
Evaluating the Impact of Experimental Assumptions
in Automated Fault Localization

Ezekiel Soremekun∗§, Lukas Kirschner†§, Marcel Böhme‡ and Mike Papadakis¶

∗Royal Holloway, University of London, UK, †Saarland University, Germany, ‡MPI-SP, Germany, ¶SnT, Luxembourg
ezekiel.soremekun@rhul.ac.uk, kirschlu@gmail.com, marcel.boehme@acm.org, michail.papadakis@uni.lu

Abstract—Much research on automated program debugging
often assumes that bug fix location(s) indicate the faults’ root
causes and that root causes of faults lie within single code
elements (statements). It is also often assumed that the number of
statements a developer would need to inspect before finding the
first faulty statement reflects debugging effort. Although intuitive,
these three assumptions are typically used (55% of experiments
in surveyed publications make at least one of these three assump-
tions) without any consideration of their effects on the debugger’s
effectiveness and potential impact on developers in practice. To
deal with this issue, we perform controlled experimentation, split
testing in particular, using 352 bugs from 46 open-source C
programs, 19 Automated Fault Localization (AFL) techniques (18
statistical debugging formulas and dynamic slicing), two (2) state-
of-the-art automated program repair (APR) techniques (GenProg
and Angelix) and 76 professional developers. Our results show
that these assumptions conceal the difficulty of debugging. They
make AFL techniques appear to be (up to 38%) more effective,
and make APR tools appear to be (2X) less effective. We also
find that most developers (83%) consider these assumptions to
be unsuitable for debuggers and, perhaps worse, that they
may inhibit development productivity. The majority (66%) of
developers prefer debugging diagnoses without these assumptions
twice as much as with the assumptions. Our findings motivate
the need to assess debuggers conservatively, i.e., without these
assumptions.

Index Terms—fault localization, program repair, user study

I. INTRODUCTION

Automated fault localization (AFL) techniques suggest loca-
tions in the program that explain the root cause of an observed
program failure [1]. Given a program failure and one or more
failing (and passing) test cases, the goal of AFL is to provide
a (sorted) list of program locations that explain the cause of
the failure. The aim of AFL is thus, to save developer effort,
time and resources during debugging (assisting the manual
fault localization). Fault localization is also a prerequisite for
bug fixing, hence it is relevant for automated program repair
(APR) tools. It allows APR tools to identify likely candidates
for fixing. Indeed, several fault localization techniques have
been deployed to aid APR methods [2, 3, 4, 5, 1].

Researchers often make experimental assumptions when
evaluating the effectiveness of AFL techniques in the lab.
Table I provides an overview of three common assumptions
employed when evaluating AFL effectiveness and shows ex-
amples of these assumptions, drawn from the literature. The
first one is that bug fix location(s) (aka “Fix Location”) can

§These authors conducted this work while affiliated or working at SnT,
University of Luxembourg, Luxembourg.

be used as substitute of the actual fault location(s) (aka “root
cause”) [1]. The second is that AFL effectiveness evaluations
can be performed by counting the number of statements a
developer would need to inspect before finding the first faulty
statement, even if there are several faulty statements [6, 7,
8, 9]. This is called the perfect bug understanding (PBU)
assumption. Even though in practice, the developer may need
to inspect more statements before finding all faulty statements.
The third assumption is that the root causes of bugs resides
in a single contiguous fault location, even though in practice
bugs may span multiple contiguous locations [1, 10, 9].

We find that these assumptions are prevalent both in debug-
ging literature and frequently used bug datasets (Section III).
This means that they can lead to a mismatch between de-
bugging evaluations in the lab and development practice [11].
Indeed, such assumptions influence the adoption and practi-
cality of debuggers in practice [12, 13]. For these reasons it is
pertinent to examine their effect on the perceived effectiveness
of debuggers as well as the productivity of developers.

To address this issue, we conduct a large empirical study
to evaluate the impact of these three assumptions on the
measured effectiveness of AFL techniques and APR tools. Our
experience has shown that these assumptions are important and
are frequently made by researchers. We thus, systematically
validate the prevalence of our observation (Section III). As
we find them important, we further conduct a user study to
evaluate how these assumptions impact developers in practice.
In our experiments, we employed controlled experimentation
(split - A/B testing) to examine the current debugging evalu-
ation settings (with each assumption) versus its absence (i.e.,
without each assumption) [20, 21]. The goal is to understand
the impact of these assumptions in practice. Our experiments
were performed using four well-known C benchmarks with
35 tools, 46 programs and 352 bugs. Our user study involved
76 professional developers debugging eight buggy programs
in 16 debugging settings.

To the best of our knowledge, this is the first study to
provide empirical evidence on the impact of these assumptions
on debuggers and software practice. We are also the first to
provide evidence that these assumptions are highly prevalent.
Overall our work makes the following contributions:

● Prevalence of Assumptions: We provide empirical evidence
that there are three (3) highly prevalent debugging assump-
tions in research literature and bug datasets. We found that

Work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/

159

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

DOI 10.1109/ICSE48619.2023.00025

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

25

Table I
EXAMPLES OF REAL-WORLD BUGGY PROGRAMS SHOWCASING EACH ASSUMPTION, INCLUDING SAMPLE DIAGNOSES AND QUOTES FROM LITERATURE

ILLUSTRATING EACH ASSUMPTION AND THEIR USE IN DEBUGGING LITERATURE AND BUG DATASETS
Perfect Bug Understanding (PBU) Using Fixes as Fault Location Single Faulty Location

Example
Program

1 void add(int *i, char *c){
2 *i = *i + *c;
3 if (*i >= 256){
4 *i = 0;
5 }
6 }
7 int main(){
8 ...
9 while (c != ’\n’){

10 add(&i, &c);
11 scan_data(&c);
12 }
13 i = (i % 64) + 32;
14 printf("Check sum is %c\n", i);
15 ...
16 }

Listing 1. checksum 3b2376ab 006

1 void message_write (char *msg, int
len)

2 {
3 char buffer[BUFSZ];
4 int i;
5 int j;
6 int limit = BUFSZ - 1;
7 for (i=0; i<len;) {
8 for (j=0; i<len && j<limit;){
9 if (i + 1 < len

10 && msg[i] == ’\n’
11 && msg[i+1]== ’.’) {
12 buffer[j] = msg[i];
13 j++;
14 i++;
15 ...
16 }

Listing 2. SpamAssassin BID-6679

1 char
2 user_grade(float percent, float a,

float b, float c, float d)
3 {
4 if (percent < d)
5 return ’F’;
6 else if ((percent > d) && (

percent < c))
7 return ’D’;
8 else if ((percent > c) && (

percent < b))
9 return ’C’;

10 else if ((percent > b) && (
percent < a))

11 return ’B’;
12 else
13 return ’A’;
14 }

Listing 3. grade 531924c0 001

Failing Test
Case

The program outputs the same checksum
for ‘‘ zzz ’’ and ‘‘zzx’’

A buffer overflow occurs for strings of a
certain length ending with ’\n’

Method user grade returns “A” if the grade
is equal to one of the thresholds

Diagnosis
with
assumption

The fault localization points to line 3 as
the faulty location, since the if statement
is wrong.

Line 6 is faulty: If 4 is subtracted from the
limit, the buffer overflow does not occur
anymore.

Line 6 is faulty: The > operator needs to
be changed to a >= operator.

Diagnosis
without
assumption

Lines 3, 4 and 5 are chosen as faulty
lines by the fault localization, since the if
statement needs to be deleted to fix the bug.

Line 3 is faulty: The buffer needs to be
allocated large enough to acommodate the
whole string.

Lines 6, 8 and 10 are faulty: All the > op-
erators must be changed to >= operators.

Quotes with
assumption

“Recall at Top-K: is the number of faults
with at least one faulty statement that is
correctly predicted in the ranked list of K
statements. ”[14]

“for release 2.0 of defects4j, we searched
among the fault-fix patches included with
the release. we found a total of 228 pro-
gram versions fitting our criteria.”[15]

“We focus on the single fault localisation,
i.e. we assume that there exists a single
faulty statement in the program. ”[16]

Quotes with-
out Assump-
tion

“This metric is used to measure how many
faults can be located within top k program
elements among all candidates. ”[17]

“these structural errors are often detected
through manual code reviews which is time
consuming.”[18]

“When multiple statements have the same
suspicious score, we use the average rank
to present their final rankings ”[19]

majority (55%) of the reported experiments in the literature
make at least one of these assumptions (RQ1 Section III).

● Measurement of AFL Effectiveness: We demonstrate that
an AFL tool evaluated with these assumptions might ap-
pear (38%) more effective than it actually is, consequently
concealing the difficulty of debugging (RQ2 Section V).

● Proxy Effect on APR Tools: We provide empirical evidence
that these assumptions have a proxy effect on the measured
effectiveness of APR methods. An APR tool evaluated using
these assumptions might appear half as effective, and (3X)
less expensive, than it is (RQ3 Section V).

● Developers Productivity: We also show that professional
developers prefer debugging diagnoses to be provided with-
out these assumptions. A majority (up to 83%) of developers
prefer debugging diagnoses without the assumption up to
4X as much as with the assumption. Participants also found
these assumptions to be unsound, unrealistic and severe in
software practice (RQ4 Section VII).

II. DEFINITIONS AND RESEARCH QUESTIONS

A. Definition of Assumptions

EA1. Perfect Bug Understanding (PBU): This means that
AFL techniques are evaluated by computing the number
of statements examined until the first faulty statement is
found [10, 6, 7, 8, 1, 9]. Researchers assume that locating and
examining a single faulty program statement (out of several
faulty statements) is sufficient to explain and fix the bug [1].

That is, measuring the starting point to initiate the bug-fixing
process is sufficient for diagnoses, rather than providing the
complete set of code that must be modified to fix the bug [1].
The left most column of Table I shows an example of the
diagnoses provided with and without this assumption. In this
example, PBU means the effectiveness of a debugger is mea-
sured by locating any first faulty statement (e.g., line three).
Meanwhile, debugging without the PBU assumption means a
debugger must locate all faulty statements (lines 3, 4, and 5).
This paper investigates the impact of the PBU assumption by
examining the effectiveness of AFL/APR tools and developer’s
debugging productivity, with versus without the assumption.
This work shows that developers find this assumption to be
unrealistic in practice (Section VII). Besides, PBU inflates
the effectiveness of debuggers (Section V), despite being
commonly used in debugging literature (Section III).

EA2. Using Fix Locations as Root Cause Bug Diagnosis
(aka “Fix Location”): In the evaluation of AFL techniques,
benchmarks with developer-provided fault locations are often
unavailable [13]. In the absence of ground truth fault loca-
tions, it is common to use fix locations as substitute fault
locations [10, 6, 7, 8, 9]. Clearly, these locations are directly
related with removing the observed bug, rather than explaining
the cause of the failure. The middle column of Table I shows
a simple buggy program with a buffer overflow, where the
root cause and the fix location are different. In this example,
the bug fix resolves the symptom/effect of the bug (in line

160

Table II
EXCERPT OF ANALYZED PUBLICATIONS (2017 TO MID (JUNE) 2022)

Venue #Papers Sample Papers
ICSE (9) [9, 22, 23, 24, 25]
FSE (2) [26, 27]
ASE (11) [28, 29, 17, 30]
MSR (2) [31, 32]
TOSEM (6) [33, 34, 18, 35, 16]
EMSE (4) [36, 37, 38, 39]
TSE (29) [40, 41, 42, 43]

6). However, the developer-provided root cause of the bug
is the static allocation of buffer size (in line 3) which if
fixed (e.g., via dynamic allocation) resolves the bug for all
proceeding use of the buffer beyond the fixed statement (line
6). Indeed, for real-world buggy programs, root causes often
do not intersect with the fix location, in fact they may be
far apart (see Section III). Thus, evaluating debuggers in this
setting conceals the difficulty of debugging (Section V) and is
unrealistic in debugging practice (Section VII).

EA3. Assuming Single Fault Location (aka “Single Fault
Location”): Researchers often assume that the diagnoses for
a faulty program lies in a single contigous fault location [1],
even though in reality the bug diagnoses may lie in multiple
contiguous fault locations [13]. Hence, a debugger may be
evaluated as effective if it locates one of such locations, instead
of all possible locations. Table I highlights sample diagnosis
under this assumption, as well as without the assumption. It
shows a program with faults in multiple different locations
(line 6, 8 and 10), albeit under this assumption, it is sufficient
to evaluate the effectiveness of a debugger with any one of
such locations (e.g., line 6). In this work, we evaluate the
impact of this assumption on debuggers and developer produc-
tivity. Indeed, we show that this assumption is highly prevalent
in debugging literature (see Section III), but developers find it
to be unsound and severe in practice (see Section VII).

B. Research Questions

● RQ1 Prevalence of Debugging Assumptions: How preva-
lent are the three debugging assumptions we study in
automated debugging literature and bug datasets?

● RQ2 Measured AFL Effectiveness: What is the effect of
each of the studied debugging assumptions on the measured
effectiveness of AFL techniques?

● RQ3 Proxy Effect on APR techniques: Do these assump-
tions impact the measured effectiveness of APR tools?

● RQ4 Impact on Professional Developers: What is the
effect of the studied assumptions on the productivity of
professional developers in debugging practice? Specifically,
we investigate the following three sub-questions:

1) RQ4(a) Usefulness & Closeness: How useful are de-
bugging diagnoses with vs. without each assumption?
How close is the developer’s diagnosis to the diagnosis
provided with vs. without an assumption?

2) RQ4(b) Preference: Given two diagnoses, one with the
debugging assumption and the other without the assump-

Table III
PREVALENCE OF DEBUGGING ASSUMPTIONS IN THE LITERATURE,

SIGNIFICANTLY HIGHER PREVALENCE (≥10%) ARE IN BOLD (“SETT.” =
DEBUGGING EVALUATION SETTINGS, “WITH” = WITH ASSUMPTION,

“W/O” = WITHOUT ASSUMPTION)
(% of) Experiments involving Debug. Assumption

Sett. All PBU Fix Location Single Fault
With 113 (55.4%) 41 (47.67%) 44 (75.86%) 28 (46.67%)
W/o 91 (44.6%) 45 (52.33%) 14 (24.14%) 32 (53.33%)

tion, which diagnosis do developers prefer?
3) RQ4(c) Soundness & Severity: What debugging as-

sumptions are the most or least important (practical) and
severe (impact developer’s productivity)?

III. PREVALENCE OF ASSUMPTIONS

A. Evaluation Setup

We describe our experimental setup for evaluating the
prevalence of the three debugging assumptions.
Experimental Approach: To determine the prevalence of
each assumption (RQ1), we perform data analysis and manual
in-depth study of the literature and bug datasets (see Figure 1).
Publication Collection: In this study, we collected 212 pub-
lications on automated debugging published in the last five
and a half years (from 2017 till mid (June) 2022). These
papers were gathered from seven (7) top-tier (core A/A*)
software engineering venues, including four (4) main con-
ferences (namely, ICSE, FSE, ASE and MSR) and three (3)
journals (namely, TSE, EMSE and TOSEM). To collect these
papers, we employed keywords that are relevant to automated
debugging research based on the IEEE Standard Glossary
of Software Engineering Terminology. We searched for 13
keywords in the online repositories and proceedings of each
venue, namely “debug”, “fix”, “repair”, “fault”, “localize”,
“spectrum”, “statistical”, “bug”, “locate”, “localization”, “fault
localization”, “automated debugging”, “program repair”.
Literature Validation and Analysis: To validate that the
collected papers involve experimental evaluation of AFL/APR
methods, we proof-read each paper. After validation, we fil-
tered out 158 papers that are unrelated to automated debugging
of software systems, e.g., because they are focused on fault
detection or defect classification or hardware systems. After
filtering and validation, we had a corpus of 63 research papers
(from 2017 to mid (June) 2022) on automated debugging for
our analysis. Table II provides details of the resulting papers.
Most (91% of) publications are AFL research/technical papers.
For each paper, we analyzed the methodology and experimen-
tal dataset to determine if and how they use each of the three
aforementioned debugging assumptions. Table III shows the
distribution of debugging assumptions in the literature.
Bug Datasets: Table IV provides details of the bugs and
programs employed in our experiments. We employ four bug
datasets to examine the prevalence of each debugging assump-
tions in the bug datasets, namely CoreBench [44], Siemens
SIR [45], IntroClass [46] and Codeflaws [47] benchmarks. We
used these datasets because of the variance of the type of bugs

161

Table IV
DETAILS OF SUBJECT PROGRAMS USED IN OUR EXPERIMENTS

Avg. #Fail. #Pass. Prog.
Benchmark #Tools LoC #Bugs Tests Tests Lang.
SIR 6 148.0 74 5876 139306 C
IntroClass 6 16.5 17 129 291 C
Codeflaws 20 17.6 231 2854 8058 C
CoREBench 14 664.5 30 30 1338 C
Total 46 212 352 8889 148993 -

they contain (real, seeded and mutated bugs) and the varying
complexity and maturity of their programs. These datasets are
popularly used for debugging evaluations [1, 48]

Analysis of Bug Datasets: For each bug dataset, we count the
number of bugs that are influenced by each debugging assump-
tion. We report the number of bugs that influence a debugging
evaluation because of an assumption as “with assumption” and
the number that may not influence an evaluation as “without
assumption”. Table V reports the results of the prevalence of
each assumption in our sampled bug datasets.

Specifically, for the PBU assumption we inspect the num-
ber of bugs that have single faulty statement (as “without
assumption”), and the number of bugs with multiple faulty
statements (as “with assumption”). This is because the results
for a debugging evaluation remains the same with or without
the PBU assumption if there is only one single faulty program
statement. Hence, we will count such a bug as one that
does not influence the assumption (i.e., without assumption).
Meanwhile, a debugging evaluation is impacted if there are
multiple faulty statements and PBU is assumed, such bugs
are counted to influence the evaluation (i.e., with assumption).
Similarly, a debugging evaluation will not be influenced by
the “fix location” assumption if the fix location of the bug
is the same as the root cause location. Thus, we count such
as not influencing the assumption (i.e., without assumption).
Otherwise if the fix location and root cause do not intersect,
then the assumption may influence an evaluation, hence it is
counted as (i.e., with assumption). Finally, for the “single fault
location” assumption, we check for the number of bugs that
have multiple contiguous fault locations which influence the
debugging evaluation for this assumption and report them as
with assumption. Then, since bugs with a single contiguous
fault location do not impact a debugging evaluation for this
assumption, they are counted as without assumption.

Prevalence Analysis Data are provided in our artifact [49].

B. Results: RQ1 Prevalence of Debugging Assumptions

Debugging Literature: Results show that the studied assump-
tions are highly prevalent in debugging literature. Table III
shows that majority (55%) of the experiments reported in the
surveyed publications make at least one of the three (3) as-
sumptions. Among the reported debugging experiments found
in the surveyed papers, we observed that the most prevalent
(76%) assumption is the use of “fix location as substitute root
cause diagnosis” (aka “Fix Location”). Similarly, “PBU” and
“Single Fault Location” assumptions were present in almost
half (47 to 48%) of all reported experiments in the literature.

Table V
PREVALENCE OF DEBUGGING ASSUMPTIONS IN SAMPLED BUG

DATASETS, SIGNIFICANTLY HIGHER PREVALENCE (≥10%) ARE IN BOLD
(“SETT.” = DEBUGGING EVALUATION SETTINGS, “WITH” = WITH

ASSUMPTION, “W/O” = WITHOUT ASSUMPTION)
(% of) Bugs fulfilling Debug. Assumption

Sett. All PBU Fix Location Single Fault
With 471 (49%) 284 (81%) 136 (51%) 51 (14%)
W/o 499 (51%) 68 (19%) 130 (49%) 301 (86%)

These results show the high prevalence and relevance of
these debugging assumptions in the research community. This
finding informs the need to study their impact on the measured
effectiveness of debuggers and developer’s productivity.

The studied assumptions are highly prevalent in the
literature: 55% of experiments in the surveyed publications

make at least one of the three (3) assumptions.

Bug Datasets: This experiment demonstrates that almost half
(49%) of the bugs in the sampled datasets are influenced by at
least one of the three studied debugging assumptions. Indeed,
these debugging assumptions are prevalent in the bug datasets
– about half of the bugs in our dataset are impacted by at least
one of the assumptions. Inspecting the reported debugging
experiments found in the studied papers, we observed that the
PBU assumption is the most prevalent (81%), while the “single
fault location” assumption is the least prevalent. These results
demonstrate the relevance of these assumptions for debugging
evaluations. This shows how much these assumptions impact
experiments conducted using typical bug datasets and informs
the need to study their effect on debuggers and developers in
practice.

About half (49% of) the bugs in the bug datasets are
impacted by at least one of the debugging assumptions.

IV. EXPERIMENTAL APPROACH

Controlled Experimentation: The main research method
employed in this work is controlled experimentation (aka
split or A/B testing) [21, 20]. All research questions (except
RQ1) involved controlled experiments with debuggers and
developers. Controlled experimentation is widely used to test
new features in software companies (e.g., Netflix and Google)
to guide product development and data-driven decisions [50].

In this work, we employ controlled experimentation to
investigate if a specific debugging setting improves debugging
productivity when provided to developers, or not (Section VII).
The key insight is to perform controlled experimentation with
debuggers and developers under different debugging settings
involving each assumption. For example, we employ this
method to assess the performance of debuggers under the
different debugging assumptions, in their presence versus their
absence. The intuition is to evaluate the practical utility of
debuggers by assessing the measured effectiveness of AFL
techniques and impact on developers when the debugging
assumption is present (with) or absent (without). This allows to
understand the impact of these three assumptions in practice.

162

PBU

Fix Location

Single Fault
Location

RQ1:
Prevalence

RQ2: AFL
Effectiveness

RQ3: Proxy
effect APR

RQ4: Soft.
Practice

Literature &
Datasets

19 AFL
Tools (K2)

2 APR Tools
(GenProg)

76
Developers

Data Analysis

Split Testing of
AFL diagnoses

Split Testing of
APR diagnoses

User Study
(16 diagnoses)

Highly
Prevalent

Inflated
Effectiveness

Concealed
Difficulty

Unsound
& Severe

Assumptions Research Questions Data Sources Research Methods Main Results

Figure 1. Experimental Workflow showing how we assess the impact of the studied debugging assumptions (“Soft.” means “Software”)

Experimental Workflow Figure 1 illustrates our experimental
workflow. It shows how we employ controlled experimentation
to study the three assumptions for all research questions (ex-
cept RQ1). In RQ2, we conduct controlled experiments with
versus without each assumption (using 19 AFL techniques) to
determine the effect of each assumption on the measured effec-
tiveness of AFL techniques. Results show that, indeed, these
assumptions inflate the measured effectiveness of debuggers
(Section V). RQ3 studies the proxy effect of the assump-
tions on APR techniques using controlled experimentation.
It investigates the performance of two state-of-the-art APR
techniques with versus without each assumption. Section VI
shows that these assumptions conceal the difficulty of both
bug diagnosis and bug fixing. Finally, we conducted controlled
experimentation in RQ4 by providing developers with several
debugging diagnoses with versus without the assumptions to
determine the soundness, severity and usefulness of these
assumptions in practice. We found that these assumptions are
unsound for debuggers in practice and have a severe effect on
developer productivity (Section VII).

V. EFFECT ON AFL TECHNIQUES

A. AFL Evaluation Setup

Let us describe our experimental setup for this experiment.
AFL Techniques We have chosen the two most popular AFL
techniques, namely program slicing and statistical debugging.
In the following, we describe each technique.
Dynamic Slicing: A dynamic slice [51, 52] captures all
statements that are definitely involved in computing the values
that are observed at the location where a failure is observed
for a failing input. In this work, the dynamic slice consists of
all statements that are reachable from a slicing criterion in the
Dynamic Dependence Graph (DDG) for the failing input.
Statistical Debugging: Statistical debugging associates the
execution of a particular program element with the occurrence
of failure using suspiciousness measures [53, 54, 55]. Program
elements (e.g. statements) that are observed more often in
failed executions than in correct executions are deemed as
more suspicious. The intuition is that a program element with
a high suspiciousness score is more likely to be related to
the root cause of the failure. In this paper, we employ four
sets of measures consisting of 18 statistical fault localization
formulas namely human-generated optimal measures (two (2)

DSTAR (D∗) formulas, WONG1, RUSSEL RAO, BINARY,
NAISH1 and NAISH2 [7, 6, 10, 56, 57]), popular measures
(TARANTULA, OCHIAI, and JACCARD [58, 59, 60, 61]),
genetic programming (GP) evolved measures (GP02, GP03,
GP13 and GP19 [62]) and single bug optimality mea-
sures (M9185, KULCZYNSKI2 LEXOCHIAI and PATTERN-
SIMILARITY). These measures have been empirically eval-
uated to be the best performing statistical fault localization
formulas [63, 64, 65, 66, 67]. They have also been shown to
improve the effectiveness of program repair [3, 68].

Bugs and Programs: Experiments were conducted with a
large variety of bugs and programs from the collection pre-
viously described in Section III and Table IV. These bugs
include real and synthetic bugs introduced by developers,
students, fault seeding and coding competitors.

Fault Locations: In our evaluation, we use two types of fault
locations, the developer-provided ground truth fault location
and the bug fix which are commonly used in debugging
evaluations [1] (Section III). For the ground truth, we use
the data provided in DBGBENCH [13], which contains fault
locations provided by actual developers while debugging.

Metrics and Measures used in our evaluation include:
Suspiciousness Ranking: All fault localization techniques
presented in this paper produce a ranking. To rank statements
for statistical debugging, statements are listed in the order of
their suspiciousness as computed by the statistical debugging
formula. Meanwhile, to rank statements for dynamic slicing,
we rank first those statements in the slice that can be reached
from the slicing criterion along one backward dependency
edge, then along two backward dependency edges, and so on.

Effectiveness Measures: We report effectiveness measures
using the popular wasted effort metrics used in debugging
evaluation [1, 69]. For instance, using the PBU assumption,
the fault localization effectiveness of our AFL techniques was
measured as the proportion of statements that do not need to
be examined until finding the first fault. Assuming Sfirst is
the proportion of statements that needs to be examined before
the first faulty statement is found, under PBU, effectiveness
score = 1−Sfirst. However, without PBU, we assume Sall is
the proportion of statements that needs to be examined before
all faulty statements are found, effectiveness score = 1 −Sall.

Effectiveness Score Aggregation: We evaluate the overall

163

Table VI
DETAILS OF THE IMPACT OF DEBUGGING ASSUMPTIONS ON THE MEASURED EFFECTIVENESS OF AFL TECHNIQUES, SIGNIFICANT DECREASE (≥10%) IN

THE MEASURED EFFECTIVENESS OF AFL TECHNIQUE(S) ARE IN BOLD TEXT (K2 = KULCZYNSKI2)

Debugging Measured AFL Effectiveness Percentage Reduction in
Assumption with Assumption without Assumption Measured AFL Effectiveness
(#bugs) All (19) Slicing K2 NAISH1 All (19) Slicing K2 NAISH1 All (19) Slicing K2 NAISH1
PBU (68) 0.814 0.814 0.832 0.823 0.726 0.769 0.727 0.726 12.2% 5.8% 14.5% 13.3%
Fix Loc. (143) 0.706 0.746 0.686 0.686 0.646 0.724 0.620 0.619 9.2% 0.5% 5.8% 5.7%
Single Fault (51) 0.853 0.838 0.876 0.863 0.736 0.782 0.737 0.736 15.9% 7.2% 19.0% 17.4%
All 0.808 0.807 0.823 0.814 0.714 0.635 0.599 0.598 13.2% 27.0% 37.5% 36.1%

performance of all AFL techniques for each experimental
factor to show a general effect of the factor without bias
towards a particular AFL technique. We aggregated scores
by taking the mean (average) of all scores obtained by all
techniques. This dampens the effect of highly effective or
ineffective AFL techniques on our results and conclusions.

Implementation Details & Platform: Both dynamic slicing
and statistical debugging are implemented in 7.9 KLoC of
python code. Dynamic slices are computed using FRAMA-
C[70], GCOV, GIT-DIFF, GDB, and several Python libraries
including PYGRAPHVIZ[71], NETWORKX[72], and MAT-
PLOTLIB[73]. Statistical debugging was implemented using
several standard command line tools, this includes GCOV[74],
GIT-DIFF[75] and GDB[76]. All experiments were conducted in
a Docker container running Debian GNU/Linux. The container
was running on a Dell Precision 5570 with a 20-core 4.6GHz
Intel Core i7-12700h CPU and 16GB of main memory.

AFL Experimental Data are provided in a Docker image in
our artifact [49] (“AFL APR Experiments”).

B. Results: RQ2 Measured AFL Effectiveness

RQ2 Effect on AFL techniques: We investigate the effect of
the three assumptions on the measured effectiveness of AFL
techniques using split testing (i.e., controlled experimentation)
as described in Section IV. We report the mean effectiveness
of all AFL techniques and the three best-performing AFL
techniques in our experiments, i.e., Naish2, Kulczynski2 and
dynamic slicing. Table VI illustrates the results of this exper-
iment for all three debugging assumptions.

Our evaluation results show that each of the three debug-
ging assumptions inflate the measured effectiveness of AFL
techniques by up to 38%. We observed that there is a decrease
in the performance of all 19 evaluated AFL techniques when
comparing the debugging settings with debugging assumption
versus without assumptions. On average, the three studied
debugging assumptions inflate the measured effectiveness of
AFL techniques by 13%. For instance, Table VI demonstrates
that the measured effectiveness of the best-performing statisti-
cal debugging approach in our evaluation (i.e., Kulczynski2
formula (K2)) reduced by 38% in the presence of the as-
sumptions (with assumption) when compared to the absence
of the assumption (without assumption). This implies that a
developer would need to inspect about two-fifth (38%) more
program statements to locate the fault without the assumption
versus with the assumption. Inspecting the effect on specific

assumption, we observed that the difference in the debug-
gign evaluation setting as the most efffect on the PBU and
Single fault location assumption with about 12% and 16%
reduction in measured effectiveness between both settings.
Meanwhile, the use of fix location as substitute root cause
as the least effect on the performance of all approaches, yet
with about nine percent inflation in measured effectiveness.
Overall, these results show that the measured effectiveness of
AFL techniques is strongly impacted by these assumptions.
These results suggest that an AFL technique evaluated using
any of these assumptions presents an inflated effectiveness
measure. Hence, it is important to measure the effectiveness
of AFL techniques without these assumptions to obtain more
realistic effectiveness measures.

The studied debugging assumptions inflate the measured
effectiveness of AFL techniques by up to 38%, on average.

VI. PROXY EFFECT ON APR TECHNIQUES

A. Evaluation Setup

APR Tools & Bug Dataset: In this experiment, we employ
two APR tools, namely GENPROG [2] and ANGELIX [77].
These are two state-of-the-art, matured APR tools that have
been applied in several APR studies [78, 79, 80]. We also
employ two main bug datasets, namely INTROCLASS [46] and
CODEFLAWS [47], we execute GENPROG on both datasets,
and we execute ANGELIX only on the CODEFLAWS dataset.
To avoid biasing our experiments, we do not run ANGELIX
on the INTROCLASS dataset. This is because it requires out-
of-the-box manual modifications of the ANGELIX tool-chain
to address the compilation and test oracle requirements of
INTROCLASS. Firstly, one will need to transform each INTRO-
CLASS program or update ANGELIX’s macro conversion for
compilation. 1 Secondly, one will need to manually generate
an assertion file for each tool in the INTROCLASS benchmark,
since correctly determining if a test has passed/failed requires
comparing the program output to a manually defined expected
string output.2 We avoid conducting such out-of-the-box man-
ual modifications of ANGELIX to mitigate experimental bias.

1ANGELIX requires converting “printf” statements to macros, including
formatted versions of “printf”, e.g., “sprint”, “fprintf”, etc. This
also requires (automatic) derivation of the variable type in such statements.

2ANGELIX does not support a test oracle that compares a program’s behav-
ior versus a reference implementation, which is necessary for INTROCLASS.

164

Table VII
DETAILS OF THE PROXY EFFECT OF DEBUGGING ASSUMPTIONS ON THE MEASURED EFFECTIVENESS OF APR TECHNIQUES ((R) = NUMBER OF REPAIRS)

Tool
Measured APR Effectiveness Percentage Reduction in

Debugging with Assumption without Assumption Average Measured APR Effectiveness
Assumption #gens #Runs Time (s) R #gens #Runs Time (s) R #gens #Runs Time (s) R

GenProg
PBU 1.25 862.37 36.24 8 1.90 1392.20 147.22 10 52.0% 61.4% 306.2% 25.0%
Fix Location 0.00 18.00 0.33 2 3.18 1433.54 129.19 11 0% 7864.1% 39286.9% 450%
Single fault 1.17 1027.83 46.75 6 1.71 1746.57 207.72 7 46.9% 69.9% 344.3% 16.7%

Angelix
PBU 7.33 19.00 19.10 3 8.00 21.67 22.26 3 9.1% 14.0% 16.5% 0%
Fix Location 8.50 23.50 26.52 2 4.81 46.52 132.54 21 -43.4% 98.0% 399.8% 950%
Single fault 7.33 19.00 19.10 3 10.00 23.00 26.96 2 36.4% 21.0% 41.1% -33.3%

Total All 25.58 1969.70 148.04 24 29.60 4663.50 655.89 54 15.7% 136.8% 343.0% 125%

Effectiveness Measures: We employ four (4) well-known
effectivness metrics to determine the measured effectiveness
of APR tools, namely:

● Number of Repair Generations (called “#gen”): This
is the number of generations (”evolution” rounds) made
by the APR tool before the correct patch was generated
(i.e., a patch passing all tests in the test suite). Specifi-
cally, for GenProg, this refers to the number of genera-
tions of the genetic algorithmic search when searching for
a repair [2]. For Angelix, “#gen” refers to the number of
path counts called “angelic paths” [77]. For instance, Ta-
ble VII (row 1) shows that, with the “PBU” assumption,
GenProg generates eight (8) program repairs (#repairs
R) after about 1.25 evolutions/generations (#gens=1.25),
on average. Likewise, Table VII (row 2) shows that, with
the “fix location” assumption, GenProg generates two (2)
repairs (#repairs R) in the initial generation, without any
genetic evolution/generation (#gens=0), on average.

● Number of Program executions (called “#Runs”):
This refers to the number of times the program is exe-
cuted using the entire test suite to validate and determine
the correctness of the APR generated patches.

● Execution time (called “Time”): This is the time taken
before a correct repair was generated by the APR tool
for the bug.

● Number of Correct Repairs (called “#repairs”): This
refers to the number of buggy programs that were cor-
rectly repaired by the APR tool.

Debugging Diagnosis Settings: In this experiment, we
examined the measured effectiveness of APR tools using three
different debugging settings. We used the perfect debugging
diagnosis (i.e., set of candidate fault locations for repair) from
the bug dataset for each setting. This is the best candidate
location to fix the bug, e.g., the exact fix location based on
the ground truth from the bug dataset.

Research Protocol: For each assumption, each buggy program
and each type of diagnosis in our dataset, we evaluate the
effectiveness of the APR tool with and without the debugging
assumption at hand.Then, we collect the measured effective-
ness metrics aforementioned and compute the difference in
the measured effectiveness in both settings. For a balanced
evaluation, all experiments for GenProg and Angelix were

conducted with a time budget of 30 minutes and a limit of
15 repair generations, on the same host system.
Debugging Assumptions Settings: For the PBU assump-
tion, we use faults with multiple faulty statements in one
contiguous location and execute each APR tool (e.g., AN-
GELIX) with a “single faulty statement” versus “all faulty
statements”. To evaluate the “fix location” assumption, we
employed the “actual fix location” (in the benchmark) versus
the “root cause location” as the patch location provided to
each APR tool, using faults with no intersection between
root cause and fix locations. All root causes were manu-
ally determined by developers involved in previous studies
(DBGBENCH [13]/COREBENCH [44]) and the rest (e.g., IN-
TROCLASS, SIR, CODEFLAWS) were manually determined
by two of the authors/researchers of this study. Meanwhile,
for the single fault assumption, we have employed a set of
faults with multiple contiguous fault locations and provided “a
single contiguous fault location” versus “all contiguous fault
locations” as the patch location. For this assumption, we use
the fault locations provided by the benchmark.
APR Experimental Data are provided in a Docker image in
the paper’s artifact [49] (“AFL APR Experiments”).

B. Results: RQ3 Proxy Effect on APR Effectiveness
RQ3 Proxy Effect on APR techniques: This experiment
examines if the studied assumptions have a “proxy” effect on
the measured effectiveness of APR tools. This is particularly
important since AFL is often the first step of repair, and many
APR tools use AFL tools to determine the fault locations for
fixing bugs. Table VII shows our results for this experiment.

Our evaluation results show that these assumptions reduce
the measured effectiveness of APR tools by 2X, and conceal
the difficulty of fixing programs by up to 3X. On one hand,
Table VII shows that the number of completed program repairs
(R) is (125%) larger without the assumptions, than with the
assumptions. This implies that the use of these assumptions
impact the measured effectiveness of APR tools. Evaluating
with these assumptions may make an APR tool seem less
useful than it truly is in practical settings, especially in terms
of the number of the resulting repairs. On the other hand, we
also observed that under these assumptions, the true cost of
fixing the bugs in terms of the number of generations (#gen),
the number of program runs (#Runs) and the time taken is

165

masked by these assumptions (see Table VII). We observed
that both repair effectiveness and the cost of repair are higher
without these assumption than with these assumptions. APR
tools are indeed more effective in producing repairs than the
assumptions make them appear, albeit they are also more
expensive without these assumptions. These findings inform
the need to employ AFL appropriately for APR evaluations.

Debugging assumptions reduce the measured effectiveness
of APR tools: 125% more repairs are generated without

these assumptions with repair time being up to 3X higher.

VII. IMPACT ON PROFESSIONAL DEVELOPERS

A. User Study Design

We conducted a user study to evaluate the impact of these
debugging assumptions on developers and their productivity.
The goal is to examine if debugging diagnosis provided with
and without each of the three main assumptions influences the
productivity of developers. In particular, we ask developers
about the usefulness, preference, soundness and severity of
these assumption in debugging practice.
Bug Datasets: Our user study involved 76 developers debug-
ging eight (8) buggy programs using 16 debugging diagnoses.
Debugging Assumptions Settings: The user study was con-
ducted using the debugging settings described in Section VI
(“Debugging Assumptions Settings”). To evaluate the PBU
assumption, we compare participants’ responses to a diagnosis
consisting of a “single faulty statement” versus “multiple
faulty statements”. We evaluate the “fix location assumption”
by comparing participants’ responses for the diagnoses with
an actual “fix location” versus a “root cause location”. For the
“single fault” assumption, we compare participants’ responses
for “a single fault location” versus “all fault locations”.
Study Questionnaire This user study is organized into three
main parts corresponding to the three main aforementioned
research questions. Specifically, the questionnaire for this user
study was divided into the following parts: (a) Usefulness
& Closeness which examines how developers perceive the
usefulness of these three debugging assumptions, and rate the
closeness of the provided diagnosis to the developer’s own
(perfect) diagnosis. (b) Preference where we ask developers
their preference for each debugging diagnosis with or with-
out the assumption. (c) Soundness & Severity evaluates the
soundness of these assumption for debuggers and the severity
of these assumptions on developer’s productivity in practice.

The first and second part of the study were conducted with-
out identifying or describing the diagnosis or bug associated
with a debugging assumption. Only the third part involved the
description of the assumptions. In summary, the entire study
questionnaire contains about 100 questions.
Pilot Study: First, we conducted a pilot user study involving
seven (7) software engineering professionals/researchers. The
goal of the study is to obtain early feedback on the study,
i.e., find errors in the questions or study design and spot

unclear/(mis)leading questions. In addition, we wanted to
determine an estimated duration and compensation for the
study. Participants of the pilot study were all researchers, PhD
students and postdoctoral researchers. We note that partici-
pants of the pilot study were not compensated. The Pilot study
was conducted in June, 2022 and lasted for about a month. For
each participant in the pilot study, we conducted an interview
(15 to 30 minutes) to obtain feedback on the study design,
unclear questions, and their understanding of the questions.

After the pilot study, we modified the study design and
clarified some questions. For instance, we added the descrip-
tion of certain terms, e.g., soundness and severity for clarity.
Based on the feedback from the pilot study, we also added a
progress tab as well as transition sections describing each part
of the study before participants begin answering questions.
We also included new questions based on the pilot feedback,
e.g., questions about other debugging assumptions or concerns
of developers about assumptions. Using the response time of
participants, we determined that the study takes about 40 to
90 minutes depending on C expertise and familiarity.
Recruitment and Compensation: This study was advertised
on three major online platforms, namely Amazon Mturk 3,
LinkedIn 4, and Prolific 5. These are popular online platforms
for recruiting professional software developers for research
studies. We also advertised the study on certain professional
C developers mailing lists and communities. Participants were
compensated with about $20 for completing the study within
three hours. The main study took six weeks starting in in
July 2022. We collected 160 unique responses. After response
validation, we filtered out 84 responses for failing most of the
validation questions (e.g., cause/fix of the bugs). Overall, we
had 76 valid responses from the study.
Demography: In this study, we had a total of 76 unique par-
ticipants with valid responses. Most (58%) of the participants
are professional software developers or testers, about 30% are
students and 12% are researchers. About half (49%) of the
participants have three or more years of software development
experience, and about a third (34%) have more than one year
experience in software development. Three out of four of the
respondents have intermediate to advance level of skill in C
programming and only one in four are novices. Almost half
of our participant indicate that they most often program in C.
Response Data Validation: Our study contains several ques-
tions that allow to validate the correctness of participant’s
responses and the proficiency of participant to take the study
and be compensated for it. For instance, we ask developers
to provide the cause of the bug and describe how they
would fix the bug. We also repeat certain questions, albeit
re-phrased differently or at different sections of the study
(e.g., about the root cause of the bug and how to fix the
bug). There were about 10 validation questions designed to
ensure collected responses are indeed valid responses from

3https://www.mturk.com/
4https://www.linkedin.com/
5https://www.prolific.co/

166

Table VIII
USEFULNESS OF DEBUGGING DIAGNOSIS AND CLOSENESS OF THE DEBUGGING DIAGNOSIS TO THE DEVELOPER’S DIAGNOSIS, HIGHEST SCORES ARE

IN BOLD TEXT (“‘WITH” AND ‘W/O” MEANS THE DEBUGGING SETTINGS “WITH” AND “WITHOUT” AN ASSUMPTION)

Level Usefulness Closeness
(Likert) PBU Fix Location Single Fault All PBU Fix Location Single Fault All

With
Least (0-1) 11 (14.47%) 5 (6.58%) 27 (35.53%) 43 (18.86%) 11 (14.47%) 8 (10.53%) 24 (31.58%) 43 (18.86%)
Mid (2-3) 35 (46.05%) 37 (48.68%) 28 (36.84%) 100 (43.86%) 21 (27.63%) 33 (43.42%) 28 (36.84%) 82 (35.96%)
Most (4-5) 30 (39.47%) 34 (44.74%) 21 (27.63%) 85 (37.28%) 44 (57.89%) 35 (46.05%) 24 (31.58%) 103 (45.18%)

W/o
Least (0-1) 15 (19.74%) 14 (18.42%) 17 (22.37%) 46 (20.18%) 17 (22.37%) 14 (18.42%) 13 (17.11%) 44 (19.30%)
Mid (2-3) 23 (30.26%) 28 (36.84%) 23 (30.26%) 74 (32.46%) 17 (22.37%) 26 (34.21%) 30 (39.47%) 73 (32.02%)
Most (4-5) 38 (50.00%) 34 (44.74%) 36 (47.37%) 108 (47.37%) 42 (55.26%) 36 (47.37%) 33 (43.42%) 111 (48.68%)

professional software developers. For each submitted response,
we had checked the correctness of the validation questions and
only accepted responses with at least 75% correctness. These
questions allowed to exempt (84) invalid responses (e.g., from
people with low C or software development experience).

Response Data Analysis: For quantitative questions (e.g.,
preferred diagnosis or level of soundness), we analyze all
of the responses in terms of the frequency of responses
for all possible options. Meanwhile, we employed a coding
protocol [81] to analyze for qualitative analysis of free-text
questions (e.g., why an assumption/diagnosis is realistic). Our
protocol involved two researchers who independently coded
and categorized all responses into specific classes. Then, both
researchers meet to resolve conflicts in the coding and agree
on the categorization of the responses.

User Study Data are provided in our artifact [49].

B. User Study Results

RQ4(a) Usefulness & Closeness: This experiment evaluates
how developers perceive the usefulness of debugging diag-
noses produced under two different evaluation settings, namely
in the absence (aka without) versus presence (aka with) of
each of the three studied debugging assumptions. We also
evaluate how developers rate the closeness of the debugging
diagnoses produced for each setting to developers’ own perfect
diagnosis for the bug. These experiment involved a total of
six debugging settings, i.e., two bug diagnoses representing
with and without an assumption for three real-world buggy
programs that characterize each assumption. All diagnoses
and bugs were provided without reference to the debugging
assumption in the setting to avoid biasing the responses. We
do not identify or describe the diagnosis or the bug associated
with the debugging assumption for each diagnosis or bug.
Table VIII highlights the results of this experiment.

Usefulness: Our user study results show that for all three
assumptions, developers find the debugging diagnoses pro-
vided without an assumption to be more useful than diag-
noses with the assumption. Table VIII highlights that most
developers (47%) find the debugging diagnoses without the
debugging assumptions to be most useful, and majority (80%)
of developers find this setting to be mid to most useful. In
contrast, most developers (44%) perceive the debugging setting
with the debugging assumptions to be least useful, and the
majority (63%) of developers find the diagnoses in this de-

bugging setting to be mid to least useful. Developers rated the
diagnoses with each debugging assumption lower than without
the assumption for all three assumptions (see Table VIII).
For instance, almost half (47%) of the participants rated the
diagnoses provided without the single fault assumption to be
most useful. Meanwhile, the diagnoses with the single fault
assumption were rated mid-level or least useful by most (about
72% of) developers. These results emphasize the negative
impact of the assumptions on the usefulness of debugging
diagnoses. It shows that each of these debugging assumptions
reduced the usefulness of debugging diagnoses for developers.

Diagnoses provided without the assumptions are
considered mid to most useful by majority of developers

(80%) while, most (63% of) developers find the diagnoses
provided with the assumptions to be mid to least useful.

Closeness: Developers rated the diagnoses provided without
each of the three debugging assumptions to be the closest
to their own perfect diagnoses. These diagnoses (without the
assumptions) are the most similar to the root cause diagnoses
of developers. Most developers (55%) consider the diagnoses
under any of the three assumptions to be mid to least closest
to their diagnosis. Meanwhile, majority of participants (81%)
consider the diagnoses without the assumptions to be mid to
most closest to their diagnosis. This is particularly prominent
for the single fault location assumption where majority (83%)
of developers find the diagnoses without the assumption (i.e.,
providing multiple fault location diagnosis) to be mid to most
closest to their own perfect diagnoses. In contrast, about one-
third of developers (32%) think the diagnoses with the single
fault assumption is least closest to their own diagnoses. Most
developers (67%) consider the diagnoses provided under the
single fault assumption to be mid to least closest to their own
perfect diagnoses. Overall, the diagnoses provided under these
assumptions are different from developers’ desired diagnoses.

Diagnoses provided without the assumptions are the
closest to developer’s own perfect diagnosis. Most

developers (83%) consider the diagnosis with the single
fault assumption to be mid to least close to their own.

RQ4(b) Preference: We evaluate the debugging diagnosis de-
velopers will prefer for each assumption. Without identifying
or explaining the assumptions, we provide buggy programs
with two different diagnoses representing the presence and

167

Table IX
DEVELOPERS’ PREFERENCE FOR DEBUGGING ASSUMPTIONS, HIGHER

PREFERENCE AND SIGNIFICANT IMPROVEMENTS (≥25%) ARE IN BOLD
(“ASSUM.” = “ASSUMPTION”, “IMPR.” = “IMPROVEMENT OF ’WITHOUT’

ASSUMPTION OVER ’WITH’ ASSUMPTION”)
Debugging (#) % of Preferred Diagnosis
Assumption With Assum. Without Assum. Impr.
Single Fault Loc. (13) 17.11% (63) 82.89% 385%
PBU (29) 38.16% (47) 61.84% 62%
Fix Location (35) 46.05% (41) 53.95% 17%
All (77) 33.77% (151) 66.23% 96%

absence of an assumption. Then, we ask developers which
diagnoses they prefer for each bug. Table IX provides details
of developers’ preference for each debugging assumption.

We found that developers prefer debugging diagnoses pro-
vided without the debugging assumptions than with the as-
sumptions. Table IX shows that the debugging diagnoses
provided without these assumptions are almost twice as de-
sirable (or 96% more desirable) for developers than diagnosis
under the assumptions, on average. For instance, developers
prefer the debugging diagnoses for multiple fault locations
5X as much as with single fault location assumption. These
results show that the debugging diagnoses provided under
current evaluation settings (i.e., “with assumptions”) are least
desired by developers. In fact, developers strongly prefer the
alternative debugging settings without these assumptions.

Up to four times more developers preferred debugging
diagnoses without the assumption than the diagnosis

provided with the assumption (e.g., single fault location).

RQ4(c) Soundness and Severity: This experiment examines
the level of soundness and severity of the studied debugging
assumptions. We asked developers to rate the level of sound-
ness and severity of each assumption, from the most to least
sound/severe. “Soundness” refers to the degree to which the
assumption holds for a debugger (i.e., realism) in practice.
Meanwhile, “Severity” refers to the impact of the assumption
on developer productivity in practice. Table X highlights the
level of soundness and severity of each assumption.

We observed that developers found the use of “fix location
as substitute fault location” (aka “fix location”) assumption
to be the least sound and most severe debugging assumption.
Most developers (38%) believe this assumption is the least
realistic in practice and has the highest (negative) impact on
developer productivity. This is particularly concerning since
“fix location” is the most prevalent (76%) assumption in
debugging experiments (see RQ1, Section III). Results further
show that the “single fault location” assumption has the least
severity and soundness concern for developers. Meanwhile
developers found the PBU assumption to have intermediate
severity and soundness. Overall, these results imply that the
most common assumption in the debugging research com-
munity is also the most unsound and severe assumption to
developers. Hence, we believe this assumption is a major threat
to debugging evaluation and resolving it should be prioritized.

Two-fifth (≈38%) of developers found the most prevalent
“fix location” assumption to be the least sound for

debuggers and most severe on developer productivity.

Discussions and Qualitative Analysis: We analyzed the free-
text responses in our user study using a coding protocol
(Section VII). On one hand, results show that most (60%)
developers have negative concerns about the diagnosis pro-
vided under these assumptions and their soundness in practice.
Most developers mention that these assumptions result in low
precision and over-simplification of bug diagnoses. Developers
also believe that these assumptions result in diagnoses that lead
to inadequate debugging information and wrong diagnosis.
Several participants mentioned that the assumptions lead to
bug diagnosis that do “not provide enough [debugging] infor-
mation” and “waste [developer] time”. On the other hand,
we observed that fewer (35% of) developers see positive
benefits of the assumptions. Some participants believe that
these assumptions may ease debugging and bug understanding.
Participants stated that the assumption may still “reduce the
[debugging] work of a software developer” and “locate fix
spots more quickly, however it can lead to mistakes”. Overall,
these results inform the need to assess debuggers without these
assumptions to improve debugger adoption/utility in practice.

Most developers (60%) believe these assumptions are
unrealistic in practice because they lead to imprecise,

wrong or inadequate bug diagnoses.

VIII. LIMITATIONS AND THREATS TO VALIDITY

Internal Validity: The main threat to internal validity of
this work is the correctness of our implementation and user
study questionnaire. To mitigate this threat, we have tested
our implementation with manual tests to ensure correctness.
To ensure the correctness of our user study, we conducted a
pilot study and included several validation questions.
External Validity: This is the extent to which our results
generalize to other objects which are not included in this
study. The main external threat to validity is that all our
subject programs are open-source C programs, albeit from
well-known benchmarks and projects. Indeed, the bugs found
in other (commercial) projects may have different features and
complexity. Thus, we do not claim that our findings generalize
to other software other than the ones represented in our study.
Construct Validity: This is the degree to which our experi-
ments measures what it claims to be measuring. Notably, our
measure of fault localization effectiveness is the main threat
to construct validity. In this work, we measure debugging
effectiveness as ranking-based relative wasted effort, such that
an AFL technique is more effective the higher it ranks faulty
statement(s). This is the standard metric for evaluating the
performance of AFL techniques [1, 69]. To further mitigate
this threat, we have also performed experiments with perfect
diagnoses as provided by humans.

168

Table X
LEVEL OF SOUNDNESS AND SEVERITY OF DEBUGGING ASSUMPTIONS SHOWING THE NUMBER OF PARTICIPANTS THAT RATE AN ASSUMPTION AS THE

most, intermediate AND least SOUND OR SEVERE.
Level of Soundness Level of Severity

Debugging Number of Developers (%) Number of Developers (%)
Assumption Most Sound Intermediate Least Sound Most Severe Intermediate Least Severe
Single Fault 38 (50.00%) 13 (17.11%) 25 (32.89%) 26 (34.21%) 25 (32.89%) 25 (32.89%)
Fix Location 16 (21.05%) 31 (40.79%) 29 (38.16%) 28 (36.84%) 24 (31.58%) 24 (31.58%)
PBU 22 (28.95%) 32 (42.11%) 22 (28.95%) 22 (28.95%) 27 (35.53%) 27 (35.53%)

Survey Bias: Our prevalence analysis (RQ1) may be biased
by the choice of period, SE venues and bug datasets. Thus
it may not generalize to other periods (before 2017), venues
(e.g., ICST) or benchmarks (e.g., Defects4J[82]). To mitigate
this threat, we have analyzed recent papers from the top-
tier (Core A*/A) venues, and selected benchmarks that are
popularly used. We have provided our experimental data such
that our survey can be easily extended to other settings.
User Study Bias: Our user study with developers may
suffer from wrong respsonses, cognitive bias and observer-
expectancy bias especially since developer’s responses are
self-reported and developers may behave differently during
the study. We mitigate these threats by adding validation and
repetitive questions to our study to vet incorrect responses. We
have also avoided typical user study pitfalls such as leading
questions by conducting a pilot study to determine if any
of these biases are prominent in our study design. To avoid
respondent priming, we only introduce the assumptions explic-
itly in the third part of the study with sample code, bugs and
diagnoses, since developers must understand the assumption
to determine its soundness and severity in debugging practice.

IX. RELATED WORK

Effectiveness of Automated Fault Localization: Several
researchers have evaluated the effectiveness of AFL tech-
niques [48, 1]. The most closely related works to this paper
have focused on the empirical evaluation of AFL techniques
with real bugs or developers. Parnin and Orso evaluated
whether AFL techniques help developers debug faster [11].
The authors found that it is important to highlight multiple
suspicious statements for the developer, in practice. Pearson
et al. also evaluated the performance of different statistical
debugging formulas on artificial and real bugs. The authors
found that artificial faults are not useful for predicting which
fault localization techniques perform best on real faults [9].
DBGBENCH provides a benchmark containing actual root
causes of several errors from the CoREBench benchmark as
determined by actual programmers [44, 13]. This benchmark
allows for automatic assessment of debugging techniques on
real-world errors, actual developer identified root causes and
patches. Unlike our work, none of these papers evaluated the
impact of the three studied assumptions on the debugging
performance of AFL tools and the productivity of developers.
Experimental Factors and Debugging Effectiveness: Auto-
mated Fault Localization Techniques are often evaluated using
bugs and programs collected from different benchmarks or
(open source) software projects [1]. These programs often

have different features that can be manipulated to improve
the effectiveness of an AFL technique. Wong and Debroy
describe several techniques that manipulate certain features
(e.g., test suite) can improve the debugging effectiveness of
AFL techniques [48]. For instance, researchers have shown
that test selection and prioritization can improve effectiveness
of AFL techniques [83, 84]. Other researchers have curated
bugs with different defects in order to allow for the objective
evaluation of automated program repair (APR) tools [47],
demonstrating that different APR methods may fix certain
types of faults more effectively than others. Unlike previous
works, we examine the impact of experimental factors on the
effectiveness of AFL techniques and developers. Similar to our
findings (RQ3), Liu et al. [85] shows that AFL (configurations)
may bias the results of APR tools. Liu et al. [85] evaluated
the impact of fault localization (FL) configurations (e.g., levels
of detection granularity (statement vs. method level)) when
comparing only APR tools. Meanwhile, our work investigates
the impact of three frequently adopted AFL assumptions on
developers’ debugging productivity, and the measured effec-
tiveness of debuggers (AFL methods and APR tools).

X. CONCLUSION

We evaluated the impact of three experimental factors on
the empirical effectiveness of AFL techniques. The goal is
to understand and mitigate the threats of these factors for
sound and practical evaluation. We focus on the perfect bug
understanding assumption, use of bug fix as substitute of
root causes and single fault location assumption. We found
that these factors are prevalent in debugging literature and
inflate the effectiveness of AFL methods. They conceal the
difficulty of debugging and lead to the underestimation of
APR effectiveness. Developers also emphasize that these as-
sumptions are impractical and may inhibit debugging practice.
More importantly, most (66% of) developers prefer debugging
diagnoses without these assumptions. Our findings motivate
the need for more conservative evaluations, without making
these assumptions, and to assess AFL and APR techniques
in a more realistic and practical settings. We provide our
implementation and experimental data in our artifact [49] and
website: https://debugging-assumptions.github.io/

ACKNOWLEDGMENT

This project was funded by the Luxembourg
National Research Foundation (FNR) CORE Jr
C21/IS/15845400/GTDebug. Ezekiel Soremekun and Lukas
Kirschner acknowledge the financial support of FNR.

169

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
p. preprint, 2016.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, Jan. 2012.

[3] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13, 2013,
pp. 772–781.

[4] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13, 2013,
pp. 802–811.

[5] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014,
2014, pp. 254–265.

[6] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2013.

[7] W. E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault localization
using dstar (d*),” in 2012 IEEE Sixth International Conference on
Software Security and Reliability. IEEE, 2012, pp. 21–30.

[8] H. Cleve and A. Zeller, “Locating causes of program failures,” in Pro-
ceedings of the 27th International Conference on Software Engineering,
ser. ICSE ’05, 2005, pp. 342–351.

[9] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 2017, pp. 609–620.

[10] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization
using code coverage,” in Computer Software and Applications Confer-
ence, 2007. COMPSAC 2007. 31st Annual International, vol. 1. IEEE,
2007, pp. 449–456.

[11] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ser. ISSTA ’11. New York,
NY, USA: ACM, 2011, pp. 199–209.

[12] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the dichotomy
of debugging behavior among programmers,” in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 572–583.

[13] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the bug and how is it fixed? an experiment
with practitioners,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 117–128.

[14] Y. Li, S. Wang, and T. Nguyen, “Fault localization with code coverage
representation learning,” in 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE). IEEE, 2021, pp. 661–673.

[15] Y. Küçük, T. A. Henderson, and A. Podgurski, “Improving fault lo-
calization by integrating value and predicate based causal inference
techniques,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021, pp. 649–660.

[16] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “Human compet-
itiveness of genetic programming in spectrum-based fault localisation:
Theoretical and empirical analysis,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 26, no. 1, pp. 1–30, 2017.

[17] J. Jiang, R. Wang, Y. Xiong, X. Chen, and L. Zhang, “Combining
spectrum-based fault localization and statistical debugging: An empirical
study,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 502–514.

[18] A. Nikanjam, H. B. Braiek, M. M. Morovati, and F. Khomh, “Automatic
fault detection for deep learning programs using graph transformations,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 1, pp. 1–27, 2021.

[19] M. Wen, J. Chen, Y. Tian, R. Wu, D. Hao, S. Han, and S.-C. Cheung,
“Historical spectrum based fault localization,” IEEE Transactions on
Software Engineering, vol. 47, no. 11, pp. 2348–2368, 2019.

[20] R. Kohavi, A. Deng, R. Longbotham, and Y. Xu, “Seven rules of
thumb for web site experimenters,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2014, pp. 1857–1866.

[21] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann,
“Online controlled experiments at large scale,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2013, pp. 1168–1176.

[22] Z. Ren, H. Jiang, J. Xuan, and Z. Yang, “Automated localization
for unreproducible builds,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, pp. 71–81.

[23] Z. He, Y. Chen, E. Huang, Q. Wang, Y. Pei, and H. Yuan, “A system
identification based oracle for control-cps software fault localization,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 116–127.

[24] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 1027–1038.

[25] A. Amar and P. C. Rigby, “Mining historical test logs to predict bugs and
localize faults in the test logs,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 140–151.

[26] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2017, pp. 261–272.

[27] M. M. Rahman and C. K. Roy, “Improving ir-based bug localization
with context-aware query reformulation,” in Proceedings of the 2018
26th ACM joint meeting on European software engineering conference
and symposium on the foundations of software engineering, 2018, pp.
621–632.

[28] Y. Lin, J. Sun, L. Tran, G. Bai, H. Wang, and J. Dong, “Break the
dead end of dynamic slicing: localizing data and control omission bug,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 509–519.

[29] M. Maamar, N. Lazaar, S. Loudni, and Y. Lebbah, “Fault localization us-
ing itemset mining under constraints,” Automated Software Engineering,
vol. 24, no. 2, pp. 341–368, 2017.

[30] T. S. Zaman, X. Han, and T. Yu, “Scminer: Localizing system-level con-
currency faults from large system call traces,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 515–526.

[31] M. Rath, D. Lo, and P. Mäder, “Analyzing requirements and traceability
information to improve bug localization,” in Proceedings of the 15th
International Conference on Mining Software Repositories, 2018, pp.
442–453.

[32] S. A. Akbar and A. C. Kak, “A large-scale comparative evaluation of ir-
based tools for bug localization,” in Proceedings of the 17th international
conference on mining software repositories, 2020, pp. 21–31.

[33] X. Ma, S. Wu, E. Pobee, X. Mei, H. Zhang, B. Jiang, and W.-
K. Chan, “Regiontrack: a trace-based sound and complete checker to
debug transactional atomicity violations and non-serializable traces,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 30, no. 1, pp. 1–49, 2020.

[34] J. Troya, S. Segura, J. A. Parejo, and A. Ruiz-Cortés, “Spectrum-
based fault localization in model transformations,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 27, no. 3,
pp. 1–50, 2018.

[35] Y. Kim, S. Mun, S. Yoo, and M. Kim, “Precise learn-to-rank fault
localization using dynamic and static features of target programs,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 4, pp. 1–34, 2019.

[36] X. Li, W. E. Wong, R. Gao, L. Hu, and S. Hosono, “Genetic algorithm-
based test generation for software product line with the integration of
fault localization techniques,” Empirical Software Engineering, vol. 23,
no. 1, pp. 1–51, 2018.

[37] F. Feyzi, “Cgt-fl: using cooperative game theory to effective fault
localization in presence of coincidental correctness,” Empirical Software
Engineering, vol. 25, no. 5, pp. 3873–3927, 2020.

[38] N. Bayati Chaleshtari and S. Parsa, “Smbfl: slice-based cost reduction
of mutation-based fault localization,” Empirical Software Engineering,
vol. 25, no. 5, pp. 4282–4314, 2020.

[39] B. Liu, S. Nejati, L. C. Briand et al., “Effective fault localization of
automotive simulink models: achieving the trade-off between test oracle
effort and fault localization accuracy,” Empirical Software Engineering,
vol. 24, no. 1, pp. 444–490, 2019.

[40] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

170

[41] S. Benton, X. Li, Y. Lou, and L. Zhang, “Evaluating and improving
unified debugging,” IEEE Transactions on Software Engineering, 2021.

[42] T. T. Nguyen, K.-T. Ngo, S. Nguyen, and H. Vo, “A variability fault
localization approach for software product lines,” IEEE Transactions on
Software Engineering, 2021.

[43] D. Jarman, J. Berry, R. Smith, F. Thung, and D. Lo, “Legion: Massively
composing rankers for improved bug localization at adobe,” IEEE
Transactions on Software Engineering, 2021.

[44] M. Böhme and A. Roychoudhury, “Corebench: Studying complexity of
regression errors,” in Proceedings of the 23rd ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA, 2014,
pp. 105–115.

[45] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
on the effectiveness of dataflow-and control-flow-based test adequacy
criteria,” in Proceedings of 16th International conference on Software
engineering. IEEE, 1994, pp. 191–200.

[46] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass benchmarks
for automated repair of c programs,” IEEE Transactions on Software
Engineering, vol. 41, no. 12, pp. 1236–1256, 2015.

[47] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 2017, pp. 180–
182.

[48] W. E. Wong and V. Debroy, “A survey of software fault localization,”
Department of Computer Science, University of Texas at Dallas, Tech.
Rep. UTDCS-45, vol. 9, 2009.

[49] E. Soremekun, L. Kirschner, M. Böhme, and M. Papadakis, “Artifact for
Evaluating the Impact of Experimental Assumptions in Automated Fault
Localization,” 1 2023. [Online]. Available: https://figshare.com/articles/
conference contribution/Debugging Assumptions Artifact/21786743

[50] H. Gui, Y. Xu, A. Bhasin, and J. Han, “Network a/b testing: From sam-
pling to estimation,” in Proceedings of the 24th International Conference
on World Wide Web, 2015, pp. 399–409.

[51] B. Korel and J. Laski, “Dynamic program slicing,” Inf. Process. Lett.,
vol. 29, no. 3, pp. 155–163, Oct. 1988.

[52] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Proceed-
ings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, ser. PLDI ’90, 1990, pp. 246–256.

[53] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken, “Statistical
debugging of sampled programs,” in Advances in Neural Information
Processing Systems, 2003, pp. 9–11.

[54] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’05, 2005, pp. 15–26.

[55] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering, ser. ICSE ’02, 2002, pp. 467–477.

[56] P. F. Russel, T. R. Rao et al., “On habitat and association of species
of anopheline larvae in south-eastern madras.” Journal of the Malaria
Institute of India, vol. 3, no. 1, 1940.

[57] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineering
and methodology (TOSEM), vol. 20, no. 3, p. 11, 2011.

[58] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05, 2005, pp. 273–282.

[59] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in Proceedings of the
12th Pacific Rim International Symposium on Dependable Computing,
ser. PRDC’06, 2006, pp. 39–46.

[60] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proceed-
ings of the 2002 International Conference on Dependable Systems and
Networks, ser. DSN ’02, 2002, pp. 595–604.

[61] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
- MUTATION, ser. TAICPART-MUTATION ’07, 2007, pp. 89–98.

[62] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in International Symposium on Search Based Software
Engineering. Springer, 2012, pp. 244–258.

[63] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis
of the risk evaluation formulas for spectrum-based fault localization,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 22, no. 4, p. 31, 2013.

[64] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably
optimal and human-competitive results in sbse for spectrum based fault
localisation,” in International Symposium on Search Based Software
Engineering. Springer, 2013, pp. 224–238.

[65] D. Landsberg, “Methods and measures for statistical fault localisation,”
Ph.D. dissertation, University of Oxford, 2016.

[66] D. Landsberg, H. Chockler, D. Kroening, and M. Lewis, “Evaluation
of measures for statistical fault localisation and an optimising scheme,”
in International Conference on Fundamental Approaches to Software
Engineering. Springer, 2015, pp. 115–129.

[67] E. Soremekun, L. Kirschner, M. Böhme, and A. Zeller, “Locating
faults with program slicing: an empirical analysis,” Empirical Software
Engineering, vol. 26, no. 3, pp. 1–45, 2021.

[68] F. Y. Assiri and J. M. Bieman, “Fault localization for automated program
repair: effectiveness, performance, repair correctness,” Software Quality
Journal, pp. 1–29, 2016.

[69] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013, 2013, pp. 314–324.

[70] Frama-C. (2007) Frama-c - framework for modular analysis of c
programs. [Online]. Available: https://frama-c.com/

[71] P. Developers. (2014) Pygraphviz. [Online]. Available: https:
//pygraphviz.github.io/

[72] N. developers. (2014) Networkx - network analysis in python. [Online].
Available: https://networkx.org/

[73] T. M. development team. (2012) Matplotlib - visualization with python.
[Online]. Available: https://matplotlib.org/

[74] I. Free Software Foundation. (1987) gcov - a test coverage program.
[Online]. Available: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

[75] T. G. community. (2005) git-diff. [Online]. Available: https://git-scm.
com/docs/git-diff

[76] I. Free Software Foundation. (1986) Gdb: The gnu project debugger.
[Online]. Available: https://www.sourceware.org/gdb

[77] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering, 2016, pp. 691–
701.

[78] X.-B. D. Le, D. Lo, and C. Le Goues, “Empirical study on synthesis
engines for semantics-based program repair,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2016, pp. 423–427.

[79] Y. Noller, R. Shariffdeen, X. Gao, and A. Roychoudhury, “Trust en-
hancement issues in program repair,” in Proceedings of the ACM/IEEE
44th International Conference on Software Engineering, 2022.

[80] M. Jiang, T. Y. Chen, Z. Q. Zhou, and Z. Ding, “Input test suites for
program repair: A novel construction method based on metamorphic
relations,” IEEE Transactions on Reliability, vol. 70, no. 1, pp. 285–
303, 2020.

[81] K. Charmaz, Constructing grounded theory: A practical guide through
qualitative analysis. sage, 2006.

[82] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[83] P. Rao, Z. Zheng, T. Y. Chen, N. Wang, and K. Cai, “Impacts of test
suite’s class imbalance on spectrum-based fault localization techniques,”
in 2013 13th International Conference on Quality Software. IEEE,
2013, pp. 260–267.

[84] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 82–91.

[85] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le Traon,
“You cannot fix what you cannot find! an investigation of fault localiza-
tion bias in benchmarking automated program repair systems,” in 2019
12th IEEE conference on software testing, validation and verification
(ICST). IEEE, 2019, pp. 102–113.

171

