if it is in the orange zone.

T2 specified this property using the following trigger:

gar trig [true]*[(rotate & !atOrange) | (!rotate &
atOrange)] |=> [false];

However, a much simpler formulation of this property,

which involves no triggers, is of course available in Spectra:

gar alw rotate <-> atOrange;

Second, consider the following property:

Property 8
The robot should never stay in the orange zone for more than 5
consecutive steps.

T3 specified this property using a combination of triggers:

gar trig[true]*[orange_zone_counter = 0][
at_Orange_Zone and orange_zone_counter != 1]
|=> [false];

gar trig[true]*[orange_zone_counter = 1][
at_Orange_Zone and orange_zone_counter != 2]
|=> [false];

....
gar trig[true]*[orange_zone_counter = 5][

at_Orange_Zone and orange_zone_counter != 6]
|=> [false];

gar trig[true]*[orange_zone_counter = 6][
at_Orange_Zone and greenLight = false and
orange_zone_counter != 6] |=> [false];

That is, they used triggers to explicitly count the number

of steps in the orange zone, in a variable named orange_-
zone_counter. However, a much simpler solution, which

does not involve explicit counting and uses only one trigger

can be used, i.e., an instance of the second idiom in Lst. 3:

gar trig [true]*[at_Orange_Zone]{6} |=> [false];

Note that from a preliminary manual inspection of the

specifications, we did not observe a significant number of

smelly usages of triggers. Still, identifying such smells is

important in order to improve the documentation and teaching

of triggers in the future.

RQ2: Benefits and limitations of triggers

The central communication platform with workshop partic-

ipants was Slack. Using Slack, participants reported their

weekly progress in tasks, asked questions on language fea-

tures, and shared with the workshop teams insights regarding

different aspects of Spectra.

We found 103 meaningful mentions of triggers in the

Slack communication with the workshop participants. To draw

meaningful conclusions from them, we performed a thematic

analysis [12], [11] and identified advantages, disadvantages,

and usability issues with triggers. We started by identifying

all the text fragments mentioning triggers. Then, with multi-

ple open-coding sessions, we identified different themes and

discussed them between the authors until agreement. We will

now present the main themes that emerged from our analysis.

1) Triggers ease the expression of some properties: Our

analysis reveals that in many cases, participants found triggers

as a more intuitive and elegant solution to express some

properties which they considered to be easier to describe

using regular expressions rather than other language constructs

(T1,T2,T5,T6,T10). For example:

“. . . It is extremely helpful in this kind of development (where we
want to react to what is happening instead of just following a simple
procedure like in common program development), it is easy to read and
understand, and most importantly, it was easy to translate our thoughts
and intentions to a regular expression.” (T2)
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1 // regexp should not hold from the beginning
2 trig regexp |=> [false];
3

4 // regexp should never hold
5 trig [true]* regexp |=> [false];
6

7 // regexp should hold at most k consecutive times
8 trig [true]* (regexp){k + 1} |=> [false];
9

10 // regexp should hold at most k times
11 trig ([true]* regexp){k + 1} |=> [false];
12

13 // regexp should hold infinitely often
14 trig [true]* |=> [true]* regexp;
15

16 // regexp should hold repeatidly
17 trig [true]* |=> regexp;
18

19 // regexp should hold in intervals of k states
20 trig [true]{k} |=> regexp;
21

22 // if re2 holds after re1, the distance
23 // between them must not exceed k states
24 trig [true]* re1 [true]{k+1} re2 |=> [false];
25

26 // whenever regexp1 holds,
27 // regexp2 should eventually hold
28 trig [true]* regexp1 |=> [true]* regexp2;
29

30 // whenever regexp1 holds,
31 // regexp2 should hold after exactly k states
32 trig [true]* regexp1 |=> [true]{k} regexp2;
33

34 // whenever regexp1 holds,
35 // regexp2 should hold after at most k states
36 trig [true]* regexp1 |=> [true]{0,k} regexp2;
37

38 // once regexp1 holds, regexp2 should never hold
39 trig [true]* regexp1 [true]* regexp2 |=> [false];

Listing 3: Examples of idiomatic triggers in Spectra, as

presented to the workshop’s participants

“Triggers were relatively intuitive and helped us a lot in variant 3.”
(T5)

In addition, participants who changed properties that they

originally specified without triggers to use triggers, describe,

in some cases, that the new formulation of a property is

simpler, shorter, and more elegant (T2,T5,T9). For example,

T9 described changing certain property specification from

using a counter to a trigger:

“. . . this is also a nicer and shorter solution compared to the counter
. . . ” (T9)

T10 described a development strategy in which they use a

trigger to define the general behavior of a system, and in order

to exclude some special cases, use other language constructs:

“We’ve decided to deal with it with a trigger that guarantees that when
an emergency vehicle approaches, it’ll wait no longer than 2 states until
it gets green light, which is the best the system can actually guarantee
(excluding specific situations like the freezeMode and constructions on
the north-east road). In order to deal with the special situations, we’ve
excluded them from the trigger and made sure in other cases that always

eventually all vehicles will have a chance to cross the road.” (T10)

2) Perceived limitations of triggers: Despite the many ben-

efits of triggers, we found out that in some cases, participants

considered triggers to have some expressiveness limitations.

For example, participants wanted triggers to allow to use

Spectra’s next() operator (T4, T5):

“During our work we encounter a language limitation - it’s impossible
to combine future variables inside triggers sometimes it could be useful
to use it though. For example when we want to guarantee the robot
will stay in the same positioni after there was no target for 8 states
we tried to use trigger with our pattern and we received that Regular
expressions can’t have primed next() variables.” (T4)

As another example, T2 and T9 mentioned a problem to

maintain a variable value false outside the scope of a trigger:

“The original idea was to use a trigger which on the left side had
something like [true]*([!finishedCleaning]*[finishedCleaning]){5}, and
on its right side marks the tank as full and makes sure the robot heads
home. It seemed like a convenient way to solve this, but we found out
there was no easy way to keep fullTank false when we don’t want it to
be true.” (T2)

As there are simple solutions to these perceived limitations,

our main conclusion from the above is the need to improve

the documentation and teaching of triggers in the future.

3) Performance issues while using triggers: Although many

participants considered triggers intuitive and capable of clearly

describing various properties, all complained that adding many

triggers slows down the synthesis times.

“In the context of runtime, the use of a lot of triggers makes the spec
very heavy . . . ” (T2)

We agree with the need for performance improvements, but

we do not think that slow performance is directly caused by

the use of triggers. Rather, the slow performance is due to the

need to express complex properties, regardless of how they

are expressed. As we showed in Sect. IV-C, our encoding

for triggers is optimal, so there is no general way to express

the same properties more efficiently. Future studies should

improve the performance of synthesis, regardless of the use of

any specific language construct. Another possible cause for the

slow performance is the suboptimal use of excessive triggers,

as in the smells we report about above. Smells problems may

be addressed in the future with better presentation and teaching

of triggers and with studies aimed to (1) automatically identify

such smells and (2) propose automatic refactoring solutions to

replace such smells with more efficient representations.

RQ3: Computation cost of triggers

For all the 285 trigger examples we have collected during the

user study, we computed the number of auxiliary variables

that each trigger adds to the synthesis problem. Obviously,

in theory, one can use arbitrarily complex REs and triggers,
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which will translate into an arbitrary large number of addi-

tional variables. As we observe, however, in practice, this was

not the case. We found out that on average, triggers added
only 2.3 auxiliary variables (with SD of 1.12, and median
of 2), and that none of these triggers added more than 5
auxiliary variables to the synthesis problem.

Given that the Spectra synthesizer already handles specifica-

tions with 30-50 variables and more [18], [33], we consider a

cost of 2-5 additional variables per trigger to be reasonable, as

it is comparable to the cost of adding instances of the Dwyer

et al. patterns to GR(1), see [14], [28].

We further report performance results for the 30 specifi-

cations that included at least one trigger instance. Means to

reproduce the experiments are available in the supplementary

material package of the paper [3], [4]. For the experiments we

used an AWS t3.2xlarge instance (representing an ordinary

laptop with up to 3.1GHz CPU and 32GB RAM). Note that

CUDD uses only one core of the CPU. We repeated each

experiment 10 times, to address for variance due to the use

of CUDD and Java garbage collection. We used a timeout

of 10 minutes. 25 of the 30 specifications (83%) completed

realizability checking within the 10 minutes timeout. For these

25 specifications, realizability checking time average was 116

seconds, median was 45 seconds. 24 of these specifications

were realizable. For these 24 specifications, just-in-time syn-

thesis [36] time average was 32 seconds, median was 19

seconds. We consider these times to be reasonable.

To answer RQ3, we conclude that support for triggers
does not come for free, however, its computational cost
in terms of additional variables is reasonable. Recall that
by Theorem 1, our encoding adds the minimal number of

variables required to express the trigger property. Thus, any

alternative, automatic or manual way of expressing the same

property, will not add less variables to the synthesis problem.

Threats to validity First, as our implementation of the three

steps of the encoding defined in Sect. IV-B may have bugs,

we validated it using an alternative implementation, see above.

The fact that tens of class participants (in the class we report

on and in previous ones) have already used our implementation

and did not complain about unexpected behavior, reduces this

threat further.

Second, w.r.t. the use of students rather than experienced

software engineers we refer the reader to the first paragraph

under “User study setting”.

Third, one may question the correctness of the specifications

written by the students. Indeed, although some of the speci-

fication tasks were in part based on examples from literature,

all tasks were rather open in their formalization and allowed

many variants, i.e., correctness would have to be decided case-

by-case. Still, the specifications were correct in the sense that

students were able to check their realizability, synthesize a

controller, and use this controller to execute simulations to

their satisfaction. Note that students were obviously motivated

to write correct specifications. The class instructors checked

the specifications and executed the synthesized controllers.

Fourth, we collected specifications for systems that were

defined as class projects; as we reported above, the specifica-

tions are not small and not trivial, they intend to model real-

world systems, but they are not set up in industry. As we are

the first to introduce triggers to specifications for synthesis,

existing benchmarks do not include them. In the future we

hope to report on industrial case studies that use triggers for

synthesis.

VI. RELATED WORK AND DISCUSSION

PSL Triggers, LTL, and GR(1). The Property Specification

Language (PSL) [16], [23], an IEEE standard widely used in

industrial formal verification tools, includes a triggers operator.

According to several authors, the PSL triggers operator is the

most commonly used PSL operator [16], [27], [51]. A variant

of PSL triggers appears also in Intel’s ForSpec [6]. Kupferman

and Vardi [27] investigated the problem of synthesis for a

subset of PSL consisting of triggers only. Since their semantics

allows simultaneous occurrences, their synthesis problem is

2EXPTIME-complete, like that of LTL. Their work is theo-

retical and to our knowledge, has not been implemented.

In contrast, we chose a non-simultaneous semantics, where

after the left hand side operand of the trigger is satisfied, it

is ignored and not followed until the right hand side operand

has been satisfied. This allows us to reduce triggers to GR(1)

(while adding auxiliary variables) at the cost of only one

exponent, enjoy GR(1)’s efficient symbolic algorithm, and take

advantage of existing synthesis tools like Spectra.

Note that a reduction of the original simultaneous PSL

triggers into GR(1) (and an implementation in, e.g., Spectra)

is possible, albeit at a double-exponential cost [27]. We chose

to avoid it by suggesting a non-simultaneous semantics. In

Sect. III-C we showed that our triggers can express properties

that cannot be expressed in LTL, and that they can express

complicated LTL properties in a succinct manner. These

theoretical results, and our evaluation, provide some evidence

that non-simultaneous triggers are potentially useful.

Beyond the difference of simultaneous vs. the non-

simultaneous semantics, in PSL, the triggers right operand is,

by itself, any PSL formula, i.e., an RE or an LTL formula.

Again, we chose to limit both operands to REs to avoid the

double exponential complexity.

Interestingly, PSL includes an overlapping trigger variant,

denoted |−>, where the last state of the left side RE and

the first state of the right side RE overlap. It is possible to

efficiently encode a non-simultaneous version of this variant

in GR(1). We deffer the formal definition as well as the

implementation of this variant in Spectra to future work.

Finally, our choice to extend Spectra and not other GR(1)

synthesizers, e.g., [8], [15], was motivated by Spectra’s perfor-

mance in comparison to these tools [18], its relatively friendly

development environment, the fact that it already includes

support for higher-level constructs like patterns [14], [28],

and the many specifications it comes with. Still, our main

contribution in this paper is relevant to GR(1) synthesis in

general and is not limited to Spectra.
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Triggers, Scenarios, and the Dywer et al. patterns [14]. Live
sequence charts [21], modal sequence diagrams [20], assume-

guarantee scenarios [35], and triggered scenarios [2], [46], can

all be viewed as variants of triggers. Yet, our triggers are more

general in two ways. First, the use of REs to express the left

and right parts of the trigger, rather than, typically in the above

listed works, only a partial order on events execution. Second,

these scenario-based specification languages are mostly lim-

ited to event-based models (over an alphabet of events) and

allow limited use of assertions, if any. In particular, the last

two triggers in our running example as well as, e.g., Property

4 mentioned above, cannot be directly expressed using these

scenario-based languages. Some of the above scenario-based

formalisms have existential variants [7], [20], [47], [49]. An

existential interpretation is impossible to express in LTL (and

thus impossible to express in GR(1)); it requires the use of

CTL. It could be that GR(1)* [5], as supported in Spectra,

can be used or extended for this purpose and so we leave it

for future work. We view the presentation of all these triggered

scenario variants in the literature as additional evidence for the

intuitiveness and potential usefulness of triggers.

Dywer et al. [14] have presented a well-known set of

LTL specification patterns, to help engineers write common

complex temporal properties. While the patterns are listed

in a fixed catalog, triggers is a language construct allowing

the specification of arbitrary properties. Moreover, on the one

hand, some properties cannot be expressed with the Dwyer

et al. patterns but can be easily expressed with triggers (e.g.,

relating to what happens starting from the beginning of the run,

counting, and min/max/range of distance between assertions,

all of which we list as example idiomatic triggers in Lst. 3). On

the other hand, the other direction of what may be expressible

using the Dwyer et al. patterns and not with triggers alone, is

not interesting because, as shown in [28], 52 of the 55 patterns

are expressible in GR(1). As the translation of the patterns into

GR(1) is already implemented in Spectra, there is no need to

use triggers to express the Dwyer et al. patterns.

Other Extensions of GR(1). While the GR(1) fragment is

expressive, it is not always easy to write the intended assump-

tions and guarantees using its restricted syntax. Thus, authors

have suggested additional, higher-level elements, which are

intuitive to read and write and are still automatically reducible

to GR(1), with the addition of auxiliary variables. These

extensions include, e.g., past LTL operators (already in [10]),

the Dwyer et al. patterns [14], [28], monitors, and bounded

counters [33]. Our addition of REs and triggers to Spectra in

this paper follows this direction.

Finally, while the title of [9] hints that the authors’ synthe-

sizer supports PSL, this work presents no support for REs or

triggers. To our knowledge, our work is the first to efficiently

use REs and triggers in reactive synthesis.

VII. CONCLUSION

We introduced triggers into specifications for reactive syn-

thesis. We presented a novel encoding of REs and triggers,

based on symbolic finite automata (SFA) and a novel non-

simultaneous semantics, which enable an efficient translation

and minimal addition of auxiliary variables to the synthesis

problem. We demonstrated the use of triggers to express useful

properties and showed the limited additional computational

cost they incur on the synthesis problem.

To our knowledge, our work is the first to define, implement,

and evaluate triggers in the context of reactive synthesis.

Many authors describe the challenge of writing specifications

in general and for reactive synthesis in particular, e.g., [27],

[31], [37], [44]. One may expect that adding REs and triggers

to the specification language will help engineers in writing

specifications for synthesis. While there is still a long way to

go to make reactive synthesis usable in practice, we believe

that our work makes a step forward in this direction.

Future work. First, the idiomatic triggers from Lst. 3 call

for the definition of reusable parametric specification patterns

that involve REs and triggers. These can be added to Spectra

as simple syntactic sugars or using a library (as in [28]). For

example, allow one to write gar never(regexp); as a syntactic
sugar for gar trig [true]∗ regexp | => [false];. Second,
opportunities for optimization based on reuse of auxiliary

variables between triggers, i.e., when the same RE appears

in multiple triggers. Finally, further evaluation of triggers

usefulness, in a user study to compare the ability of users to

read and write various properties, with and without triggers,

e.g., in terms of reading and writing correctness and time.
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