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Abstract — Searching for an optimal solution among many nonunique answers provided by transformation optics is critical for many branches of re-
search, such as the burgeoning research on invisibility cloaks. The past decades have witnessed rapid development of transformation optics, and differ-
ent kinds of invisibility cloaks have been designed and implemented.  However,  the available cloaks realized thus far  have been mostly demonstrated
with reduced parameters, which greatly impact the predefined cloaking performance. Here, we report a general design strategy to realize full-parameter
omnidirectional cloaks that can hide arbitrarily shaped objects in free space. Our approach combines a singular transformation with transformation-in-
variant metamaterials. The cloaking device with extreme parameters is implemented using a metallic array structure. In the experiment, two cloak sam-
ples are designed and fabricated, one with nondiscrete cloaking regions and the other with separated hidden regions. Near-unit transmission of electro-
magnetic waves with arbitrary incident angles is experimentally demonstrated along with significantly suppressed scattering. Our work challenges the
prevailing  paradigms  of  invisibility  cloaks  and  provides  deep  insight  into  how  transformation  optics  could  be  harnessed  to  obtain  easily-accessible
metadevices.
Keywords — Transformation optics, Invisibility cloaks, Full-parameter, Omnidirectional.
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 I. Introduction
Electromagnetic (EM) nonuniqueness  is  the  universal  phe-
nomenon  that  more  than  one  combination  of  geometrical
structures  and  material  configurations  can  generate  the
same or a high-fidelity EM response [1]. Despite the multi-
ple solutions for a given EM response, searching for an eas-
ily-accessible solution is an endless goal [2]–[6]. For exam-
ple, the ability to make an object invisible has been a topic
of long-standing interest in both academia and industry due
to its  intriguing applications that  have only been formulat-
ed  in  science  fiction.  From  the  physical  point  of  view,  an
invisibility  cloak  is  designed  to  suppress  the  scattering
fields from a hidden object or reconstruct its scattered light
such that this light is similar to that propagating in the pure
surrounding  background.  A  variety  of  cloaking  methods

have been proposed to reach this goal [7]–[19]. To the best
of our knowledge, however, none of them can achieve ide-
al omnidirectional invisibility for light incident from any di-
rection in  practical  experiments.  For  example,  EM  ab-
sorbers  [7]  can  significantly  suppress  the  scattering  in  the
backward direction.  As such, the target covered by the ab-
sorber  is  effectively  invisible  from  a  single  base  station
radar device,  as  the  echo  signal  from  the  target  is  sup-
pressed.  However,  this  approach  becomes  inefficient  for
bistatic detection, in which multiple base stations allow the
detection of the scattering in the forward direction.

Recently, transformation optics  (TO) and metamateri-
als  have  ignited  unprecedented  enthusiasm  in  realizing
manmade  cloaks  that  bring  a  new  twist  to  conventional
cloaking  techniques  [20]–[31].  The  underlying  mechanism
stems  from the  form invariance  of  Maxwell’s  equations:  a
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coordinate  transformation  does  not  change  the  form  of
Maxwell’s equations and only changes the constitutive pa-
rameters  and  field  values  [32]–[35].  The  TO-based  cloak
can smoothly  guide  the  propagation  of  light  around  a  hid-
den object, rendering the object invisible as if it is not there.
Despite its remarkable property, the design of the TO cloak
is a nonunique problem, e.g., similar cloaking effects can be
achieved with an inhomogeneous transformation [36], [37],
a linear transformation [38]–[40], scattering cancelation [41],
[42],  etc.  Nonetheless,  all  of  these  transformations  require
extremely complex material parameters with anisotropy and
inhomogeneity.  In  practical  implementation,  such complex
material parameters are often realized in a reduced manner
that deteriorates the cloaking performance [43]–[46]. Hence,
the question of whether the complex material parameters of
ideal full-parameter  omnidirectional  cloaks  can  be  imple-
mented with an easily acquired technology naturally arises.

Here, we revisit the theory of TO and show that the in-
herent  transformation  invariance  facilitates  the  design  of
various  full-parameter  metadevices,  such  as  invisibility
cloaks. A facile yet viable concept is that an infinitesimal or
infinity remains  unchanged  under  any  coordinate  transfor-
mation.  Specifically,  the cloak is  designed with a  two-step
transformation, i.e., a singular transformation and an invari-
ant  transformation.  We show that  the cloak parameters  are
independent of the shape of the hidden region, and a metal-
lic  channel  array  structure  is  subtly  designed  to  fulfill  the
full-parameter requirement. As experimental proof, we con-
sider two cloaking situations: multiple hidden objects and a
single  hidden  object.  Using  direct  field  measurements,  we
map the  magnetic  field  distributions  and  demonstrate  sig-
nificant  suppression  of  scattering  from  the  hidden  object
compared to the uncloaked case. Our work brings deep in-
sight into how TO could enable a myriad of practically ori-
ented applications and provide a new avenue for free-space
omnidirectional invisibility  cloaks  that  has  never  been  ex-
perimentally realized.

 II. Principle
Figure 1 illustrates a schematic of the two-step transforma-
tion. To show the generality of our approach for hiding ar-
bitrary objects, we consider the region to be transformed to
have  the  shape  of  a  cloud  (the  outline  is  given  in Figure
1(a)). The initial space is assumed to be vacuum. In the first
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step, the solid region within the outline is compressed into a
small cloud (grey region  in Figure 1(b)), the constitutive
parameters  of  which  are  given  by  and ,
where  is  the  compression  ratio  between  the  large  and
small  clouds.  To  make  the  impedance  of  the  small  cloud
match that of free space, an infinitely thin layer, marked by
the outline  of  the  large  cloud,  is  stretched  into  a  finite  re-
gion  (green  region )  in Figure  1(b).  Since  the  stretching
factor is  infinite,  the  constitutive  parameters  of  green  re-
gion  have  singular  values, , ,  and .
Similar to an optical null region (or near-zero-index materi-
als)  [47]–[50],  green  region  can  concentrate  the  EM
waves  incident  from  all  directions  into  the  inner  region
without  introducing  any  scattering  at  the  outer  boundary.
The  beauty  of  the  singular  values  (i.e.,  infinite  or  zero)  is
that an arbitrary coordinate transformation applied to green
region  will not change the principal values of its constitu-
tive parameters and only rotate its optical axis. This proper-
ty  enables  us  to  conceal  an  object  of  arbitrary  shape  in
green region  by judiciously engineering the orientation of
the optical axis. Hence, in the second step, we apply an in-
variant transformation to green region  and redirect its op-
tical  axis  (according  to  the  transformation)  to  guide  light
around the hidden region, the outline of which is an aircraft
marked  by  the  blue  solid  line  in Figure  1(c). Figure  1(c)
shows  a  ray  trace  diagram  for  when  light  illuminates  the
cloak designed above; i.e., light incident from a random di-
rection is first guided around the aircraft, then concentrated
into the small cloud, and finally returned to its original path
after passing through the cloak. The details of the transfor-
mation are  provided  in  Supplementary  Note  1  of  the  Sup-
porting Information.

 III. Materials and Methods

I

u

The key to realizing this cloak lies in how to design a meta-
material that satisfies the full-parameter requirement for all
regions, especially for region , in which the parameters ac-
quire  both  zero  and  infinite  values.  Utilizing  one-dimen-
sional metallic slit arrays, an equivalent optical null proper-
ty can  be  achieved  at  the  Fabry-Perot  (FP)  resonance  fre-
quency.  However,  this  equivalence  is  valid  only  when  the
optical path length along the  direction is a multiple of the
wavelength. Such a requirement is stringent and oftentimes
complicates the practical implementation of the cloak. Tak-
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Figure 1  (a) Virtual space; (b) Singular transformation; (c) Ray diagram of light passing through the cloak.
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I
ing Figure  1(c)  as  an  example,  the  propagation  lengths  of
EM waves in region  are nonuniform in different  angular
directions,  making  achieving  FP  resonance  for  all  angles
difficult. Although this problem can be solved by judicious-
ly designing the propagation path and/or applying inhomo-
geneous  dielectric  padding  in  the  slits,  both  procedures
complicate the realization of the cloak if the hidden region
takes an arbitrary shape.

I

TE10

εv
a = n2

0− c2/
(
4 f 2h2) n0

c

To address  this  issue,  we  successfully  design  a  meta-
material that  makes  the  optical  path  lengths  of  light  in  re-
gion  uniform along all directions. Figure 2(a) displays the
unit  cell  of  the  extreme  metamaterial,  i.e.,  a  metallic  slab
corrugated with  an  air  channel.  Such  an  air  channel  sup-
ports  the  fundamental  mode,  whose  effective  relative
permittivity is given by , where  is the
refraction index of air,  is the speed of light in free space,

f h
f = εv

a = 0

v
µw

a = 0 εu
a =∞

u
II

w

 is  the  frequency,  and  is  the  height  of  the  air  channel.
Apparently, at the cutoff frequency  5 GHz, . Ad-
ditionally, the  perfect  electric  conductor  (PEC)  walls  pre-
vent  the  propagation  of  EM  waves  along  the  direction,
giving  rise  to  and .  As  a  result,  this  metallic
channel array metamaterial exhibits the nihility property for
tunnelling  of  EM  waves  from  one  side  to  the  other  along
the  direction, irrespectively of the propagation path or op-
tical path length. The material in region  exhibits a mag-
netic response along the  direction, which can be realized
with a split-ring structure, as shown in Figure 2(b). The unit
is composed of four split rings arranged in C4 symmetry on
a  printed  circuit  board  (PCB).  Detailed  designs  of  the  unit
cell  and the retrieval  procedure of the effective parameters
are provided in Supplementary Note 2 of the Supporting In-
formation.
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Figure 2  Realization of the omnidirectional metamaterial cloak. (a) Unit cell of the extreme metamaterial; (b) Unit cell of the nonextreme metamaterial;
(c) Schematic of the designed cloak; (d) Illustrative scenario for the proposed cloak.
 

As  an  experimental  demonstration,  we  fabricate  a
square  cloak  to  validate  its  performance  in  an  anechoic
chamber. A schematic of the cloak is shown in Figure 2(c).
The  cloak  shell  with  metallic  channel  arrays  is  fabricated
using  a  3D  printing  method,  while  the  inner  core  is  filled
with split-ring  units.  These  metallic  channel  arrays  depict-
ed in Figure 2(c) can guide EM waves from the outer space
to the inner core while circulating them around the four hid-
den  regions  at  the  corners.  Notably,  this  design  eliminates
the stringent requirement on the optical path lengths of the
metallic  channels,  thereby greatly  simplifying the practical
implementation of  the  cloak. Figure  2(d) presents  an illus-
trative scenario  for  the  proposed  cloak,  and  the  hidden  re-

gion is flexible since the path can be freely chosen.

 IV. Results

H(z)An experiment is  performed to measure the -field dis-
tributions around the cloak in the anechoic chamber. Figure
3(a)  depicts  the  details  of  the  metallic  channel  arrays,  and
the parameter distribution of the cloak is shown in Supple-
mentary  Note  3. Figure  3(b)  presents  a  schematic  of  the
measurement  system.  A  C-band  (4–6  GHz)  horn  antenna,
located 200 cm from the cloak, is used as the source. A loop
antenna  with  a  radius  of  10  mm  is  used  as  the  receiver.
Both the transmitting and receiving antennas are connected

Revealing the Transformation Invariance of Full-Parameter Omnidirectional Invisibility Cloaks 0020092-3  
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H(z)
to a  vector  network  analyzer  (VNA)  to  obtain  the  ampli-
tude and phase of the measured -field. The loop anten-
na is attached to a mechanical arm of the 3D measurement

xoyplatform, which freely moves the antenna in the  plane
to  detect  the  magnetic  field  point-by-point.  The  scanning
area is 800 mm × 800 mm with a resolution of 4 mm.

 
(a)

(c) (d)

(b)

Abso
rbing m

ate
ria

l

Loop antenna

Antenna

Cloak
H (z)

E (x) k (y)

400

0

−400

y 
(m

m
)

Bare object Cloak RCS

Max

Min

0

(f) (g)

(e)

(h)400

0

−400

y 
(m

m
)

Max

Min

0

−400 0 400

x (mm)

−400 0 400

x (mm)

0

180
150

30

210

240120

30060

330

90 270

0

180
150

30

210

240120

30060

330

90 270

1.0

0.8

0.6

0.4
0.2

1.0
0.8

0.6

0.4

0.2

Cloak
Object

Cloak
Object

 

Figure 3  (a) Distribution of the air gaps inside the metal; (b) Experimental setup; (c)–(d): Simulated distributions at 5 GHz for the bare object (c) and the
cloaked object (d) under normal incidence from the left; (e) RCS result of the simulation; (f)–(g): Experimental magnetic field distributions for the bare
object (f) and the cloaked object (g) under normal incidence; (h) RCS result of the experiment.
 

For  comparison,  we plot  the  simulated magnetic  field
distributions at 5 GHz for the bare object (Figure 3(c)) and
cloaked object (Figure 3(d)) for normal incidence from the
left. The corresponding radar cross-section (RCS) is calcu-
lated,  as  shown  in Figure  3(e).  The  four  metal  squares
strongly  scatter  the  incident  wave,  and  the  designed  cloak
eliminates the scattering.

In the experiments, the working frequency of the meta-
material  cloak  is  optimized  to  be  5  GHz. Figure  3(f)  and
Figure  3(g) show  the  measured  results  for  normal  inci-
dence. Figure 3(f) shows that when EM waves impinge on
the bare object in free space, a shadow forms behind the ob-
ject, whereas the scattering is significantly suppressed when
the  object  is  covered  with  the  cloak,  as  shown  in Figure
3(g), and both the phase and amplitude of the EM waves are

σcloakde/bare = 2πρ|Hc/b
y −Hg

y |2 Hc
y

Hb
y Hg

y

ρ

successfully  reconstructed.  To  quantitatively  demonstrate
the cloaking  performance,  we  also  determine  the  differen-
tial  RCS, defined as ,  where ,

, and  are the magnetic fields measured for the cloaked
object, bare object, and pure background cases, respective-
ly. Here,  is 2 m to fulfill the far-field requirement. Figure
3(h)  demonstrates  that  the  differential  RCS of  the  cloaked
object is significantly suppressed, with a reduction in the to-
tal RCS of more than 80%.

Furthermore,  to  show  the  ability  of  the  cloak  to  hide
arbitrary objects,  another cloak sample is fabricated with a
single  hidden  region  at  the  center. Figure  4(a)  displays  a
schematic  of  the  fabricated  cloak,  where  the  right  panel
shows  the  details  of  the  metallic  channel  arrays. Figures
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4(b), (c) and (d) show the simulated results.  We also mea-
sure the magnetic field distributions and RCS for normal in-
cidence  at  the  angle  of  0°  (Figures  4(e),  (f)  and  (g)).  The
optimum  working  frequency  of  the  metamaterial  cloak
slightly shifts  from 5 GHz to 5.05 GHz in this  case.  Simi-
larly, the cloak well suppresses the scattering from the bare

object, as  demonstrated  by  the  restored  phase  and  ampli-
tude of the EM waves behind the cloak. To show the omni-
directional ability of the cloak, the field distributions for in-
cident angles  of  22° and 45° are  also measured;  please re-
fer to Supplementary Note 4 and Supplementary Note 5 for
more information.
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Figure 4  (a) Mesh grid and schematic of a cloak with another shape; (b)–(c): Simulated distributions at 5 GHz for the bare object (b) and the cloaked ob-
ject (c) under normal incidence; (d) RCS result of the simulation; (e)–(f): Experimental magnetic field distributions for the bare object (e) and the cloaked
object (f) under normal incidence. (g) RCS result of the experiment.
 

We highlight that although we only implement central
and four-corner square hidden areas, the shapes of the cloak
and  hidden  regions  can  be  flexibly  engineered.  When  the
object is of other shapes, we only need to change the orien-
tation  of  the  metallic  channels  to  guide  the  EM  waves
around the  object,  with  the  constitutive  parameters  un-
changed.  This  remarkable  property  makes  our  approach  a
powerful  route  to  design  ideal  TO  cloaks  with  arbitrary
shapes.

 V. Conclusion
In conclusion, we introduce a new path towards the realiza-

tion of  full-parameter  invisibility  cloaks  under  the  frame-
work of TO. It helps conventional TO overcome the dilem-
ma associated  with  extreme  EM  parameters.  As  a  demon-
stration, we design, fabricate and experimentally character-
ize  the  full-parameter  omnidirectional  cloak  in  free  space
for  arbitrary  shapes.  Both  the  simulation  and  experimental
results clearly  demonstrate  the  omnidirectional  perfor-
mance of  the  designed  cloak,  which  validates  the  correct-
ness of our design. This suggests a potential way to achieve
arbitrary shape cloaking and may provide an avenue for de-
veloping other ideal TO devices.  Although we validate the
proof-of-concept at microwave frequencies, the concept can

Revealing the Transformation Invariance of Full-Parameter Omnidirectional Invisibility Cloaks 0020092-5  
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be readily  extended to  higher  frequencies  and other  physi-
cal fields,  such  as  acoustics,  water  waves  and  thermody-
namics.
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