
Reprogrammable-FL: Improving Utility-Privacy
Tradeoff in Federated Learning via

Model Reprogramming

Huzaifa Arif
Electrical and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY, USA

arifh @ rpi.edu

Alex Gittens
Computer Science

Rensselaer Polytechnic Institute
Troy, NY, USA

gittea @ rpi.edu

Pin-Yu Chen
IBM Thomas J. Watson Research Center

IBM Research
Yorktown Heights, NY, USA

pin-yu.chen @ ibm.com

Abstract—Model reprogramming (MR) is an emerging and
powerful technique that provides cross-domain machine learning
by enabling a model that is well-trained on some source task to
be used for a different target task without finetuning the model
weights. In this work, we propose Reprogrammable-FL, the first
framework adapting MR to the setting of differentially private
federated learning (FL), and demonstrate that it significantly
improves the utility-privacy tradeoff compared to standard
transfer learning methods (full/partial finetuning) and training
from scratch in FL. Experimental results on several deep neural
networks and datasets show up to over 60% accuracy improve-
ment given the same privacy budget. The code repository can be
found at https://github.com/IBM/reprogrammble-FL.

Index Terms—Model Reprogramming, Differential Privacy,
Federated Learning, Privacy-Accuracy Tradeoff

I. INTRODUCTION

Federated learning (FL) enables learning a global model

when the training data is distributed across multiple clients.

We define a local version of the model as the model owned

by a client and the global model as the model shared by all

the clients/devices. Local models are trained locally on private

training data and are shared periodically with the server, which

averages the local models to obtain the global model. Figure 1

provides an overview of the federated learning framework.

Clients involved in a federated learning process are con-

cerned about the privacy of their data shared in the learning

process. For instance, if clients are hospitals sharing personal

health data of their patients in a federated learning process,

leakage of any information—be it a feature of a health record,

or worse, a complete health record—could pose ethical and

legal risks. Previously, it was believed that since clients only

exchange local gradients or model parameters, the privacy

of the client data would be well-preserved. However, recent

works [1]–[3] show that naı̈vely trained FL models may not be

private and exhibit data leakage risks including vulnerabilities

to membership inference attacks and gradient leakage attacks.

Differential privacy (DP) [4] is a popular tool used to

preserve privacy during model learning. In particular, the DP-

SGD method [5] is a modification of the standard stochastic

gradient descent (SGD) that incorporates additional noise to

reduce privacy loss during training. However, a model trained

using DP-SGD is likely to suffer from degraded accuracy,

as noisy gradient estimates lead to poor convergence [6].

This leads to an important challenge in differentially private

federated learning, i.e., attaining a better privacy-accuracy

(utility) tradeoff. This paper focuses on improving the attain-

able accuracy given a privacy budget, using the standard DP-

SGD algorithm for FL.

Multiple approaches exist to train a global model in a differ-

entially private manner [7]. One straightforward approach is to

ensure that each client trains its local model using DP-SGD.

However, this approach does not provide a desirable accuracy-

privacy tradeoff, as the privacy budget limits the number of

training steps allowed for updating the global model, thus

leading to sub-optimal accuracy of the global model. A more

effective approach is to start with a model that was pre-trained

on a public dataset and differentially privately finetune it in

a federated manner to improve its accuracy on the dataset

whose privacy we wish to ensure. Intuitively, finetuning an

already trained model requires less rounds of training on the

private dataset to achieve acceptable accuracy levels, and thus

higher accuracy can be achieved at a lower privacy budget.

Indeed, [8] has shown that even partial finetuning of a pre-

trained model on the private dataset can drastically improve

the privacy-accuracy tradeoff. In this paper, we use finetuning

and transfer learning interchangeably.

In this paper, we show that model reprogramming (MR) [9],

a recently introduced alternative to transfer learning [10],

exhibits a superior accuracy-privacy tradeoff to fine-tuning

approaches in the federated setting. The rationale is that MR is

a more efficient approach for leveraging a source pre-trained

model to solve a new target task: instead of changing the pre-

trained weights as in transfer learning, MR attaches a trainable

input transformation layer and an output mapping layer to

the source model for reprogramming. Figure 2 illustrates the

difference between MR and other approaches that tackle the

privacy-accuracy tradeoff. It can be seen that MR keeps the

source model unchanged and only modifies the input and out-

put transformation layers during training, thereby efficiently

Work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/ DOI 10.1109/
SaTML54575.2023.00022

197

2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)
20

23
 IE

EE
 C

on
fe

re
nc

e
on

 S
ec

ur
e

an
d

Tr
us

tw
or

th
y

M
ac

hi
ne

 L
ea

rn
in

g
(S

aT
M

L)
 |

 9
78

-1
-6

65
4-

62
99

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SA

TM
L5

45
75

.2
02

3.
00

02
2

Xs=Zero Pad (XT) + tanh (M ʘ θ)
 XTarget YTarget

Source Task
eg: ImageNet

Source Model
(eg: ResNet-50)

YT=softmax(fc(YS ;W))

Input Output

XSource YSource

(a) Centralized model reprogramming. T/S denotes the target/source domains.

ω= FedAvg (ω1
, ω2

, ω3
)

ω

θ1

ω2

ω

ω2

ω ω3

Server

Client

ω={θ,W}

ω2 ω

ωω

Source
Model

Source
Model

Source
Model

W1 xT(1) YT(1) θ2 W2

θ3

W3

YT(2)

YT(3)

xT(2)

xT(3)

Client 1

Client 3

Client 2

(b) Federated learning with model reprogramming (Reprogrammable-FL)

Fig. 1: The framework of federated learning using model reprogramming (Reprogrammable-FL). The corresponding mathe-

matical notation is introduced in Section II. (a) Model reprogramming in a centralized setting. (b) Model reprogramming in a

federated setting. In both cases only the parameters associated with the input and output layers attached to the pre-trained source

model are altered during reprogramming; this differs from standard transfer learning approaches that finetune the parameters

of the source model itself.

utilizing the pretrained model’s capabilities.

The organization of the remainder of the paper is as follows.

A concise summary of the paper’s contributions and findings is

followed by a brief presentation used to familiarize the reader

with the notions and notations of Model Reprogramming

(MR), Federated Learning (FL), and Differential Privacy (DP).

Next, the proposed methodology of MR in the federated

setting, named Reprogrammable-FL, is introduced. Finally,

the results of several numerical experiments are presented to

demonstrate the superiority of Reprogrammable-FL over ex-

isting methods for achieving better privacy-accuracy tradeoffs

in DP-FL settings.

A. Our Contributions

• We propose Reprogrammable-FL, a novel framework

for achieving model reprogramming in the differentially

private federated learning setting, which achieves an

improved utility-privacy tradeoff. This framework uses

an unchanged pre-trained source model, attaches a pair

198

Source Model
(Pretrained)

Source Model

(Untrained)

XTarget

XTarget

XTarget

XTarget

YTarget

YTarget

YTarget

YTarget

Source Model
(Pre trained)

Trainable Layers
Non Trainable Layers

YTaTarget

Target

XTarget

YT

YTa

YT
XTarget

Output

Transformational
Layer

Input

Transformational
Layer

Source Model
(Pretrained)

Model
Reprogramming

Full Finetune

Train From
Scratch

Partial Finetune

Fig. 2: Illustration of different machine learning principles in transfer learning settings. Top to Bottom: Model Reprogramming,

Full-Finetune, Train from Scratch, and Partial Finetune. The colors on the right panel specify the trainable and non-trainable

layers of pretrained/untrained neural networks in each method.

of learnable input and output transform layers to the

source model, and learns their parameters in the federated

setting.

• We show that, across datasets and models, the novel

use of model reprogramming consistently and massively

outperforms existing approaches that aim to improve the

accuracy-privacy tradeoff. For instance, on CIFAR-10, for

a given privacy budget of ε = 1.04, Reprogrammable-FL

exhibits up to a 61.4% increase in classification accuracy

over other approaches.

• Our ablation study shows that more accurate (usually

deeper) source models give a better accuracy-privacy

tradeoff for a given budget in Reprogrammable-FL, while

competing approaches may not have such benefits.

II. BACKGROUND AND RELATED WORK

A. Model Reprogramming

Model Reprogramming (MR) [9] is an approach toward

resource-efficient cross-domain machine learning originally

introduced in [11] as an alternative to model finetuning ap-

proaches. In MR (see Figure 1a), a pre-trained source model

is adapted for use in a new domain (i.e., a target domain) by the

addition of input and output transformation layers. The param-

eters of the source model are frozen after training on the source

task in the source domain, then the parameters of the input

and output transformations are learned to map, respectively,

inputs in the target domain to inputs in the source domain and

outputs in the source domain to outputs in the target domain.

The seminal work adapted image classifiers for several image-

based tasks, but subsequent work has demonstrated the success

of MR in cross-domain model adaptation, including repro-

gramming language recognition models to learn molecular

representations [12], reprogramming acoustic models for time

series classification [13], and reprogramming general image

classifiers for data-limited bio-medical measurements [14].

1) Transformation Layers: Without loss of generality, we

assume that the inputs and outputs for the source and target

tasks are vectors of dimension dS and dT respectively. To

facilitate the MR approach, we require dT ≤ dS . We also

assume that the two tasks under consideration are classification

tasks, with KT target classes and KS source classes; and that

KT ≤ KS .

Input Transformation Layer. The input transformation layer

maps a sample xT in the input space of the target task to a

point x̃T in the input space of the source task, while including

learned parameters in x̃T that assist in partially adapting the

source model to the target task. In the case of scaled input

range [−1, 1] in each input dimension, as considered in this

work, a standard choice of input transformation [11] is given

by

x̃T = ZeroPadding(xT) + tanh(M �Θ).

The operator ZeroPadding adds borders of zeros around the

input image to result in an image of size dS , and M is a binary

199

mask that equals zero where ZeroPadding(xT) is equal to xT
and equals one on the border of ZeroPadding(xT). The only

learnable parameter, Θ, is an input-independent perturbation

of the padded image that helps adapt the source model to the

target task, and tanh is the element-wise hyperbolic tangent

function that ensures each dimension of x̃T stays in the range

[−1, 1].
Output Transformation Layer. The output transformation

layer maps KS classes to KT classes through a trainable fully

connected layer parametrized by W . This mapping between

the logit outputs of the source model, ŷS = fS(x̃T), and the

logits of the target task, ŷT , is denoted by ŷT = Fc(W ; ŷS).
The final prediction on the target task is given by the softmax

output:

ŷT = softmax[Fc(W ; ŷS)]

2) Training: Given a pretrained source model fS and a

target training set {xi
T , y

i
T }ni=1, the reprogramming parameters

Θ and W are learned as minimizers of

f(Θ,W) =
1

n

n∑
i=1

�(ŷiT (fS(x̃
i
T)), y

i
T),

where � is a measure of discrepancy between the true target

and the predicted target.

As proved in [13], the target loss of MR is upper bounded

by the summation of two terms: the source loss and the

representation alignment loss between the source data and the

reprogrammed target data. MR can fully leverage the pre-

trained source model when reprogramming suffices to align

the representations of the target data with those of the source

data. In this case, it is possible to use the classification model

encoded in the source model to solve the target task.

B. Federated Learning

To date, MR has been studied exclusively in a shared

memory (centralized machine learning) setting. This work is

the first to study the performance of MR in distributed learning

settings, and specifically investigate its privacy-accuracy trade-

offs in the setting of differentially private federated learning.

Federated learning is a machine learning paradigm that

allows multiple clients to collaboratively train a model in

a distributed manner without sharing training data. It was

initially proposed in [15] and has gained popularity due to its

demonstrated ability to efficiently use data distributed across

a large number of clients. There is a rich body of literature

addressing problems in federated learning such as data hetero-

geneity [16], [17], expensive communication [18], [19], and

privacy guarantees [20]. The survey paper in [21] provides

an overview of the field.

Let fi(ω) measure the loss of the shared model ω on the

ith client, then FL attempts to minimize the weighted global

loss

F (ω) =
∑m

i=1
αifi(ω)

while minimizing communication and data exposure between

the clients [15]. Typically fi measures the performance of the

model on the training data set local to the ith client. In this

paper we take

fi(ω) =
∑ni

j=1
�(ω; (xi

j , yi
j)),

where �(ω; (xij , yi
j)) measures the loss of the model ω on the

jth training example (xij , yi
j) on client i. We take αi = ni/N

to be the fraction of the overall training data present on the

ith client, where N is the total number of samples used in the

training process.

To achieve the goals of minimizing communication and

data exposure, FL algorithms alternate between aggregating

local models to form a global model and locally updating

these global models on the clients to form more accurate

local models. Algorithms vary in their choice of methods to

aggregate the local models, methods used to update the local

models, choice of clients to participate in each round, and in

additional steps that may be introduced for various reasons:

e.g., to increase privacy, decrease communication costs, mit-

igate the effects of non-participating clients, or alleviate the

impact of heterogenous data distributions across the clients.

The widely employed federated averaging (FedAvg) algo-

rithm forms the tth global model as an average over the local

models ωt =
∑m

i=1 αiω
i
t. The local models ωi

t are obtained

by using multiple steps of SGD on each worker to update the

previous global model ωt−1 to minimize fi [15]. This process

continues until model convergence.

C. Differential Privacy and DP-SGD

The process of fitting ML models potentially discloses

sensitive information about the training data set, even after

seemingly clever anonymization techniques are used on the

data set. This concern is exacerbated in the federated setting,

where the communication of the sequence of global models

between the clients potentially enables information leakage.

Differential privacy (DP) provides strong privacy guarantees

and has become the standard framework for privacy-preserving

ML [4]. A randomized algorithm A is said to be (ε, δ)-DP if

it guarantees that for any two training data sets D and D′

that differ by the inclusion or exclusion of a single training

example, and any set S in the output space,

P [A(D) ∈ S] ≤ exp(ε)P [A(D′) ∈ S] + δ.

When D is the training data set and A is the algorithm used

to learn an ML model, this guarantee ensures that even if all

the other data points utilized in fitting a model are known, one

cannot infer the presence or absence of a particular individual

data point from the learned model because the models A(D)
and A(D′) are very likely to be similar. Smaller values of ε
and δ give stronger privacy guarantees.

By far the most popular and ubiquitous approach to privacy-

preserving model learning is differentially private SGD (DP-

SGD), which modifies the standard SGD algorithm by using

the Gaussian mechanism to lower disclosure risk [5]. Let g
be a deterministic vector-valued query function that takes a

dataset as input, and define its sensitivity Sg as the maximum

200

of ‖g(D) − g(D′)‖2 over adjacent datasets. The Gaussian

mechanism uses

g(D) +N (0, S2
gσ

2I)

as a more private proxy for g(D); here N (0, S2
gσ

2I) denotes

zero-mean Gaussian noise with the given covariance matrix.

Intuitively, the addition of noise calibrated to the sensitivity

level of the query function hides the influence of any one

particular data point; more precisely, given ε ∈ (0, 1) and

δ ∈ (0, 1), it suffices to take σ > 2ε−1 ln(1.25δ−1) for this

proxy for g to be (ε, δ)-DP [4].

In the application of the Gaussian mechanism to DP-SGD,

the query function g is the SGD gradient estimator evaluated

on the training dataset, and its sensitivity is naturally bounded

by the �2 norm of the largest gradient on any of the training

data points. This quantity is unknown, changes over the

course of training, and can be prohibitively large, so in DP-

SGD the sensitivity of the gradient estimator is fixed at a

hyperparameter C by passing it through the Clip operator:

Clip(x) =
x

max{1, ‖x‖2/C}
.

The moments accounting method of [5] is used to track the

evolution of the privacy parameters ε and δ during DP-SGD

training.

In practice, DP-SGD is used to update the local models

in FedAvg to ensure that the model is learned privately; this

variant of FedAvg is called DP-FedAvg. Our Algorithm 2 in

Section III uses DP-FedAvg to implement Model Reprogram-

ming (MR) in the federated setting. In our study, DP-FedAvg is

used as the algorithmic framework for FL because it comprises

the essential components of FL – model averaging, multi-

ple rounds of local model updating, and privacy-preserving

learning – without additional algorithmic enhancements whose

presence may complicate the interpretation of the impact of

MR on FL.

For clarity, in our proposed Reprogrammable-FL frame-

work, we note that the privacy guarantee is specific to the

private data for FL, not the public data to train the source

model.

III. METHODOLOGY OF REPROGRAMMABLE-FL

We consider the setting of MR on FL (i.e., federated

MR), as illustrated in Figure 1b. The client-server architecture

follows [15] and the DP-SGD methodology follows [5] and

[22]. This work is the first to study model reprogramming

in the context of differentially private federated learning,

and establish that it exhibits superior privacy-utility tradeoffs

compared to fine-tuning.

The client- and server-side algorithms of our proposed

Reprogrammable-FL framework are given in Algorithms 1

and 2, respectively. The same pretrained source model fS
is distributed to each of the clients before the start of

Reprogrammable-FL. At the start of each communication

round, the server communicates the current global reprogram-

ming parameters ω = {Θ,W} to all clients; recall that Θ and

W denote the trainable parameters of the input and output

transformation layers, respectively. DP-SGD is used locally to

obtain updated local reprogramming parameters that increase

performance on the local training data. Finally, the clients

return their reprogramming parameters to the server, which

aggregates them to compute the latest global model.

The private data on the ith client with ni samples are

denoted by

xi, yi = {xi
T ,j , y

i
T ,j}ni

j=1

Here, the subscript T indicates that samples from the target

domain are used for local training. Consider the training

procedure of one client. At the beginning of each round,

the client receives the latest global model, then trains for L
local iterations. In each local iteration, the client samples a

batch B uniformly at random from the local training dataset

and updates the local parameters using DP-SGD. Once the

local training ends, the clients send their local reprogramming

parameters ωL = (ΘL,WL) back to the server. Algorithm 1

provides the details of one round of client training. For clarity,

we abbreviate the loss function of the ith client to

�(ω; (xi
b, yi

b)) = �(ŷ(fS(x̃ib)), yi
b),

where the subscript b denotes the bth sample from the current

batch of local data, and x̃ib and ŷ are computed using the

current local reprogramming parameters.

Algorithm 1 Federated Model Reprogramming

(Reprogrammable-FL) – Client Side

Input: xi, yi = {xi
T , y

i
T }ni=1

1: ClientUpdatei(ωt;C, σ, L,B, fS)
2: ωi

0 ← ω
3: for t ∈ {0, . . . , L− 1} do
4: B ← uniform sampling w/o replacement

5: Update input transformation layer Θi
t+1 ← Θi

t− η · 1
B ·

[
∑

b∈B Clip(∇Θi�(ωi
t; (xi

b, yi
b))) +N (0, σ2C2I))]

6: Update output transformation layer W i
t+1 ← W i

t − η ·
1
B · [

∑
b∈B Clip(∇W i�(ωi

t; (xi
b, yi

b))) +N (0, σ2C2I))]
7: ωi

t+1 ← (Θi
t+1,W

i
t+1)

8: end for
9: return ωi

L

Consider the server-side computations of Reprogrammable-

FL : the clients train their local models in a parallel manner

and send the trained layer parameters {ωi
L}ni=1 back to the

server after the local training procedures conclude. The server

aggregates the local models to form the next global model,

which is then sent back to the clients. Training continues

in this manner for T rounds. Given a fixed pre-determined

δ, and noise variance σ, the moments accountant approach

of [5] is used at each round t to compute the expended privacy

budget so far by all the clients over the entire dataset, ε. This

computation uses knowledge of the total number of iterations

over the full dataset, t×L, and total effective batch size m×B.

See Algorithm 2 for the server-side algorithm.

201

Algorithm 2 Federated Model Reprogramming

(Reprogrammable-FL) – Server Side

Input: ω0 = (Θ0,W0) initialised randomly, δ, T , L, B, C, σ,

N , fS
Output: ωT = (ΘT ,WT)

1: for t ∈ {0, . . . , T − 1} do
2: for all i ∈ m in parallel do
3: ωi

t+1 = ClientUpdatei(ωt, C, σ, L,B, fS)
4: end for
5: Update ωt+1 ←

∑n
i=1 αiω

i
t+1

6: Server calculates expended privacy budget ε using mo-

ments accountant for fixed δ
7: end for

IV. EXPERIMENTAL EVALUATION

We simulate the performance of the Reprogrammable-FL

and its comparison to baselines in a federated setting. These

baselines are the current approaches that aim to improve the

accuracy-privacy tradeoff. Our primary comparison with the

baselines is done for the IID (independently and identically

distributed) setting and we also show results in the non-IID

setting.

The results shown are for a federated scenario with 100

rounds and three clients with each client doing 1 local it-

eration before aggregation of the parameters in all scenarios

considered. Effects of more clients and more local epochs

are then analyzed in the ablation study. All the baselines and

Reprogrammable-FL are getting trained using DP-SGD with

the server implementing Fed-Avg as the aggregation strategy.

Ablation studies with more clients and different local iterations

are also conducted. Minimal changes in the experimental struc-

ture between baselines and model reprogramming demonstrate

the power of model reprogramming over baselines as the only

change is the structure of the client models. The baselines

used are explained below in more detail. See Figure 2 for the

comparison of model reprogramming with the baselines.

A. BaseLine Full Finetune – (BL-FF)

This baseline has the clients using a pre-trained model

where all parameters are tuned on the private dataset of

the clients. The pre-trained model is modified such that the

number of classes matches the performed task. For instance,

to perform CIFAR-10 classification, a Resnet-50 model pre-

trained on ImageNet is modified for 10 classes (by randomly

initializing the last fully connected layer). Note that this is

different from MR in that the model is modified to match the

target tasks. Training in the federated setting means that the

clients exchange all the model parameters after performing L
local iterations in a DP-SGD manner and the server averages

all the received parameters.

B. Baseline Train from Scratch – (BL-TS)

This baseline consists of using the same architecture of

a source model and training it on some target task. The

architecture is modified such that the output classes match the

target task. This entire model is trained in a DP-SGD manner.

In the federated setting, all the parameters are exchanged,

similar to the full-finetune setting.

C. Baseline Partial Finetune – (BL-PF)

This baseline consists of using a pre-trained model on some

source task to perform classification on some target task. In

principle, this baseline assumes a similar setting to BL-FF

with the difference being that instead of fully fine tuning all

the model parameters, only the final modified classification

layer is randomly initialized and finetuned on the target task

with DP-SGD on the private data.

D. Parameters

These parameters are fixed for all the source models and

target tasks. The motivation for making little change to the

parameters was to demonstrate the strength of model repro-

gramming over the competitive baselines. The effect of using

different batch sizes is studied in Section VI.

• Noise Variance σ2 =1.1

• Clipping norm C = 1.0

• Training Batch Size B = 256

• Learning Rate η = 0.15

• δ = 10−5

For model reprogramming, we treat the image size in the

padded image to be a hyperparameter. Therefore, we upsample

the image to size 200 × 200 where the size of the image is

224×224. For using baselines we upsample the image to size

224× 224 for the source model that expects such input in all

of our considered tasks.

E. Source Models

For our experiment, we employ five different source models.

All these source models were trained on ImageNet as a source

task. We employ the popular ResNet [23] architecture of

various depths as our source models, including ResNet18,

ResNet50, and ResNet152 of depths 18, 50 and 152 layers

correspondingly. A more recent architecture ResNext [24]

with different widths is also considered for evaluation, includ-

ing Resnext50 and Resnext101. All these source models were

trained on Imagenet as the source task.

F. Target Tasks and Datasets

We select three representative datasets for image classifi-

cation to conduct our experiments. CIFAR-10 is a common

dataset in FL [25] and model reprogramming [11]. Oxford-IIT

Pet dataset is studied in various transfer learning applications

[26]. These datasets are large and relatively more complex than

MNIST datasets. Since privacy is an important requirement

in healthcare-related machine learning applications, the third

choice of the dataset (Blood MNIST) is used to demonstrate

the efficacy of using model reprogramming in federated learn-

ing for health applications.

202

a) CIFAR-10: CIFAR-10 is a popular dataset that con-

sists of 60000 images of size 32 × 32 with 10 classes (e.g.:

dog, cat, airplane, etc). The data is split into 50000 training

images and 10000 testing images. This is a well-balanced

dataset such that each class has the same number, i.e., 6000

training samples. We evaluate this dataset in the IID setting

such that the data is equally partitioned amongst the clients.

This dataset is also evaluated in the non-IID setting where

the non-IID conditions are simulated in two ways [27]: one

being to divide the training data unequally between the clients

(similar to Quantity Skew in [27] except that the samples were

not chosen through Dirichlet distribution) and the other being

to divide the certain classes to certain clients. We simulate

the former condition in this section and the class imbalance

setting is evaluated in the ablation study. For three clients the

data is divided in a 45:9:1 ratio.

b) Oxford-IIIT: Oxford-IIIT dataset has 37 classes with

200 images for each class. These contain 25 categories of dogs

and 12 categories of cats. This is also a well-balanced dataset

with a training size of 7400 samples and we demonstrate its

performance in the IID condition.

c) Blood-MNIST: The Blood-MNIST dataset are periph-

eral images of blood cells that come from uninfected patients

[28] of original shape 3× 360× 363. This dataset has 17,092

images of 8 different blood cells. [29] preprocessed these

images to 3× 28× 28 which we upsample to size 224 before

feeding them into the source models. We simulate this dataset

on different source models for the IID case. The training set

consists of 11,959 data samples and the test dataset consists

of 3421 images.

G. Computational Resources

The CIFAR-10 dataset on all the source models with all of

the baselines was evaluated using a core 2.5 GHz Intel Xeon

Gold 6248 NVIDIA Tesla V100 GPU with a 32 GiB HBM

and 768 GiB RAM per node. This platform was also used to

simulate Blood-MNIST for ResNet-152 architecture.

The Oxford-IIIT and Blood MNIST were evaluated using

Google Colab for all different source models. Google Colab

uses Tesla T4 GPU on its platform. Our experiments were

done using Pytorch 1.12 on both platforms.

V. PERFORMANCE EVALUATION AND DISCUSSION

For performance evaluation, we compare Reprogrammable-

FL with baselines in both centralized and federated settings to

study their accuracy-privacy tradeoffs.

Figs 3–11 show the performance comparison of the base-

lines with Reprogrammable-FL. The values on the y-axis are

the accuracy and the values on the x-axis are the privacy

budget consumed after every 10 rounds calculated from the

moment accountant method. This ε value is a function of the

total number of iterations of DP-FedAvg, the batch size, the

size of the dataset, and the δ value). The batch size is fixed

in the plots to illustrate how the choice of the number of

iterations of DP-FedAvg and local epochs used in training the

models impact the privacy budget. The choice of ε values are

inspired from the work of [30], [22] and [31] but our central

approach lies around fixing the number of global rounds and

local epochs and calculating the result privacy budget and

accuracy at each round. Fig 12 evaluates this performance for

various batch sizes. Fig 13 shows a performance comparison

of using different batch sizes, with other parameters constant.

We see a slight advantage in using larger batch sizes in terms

of the model utility achieved for a fixed number of iterations

of FedAvg.
Figure 3a shows the performance of MR over the baselines

in the centralized case using CIFAR-10 and ResNet-50. The

evaluation is measured as the test accuracy for various ε values

calculated from the moment’s accountant method [5]. We see

clearly that for any ε value, MR gives better accuracy than

any of the baselines.
In the federated learning case, this ε value is evaluated using

the moment’s accountant method after every global round. Test

accuracies are evaluated for these various ε values. Figure 3b

shows the performance in the federated setting of three clients

for different budget (ε) values in the IID case for CIFAR-10.
Figure 4 shows the Non-IID case for quantity imbalance for

three clients in CIFAR-10. The test accuracy is the accuracy of

the global model plotted against the budget consumed by the

global model. It can be clearly observed that MR does much

better than its baselines in both IID and non-IID settings.
Table I shows the accuracies for given ε values for various

combinations of target task and source models in the IID

case, computing using one run for each of the experiments.

Table II reports averages and variances over three runs in

the accuracies of partial-finetuning and reprogrammable-FL.

Table III considers the non-IID scenario (Quantity Skew). In

all cases, we see MR outperforms the baselines significantly.

Additionally, we make a note that for any epsilon values

below the reported ones, MR consistently provides a better

accuracy tradeoff than any of the baselines. Notably, compared

to the best baseline and given the same privacy budget in

Table I, MR can attain a significant increase in the accuracy

across different source models by up to 61.4%/62.7%/23.1%

on CIFAR-10/Oxford-IIIT/Blood-MNIST, respectively. For the

non-IID case, MR has improvements on a similar scale. On

CIFAR-10 it provides a 63.1% better accuracy tradeoff than

the baselines for similar budget values.
We make the following key observations regarding these

empirical results:

• Partial finetuning is the most competitive baseline in

most cases. One possible explanation for this is that it

updates fewer parameters than Full-Fintetune or Train-

from-Scratch (see Table IV), thus this form of fine-tuning

has a lower sample complexity and thus does not need

as large a privacy budget. On the other hand, given a

tight privacy budget, both Train-from-Scratch and Full-

Finetune fail to train the model to reach high accuracy

due to an excessive number of training parameters and

the added noise in DP-SGD.

• Although MR learns an order of magnitude more param-

eters than partial finetuning (see Table IV), its accuracy

203

(a) Centralized setting (b) Federated setting

Fig. 3: Privacy-accuracy tradeoff for CIFAR-10; fS = ResNet-50

TABLE I: Comparison of federated learning with DP-SGD in the IID setting. The reported number is test accuracy (%).

Models Data Resnet18 Resnet50 Resnet152 ResNext50 ResNext101

CIFAR-10
(ε = 1.04)

MR = 74.68 MR = 79.08 MR = 83.45 MR = 81.7 MR = 87.55
BL-PF = 57.7 BL-PF = 58.31 BL-PF = 24.96 BL-PF = 46.15 BL-PF = 46.13

BL-TS = 16.01 BL-TS = 14.4 BL-TS = 10.45 BL-TS = 16.52 BL-TS = 10.0
BL-FF = 17.58 BL-FF = 16.9 BL-FF = 13.8 BL-FF = 20.25 BL-FF = 10.0

Oxford-IIIT
(ε = 5.29)

MR = 72.55 MR = 73.3 MR = 79.59 MR = 79.64 MR = 80.8
BL-PF=67.15 BL-PF = 67.3 BL-PF = 34.88 BL-PF = 58.32 BL-PF = 18.07
BL-TS = 3.63 BL-TS = 2.83 BL-TS = 2.48 BL-TS = 2.9 BL-TS = 2.99
BL-FF = 5.10 BL-FF = 2.59 BL-FF = 2.72 BL-FF = 3.0 BL-FF = 2.73

Blood-MNIST
(ε =1.96)

MR = 65.7 MR = 62.7 MR = 60.15 MR = 67.46 MR = 59.9
BL-PF = 63.19 BL-PF = 53.3 BL-PF = 37.01 BL-PF = 56.7 BL-PF = 37.7
BL-TS = 53.08 BL-TS = 42.99 BL-TS = 45.16 BL-TS = 33.7 BL-TS = 19.5
BL-FF = 52.32 BL-FF = 33.0 BL-FF = 19.47 BL-FF = 20.98 BL-FF = 29.5

TABLE II: Performance evaluation in the IID setting across 3 runs (mean ± standard deviation)

Models Data Resnet18 Resnet50 Resnet152 ResNext50 ResNext101

CIFAR-10
MR = 75.58 ± 0.15 MR = 78.86 ± 0.22 MR = 83.90 ± 0.44 81.27± 0.33 88.12± 0.51

BL-PF = 58.69 ± 0.15 BL-PF = 55.92 ± 2.49 BL-PF = 26.93 ± 1.54 45.69 ± 1.139 47.37± 1.82

Fig. 4: Non-IID setting (Quantity Skew); fS = ResNet-50

outperforms partial finetuning.The observed superior per-

formance of MR over these baselines in the federated

TABLE III: Performance evaluation in the Non-IID setting

(Quantity Skew). The reported numbers are the test accuracies.

Models / Data Resnet18 Resnet50 ResNext50

CIFAR-10
(ε = 1.04)

MR = 79.68 MR = 80.3 MR = 81.2
BL-PF = 56.72 BL-PF = 56.5 BL-PF = 18.16
BL-TS =15.07 BL-TS = 16.8 BL-TS = 10.45
BL-FF =19.55 BL-FF = 12.18 BL-FF = 49.8

setting is consistent with the findings in the centralized

non-private setting as reported in previous works [9],

[13], [14]. As shown in [13], the accuracy of MR in the

noise-free setting can be explained by its ability to align

the representations of the target domain to that of the

source domain used to train the source model. We discuss

an intuition as to why MR additionally displays a superior

privacy-utility tradeoff to the baselines in Section VII.

• It was also observed (see Table I) that deeper source

models in model reprogramming do better than shal-

low source models. For instance, on the Oxford-IIIT

204

TABLE IV: Comparison of number of trainable parameters

Models Data Resnet18 Resnet50 Resnet152 ResNext50 ResNext101

CIFAR-10
MR = 160538 MR = 160538 MR = 160538 MR = 160538 MR = 160538

BL-PF = 20490 BL-PF = 20490 BL-PF = 20490 BL-PF = 20490 BL-PF = 20490
BL-TS = 11181642 BL-TS = 23528522 BL-TS = 58164298 BL-TS = 23000394 BL-TS = 81426762
BL-FF = 11181642 BL-FF = 23528522 BL-FF = 58164298 BL-FF = 23000394 BL-FF = 81426762

Oxford-IIIT
MR = 187565 MR = 187565 MR = 187565 MR = 187565 MR = 187565

BL-PF = 75813 BL-PF = 75813 BL-PF = 75813 BL-PF = 75813 BL-PF = 75813
BL-TS = 1195493 BL-TS = 23583845 BL-TS = 58219621 BL-TS = 23055717 BL-TS = 81482085
BL-FF = 1195493 BL-FF = 23583845 BL-FF = 58219621 BL-FF = 23055717 BL-FF = 81482085

Blood-MNIST
MR = 158536 MR = 158536 MR = 158536 MR = 158536 MR = 158536

BL-PF = 16392 BL-PF = 16392 BL-PF = 16392 BL-PF = 16392 BL-PF = 16392
BL-TS = 1180616 BL-TS = 23524424 BL-TS = 58160200 BL-TS = 22996296 BL-TS = 81422624
BL-FF = 1180616 BL-FF = 23524424 BL-FF = 58160200 BL-FF = 22996296 BL-FF = 81422624

dataset, ResNext101 shows a performance improvement

of 62.73% and ResNet152 has a 44.71% improvement on

baselines compared to shallower models like ResNet18

and ResNet50 that have improvements under 10%. We

investigate this further in Section VI.

• Similarly on CIFAR-10 (see Table I), ResNet152 shows

an improvement of 58.49% and ResNext50 has a

61.45% improvement compared to shallower models like

ResNet50 and ResNet18 that show relatively smaller

improvements over the best baseline results for a given

budget. The results suggest that MR is a more efficient

approach for exploiting pre-trained large neural networks.

VI. ABLATION STUDY

A. Multiple Clients

The multiple client scenarios are simulated by increasing

the number of clients and keeping the client source models

and local epochs constant. Particularly, the rounds of commu-

nication are kept at 20 and each client does 3 local iterations

on CIFAR-10 dataset and ResNet50 as the source model. We

simulate this for the IID setting with each client having the

same number of samples.

Figure 5 shows 5 clients scenario, Figure 6 shows the

10 clients scenario, and Figure 7 shows the 20 clients sce-

nario. From the figures, it can be clearly observed that

Reprogrammable-FL outperforms baselines when clients in-

crease in the IID setting.

B. Multiple Local Iterations

We simulate the effect of multiple local iterations with a

fixed number of clients on the CIFAR-10 dataset and ResNet50

as the source model. Data is distributed among 5 clients and

20 rounds of communication are performed.

Figure 8 shows that in the IID setting, for a fixed budget

and increasing the number of local iterations we can see an

improvement in the privacy accuracy tradeoff. For instance,

see that for a budget of ε = 1 Reprogrammable-FL provides an

almost 50 % improvement in test accuracy when local iteration

increases from 1 to 5.

We also report that for 10 local epochs and 5 clients

after 1 round of communication, the test accuracies are

80.09/14.59/13.22/12.25 (%) for MR/BL-PF/BL-TS/BL-FF

Fig. 5: 5 Clients in IID setting; fS = ResNet-50

Fig. 6: 10 Clients in IID setting; fS = ResNet-50

for ε = 0.97. In addition, for 20 epochs and 5 clients

after 1 round of communication, the test accuracies are

83.49/12.4/16.13/18.49(%) for MR/BL-PF/BL-TS/BL-FF for

ε = 0.99.

Thus, for a given budget with each client performing

higher local iterations, Reprogrammable-FL still outperforms

baselines.

205

Fig. 7: 20 Clients in IID setting; fS = ResNet-50

C. Deep vs Shallow Models

We also see in Figure 9 that the performance gap between

Reprogrammable-FL and the best baseline is larger for deeper

models than shallow models. While partial finetune suffers in

performance when deeper models are used, Reprogrammable-

FL maintains its high utility when being trained privately.

D. Non-IID – Class Imbalance Scenario

In addition to the quantity skew non-IID setting demon-

strated in the paper, Figure 10 demonstrates a class label

imbalance scenario using ResNet-50 as the source model for

the clients and CIFAR-10 as the dataset. In this setting, each

of the clients holds 3,3,4 nonoverlapping CIFAR-10 classes.

This is done for 50 rounds and 3 local epochs with 3 clients.

We can clearly see that in the class imbalance scenario,

Reprogrammable-FL also outperforms baselines.

E. Impact of Batch Size Selection

Figure 11 shows the performance of using different batch

sizes in Reprogrammable-FL and the competing baselines.

Reprogrammable-FL outperforms the baselines on all smaller

batch sizes evaluated. This experiment was done on 3 local

clients, with each client doing 3 local epochs. The number of

global rounds is 50. Figure 12 shows that larger batch sizes

achieve better utility per global round in Reprogrammable-FL

over smaller batch sizes.

F. Area under ROC Curve

In addition to measuring the accuracy of the classifier, an

important characteristic of a good classifier is its ability to

distinguish between various classes. Ideally, for a classifier,

this would mean that a model has no false positives and

negatives. A comparatively better classifier would thus be such

that it is able to distinguish between classes with fewer false

positive/negatives. A metric that measures this is the area

under the receiver operating characteristic (ROC) [32]. Values

closer to 1 mean that the classifier is better at distinguishing

between classes. A value of 0.5 means that the model is merely

(a) 5 local epochs

(b) 3 local epochs

(c) 1 local epoch

Fig. 8: Comparison of privacy-accuracy tradeoff for CIFAR-10

with 3 clients and varying local epochs; fS = ResNet-50

guessing between the true and false class thus in effect being

a futile model.

206

(a) fS = ResNet-152

(b) fS = ResNet-50

Fig. 9: Performance comparison of privacy-accuracy tradeoff

for Oxford-IIIT when using Deeper/Shallow source models

Fig. 10: Non-IID (Class Imbalance) setting; fS = ResNet-50

For a multi-class classification problem, this metric is com-

puted by doing a one vs rest comparison with all the other

classes. The score reported is the average score for all classes.

Table V shows the AUROC performance for different source

models on the CIFAR-10 dataset. It can be observed that

(a) Batch-32 (b) Batch-64

(c) Batch-128 (d) Batch-256

Fig. 11: Comparison of privacy-accuracy tradeoff for CIFAR-

10 with with different batch sizes; fS = ResNet-50

Fig. 12: Different batch sizes on Reprogrammable-FL; fS =

ResNet-50

Reprogrammable-FL has better distinguishability for various

classes when trained privately.

TABLE V: Performance evaluation in the IID setting using

AUROC

Models / Data Resnet18 Resnet50 ResNext50

CIFAR-10
(ε = 1.04)

MR = 0.971 MR = 0.978 MR = 0.982
BL-FF = 0.745 BL-FF = 0.77 BL-FF = 0.77
BL-TS = 0.736 BL-TS = 0.656 BL-TS = 0.70
BL-PF = 0.910 BL-PF = 0.909 BL-PF = 0.88

G. Area under the curve

The improvement in the privacy-accuracy trade-off provided

by Reprogrammable-FL can also be illustrated by the area

under the privacy-utility curves. Concretely, we evaluate the

area under the curve for Figure 8b. Table VI shows this com-

207

TABLE VI: Area under the curve (Accuracy % × the unit of

privacy budget) performance evaluation in the IID setting

Models / Data ResNet50

CIFAR-10
MR = 382.0

BL-FF = 70.2
BL-TS = 60.7
BL-PF = 275.5

parison. We can observe that Reprogrammable-FL provides a

better tradeoff compared to baselines.

VII. THEORETICAL CONSIDERATIONS

We observed significant improvement, with respect to

privacy-utility tradeoff, of MR over transfer learning in the

DP-FL setting. Theoretical justifications for the superior per-

formance of MR over transfer learning are to our knowledge,

non-existent in the literature even in the centralized setting.

The clearest theoretical characterization of the performance of

MR is given in [13], which establishes that when the source

and target domain representations are well-aligned in the sense

of Wasserstein distance, the generalization error of MR on the

target domain is bounded. Note that this result does not argue

or imply that MR should outperform transfer learning.

Intuitively, if the sample complexity of transfer learning is

smaller than that of MR, we expect that MR should have a

superior privacy-utility tradeoff, as a lower sample complexity

suggests MR needs to “touch” less data to achieve a given

generalization gap. The work [33] suggests that MR does have

a smaller sample complexity than transfer learning. That work

considers the sample complexity required to adapt a shared

representation h(x) from a class H, learned on several prior

tasks, to a new task by learning a function f(x) in a class

F and taking f ◦ h as the hypothesis for the new task. Their

main result [33, Theorem 3] implies that, if the complexity of

F is smaller than that of H, a generalization gap of ς can be

achieved on the target task by using

n = O
(C(F)

ς2

)
samples from the target domain to learn f , where C(F) is the

Gaussian complexity of F .

Partial fine-tuning, the most competitive baseline, exactly

fits into this theoretical framework, where f is chosen from

FBL-PF corresponding to the layers that are fine-tuned. Mean-

while, MR almost fits into this theoretical framework, where

f is chosen from FMR corresponding to the output transfor-

mation. Because the multi-layer neural networks in FBL-PF are

more complex than the class of logistic regressions in FMR,

we expect that MR will have smaller sample complexity, and

thus a superior privacy-utility tradeoff.

The gap in making this argument rigorous lies in the fact

that MR also uses an input transformation, so the hypothesis

learned on the target task takes the form f ◦ h ◦ g. However,

g is a linear transformation, so we expect that a rigorous

exploration of the sample complexity of MR vs. that of partial

fine-tuning will exhibit the behavior predicted using the results

of [33]. We leave a rigorous confirmation of this intuition for

future work.

VIII. CONCLUSION

In this paper, we proposed a new training method for

federated learning with differential privacy, which we call

Reprogrammable-FL. In contrast to finetuning a pre-trained

model, Reprogrammable-FL attaches input and output trans-

formation laters and only trains their associated parameters

while keeping the pre-trained model weights intact. Our empir-

ical evaluation shows that this non-intrusive approach provides

stronger utility-privacy improvements than existing baselines

such as full/partial finetuning in transfer learning and training

from scratch. Given the same privacy budget, consistent accu-

racy improvements are observed across a variety of datasets

and pre-trained models. We also find that Repogrammable-FL

achieves even larger performance improvements over baselines

when reprogramming a model with deeper architecture. Given

that this paper is the first study to demonstrate the high accu-

racy gain of model reprogramming in differentially private FL,

we believe our results and findings will set a new benchmark

for FL and shed new light on future research in private FL.

REFERENCES

[1] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in neural information processing systems, vol. 32, 2019.

[2] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in 2019 IEEE symposium on
security and privacy (SP). IEEE, 2019, pp. 739–753.

[3] X. Jin, P.-Y. Chen, C.-Y. Hsu, C.-M. Yu, and T. Chen, “CAFE:
Catastrophic data leakage in vertical federated learning,” Advances in
Neural Information Processing Systems, vol. 34, pp. 994–1006, 2021.

[4] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[5] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[6] K. Ligett, S. Neel, A. Roth, B. Waggoner, and S. Z. Wu, “Accuracy
first: Selecting a differential privacy level for accuracy constrained erm,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[7] A. El Ouadrhiri and A. Abdelhadi, “Differential privacy for deep and
federated learning: A survey,” IEEE Access, vol. 10, pp. 22 359–22 380,
2022.

[8] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni,
Y. T. Lee, A. Manoel, L. Wutschitz et al., “Differentially private fine-
tuning of language models,” arXiv preprint arXiv:2110.06500, 2021.

[9] P.-Y. Chen, “Model reprogramming: Resource-efficient cross-domain
machine learning,” arXiv preprint arXiv:2202.10629, 2022.

[10] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research
on machine learning applications and trends: algorithms, methods, and
techniques. IGI global, 2010, pp. 242–264.

[11] G. F. Elsayed, I. Goodfellow, and J. Sohl-Dickstein, “Adversarial repro-
gramming of neural networks,” in International Conference on Learning
Representations, 2019.

[12] R. Vinod, P.-Y. Chen, and P. Das, “Reprogramming language models
for molecular representation learning,” in Annual Conference on Neural
Information Processing Systems, 2020.

[13] C.-H. H. Yang, Y.-Y. Tsai, and P.-Y. Chen, “Voice2series: Reprogram-
ming acoustic models for time series classification,” in International
Conference on Machine Learning. PMLR, 2021, pp. 11 808–11 819.

[14] Y.-Y. Tsai, P.-Y. Chen, and T.-Y. Ho, “Transfer learning without know-
ing: Reprogramming black-box machine learning models with scarce
data and limited resources,” in International Conference on Machine
Learning. PMLR, 2020, pp. 9614–9624.

208

[15] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, A. Singh and J. Zhu, Eds., vol. 54. PMLR, 2017,
pp. 1273–1282.

[16] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in
Proceedings of the 36th International Conference on Machine Learning,
vol. 97. PMLR, 09–15 Jun 2019, pp. 4615–4625.

[17] T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation
in federated learning,” in 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[18] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” arXiv preprint arXiv:1812.07210, 2018.

[19] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400–3413, 2019.

[20] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[21] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[22] H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien, I. Mironov, N. Pa-
pernot, and P. Kairouz, “A general approach to adding differential pri-
vacy to iterative training procedures,” arXiv preprint arXiv:1812.06210,
2018.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[24] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[25] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[26] D. Tran, J. Liu, M. W. Dusenberry, D. Phan, M. Collier, J. Ren, K. Han,
Z. Wang, Z. Mariet, H. Hu et al., “Plex: Towards reliability using
pretrained large model extensions,” arXiv preprint arXiv:2207.07411,
2022.

[27] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid
data silos: An experimental study,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 2022, pp. 965–978.

[28] A. Acevedo, A. Merino, S. Alférez, Á. Molina, L. Boldú, and J. Rodellar,
“A dataset of microscopic peripheral blood cell images for development
of automatic recognition systems,” Data in brief, vol. 30, 2020.

[29] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and
B. Ni, “Medmnist v2: A large-scale lightweight benchmark for 2d and
3d biomedical image classification,” arXiv preprint arXiv:2110.14795,
2021.

[30] Z. Luo, D. J. Wu, E. Adeli, and L. Fei-Fei, “Scalable differential privacy
with sparse network finetuning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
5059–5068.

[31] A. Kurakin, S. Chien, S. Song, R. Geambasu, A. Terzis, and A. Thakurta,
“Toward training at imagenet scale with differential privacy,” arXiv
preprint arXiv:2201.12328, 2022.

[32] D. Zhu, X. Wu, and T. Yang, “Benchmarking deep auroc opti-
mization: Loss functions and algorithmic choices,” arXiv preprint
arXiv:2203.14177, 2022.

[33] N. Tripuraneni, M. Jordan, and C. Jin, “On the theory of transfer learn-
ing: The importance of task diversity,” Advances in Neural Information
Processing Systems, vol. 33, pp. 7852–7862, 2020.

209

