
Using Reactive Synthesis:
An End-to-End Exploratory Case Study

Dor Ma’ayan
Tel Aviv University

Israel

Shahar Maoz
Tel Aviv University

Israel

Fig. 1: Our semester-long workshop class participants specified, synthesized, and executed various reactive controllers using Spectra, such
as a patrolling robot (A), a traffic lights system (B), and an autonomous vacuum cleaner (C).

Abstract—Reactive synthesis is an automated procedure to ob-
tain a correct-by-construction reactive system from its temporal
logic specification. Despite its attractiveness and major research
progress in the past decades, reactive synthesis is still in early-
stage and has not gained popularity outside academia. We con-
ducted an exploratory case study in which we followed students
in a semester-long university workshop class on their end-to-
end use of a reactive synthesizer, from writing the specifications
to executing the synthesized controllers. The data we collected
includes more than 500 versions of more than 80 specifications,
as well as more than 2500 Slack messages, all written by the
class participants. Our grounded theory analysis reveals that
the use of reactive synthesis has clear benefits for certain tasks
and that adequate specification language constructs assist in the
specification writing process. However, inherent issues such as un-
realizabilty, non-well-separation, the gap of knowledge between
the users and the synthesizer, and considerable running times
prevent reactive synthesis from fulfilling its promise. Based on
our analysis, we propose action items in the directions of language
and specification quality, tools for analysis and execution, and
process and methodology, all towards making reactive synthesis
more applicable for software engineers.

I. INTRODUCTION

Reactive synthesis is an automated procedure to obtain

a correct-by-construction reactive system from its temporal

logic specification [62]. Rather than manually constructing

an implementation of a reactive controller and using model

checking to verify it against a specification, synthesis offers

an approach where a correct implementation is automatically

obtained for a given specification if such an implementation

exists. Given the great promise of correct-by-construction

systems, much research progress has been achieved over the

last two decades on reactive synthesis theory, algorithms, tools,

and applications [5], [8], [36], [46], [47]. Despite its many

advantages, though, the use of reactive synthesis in real-world

settings in the industry is very limited.

When using reactive synthesis, the primary artifact that

the engineers write, read, debug, and maintain is a formal

declarative specification, not code. Thus, the development

process and the activities it includes should be very different

than traditional software development processes and activities,

and also different from other synthesis techniques such as

programming by example, e.g. [29]. We argue that the limited

real-world usage of reactive synthesis techniques is partly due

to the poor understanding of this development process and

the activities it requires. For example, what are the attributes

of high-quality specifications? Which parts of a specification

better be written before others? What language constructs

should a specification language contain? What are the unique

challenges developers face when using a reactive synthesizer,

and do existing synthesizers address them? Detailed answers

to such questions, backed by evidence, can draw a multi-

disciplinary roadmap for future research and engineering ef-

forts in the field. For example, future formal methods studies

could focus on developing algorithms to support the required

analyses, modeling and language studies could explore new

abstractions and corresponding language constructs for speci-

fication languages, and HCI studies could develop and evaluate

new interaction techniques with reactive synthesizers. Hope-

fully, all these, combined into an appropriate development

methodology, will make reactive synthesis technology more

applicable for software engineers.

We conducted an exploratory case study of reactive
synthesis with 20 participants in a semester-long university
workshop class. Throughout the semester, participants

Work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/

742

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

DOI 10.1109/ICSE48619.2023.00071

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

71

used Spectra12 [50], a state-of-the-art reactive synthesis
specification language and toolset, to complete various
specification and simulation tasks. We collected detailed
documentation of the entire class’s committed specifica-
tions, git logs, and all the communication with the partici-
pants in Slack, and then analyzed the data using grounded
theory. We contribute a description of the process of
writing reactive synthesis specifications, as well as the
difficulties developers face while writing specifications.
Based on our analysis, we identify opportunities and
propose action items in the directions of language and
specification quality, tools for analysis and execution, and
process and methodology, all towards making reactive
synthesis more applicable for software engineers.

It is essential to point out that while recent studies iden-

tified the need for human-centered design of programming

languages [9], [12], [58] and formal methods techniques [37],

there was no such study in the context of reactive synthesis.

Moreover, there is a large body of work on HCI and syn-

thesis; however, these works are focused mostly on induc-

tive synthesis techniques such as programming by example

(PbE) and programming by demonstration (PbD), which are

fundamentally different than reactive synthesis from a formal

specification. To our knowledge, we are the first to perform
a large, open-ended study of a reactive synthesizer using
a complete toolset. Most previous works in reactive synthesis

focused on a specific problem and were evaluated through

the narrow lens of examining the performance of a specific

new algorithm. In contrast, our study uses a qualitative
methodology to consider the broader context of the end-to-
end reactive synthesis development process, from a formal
specification to a running system.

While this paper focuses on the barriers to using reactive

synthesis by software engineers who are not necessarily formal

methods experts, this is only one of several open problems

toward a broader adoption of reactive synthesis tools. Other

challenges, such as performance, are actively investigated in

the literature [32]. We discuss related work in the next section.

II. BACKGROUND AND RELATED WORK

Reactive synthesis is the problem of translating a logical

specification into an implementation that realizes it. Fig. 2

compares reactive synthesis to traditional software testing or

verification. While in traditional development, one prepares

a program or a model and then tests or verifies it against a

specification, in reactive synthesis, the program or model is

automatically generated from a given specification.

Thanks to the attractiveness of correct-by-construction im-

plementations, reactive synthesis has enjoyed extensive aca-

demic interest. Pnueli and Rosner were the first to suggest a

reactive synthesis algorithm [62] for specifications written in

linear temporal logic (LTL) [61]. However, reactive synthesis

of LTL is double exponential in the length of the formula,

1Spectra’s website: http://smlab.cs.tau.ac.il/syntech/
2Spectra’s source code: https://github.com/SpectraSynthesizer

Fig. 2: In traditional system testing and verification, an implemen-
tation M is put against a specification (top), while in synthesis, a
correct implementation is synthesized from a specification (bottom)

which is not considered practical. GR(1) is a fragment of

LTL that has a more efficient synthesis algorithm [6] and is

expressive enough for many common properties such as most

of the Dwyer et al. patterns [17] as shown in [47]. Therefore,

many GR(1) synthesizers were developed in academia, includ-

ing LTLMop [24], SGR(1) [7], [16], Slugs [18], RATSY [5],

and TuLiP [22], [74]. Spectra [50] is a more recent, state-of-

the-art reactive synthesizer with many language features and

analysis tools that are not (or only partially) supported in all

the other mentioned tools.

Beyond synthesis itself, some challenges in reactive synthe-

sis development were identified in the past, and algorithmic

efforts were made to address them. These include unrealizabil-

ity [8], [11], [35], [51], [53], non-well-separation [34], [48],

and inherent vacuity [52].

Our work is different from such works since, to the best

of our knowledge, we are the first to inspect how these
challenges and others are manifested in their full context
of an end-to-end reactive synthesis development process,
from the point of view of the developers who are using
the synthesizer, rather than the narrow lens of evaluating the

performance of a specific algorithm.

Although both reactive synthesis and formal verification use

specifications as their main input, specifications for formal

verification are different. Formal verification takes a specifi-

cation and a model as an input. Reactive synthesis takes only

a specification as an input, and the model is generated by

the synthesizer. Moreover, not only the development process

is different, but the nature of the specifications themselves

is different. Specifications for verification can be written and

examined property by property. In specifications for synthesis,

all properties must be considered together.

Like reactive synthesizers, model finders such as Alloy [31]

take a specification as input. However, the specification lan-

guage and the systems Alloy aims to model are different. As

in reactive synthesis, most studies of Alloy focused on new

algorithms for specific problems and not on the engineers’

point of view during the end-to-end development process of

writing an Alloy specification. There is growing awareness of

the importance of applying human-computer research methods

in such contexts [37], [64], [67]. For example, a work by

Danas et al. [15] explored different possible outputs of model

finders from a human perspective. We take inspiration from

these works and apply similar ideas to reactive synthesis.

Reactive synthesis is a deductive approach, i.e., synthesizing

an executable artifact from a complete logical specification.

743

Other program synthesis techniques have taken an inductive

approach, e.g., input-output examples (PbE) [14], demonstra-

tions (PbD) [56], natural-language descriptions, and properties

and scenarios [72] as the form of input for the synthesizer.

Some of these synthesis approaches enjoyed progress over the

years to make them closer to real-world applications [3], [21],

[27], [60]. For example, millions of Microsoft Excel users use

FlashFill [27], a PbE string transformation system.

Some of the above approaches, such as PbE, were devel-

oped around user needs and involved human-centered eval-

uation [59], [60], [75], [76]. In addition, many user studies

have revealed several major usability issues and challenges in

these synthesis systems [28], [39], [40], [57], which led to the

design of better synthesis systems.

In contrast to these approaches, reactive synthesis
requires a complete specification as input and should
directly produce a correct-by-construction implementation
as output; therefore, it is inherently different from these
synthesis techniques and targets different types of systems,
computation models, users, and use-cases. It also raises

different challenges; for example, while most user studies

about PbE discuss challenges with the examples provided to

the synthesizer, these do not exist in reactive synthesis, and

while the problem of unrealizability is not relevant to PbE, it

is very relevant and extensively studied in reactive synthesis.

That said, we take inspiration from these works and apply

human-centered research methodologies to reactive synthesis.

Papers that discuss the challenges of reactive synthesis

as well as some case studies have appeared in the SYNT

workshop (since 2014 [10]). For example, Ryzhyk and Walker

described their experience and lessons in developing Termite,

a reactive synthesizer [65]. Their lessons include the need for

specifications reuse, the observation that synthesis does not

replace human expertise, and the need for adopting an incre-

mental development approach in order to enable specifications’

debugging. Our findings confirm some of these observations.

While their lessons are based on their own experience as the

developers of the tool, our findings are based on the experience

of software engineering students that used our tool.

III. METHODOLOGY

This section describes our research methodology, which we

designed in light of the ACM SIGSOFT guidelines [63] for

case studies3 and grounded theory4. We describe our research

setting, the data collection, and the analysis method we used.

A. Research setting: Spectra workshop class

As the main instrument for data collection, we organized a

semester-long workshop class in our university.

We chose to conduct the case study with Spectra since
it is a state-of-the-art reactive synthesis system and seems
to be the readiest system to be used by software engineers.

3https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/
CaseStudy.md

4https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/
GroundedTheory.md

Spectra is a mature, highly-maintained system with over eight

years of extensive development with many advancements, all

implemented as part of the Spectra ecosystem, in Eclipse plug-

ins, most of them in a user-ready state. That said, it is essential

to emphasize that in this case study, Spectra is the means and

not the end. Our end is to explore and learn about reactive

synthesis and not conduct an in-depth evaluation of Spectra

as a language and development environment.

All the participants were senior undergraduate students
with a strong background in programming and computer
science. They had already completed classes with Python,

Java, and C projects. They also took courses in data structures

and algorithms. We chose to conduct our study on students

since reactive synthesis is not widely used in the industry

and since some previous literature shows that, in many cases,

students are not a significant threat in empirical software

engineering studies [33]. Moreover, more than 50% of the

participants already have student positions in the industry as

software engineers. Our participants represent the population

target of this study well: professionally educated software

engineers with some experience but without prior knowledge

or experience in formal methods techniques.

Twenty out of twenty-two students registered to the work-

shop class signed the consent forms and agreed to participate

in this study. As compensation, with approval of the univer-

sity’s IRB, we offered four bonus points for the workshop’s

final grade for those agreeing to participate in the study.

The class spanned a full semester of 13 weeks. In the first

four weeks, we introduced participants to reactive synthesis

and most of Spectra’s features. Spectra includes many features;

some are implemented but not documented at the user level,

and some are not ready for real-world use. Thus, as a research

design decision, we examined all Spectra features known to

us and introduced the participants only to those features that

seemed mature and usable enough for real-world context. For

example, based on our own experience with Spectra and based

on feedback from the authors of the JVTS work [38] and the

unrealizability repair work [51], we decided to exclude these

two techniques and tools from the current study.

We presented the semantics of Spectra language con-
structs and complete specifications to the participants,
but we did not explain how reactive synthesis works.

Specifically, we intentionally did not discuss LTL, GR(1),

BDDs, and fixed-point algorithms in class, since we wanted

the participants to understand the meaning of Spectra spec-

ifications but treat the synthesizer as a “black box”. As

homework practice during the first four weeks, participants

completed the Spectra hands-on online tutorial from ICSE’215,

which includes nine modules of about 10 minutes each, plus

exercises, covering language, analysis, and execution [49].

After the four introductory class meetings, during the re-

maining nine weeks of the semester, we asked the partici-
pants to complete four development tasks in teams of two

5https://youtube.com/playlist?list=PLGyeoukah9Nbx1QquUmZGdLulFZIsiRlZ

744

students each. We will now provide a brief description of the

four tasks:

Simple Robot A robot that should travel from target A to

target B while avoiding some fixed obstacles.

Patrolling A robot that should patrol between three different

random locations while avoiding fixed obstacles. All

participants implemented three different variants of this

task, with different patrolling behaviors (strict order of

visits, non-strict order, and change of colors while visiting

targets).

Cleaning Robot An automatic vacuum cleaner that should

collect trash from random locations, avoid obstacles, is

restricted from visiting certain areas, and also manages

its energy consumption.

Junction A controller for a junction’s traffic lights system

that should safely handle cars and pedestrians coming

from four different directions while also dealing with bad

weather and prioritizing emergency vehicles.

These development tasks are diverse, in different levels of

difficulty, and are inspired, in part, by common specification

examples from the literature [2], [55]. Fig. 1 shows some sim-

ulation runs of the controllers that the participants synthesized

to complete these tasks.

A simulation environment is essential for running the

synthesized controllers. Thus, we provided the participants

with skeleton implementations of the graphical user interfaces

of the simulations. However, importantly, we left the actual

simulation behavior, the design decisions on how to use

the simulation UI, and the integration with the synthesized

controller open to the participants in order to see how different

teams will adopt different validation strategies.

The complete protocol of the workshop class with the
description of the tasks as given to the participants is in
the supplementary material [42], [43].

B. Data collection

We asked participants to document all their work during

the semester in several ways. To this end, we designed a
communication mechanism that allowed us to track the
participants’ progress and receive as much information as
possible, using two main platforms to collect various kinds
of data.

Slack is a popular communication platform for software

development organizations. We used private Slack channels

with each team as the main communication medium. We asked

the participants to describe their work there, with a weekly

progress report as the minimum and encouraged them to ask

any questions about Spectra or the tasks there. We also used

the private channels to provide feedback on the team’s work

and ask follow-up questions about what they wrote. We asked

some follow-up questions differentially according to the team’s

progress and topics that emerged from the discussion. We

also asked all the teams some identical follow-up questions

to reflect on tasks and on the overall workshop experience. In
total, we collected 2,809 Slack messages with the teams,
together with 20 accompanying documents.

In addition, the participants frequently committed their code

to private GitHub repositories that we set up. Each team had a

private repository, which was not accessible to the other teams.

We asked participants to commit frequently with descriptive

commit messages. In total, we collected 599 versions of
specifications (i.e., commits to GitHub) for 88 specifications
(for some tasks, some teams implemented and committed

several variants). Tbl. I reports statistics for the specifications

that the participants committed for the different tasks.

Our analysis covers all the Slack chats, all the commit logs

and messages, as well as the specifications committed by the

participants. We will now describe our analysis methodology.

C. Analysis methodology

The analysis of our exploratory case study is based on
grounded theory as described by Corbin and Strauss [13].

Grounded theory is frequently used for qualitative analysis

in software engineering studies [66], [71], [73], with works

such as [30], [68] describing best practices in conducting such

studies. We followed these guidelines carefully.
We started from general research questions and goals, and

refined them and the research setting as the study evolved. For

example, we started the class with no advance planning of all

the tasks we will give; every few weeks, based on the initial

analysis of data we collected so far, we decided on the design

of the following tasks. We did so when we started to observe

saturation regarding specific themes. E.g., when we observed

“more of the same” feedback regarding unrealizability and

its accompanying analysis tools, we decided to create more

diverse tasks that we considered to require advanced language

constructs such as triggers and counters.

We analyzed all textual data collected using open coding
with MAXQDA 6: we assigned codes to lines, paragraphs, or

fragments of the data we collected, and refined the coding

system as the study progressed. We started conducting an

open coding session on the second week of the class when

the first batch of data was obtained. Then, we performed

several sessions of axial coding, i.e., linked the initial codes

under new emerging categories. Finally, using selective coding,

we identified the high-level themes on which we report in

the results section. We used memos written during the data

collection and analysis process and during research meetings

to develop and organize the code system.

Importantly, while conducting the described analysis, we
frequently triangulated our findings from our coding with
the actual specifications that participants developed; in

many cases, participants referenced a specific commit so we

could triangulate (1) a slack message, (2) a git log, and

(3) a relevant version of the specification, in order to draw

meaningful conclusions that are grounded both in participants’

feedback and in what actually happened. For example, when

a Slack comment mentioned the difficulty of interpreting

a counter-strategy for a specific unrealizable specification,

we identified the corresponding specification, and executed

6VERBI Software. MAXQDA 2020. Software. 2019. maxqda.com.

745

Task #Lines #Sys-Vars #Env-Vars #Aux-Vars #Asm #Guar #Defines #Predicates #PastLTL #Counters #Patterns
MD SD MD SD MD SD MD SD MD SD MD SD MD SD MD SD MD SD MD SD MD SD

Simple Robot 47.0 23.7 6.0 3.6 0.0 10.9 0.0 1.9 0.0 1.5 6.5 7.9 3.0 6.8 3.0 5.9 0.0 0.0 0.0 0.0 0.0 1.0
Patrol-I 63.5 23.2 8.4 2.8 18.0 0.0 1.6 2.6 5.5 2.7 9.0 3.4 5.8 2.4 4.6 3.1 0.0 0.0 0.0 0.0 0.7 1.3
Patrol-II 110.0 27.3 14.5 4.7 18.0 0.0 5.7 5.3 8.5 3.1 14.0 17.7 5.5 2.3 5.2 3.2 0.7 1.9 0.0 0.9 1.9 2.4
Patrol-III 100.5 29.6 25.9 4.5 18.9 0.3 14.6 5.9 8.5 4.1 18.0 7.4 5.8 2.3 4.8 3.1 0.0 0.0 0.0 0.5 0.8 1.9
Cleaner 181.0 50.9 43.2 9.7 8.9 0.6 24.2 12.4 6.0 1.9 29.0 12.2 8.5 7.2 4.1 2.6 6.2 12.1 4.0 1.8 1.4 2.4
Junction 200.5 69.3 31.0 8.5 23.5 0.9 14.5 8.4 17.0 13.6 30.0 13.7 5.5 28.0 1.0 1.0 0.0 4.0 0.0 0.7 0.0 3.8

TABLE I: General statistics on the specifications committed by the participants, median (MD) and standard deviation (SD)

realizability checking and counter-strategy generation in order

to better understand and validate our understanding of the

comment.

IV. RESULTS

This section presents the results from our analysis of the

data we collected. It is organized according to the high-level

themes that emerged from our analysis. Our interpretation of

the results and their implications appear in Sect. V.

A. Inherent issues in reactive synthesis

1) When may reactive synthesis be useful?: We received

feedback from the participants on which tasks they think are

preferable to solve using reactive synthesis rather than more

traditional software development. Participants mention that

reactive synthesis is preferable when efficiency is less critical

than correctness (T4,T10) (Tx marks that team x mentioned it),

i.e., when one would prefer a mathematically correct solution

over a fine-grained control on the efficiency of the solution.

Participants also note that reactive synthesis is preferable for

systems with considerable dependency between the controller

behavior and the environment (T1,T2,T4,T5). E.g., T5 based

their claim on a comparison between different workshop tasks:

“. . . the junction task was the most suitable task for
Spectra programming. . . in the junction task, the system was
highly dependent on the environment, and almost all guar-
antees involved env variables which dictated the system’s
behavior (e.g., a traffic light can turn green only if there is
a car waiting). On the contrary, in all other tasks, the system
behavior was much less dependent on the environment, and
we think that regular programming would have been much
easier to write and test.” (T5)7

Some participants compared reactive synthesis to traditional

software development and mentioned its great expressive

power when used wisely:

“. . . this can turn out to be very useful on a project that
demands the use of machines and other objects that operate
in a pre-defined space and has a unique and well-defined
mission to fulfill. The benefit of writing 20-30 lines of code
that express the equivalent of hundreds of lines of code in
other languages is very useful” (T10)

2) Specification development requires a mindset shift from
traditional software development: Reactive specifications’ ex-

pressiveness and usefulness in describing complex systems

require a mindset shift compared to traditional software de-

velopment since writing formal specifications for synthesis is

7We quote all participants comments without editing them, e.g., we do not
correct grammatical mistakes.

a considerably different task from traditional programming.

All the workshop class participants mentioned this difference,

for example:

“. . . concentrating on what we want to achieve is not
enough. Moreover, sometimes we do not even need to specify
what we want to achieve, but we must be very accurate in
describing what we do not want to happen. This forces a
new way of thinking, a more complex one, kind of out of
the box” (T2)
Some participants considered the different mindset that

reactive synthesis requires to be beneficial. Some participants

mentioned that in reactive synthesis development, thinking

about the correctness of the desired outcome is an inherent

part of the development process (T1,T2,T4,T8) and, therefore,

forces users to ”see the bigger picture and think like a product

owner” right at the beginning (T1). They considered it to be

different from traditional software development, in which one

may develop a program that will work for some cases without

thinking beforehand on its correctness in all cases:

“. . . when you write code, you may find yourself in a
situation where the code runs, and it completely breaks.
In spectra, much pre-design thought must be made, and it
results in a better outcome right at the beginning.” (T10)
Many participants struggled with this mindset shift, as re-

flected in their frequent Slack progress updates and questions.

They mentioned that there are many ways to logically model a

system’s desired behavior. As evidence, see the high variance

in Tbl. I in the number of system variables, assumptions, and

guarantees to describe a given problem; these many possible

ways to model a problem might turn out to be challenging:

“. . . (in reactive synthesis). . . you arrive at a certain point
where you realize the way you chose to model the problem
is wrong and then must practically start all over again.
In other software programming environments, you usually
don’t have to re-think about the basic choices you’ve
taken at the beginning and usually can make a quick fix
(sometimes ”ugly” solution that works), while here these
cases are more complex – still possible from time to time,
but we do feel the language ”forces” you to do things right
and not just find a quick solution to your problem.” (T10)
3) Unrealizability is a severe and frequent problem:

Unrealizability is a well-studied topic in reactive synthesis,

with multiple proposed solutions. However, no study so far

observed the user aspects of unrealizability and the influence

on the development process of specifications. Our findings

confirm that unrealizability is an acute and frequent problem

that drastically influences the development process of speci-

fications. For example, 12% of the specifications committed

746

by the participants were unrealizable, and all teams frequently

mentioned unrealizability problems in their Slack conversa-

tions and git logs, reaching a total of 242 different occurrences

(meaning that about 10% of all discussions were around

unrealizability issues participants faced).

Participants often found the realizability of the specifica-

tions they write to be fragile (T2,T4,T5,T7,T9), meaning that

even a small change in a single statement may turn a realizable

specification into an unrealizable one, for example:

“We added a guarantee to make sure the counter does not
change unless the robot is cleaning or it is in zero state. This
was required as, without it, the tank counter kept changing
during the whole run. Unfortunately, adding this guarantee
made our spec unrealizable, and we couldn’t solve it.” (T9)
To handle this sensitivity of specifications, some participants

adopted an iterative development approach: they added new

logic to the specifications carefully and in small steps to

make sure that they remain realizable after each new addition

(T4,T5,T7,T10):

“. . . this way, if the specification was realizable before, but
it is not realizable now, we knew that there was something
wrong with the guarantee that we just added.” (T5)
Moreover, they used Spectra analysis tools iteratively, in a

“TDD” fashion to detect and fix unrealizability problems:

“This week we worked in a similar to “TDD” method –
we added new guarantee to specification (regarding freeze
mode or manual mode for example) and used realizability
check as a ”test” which is “failing” if the specification is
not realizable. If so – we used unrealizable core calcula-
tion to understand the problem and ”fix” the specification
accordingly.” (T7)
We will further discuss the usability of these tools in the

supporting features and tools subsection of the results below.

4) Non-well-separation: Non-well-separated specifications

are specifications in which the synthesizer may solve the

synthesis problem by creating a controller that can force

environment assumption violations [34], [48].

Non-well-separation issues were mentioned extensively by

many participants (T2,T3,T4,T5,T7,T10). However, they were

less frequent than unrealizability. In contrast to unrealizability,

which means that a controller could not be created, non-well-

separated specifications can be synthesized into a controller,

and so in many cases, participants found the problem only after

they observed the controller behavior for some time during its

executions:

“We found out we had lots of bugs we didn’t know about,
and our specification didn’t work. It was realizable, but
when we ran it, non of the guarantees were met because of
strange behavior. . . . maybe our spec is not well-separated.
Indeed that was the case.” (T2)
Careful inspection of the actual environment implementa-

tion in the simulation code was found to be helpful in order

to fix non-well-separation issues (T5,T10):

“. . . After reviewing again the Java code we wrote, we
found the problem: we expected that when the robot reaches

origin, the engine problem is fixed. This is a logically false
assumption because the environment cannot predict that the
next state of robot (which is sys variable) will be at origin
and thus turn off the engine problem (which is env variable)
before reaching there. It made us understand that when
the robot reaches origin, only in the next state the engine
problem should go off and not in the current. Fixing it made
our program well separated and work as we expected.” (T5)

5) The synthesizer as a “black-box”: For this study, we

intentionally chose participants who represent the knowledge

of a typical software engineer: one with a strong background

in writing code and familiarity with basic CS concepts but

without deep knowledge in formal methods and synthesis. We

found that the lack of deep knowledge on how the synthe-

sizer works influenced the ability of participants to develop

specifications easily. For example, participants mentioned that

the development process becomes harder since they could not

estimate the synthesis or analysis time of their specification;

more specifically, they mentioned that they do not have the

tools or knowledge to understand what parts of their specifi-

cation make the synthesis inefficient (T1,T4,T9,T10):

“We feel that many times we’ve made a simple change
of the spec (adding a counter instead of a pattern, for
example), and the running time became too large . . . if it’s
possible to evaluate the complexity of each construct and
add an estimated computation time may help a lot during
the process of writing a spec.” (T10)
Other than efficiency, the lack of knowledge on how the

synthesizer works influenced participants’ ability to debug and

fully understand specific problems since they do not have the

tools to understand the problem deeply. As a result, sometimes,

they just changed specifications in a “trial-and-error” fashion

until they found a solution that worked for their needs (T2,T7):

“. . . we went on the ”obvious” solution - triggers. Sur-
prisingly, the specification became not realizable. It was
the strangest thing because there seems to be no reason
for the robot not to stay there or wait for the green light.
The core was also not helpful. We tried a few versions of a
trigger expression, and then again decided to use a counter
instead. This time, we don’t know yet what the problem
was. But changing to a counter and a boolean variable
start (meaning we are at the start of the program and are
still in our first 8 stages), made the problem disappear. So
of course we kept it that way.” (T2)

B. Supporting features and tools

1) Existing analysis techniques for unrealizabilty and non-
well-separation do not scale: Participants used two kinds

of solutions for unrealizability and non-well-separation is-

sues: detection of cores [48], [53], an strategies. Due to

the high frequency of these issues, participants used these

methods extensively and iteratively and, in many cases, found

them helpful in understanding the source of the problem

(T2,T4,T7,T9,T10), for example:

“After writing those guarantees we checked realizability
and it was not realizable. The core in this case, helped us

747

immediately to find the first problem – if there is alw fog so
we can’t guarantee that cars will eventually drive. Hence,
we add an assumption that alwEv there is no fog. Then,
still the spec was unrealizable but this time with another
problem. Here also the core helped us a lot to find the
contradiction – if there is alw road constructions so we can’t
guarantee that cars from south will drive eventually straight.
Hence, we add an assumption that alwEv there is no road
construction. On the third try, still we got Unrealizability
and again the core helped us to understand that if there
is alw fog and then road constructions so again we can’t
guarantee that cars from the south will drive eventually
straight. . . ” (T2)
However, in many other cases, participants found cores and

strategies to be less helpful due to (1) long computation times,

especially since participants used these tools very frequently

as part of their development process (T2,T4,T6,T8,T9,T10),

and (2) difficulty to interpret the core or the strategy due to a

large number of states or statements (T4,T5,T8,T10).

For example, T10 described a counter-strategy with more

than 200 states and a non-well-separation strategy with over

150 states which were practically impossible to follow:

“. . . we calculated a counter-strategy with over 200 states,
so really trying to understand what happens beyond the
”metadata” is difficult, and in such cases, we just prefer
to change tactics. . . ” (T10)

“The (non-well-separation) strategy spectra found had
over 150 states so it was quite impossible to follow.” (T10)
And T4 described an unrealizable core with 14 guarantees,

which takes more than 30 min to compute:

“. . . we get a core of 14 statements all over the spec.
Because spec has become quite big now, each. . . check takes
at least half an hour. As a result, debugging difficulty has
increased tenfold. Beforehand, we attributed part of these
checks assistance in debugging to responsiveness: Meaning,
even if seeing an unrealizable core doesn’t explicitly tell
you the problem, it directs you to what statements you need
to focus on. Then, you can try and alter these statements,
and if it’s still unrealizable, you can again ask to see
an unrealizable core, and so on. But now, this iterative
debugging approach is not applicable. It feels like the
tools. . . are rendered close to impracticable whenever the
spec grows to a project of this size. Knowing that a check
we need will freeze our work for a half-hour at least forces
us to rely less on the checks.” (T4)
As a result, T4 also describes their manual solution to deal

with unrealizability, which was also in use by other teams:

“. . . you then can gray-out each paragraph and add them
back incrementally (in different orders) in order to recognize
what statements bring about a conflict.” (T4)
Previous research has reported that unrealizable cores tend

to include about 18% of the specification guarantees [53]. Our

results show how challenging it is to understand large cores.

2) On simulations, exploration, and correct-by-
construction: The central promise of reactive synthesis

Fig. 3: The rich controller walker is a Spectra debugging tool
with similar capabilities to traditional software debugging tools, e.g.,
breakpoints and step-by-step execution. Our findings show that in
terms of user-interface usability, this traditional debugging approach,
in its present design, does not scale to specifications over many
variables.

is to provide a correct-by-construction implementation of

controllers. These controllers interact with an environment that

satisfies the specification’s assumptions. Therefore, a central

part of the development process of specifications is to explore

their behavior while reacting to environment inputs. Spectra

offers two ways to explore the controller’s behavior: (1) A

controller-walker, an exploration and debugging mechanism

that implements capabilities similar to a traditional debugger,

such as breakpoints and a step-by-step execution (Fig. 3). (2)

A Java API to feed the controller with the next environment

input and get the next controller output.

Several teams used the walker to explore different behaviors

of their synthesized controllers (T2,T4,T5,T7):

“. . . we used the rich walker a lot for our testings. We
first thought about all possible cases (i.e., moving inside
the orange zone, moving from the orange zone to the white
zone, and so on). Then, we used the ’walk as both players’
option to control the simulation completely. We tested all
edge cases we could think of by using this tool. If a problem
occurred, we headed back to the spectra code and looked for
the logic that caused this problem, and fixed it. We repeated
this process over and over again until the desired behavior
was reached.” (T5)
However, the walker turned out to be helpful only for small

specifications; in particular, it was not valuable and intuitive

for specifications with many variables:

“. . . the rich walker is a great tool for debugging, but
when there are too many variables, it makes it too hard to
use.” (T5)
Due to the limited usefulness of the controller-walker, all

participants used the Java API as the main way to validate and

explore the behavior induced by their specifications.

Perhaps surprisingly, despite the correct-by-construction

promise, all participants reported that they found bugs in

their specifications, although they were realizable, well-

separated, and initially considered correct by their devel-

opers. That is, the implementation was correct w.r.t. the

748

specification, but the specification did not correctly express

the intended requirements. For example, participants fre-

quently had commit messages like: “. . . is realizable & well
separated, but still not behaving as expected.” (T2)
Others mentioned in their Slack messages some unexpected

behaviors of a ”correct” specification:

“We noticed we had a mistake in our freeze mode imple-
mentation (we used asms when we were supposed to use
gars). The mistake didn’t affect the realizability and the
well-separation of the spec, so it wasn’t easy to notice that
these lines are problematic. . . ” (T8)
During the workshop class, participants had the freedom to

validate the correctness of their specifications in any way they

found appropriate. The most common validation strategy was

implementing some kind of a random simulation that mocks up

possible environment behaviors according to the participant’s

understanding of the problem. Note that this is not easy,

because in order to be useful for simulation, the implemented

environment behavior must satisfy the assumptions written in

the specification. When the environment violates an assump-

tion, the Spectra controller executor outputs a relevant warning

to the console and there is no promise that the remainder of

the execution will satisfy the guarantees.

Given the random environment they implemented, par-

ticipants executed it against the synthesized controller and

observed the resulting behaviors. However, some of the teams

understood that such validation is insufficient since some

occurrences of events and edge cases are rare:

“. . . we used mainly the GUI. Each and every time, we
were looking for the specific scenario we wanted to check
to happen, and then once it happened, we checked whether
it worked as we expected it to work or not. One of the main
difficulties in this method was that some problems. . . only
occurred once in many runs - that made us believe that
things are working properly and we proceed with them, and
only later on we found out that they are wrong.” (T9)
To deal with that, participants used additional strategies. For

example, T10 tweaked the environment’s randomness in such

a way that will make otherwise rare events more frequent. T4

and T6 wrote specific scenarios, i.e., implementing a concrete

behavior of the environment simulation, which mocks up edge

cases they wanted to test.

“. . . when we wished to test something specific, we wrote
specific java code in order to make it happen, for example,
on cleaner task, we wrote specific code to make sure the
robot would pass all the orange zone.” (T4)

C. Specification language and modeling

Since writing formal specifications using pure linear tempo-

ral logic is challenging, higher-level languages with predefined

abstraction mechanisms were developed. Spectra contains two

kinds of such language constructs (beyond its kernel, see [50])

Basic constructs include non-temporal language features that

are pure syntactic sugars, i.e., arrays, defines, and predicates.

Advanced constructs include temporal language features such

as Past LTL operators [26], counters, “triggers [4], [19], and

most Dwyer et al. patterns [17], [47]. These are implemented

by automatic encoding into the synthesis problem, using

added auxiliary variables. Complete documentation of all the

Spectra language constructs can be found in the language

documentation, available from the Spectra website.

1) System vs. Environment: We found that some partici-

pants struggled to distinguish between the roles of the system

and the environment in the synthesis problem, especially in

the first few weeks of the semester, although Spectra explic-

itly distinguishes between system and environment variables

and between system guarantees and environment assumptions

(T7,T8,T9,T10). This difficulty manifested at two levels. First,

at the modeling level, i.e., the distinction between variables

that should fall under the system responsibility and ones that

should fall under environmental responsibility:
“At the beginning, we didn’t manage to differentiate good

enough between the system variables and the environment
variables. . . we thought over again about the modeling of
the problem and chose to model the obstacles as the
environment and the robot as the system.” (T10)
Second, at the properties level, i.e., the distinction which

properties should be specified as environment assumptions and

which should be specified as system guarantees:
“Sometimes, the environment violates the assumption on

the first step. The robot visits targets as part of the patrol
while there is an engine problem and does not return to (0,0)
”immediately”. After lots of trial and error, we realized that
the trigger should be a gar rather than an assumption. We
changed it, and the spec worked well. The previous problems
are now fixed.” (T7)

“We noticed we had a mistake. . . we used asms when we
were supposed to use gars. . . ” (T8)

2) Use of advanced language constructs: Table I summa-

rizes the usage statistics of some of these language constructs.

We can see extensive usage in basic and advanced language

constructs, which serves as evidence for their importance as

an abstraction level above LTL and pure GR(1).
Moreover, despite the advanced language constructs avail-

able to them beyond the kernel of ini, alw, and alwEv
assumptions and guarantees, participants did not consider the

language to be complex. For example:
“The simplicity of the language – the fact that the

language is simple to learn and has a limited number of
constructs and keywords that allow you to express very large
variety of specs is a huge advantage for spectra.” (T10)

3) Challenges with advanced language constructs: Besides

the benefits of using advanced language constructs, partici-

pants faced some challenges in using them, many of which

relate to theme 4.1.5 (the synthesizer as a “black-box”). For

example, participants often found the Dwyer et al. patterns, as

available in the Spectra patterns library, to be unclear:
“The fact we can use patterns to simplify a complicated

function seems to be very useful, but to be honest, we didn’t
really manage to understand those patterns deeply. We think
it might be helpful to give the patterns more intuitive names

749

or to dedicate some time (in class) to go over the patterns
and give examples of the use of each one of them.” (T2)
As another example, some participants struggled with the

exact semantics of counters and patterns, although we pre-

sented them in class, with examples, and provided what we

considered to be meaningful documentation:

“We also found out that sometimes it’s not simple to
understand the meaning of prev / current / next states when
dealing with counters (meaning – if we say: when counter
reaches x do something – when will it be done? On the next
state? On the current state?). The problem is that if we don’t
time it correctly, the environment can suffer a violation of
the assumptions.” (T10)

“. . . for example does P becomes true after Q means that
it becomes true for one state, or is it forever, will it become
true on the next or current state” (T7)
Since participants had trouble to fully understand the exact

meaning of these language constructs, in some cases they

abandoned using them in favor of other constructs (T5,T9):

“. . . we haven’t used patterns. We tried using them a
couple of times, it always led to unrealizable results, and
we’ve always eventually found a different solution.” (T5)

“We have tried to understand why did the first pattern we
used didn’t work but we still don’t understand the reason.
To find a better solution we went through the Spectra deck
and once we saw the ”ONCE” operator we immediately
understood that this is the right operator to resolve this
issue. This was actually intuitive. . . ” (T9)

V. DISCUSSION AND FUTURE RESEARCH ACTION ITEMS

Our results describe unique strengths and weaknesses of

reactive synthesis. With appropriate solutions to some of the

open challenges in the field, reactive synthesis may become an

important component in the software engineer’s future arsenal

of tools. We envision reactive synthesis used by software

engineers who are not familiar with how formal methods work

but are familiar with what they mean and how to use them;

our workshop class outcomes indicate the applicability of this

goal. The work is a step toward our larger vision to make

reactive synthesis more usable and practical.

This section identifies opportunities and proposes action

items for making reactive synthesis more natural and appli-

cable for software engineers. We base these action items on

the results described in Sect. IV.

A. Language and specification quality

Our results reflect the role of language constructs as a layer

of abstraction between the user intentions and the logic.

While some language constructs do a great job in hiding the

specification’s complexity, we have indications that language

constructs that are “too abstract” or hide too much of the com-

plexity of specifications might achieve the opposite goal and

make understanding and debugging of the specification more

challenging. Therefore, more work on language constructs
translating the real engineer’s intentions into a formal
input for the synthesizer is needed. Patterns, such as [17],

[55] may be a good starting point for such future abstraction

mechanisms, but as our results show, there is still a place for

improvement in bringing the accurate meaning of a pattern
to a user while keeping its implementation abstract, for

example, by better usage examples of patterns, or advanced

visualizations that will help in understanding their semantics.

Moreover, research on specification languages could be

inspired by current and past research efforts in pro-
gram comprehension, as published in the ICPC conference

series [1]. Such works should be done with careful attention

to task selection and experiment design, in order to avoid

potential bias [20].

Despite the similarity between specification and code, there

are significant differences. While program comprehension

cognitive models take into account the flow of programs [69],

in specifications, this flow does not exist, and there is no

meaning to the order of declarations. Littman et al. [41]

defined program comprehension as knowing the objects the

program manipulates and the actions it performs, as well as

its functional components and the causal interactions between

them. Although similar, specifications have unique properties

and language constructs that distinguish them enough from

traditional imperative code and therefore prevent direct adop-

tion of concepts. In particular, the tasks of locating a program

code line that implements a given command, explaining the

semantics of a given code block, or manipulating a given

code snippet in order to change its meaning, are very dif-

ferent than the corresponding tasks of locating an assumption

or guarantee that specifies a given property, explaining the

meaning of a given guarantee or manipulating it in order to

change its meaning based on new requirements. One reason

for these differences may be that in imperative programming,

the developers specify what should be done, as opposed

to reactive synthesis specifications, in which the developers

should also explicitly identify and specify what should not be

done. Another difference is that in specifications, developers

also explicitly specify assumptions about the behavior of

the environment; this makes specification development and

reading significantly different from development and reading

of code.

Empirical research on the comprehension of specifi-
cations (e.g., what makes elements in a specification easy

or difficult to comprehend?) could lead to new means to
measure specifications’ complexity and quality (e.g., nesting

depth of Boolean operators in assumptions and guarantees,

and more generally, the definition and detection of anti-

patterns [44]). These may be followed by means for im-

provement, for example, proposing refactoring techniques
(e.g., split guarantee), warnings, and tools to promote and

enforce writing conventions (e.g., should all assumptions be

separated from all guarantees or should related assumptions

and guarantees, say, ones that use a similar set of variables,

appear close to each other in the specification document?).

A potentially significant outcome of research efforts on the

comprehension of specifications can be translated to a better

design of specification languages, perhaps inspired by the work

750

on natural programming [12], [58], a PL and HCI design

methodology that is aimed to “make it possible for people to

express their ideas in the same way they think about them”.

B. Tools for analyses and execution

We observed that participants used specification analysis

extensively. First, we noticed that the available tools and tech-

niques for addressing unrealizability and non-well-separation

issues deal with relevant and frequent problems; this shows

that previous research efforts indeed targeted problems that

exist in practice (although they were not necessarily based on

empirical evidence). However, our findings show that current
tools output is in many cases unclear to the engineers,

which often makes it unusable on a large scale.

To better translate the specification analysis tools’ output

for user comprehension, better representations are required.

For example, it may be possible to consider visualization and

interactive techniques or textual explanations to replace or to

extend the current output of counter-strategies and cores; it
may be the case that although they are incomplete, con-
crete assignments and a selected path to a dead end would
be more helpful to engineers in explaining unrealizability
than existing techniques. All these should be developed and

evaluated with the target software engineers in mind.

In addition, our observation that in many cases, specifica-
tions that are realizable, well-separated, and considered
correct by their developers are discovered to be incorrect
after synthesis, suggests the need for better exploration and

debugging tools. Exploration tools such as the rich controller

walker, and the combinatorial coverage (CC) algorithm for

scenario-suite generation [45] implemented in Spectra serve

as a good starting point; however, they still suffer from
scalability problems in both running times and in clarity
of user interface (when the specification has “too many”
variables). Future work should explore better user interfaces

for this task. For example, create semi-automated abstractions

that will present the user only with the relevant information

for the current execution state, e.g., by temporarily hiding

irrelevant variables.

C. Process and methodologies

Our results indicate that writing specifications for reactive
synthesis raises different challenges and involves different
activities compared to traditional programming. Therefore,

methodologies and activities that seem straightforward and

are well-studied for traditional software development are not

necessarily applicable when developing specifications. While

the existence of these differences by itself may be well-known,

the evidence and discussion of these differences in activities

may lead to the design of better tools and methodologies.

First, the field could benefit from the exploration of overall
development methodologies. One example of such a method-

ology could be an incremental approach in which in each

iteration the engineer adds a small set of guarantees, makes

the specification realizable again by adding assumptions, and

only then continues to add another small set of guarantees

(a similar incremental methodology was suggested in [65]).

An alternative approach could be to start by writing all the

assumptions in order to establish non-well-separation early

and only then add all the guarantees. Each approach may

have its strengths and weaknesses. Different approaches may

fit different development setups.

Second, one could identify the activities involved by
exploring a development process for specifications. Ex-

amples of possible activities that we already identified in

this study are formulating and distinguishing between the

system and environment-controlled variables of the synthesis

problem, checking whether an added guarantee turns a specifi-

cation from realizable to unrealizable, checking the non-well-

separation of a complete environment model, or step-by-step

simulation of the synthesized controller over a scenario of

interest. Another example activity is structured specification
review, inspired by code review practices (what are the

qualities one should examine during a specification review and

what tools can assist in performing the review?). Systemati-

cally identifying these activities and their further exploration

will help to focus research efforts around the specific activities

involved in the development process, and inform the specific

needs and the development of new tools and techniques.

D. Performance

Despite advancements in heuristics to improve the per-

formance of reactive synthesis and related analyses [25],

considerable running times are still a significant bottleneck
towards broad adoption of reactive synthesis.

Performance issues are not new in the context of reactive

synthesis, and multiple solutions have been proposed over

the years. For example, just-in-time reactive synthesis [54],

giving up on completeness with bounded synthesis [23], and

pure symbolic analysis of counter-strategies for unrealizable

specifications [38]. Our results call for further research into

these methods and new ones, including, e.g., modularity or

different means of parametrization.

Identifying common development activities as proposed in

Sect. V-C may open up opportunities for designing heuristics

that take advantage of the unique context of specific activities,

for example, the proposed iterative methodology of adding one

guarantee at a time and not adding new ones until the spec-

ification becomes realizable again, calls for an incremental
unrealizability analysis techniques that build on the results
of previous analyses.

Regardless of the efforts to find better heuristics and syn-

thesis algorithms, the frequent usage of advanced language

constructs (backed by the relatively high number of auxiliary

variables in Tbl. I) and combined with the inherent lack of

transparency of many advanced language features, due to

abstraction, may hint that at least in some cases, using
advanced language constructs may be a form of accidental
rather than essential complexity, or otherwise hint that

developers do not use variables cost-effectively. Future studies

may explore these phenomena and propose ways to detect

such cases and address them using refactorings or indicative

751

warnings for developers. Moreover, as stated by participants,

even general warnings regarding expected high running times

could be helpful in this context.

VI. THREATS, EVALUATION, AND QUALITY CRITERIA

This section discusses different evaluation criteria for our

study and potential threats to its validity.

Construct validity. (the appropriateness of operational

measures for the concepts being studied) We used multiple

sources of data (e.g., Slack communications, git commit

messages, specifications, and follow-up questions) to establish

a clear chain of evidence to our findings. By triangulating the

data from these sources, we reduced each source’s weaknesses

and got a broader picture of the process.

Internal validity. (the establishment of causal relationships)

We addressed internal validity in the data analysis phase, by

strictly following the Straussian methodology [13] regarding

the coding phases and analysis.

Reliability. (the degree to which the research method pro-

duces stable and consistent results) We ensured reliability as

follows:

• We make the case study protocol and collected specifica-

tions available as part of a replication package (see [42],

[43]), to maximize replicability and transparency.

• We used a saturation strategy: we kept exploring certain

aspects of reactive synthesis and designed our tasks

accordingly until we observed saturation in findings and

then moved to more tasks that examined more aspects.

External validity. (how well can the outcome of a study

be expected to apply and be generalized to other settings) We

have two concerns that fall under this category:

• Target population. We chose a population that represents

future users of reactive synthesis well. Therefore, we be-

lieve that the results generalize well in this context. While

using students may introduce some potential threats, other

than the fact that they are all from the same university,

participants took different classes, and many already have

a strong industrial background in diverse companies;

this creates a diverse background of participants, even

more than an industrial setting within a small team in a

single company. The participants are not formal methods

experts but more representative of an average professional

software engineer. Our experiment design decision to use

students who represent professional software engineers

and not formal methods experts was intentional.

• Main study platform. The exploratory study was con-

ducted using Spectra, state-of-the-art in reactive synthesis

environment. It is possible that using Spectra and not

another reactive synthesizer affected the results somehow.

However, while analyzing the data, we put special em-

phasis on themes that generalize well to other existing

and future reactive synthesis platforms.

Other threats. The class participants worked in pairs so our

analysis was done in team granularity, treating each team as

one entity. As a result, we have no feedback from individuals

on their own overall experience. Yet, we observed saturation

in our findings from different teams, which reduces the threat.

In addition, the study was carried out as part of a university

class, and students were graded for their work. To encourage

students to be active and provide us feedback, our course

policies emphasized the importance of active participation and

detailed documentation of the process as the main grading

criteria for the class. That said, all the students who signed

the consent form received the 4 bonus points on their grade,

regardless of their performance in the class tasks.

VII. CONCLUSION

Reactive synthesis is a promising direction towards in-

tegrating correct-by-construction methods into the software

development process. However, most previous research efforts

on reactive synthesis had focused on technical contributions.

This work is the first to qualitatively explore an end-
to-end reactive synthesis development process from the
perspective of developers, collect rich data of different
kinds, and use it to identify current strengths, challenges,
and opportunities for improvement. Based on these, we

have proposed action items towards making reactive synthesis

more applicable for software engineers, from the specification
language and analysis tools to the development process
methodologies and activities.

It is important to note that our findings and action items

might not directly generalize beyond reactive synthesis to

other formal methods applications. That said, the questions

that emerged from our findings may inspire corresponding

research questions in similar domains. For example, the limited

usefulness of cores for debugging and explaining problems in

specifications may inspire similar studies on the use of cores

in tools such as Alloy [70]. As another example, the need for

better mechanisms to present the accurate meaning of patterns

to users may be applicable to model-checking tools. Every

such potential generalization requires a specific study in the

relevant context.

Finally, following our present study, future research efforts

include a focus on specification quality and comprehension,

on user-centered solutions for problems in specifications, and,

more broadly, on the identification and development of the

methodologies, activities, and tools that can serve as building

blocks for an effective end-to-end reactive synthesis develop-

ment process.

ACKNOWLEDGEMENTS

This project has received funding from the European Re-

search Council (ERC) under the European Union’s Hori-

zon Europe research and innovation programme (grant No

101069165, SYNTACT).

REFERENCES

[1] Table of contents. In 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC), pages 5–10, Los Alamitos, CA, USA,
may 2021. IEEE Computer Society.

[2] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-Gazit.
Reactive mission and motion planning with deadlock resolution avoiding
dynamic obstacles. Auton. Robots, 42(4):801–824, 2018.

752

[3] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In Formal Methods in Computer-Aided Design,
FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages 1–8.
IEEE, 2013.

[4] G. Amram, D. Ma’ayan, S. Maoz, O. Pistiner, and J. O. Ringert. Triggers
for reactive synthesis specifications. In IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 2023.

[5] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer,
M. Roveri, V. Schuppan, and R. Seeber. RATSY – A New Requirements
Analysis Tool with Synthesis. In T. Touili, B. Cook, and P. Jackson, ed-
itors, Computer Aided Verification, pages 425–429, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[6] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis
of reactive(1) designs. Journal of Computer and System Sciences,
78(3):911–938, 2012. In Commemoration of Amir Pnueli.

[7] V. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchitel.
Controller synthesis: From modelling to enactment. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13,
page 1347–1350. IEEE Press, 2013.

[8] D. G. Cavezza, D. Alrajeh, and A. György. Minimal assumptions refine-
ment for realizable specifications. In K. Bae, D. Bianculli, S. Gnesi, and
N. Plat, editors, FormaliSE@ICSE 2020: 8th International Conference
on Formal Methods in Software Engineering, Seoul, Republic of Korea,
July 13, 2020, pages 66–76. ACM, 2020.

[9] S. E. Chasins, E. L. Glassman, and J. Sunshine. PL and HCI: Better
Together. Commun. ACM, 64(8):98–106, jul 2021.

[10] K. Chatterjee, R. Ehlers, and S. Jha, editors. Proceedings 3rd Workshop
on Synthesis, SYNT 2014, Vienna, Austria, July 23-24, 2014, volume
157 of EPTCS, 2014.

[11] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic
information for realizability. In International Workshop on Verification,
Model Checking, and Abstract Interpretation, pages 52–67. Springer,
2008.

[12] M. Coblenz, G. Kambhatla, P. Koronkevich, J. L. Wise, C. Barnaby,
J. Sunshine, J. Aldrich, and B. A. Myers. Pliers: A process that integrates
user-centered methods into programming language design. ACM Trans.
Comput.-Hum. Interact., 28(4), jul 2021.

[13] J. Corbin and A. Strauss. Basics of qualitative research: Techniques and
procedures for developing grounded theory. Sage publications, 2014.

[14] A. Cypher. Eager: Programming repetitive tasks by example. In
Readings in human–computer interaction, pages 804–810. Elsevier,
1995.

[15] N. Danas, T. Nelson, L. Harrison, S. Krishnamurthi, and D. J. Dougherty.
User studies of principled model finder output. In A. Cimatti and
M. Sirjani, editors, Software Engineering and Formal Methods, pages
168–184, Cham, 2017. Springer International Publishing.

[16] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesis
of live behaviour models for fallible domains. In Proceedings of the
33rd International Conference on Software Engineering, ICSE ’11,
page 211–220, New York, NY, USA, 2011. Association for Computing
Machinery.

[17] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 21st
International Conference on Software Engineering, ICSE ’99, page
411–420, New York, NY, USA, 1999. Association for Computing
Machinery.

[18] R. Ehlers and V. Raman. Slugs: Extensible GR(1) Synthesis. In
S. Chaudhuri and A. Farzan, editors, Computer Aided Verification, pages
333–339. Springer International Publishing, 2016.

[19] C. Eisner and D. Fisman. A Practical Introduction to PSL. Series on
Integrated Circuits and Systems. Springer, 2006.

[20] D. G. Feitelson. Considerations and pitfalls in controlled experiments
on code comprehension. In 29th IEEE/ACM International Conference
on Program Comprehension, ICPC 2021, Madrid, Spain, May 20-21,
2021, pages 106–117. IEEE, 2021.

[21] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data structure
transformations from input-output examples. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’15, page 229–239, New York, NY, USA,
2015. Association for Computing Machinery.

[22] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray.
Control design for hybrid systems with TuLiP: The Temporal Logic
Planning toolbox. In 2016 IEEE Conference on Control Applications,

CCA 2016, Buenos Aires, Argentina, September 19-22, 2016, pages
1030–1041, 2016.

[23] B. Finkbeiner and S. Schewe. Bounded synthesis. Int. J. Softw. Tools
Technol. Transf., 15(5–6):519–539, oct 2013.

[24] C. Finucane, G. Jing, and H. Kress-Gazit. LTLMoP: Experimenting
with language, temporal logic and robot control. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
1988–1993, 2010.

[25] E. Firman, S. Maoz, and J. O. Ringert. Performance heuristics for GR(1)
synthesis and related algorithms. Acta informatica, 57(1):37—79, 2020.

[26] D. Gabbay. The declarative past and imperative future. In B. Banieqbal,
H. Barringer, and A. Pnueli, editors, Temporal Logic in Specification,
pages 409–448, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

[27] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. SIGPLAN Not., 46(1):317–330, jan 2011.

[28] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S. H. Muggleton,
U. Schmid, and B. Zorn. Inductive programming meets the real world.
Communications of the ACM, 58(11):90–99, 2015.

[29] S. Gulwani and P. Jain. Programming by examples: PL meets ML.
In B. E. Chang, editor, Programming Languages and Systems - 15th
Asian Symposium, APLAS 2017, Suzhou, China, November 27-29, 2017,
Proceedings, volume 10695 of Lecture Notes in Computer Science,
pages 3–20. Springer, 2017.

[30] R. Hoda. Socio-technical grounded theory for software engineering.
IEEE Trans. Software Eng., 48(10):3808–3832, 2022.

[31] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans-
actions on software engineering and methodology (TOSEM), 11(2):256–
290, 2002.

[32] S. Jacobs, G. A. Perez, R. Abraham, V. Bruyere, M. Cadilhac,
M. Colange, C. Delfosse, T. van Dijk, A. Duret-Lutz, P. Faymonville,
et al. The Reactive Synthesis Competition (SYNTCOMP): 2018-2021.
arXiv preprint arXiv:2206.00251, 2022.

[33] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin,
K. El Emam, and J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on Software
Engineering, 28(8):721–734, 2002.

[34] U. Klein and A. Pnueli. Revisiting synthesis of GR(1) specifications. In
S. Barner, I. Harris, D. Kroening, and O. Raz, editors, Hardware and
Software: Verification and Testing, pages 161–181, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[35] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifi-
cations: a practical approach using model-based diagnosis and coun-
terstrategies. International journal on software tools for technology
transfer, 15(5):563–583, 2013.

[36] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based
reactive mission and motion planning. IEEE Transactions on Robotics,
25(6):1370–1381, 2009.

[37] S. Krishnamurthi and T. Nelson. The human in formal methods. In
M. H. ter Beek, A. McIver, and J. N. Oliveira, editors, Formal Methods
– The Next 30 Years, pages 3–10, Cham, 2019. Springer International
Publishing.

[38] A. Kuvent, S. Maoz, and J. O. Ringert. A symbolic justice violations
transition system for unrealizable GR(1) specifications. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, page 362–372, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[39] T. Lau. Why programming-by-demonstration systems fail: Lessons
learned for usable AI. AI Mag., 30(4):65–67, 2009.

[40] T. Y. Lee, C. Dugan, and B. B. Bederson. Towards understanding
human mistakes of programming by example: An online user study.
In Proceedings of the 22nd International Conference on Intelligent
User Interfaces, IUI ’17, page 257–261, New York, NY, USA, 2017.
Association for Computing Machinery.

[41] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental models
and software maintenance. J. Syst. Softw., 7(4):341–355, 1987.

[42] D. Ma’ayan and S. Maoz. Supporting artifact, 2023. https://doi.org/10.
5281/zenodo.7566397.

[43] D. Ma’ayan and S. Maoz. Supporting materials website, 2023. https:
//smlab.cs.tau.ac.il/syntech/exploratory/.

[44] D. Ma’ayan, S. Maoz, and J. O. Ringert. Anti-patterns (smells) in
temporal specifications. In IEEE/ACM 45th International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER),
2023.

753

[45] D. Ma’ayan, S. Maoz, and R. Rozi. Validating the correctness of reactive
systems specifications through systematic exploration. In E. Syriani,
H. A. Sahraoui, N. Bencomo, and M. Wimmer, editors, Proceedings
of the 25th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2022, Montreal, Quebec, Canada,
October 23-28, 2022, pages 132–142. ACM, 2022.

[46] S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-
Gazit. Reactive high-level behavior synthesis for an atlas humanoid
robot. In 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4192–4199, 2016.

[47] S. Maoz and J. O. Ringert. GR(1) synthesis for LTL specification
patterns. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, page 96–106, New York, NY,
USA, 2015. Association for Computing Machinery.

[48] S. Maoz and J. O. Ringert. On well-separation of GR(1) specifications.
In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2016, page 362–372,
New York, NY, USA, 2016. Association for Computing Machinery.

[49] S. Maoz and J. O. Ringert. Reactive Synthesis with Spectra: A
Tutorial. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), pages 320–
321, 2021.

[50] S. Maoz and J. O. Ringert. Spectra: a specification language for reactive
systems. Softw. Syst. Model., 20(5):1553–1586, 2021.

[51] S. Maoz, J. O. Ringert, and R. Shalom. Symbolic repairs for GR(1)
specifications. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 1016–1026, 2019.

[52] S. Maoz and R. Shalom. Inherent vacuity for GR(1) specifications.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, page 99–110, New York, NY, USA,
2020. Association for Computing Machinery.

[53] S. Maoz and R. Shalom. Unrealizable cores for reactive systems
specifications. In Proceedings of the 43rd International Conference on
Software Engineering (ICSE), page 25–36. IEEE Press, 2021.

[54] S. Maoz and I. Shevrin. Just-in-time reactive synthesis. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software
Engineering, page 635–646, New York, NY, USA, 2020. Association for
Computing Machinery.

[55] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger.
Specification patterns for robotic missions. IEEE Transactions on
Software Engineering, 47(10):2208–2224, 2021.

[56] B. A. Myers. Creating user interfaces using programming by example,
visual programming, and constraints. ACM Trans. Program. Lang. Syst.,
12(2):143–177, apr 1990.

[57] B. A. Myers and R. McDaniel. Chapter 3 - demonstrational interfaces:
Sometimes you need a little intelligence, sometimes you need a lot. In
H. Lieberman, editor, Your Wish is My Command, Interactive Technolo-
gies, pages 45–III. Morgan Kaufmann, San Francisco, 2001.

[58] B. A. Myers, J. F. Pane, and A. J. Ko. Natural programming languages
and environments. Commun. ACM, 47(9):47–52, sep 2004.

[59] H. Peleg and N. Polikarpova. Perfect is the enemy of good: Best-effort
program synthesis. Leibniz international proceedings in informatics,
166, 2020.

[60] H. Peleg, S. Shoham, and E. Yahav. Programming not only by
example. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 1114–1124, 2018.

[61] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pages 46–57, 1977.

[62] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89, page 179–190, New
York, NY, USA, 1989. Association for Computing Machinery.

[63] P. Ralph, N. b. Ali, S. Baltes, D. Bianculli, J. Diaz, Y. Dittrich, N. Ernst,
M. Felderer, R. Feldt, A. Filieri, et al. Empirical standards for software
engineering research. arXiv:2010.03525, 2020.

[64] A. Reid, L. Church, S. Flur, S. de Haas, M. Johnson, and B. Laurie.
Towards making formal methods normal: meeting developers where they
are. arXiv preprint arXiv:2010.16345, 2020.

[65] L. Ryzhyk and A. Walker. Developing a practical reactive synthesis tool:
Experience and lessons learned. In R. Piskac and R. Dimitrova, editors,
Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto,
Canada, July 17-18, 2016, volume 229 of EPTCS, pages 84–99, 2016.

[66] T. Sedano, P. Ralph, and C. Péraire. Software development waste. In
Proceedings of the 39th International Conference on Software Engineer-
ing, ICSE ’17, page 130–140. IEEE Press, 2017.

[67] A. Siegel, M. Santomauro, T. Dyer, T. Nelson, and S. Krishnamurthi.
Prototyping formal methods tools: A protocol analysis case study. In
Protocols, Strands, and Logic, pages 394–413. Springer, 2021.

[68] K.-J. Stol, P. Ralph, and B. Fitzgerald. Grounded theory in software
engineering research: A critical review and guidelines. In Proceedings
of the 38th International Conference on Software Engineering, ICSE ’16,
page 120–131, New York, NY, USA, 2016. Association for Computing
Machinery.

[69] M. D. Storey. Theories, tools and research methods in program
comprehension: past, present and future. Softw. Qual. J., 14(3):187–
208, 2006.

[70] E. Torlak, F. S. Chang, and D. Jackson. Finding minimal unsatisfiable
cores of declarative specifications. In J. Cuéllar, T. S. E. Maibaum,
and K. Sere, editors, FM 2008: Formal Methods, 15th International
Symposium on Formal Methods, Turku, Finland, May 26-30, 2008,
Proceedings, volume 5014 of Lecture Notes in Computer Science, pages
326–341. Springer, 2008.

[71] C. Treude and M.-A. Storey. Effective communication of software
development knowledge through community portals. In Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE ’11, page 91–101,
New York, NY, USA, 2011. Association for Computing Machinery.

[72] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of partial behavior
models from properties and scenarios. IEEE Trans. Software Eng.,
35(3):384–406, 2009.

[73] M. Waterman, J. Noble, and G. Allan. How Much Up-Front? A
Grounded theory of Agile Architecture. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages
347–357, 2015.

[74] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray. TuLiP:
A Software Toolbox for Receding Horizon Temporal Logic Planning. In
Proceedings of the 14th International Conference on Hybrid Systems:
Computation and Control, HSCC ’11, pages 313–314, New York, NY,
USA, 2011. ACM.

[75] T. Zhang, Z. Chen, Y. Zhu, P. Vaithilingam, X. Wang, and E. L.
Glassman. Interpretable program synthesis. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, CHI ’21,
New York, NY, USA, 2021. Association for Computing Machinery.

[76] T. Zhang, L. Lowmanstone, X. Wang, and E. L. Glassman. Interactive
Program Synthesis by Augmented Examples, page 627–648. Association
for Computing Machinery, New York, NY, USA, 2020.

754

