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Abstract — Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS) have been used to characterize the electromagnetism of multi-
slow-moving media that may be accelerated with complex trajectories. Such an approach starts from the integral forms of the four physics laws and is
different from the classical approach of using the Lorentz transformation for correlating the electromagnetic phenomena observed in two inertial refer-
ence frames with relative motion. The governing equations inside the moving object/medium are the MEs-f-MDMS, and those in vacuum are the classic-
al Maxwell’s equations; the full solutions of both reconcile at the medium surface/interface and satisfy the boundary conditions. This paper reviews the
background, physical principle, and mathematical derivations for formulating the MEs-f-MDMS. Strategies are also presented for mathematically solv-
ing the MEs-f-MDMS. The unique advances made by the MEs-f-MDMS have been systematically summarized, as are their potential applications in en-
gineering. We found that the Lorentz transformation is perfect for treating the electromagnetic phenomena of moving point charges in vacuum; however,
for moving objects, the covariance of Maxwell’s equations may not hold, and use of the MEs-f-MDMS may be required if the velocity is low. Finally,
recent advances for treating the boundary conditions at the nanoscale without assuming an abrupt boundary are also reviewed.
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 I. Introduction

S ′

S

Studying  the  electrodynamics  of  a  moving  medium  has
long-lasting interest and importance. For a general medium
that moves with a uniform speed along a straight line, it  is
sufficient to use the standard “differential” Maxwell equa-
tions  (MEs)  and  the  approximate  Minkowski  constitutive
equations for describing its electromagnetic behavior [1]–[3].
Using  the  Lorentz  transformation,  the  electromagnetic
fields observed in a moving frame ( ) can be derived from
a nonmoving observer’s  reference frame ( )  by preserving
the covariance of the MEs [3], [4]. This is the standard and
well-received case  of  special  relativity  in  classical  electro-
dynamics,  which  is  further  shown  in Figure  1(a).  Special
relativity  concerns  the  same  electromagnetic  phenomenon
as  observed  by  two  independent  observers  located  in  two
inertial reference frames that have a relative movement at a
constant  speed,  where the entire  space is  either  vacuum or
filled  with  medium  without  moving  objects  or  boundaries

S ′ v0

S
+q S

S

−v0

+q

B′ E′ B E

[4], [5]. For example, an observer named Alice is in a mov-
ing inertial frame  that moves at a velocity  relative to
the  nonmoving  frame  (Lab  frame).  If  there  is  a  point
charge  that is  at  rest  in the  frame, a second observer
(Bob) in the rest inertial frame  observes only a Coulomb
field. For Alice, the point charge is moving at a relative ve-
locity of , so she will detect not only an electric field but
also a magnetic field as caused by the moving charge  [5],
[6]. The magnetic field and electric field observed by Alice
( , ) and Bob ( , ) are correlated by the Lorentz trans-
formation  under  the  assumption  of  the  covariance  of  the
governing equations.

To  calculate  the  electromagnetic  fields  of  a  moving
medium, the constitutive relations of materials that must be
known and treated as  supplemental  conditions to  solve the
MEs in the relevant matter. Minkowski’s views are ground-
ed on an assumption that the properties of the medium and
the corresponding constitution equations in the rest inertial
frame remain  the  same.  These  views  have  two  require-
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ments:  movement  with uniform speed along a  straight  line
or in an inertial reference frame, and the corresponding con-
stitution  equations  are  predetermined  [3],  [4].  However,  if
the medium moves along a complex trajectory with acceler-
ation and the velocity could be a function of time and posi-
tion for  shape-deformable  materials  or  liquid,  it  is  mathe-
matically  impossible  to  describe  the  electromagnetic  fields
of the moving medium in this case [7]. Such a case occurs
frequently in engineering applications.

x′ = x− v0t t′ = t

E≪ cB
E≫ cB

In  general,  there  are  two  fundamental  approaches  for
developing  the  electrodynamics  of  a  moving  medium  (see
Figure  2).  The  first  method is  through Einstein’s  relativity
and Minkowski constitutive equations, forming the basis of
field theory [3], [8]. The relativity approach works extreme-
ly well for describing the electromagnetic behavior in vacu-
um,  especially  for  the  universe.  The  second  approach  is
based on the Galilean transformation, , ,  in
which  the  space  and  time  remain  independent  [9],  [10].
Therefore,  there  exists  an  absolute  space,  and  all  inertial
frames share a universal time scale, conclusions that are es-
sentially  distinct  from  those  of  special  relativity,  but  it
works  well  for  engineering  applications.  Correspondingly,
Galilean electromagnetism has been developed for describ-
ing the electromagnetic phenomenon of a charged medium
moving at  nonrelativistic  speeds,  which  has  been  devel-
oped  for  over  60  years.  According  to  some  researchers,
Galilean  electromagnetism  is  not  an  alternative  to  special
relativity  but  is  precisely  its  low-velocity  limit  in  classical
electromagnetism  [10].  Galilean  electromagnetics  mainly
includes two quasistatic limits of MEs: the magneto-quasi-
static (MQS)  limit,  which  neglects  the  displacement  cur-
rent, and the electroquasi-static (EQS) limit, which ignores
the magnetic induction [9], [10]. The former is a space-like
limit with , while the latter is a time-like limit with

.  This  second  approach  is  based  on  the  Newton’s

absolute  space-time  point  of  view.  We  recently  developed
Maxwell’s  equations  for  a  mechano-driven  media  system
(MEs-f-MDMS)  (Figure  2)  [11]–[13],  which  describes  the
electromagnetic behavior of media that move along a com-
plex trajectory  with  arbitrary  velocities  by  neglecting  rela-
tivistic effects (Figure 3). Our goal is to further implemen-
tation  of  these  approaches  in  engineering  applications,  as
shown in Figure 1(b).

The  initial  motivation  for  developing  MEs-f-MDMS
was to quantify the output power and electromagnetic radia-
tion  produced  by  a  triboelectric  nanogenerator  (TENG),
which was invented in 2012 for converting mechanical en-
ergy into  electric  energy  via  the  contact-electrification  ef-
fect [14]–[16]. The relative movement of the dielectric me-
dia  and  electrodes  makes  the  generated  electric  fields
change under  an  external  mechanical  excitation.  The  driv-
ing force for the TENG is the displacement current [17]–[21].
Recently, the operation frequency of TENGs has reached as
high as MHz, leading to the production of electromagnetic
radiation [22], [23]. Some experiments have found that the
converted electric power/signal can be transmitted wireless-
ly for a distance of 5 m under sea water, illustrating the pos-
sibility of wireless communication through the electromag-
netic wave of TENGs, which makes us rethink the physical
nature  and  influential  factors  behind  these  electromagnetic
phenomena [24].

Although the  MEs-f-MDMS  was  inspired  by  the  ex-
periments from TENGs, its impact and applications are ex-
pected to extend far beyond TENGs, especially considering
the additional information that can be derived from the near
field  electrodynamics  for  virtual  reality,  control,  sensing
and  feedback  [11],  [13],  [25].  For  the  far  field,  MEs-f-
MDMS can be used to construct electromagnetic images us-
ing  the  phase  information  from  the  reflected  wave  of  a
moving object.

 

(a) Special relativity: in vacuum (b) Maxwell’s equations for a
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Figure 1  Two approaches for dealing with the electrodynamics of a moving medium. (a) Special relativity theory is about the experience of two indepen-
dent observers, Bob and Alice, who are located in different reference frames (Lab frame, Moving frace) that are relatively moving at a constant velocity
and along a straight line. Bob and Alice observe the same electromagnetic phenomenon occurring in vacuum space but with different measurement results.
Such an approach is most effective for describing the electrodynamics in the universe. (b) Maxwell’s equations for a mechano-driven media system (MEs-
f-MDMS) is about one observer who is observing two electromagnetic phenomena, which are associated with two moving media located in the two refer-
ence frames that may relatively move at . In general, the media/objects have sizes and boundaries, and they may move with acceleration along com-
plex trajectories as driven by an external force. Such theory is most effective for engineering applications, but it can go beyond [6]. We need to point out
that special relativity may not be easily adopted for describing the case shown in (b) due to the change in the speed of light across the medium boundary.
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v(r, t)

Ps

In this  review,  we  present  the  background,  motiva-
tions,  physical  approaches,  and  mathematical  approaches
for  developing  the  theoretical  framework  of  the  MEs-f-
MDMS.  Coupled  with  mechanical  force-electric-magnetic
fields, the derived MEs-f-MDMS elucidate the dynamics of
the electromagnetic field for a more general case, in which
the  moving  medium  displays  a  time-dependent  volume,
shape,  and  boundary  as  well  as  an  arbitrary  slow-moving
velocity  field  in a  noninertial  frame.  We  first  intro-
duce an expansion to the displacement vector by consider-
ing  the  relative  motion  of  the  dielectric  objects,  which  is
termed  the  mechanoinduced  polarization ,  and  describe

its  physical  meanings.  Second,  we  derive  the  MEs-f-
MDMS starting from the integral forms of the four physics
laws and the corresponding boundary conditions. Third, we
examine Faraday’s law of  electromagnetic  induction to  in-
clude  Feynman’s  “anti-flux-rule ”  examples  [26],  and  the
most  updated  version  of  the  MEs-f-MDMS  is  presented,
which is systematic, fully logical and consistent with classic-
al Maxwell’s equations. Its physical meaning and associat-
ed  application  strategies  are  clearly  explained.  Fourth,
based  on  recent  work  in  another  field,  we  generalize  the
nanoscale electromagnetic  boundary  conditions  and  inter-
face response functions if classical Maxwell’s equations are
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Figure 2  Two fundamentally different approaches for developing the electrodynamics of a moving media system: special relativity through the Lorentz
transformation for electromagnetic phenomena of point charges in vacuum space and the MEs-f-MDMS directly derived from the integral forms of the
four physics laws in Galilean space and time for the case of moving media with specific sizes and shapes and even acceleration. This is probably the most
effective approach for engineering applications.
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Figure 3  Schematic diagram showing the observation of several electromagnetic events that may move following complex trajectories in the Lab frame
by an observed. The governing equations for each region are stated. The goal of MEs-f-MDMS is to describe the electromagnetic behavior in this system
that occurs frequently in engineering [5], [11].
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applied to  calculate  the  electrodynamics  of  nanoscale  ob-
jects,  such  as  the  plasmonics  of  nanoparticles.  The  nano-
scale boundary conditions are derived by using the integral
Maxwell’s equations  by  constructing  the  dielectric  transi-
tion  layer  across  the  interface  between  the  two  materials.
Finally, key conclusions and potential impacts for the MEs-
f-MDMS  are  summarized,  and  a  summarizing  perspective
is presented.

 II. Moving Medium is  a  Lot More than an Aggre-
gation of Point Charges!

If  a  point  charge  moves  at  an  arbitrary  speed  in  vacuum
without the presence of any boundaries, its electric field and
magnetic  fields  can  be  calculated  using  the  Liénard-
Wiechert  potentials  [27],  [28].  The  electric  field  of  the
moving charge contains two parts: the generalized Coulomb
field that is not dependent on the acceleration (also known
as the velocity field)  and the radiation field that  is  propor-
tional  to  the  acceleration.  Note  that  only  the  acceleration
fields  represent  true  radiation.  The free  charge  distribution
and the instantaneous current produced by a group of mov-
ing point charges are represented by
 

ρf =
∑

i
qiδ(r− ri(t )) (1a)

 

Jf =
∑

i
qivi (t)δ(r− ri(t )) (1b)

ri (t) vi (t)
qi

where  and  are  the  instantaneous  position  and
moving velocity of  the point  charge .  The distribution of
the field  in  space  can  be  calculated  by  substituting  equa-
tions (1a) and (1b) into the Liénard-Wiechert potentials.

A  point  charge  is  just  a  point  without  volume  and
boundary.  Lorentz  transformation  is  ideal  for  treating  the
electrodynamics of moving point charges in vacuum. How-
ever,  a  medium is not  just  an aggregation of point  charges
but is composed of atoms with special symmetry, geometry,
shape  and  size.  Due  to  its  unique  crystal  structure  and
chemistry,  a  medium  typically  has  dielectric,  electrical,
magnetic  and  elastic  properties.  Therefore,  it  has  different
electrical, optical, thermal and mechanical properties. For a
moving  medium that  has  electrostatic  charges  on  surfaces,
the approach of Liénard-Wiechert  potentials  cannot be uti-
lized to calculate its electromagnetic fields. This is a reason
why we  expand  the  MEs  to  study  the  electromagnetic  be-
havior  of  the  motion  media/object,  to  yield  a  system  that
could be time- and even space-independent.

P M

To  represent  the  characteristics  of  media/materials  in
electromagnetic theory,  electromagnetic  excitation  is  de-
scribed by electric ( ) and magnetic ( ) polarizations, re-
spectively  and  was  first  developed  over  a  century  ago.
Deepening  our  understanding  of  the  electrodynamics  of
moving media is an important research topic that is general-
ly advanced through the macroscopic MEs and Minkowski
material  equations  [1]–[3].  In  general,  inhomogeneities  of
the velocity of a moving medium, if it is shape deformable
or in a liquid state, generate an inhomogeneity of the refrac-

ε µ
σ

tive index. If a medium is in a static state, the propagation
of electromagnetic waves passing through it is governed by
three  parameters:  permittivity  ( ),  permeability  ( ),  and
conductivity  ( ). However,  each  of  these  parameters  de-
pends heavily on the frequency of the electromagnetic wave
we  are  considering.  Electromagnetic  waves  with  different
frequencies travel at the same speed in vacuum, but they in-
teract  with  media  differently  due  to  dielectric  dispersion.
Therefore,  the  variations  in  the  permittivity,  permeability
and/or refractive index lead to the scattering of electromag-
netic radiation of the medium.

 III. Some Considerations  About  the  Special  Rela-
tivity for the Medium Case

 1. Mechanoinduced polarization
Special  relativity  was  proposed  based  on  two  hypotheses:
i) The laws of physics take the same form in every inertial
frame; and ii) The speed of light in vacuum is the same in
every inertial frame. Special relativity is the theory of how
different observers,  moving  at  constant  velocity  with  re-
spect  to  one  another,  report  their  experience  of  the  same
physical  event.  General  relativity  addresses  the  same issue
for observers whose relative motion is completely arbitrary.
Therefore,  the Lorentz transformation  is  an  exact  calcula-
tion if all of the electromagnetic phenomena are in vacuum.

c
A  key  quantity  in  the  Lorentz  transformation  is  the

speed  of  light  because  this  parameter  unifies  space  and
time as follows:
 

x′ = γ0 (x− v0t) , y′ = y, z′ = z (1c)
 

t′ = γ0

(
t− xv0/c0

2
)

(1d)
 

γ0 = 1/
(
1− v0

2/c0
2
)1/2

(1e)

or
 

x = γ0 (x′+ v0t′) , y = y′, z = z′ (2a)
 

t = γ0

(
t′+ x′v0/c0

2
)

(2b)

c0If  all  of  the  moving  point  charges  are  in  vacuum, 
should  be  the  speed  of  light  in  vacuum,  and  the  situation
should  be  easily  described  because  a  point  charge  has  no
volume and boundary, and the system can be represented by
a set of points with charge density and related current [27],
[29]. The resulting MEs are covariant because of the use of
the Lorentz transformation.

cm = c0/n n

However, the situation is complex if there is medium.
If  the entire  space is  filled with a  uniform medium so that
the speed of light would be , where  is the refrac-
tion index, the corresponding Lorentz transformation inside
the medium would be [30]
 

x′m = γm (x− v0t) , y′m = y, z′m = z (3a)
 

t′m = γm

(
t− xv0/cm

2
)

(3b)

  0020171-4 Electromagnetic Science, vol.1, no.2
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γm = 1/
(
1− v0

2/cm
2
)1/2

(3c)

or
 

x = γm
(
x′m+ v0t′m

)
, y= y′m, z = z′m (4a)

 

t = γm

(
t′m+ x′mv0/cm

2
)

(4b)

Equations (3) and (4) hold if  the medium is isotropic,
and  the  dielectric  constant  and  magnetic  permittivity  are
constants, so that the speed of light in the medium is inde-
pendent of the observation frame.

x′ > 0 S ′

v0 x′ < 0

Now we consider  another  case,  in  which the  space  in
the  zone in the moving frame  is filled with a uni-
form  and  linear  dielectric  medium,  and  it  is  moving  at  a
constant velocity . The zone at  is vacuum. How the
Lorentz  transformation would be constructed to  ensure  the
space  and  time  continuous  at  the  medium  boundary?  In
practical  engineering  applications,  where  part  of  the  space
is filled with dielectric media/objects and part is a vacuum,
what would  be  the  correct  expression  of  Lorentz  transfor-
mation?  How  do  we  express  the  unification  of  space  and
time in such a case? These questions are investigated here.

r′m, t′m
x′ > 0

If  we  consider  the  dilation  of  time and  contraction  of
length in relativity, an expanded Lorentz transformation for
the space and time ( ) inside the moving medium in the

 zone could be formulated as
 

x = γ0(x′m+ v0t′m), y = y′m, z = z′m (5a)
 

t = γ0(t′m+ x′mv0/cm
2) (5b)

or
 

x′m = γm
2 (x− v0t)/γ0, y′m = y, z′m = z (6a)

 

t′m = γm
2(t− xv0/cm

2)/γ0 (6b)

S ′ +x
v0

x′m = 0

cm→ c0 c0→ cm

v0→ v0

S ′

S

Here, we also assume that  is moving along -axis
at a speed of . Equation (5) not only satisfies the continu-
ation of the space and time at the  boundary but also
approaches the associated standard Lorentz transformations
by replacing  and  for the cases of the entire
space being vacuum and filled with a medium, respectively.
However,  the  symmetry  preserved  between  equation  (1)
and equation (2) is not maintained in (5) and (6). Specifical-
ly, it does not hold by simply replacing ! Because of
the  presence  of  the  medium  boundary.  Therefore,  in  the
moving object case, the covariance of the MEs may not be
preserved  for  correlating  the  electromagnetic  phenomenon
observed in the  frame (the frame in which the medium is
stationary) with that observed in the  frame (the observer’s
frame) because of the change in space symmetry by the ob-
ject  boundaries  and  dielectrics  (see Figure  1(b))  [31].  The
validity of equations (5) and (6) remains to be further stud-
ied, and it is just a proposal here.
 2. Are Maxwell’s equations covariant for a moving me-

dia/object system?
The above discussions  may indicate  that  the  covariance  of

the MEs do  not  hold  if  there  is  a  complex  media  distribu-
tion in space (see Figure 1(b)) [31]. As indicated in [31], it
would be correct to state that Maxwell’s equations perfect-
ly  fit  to  be  Lorentz-covariant  if  the  point  charge  related
electromagnetic  phenomena  and  observations  are  made  in
vacuum. Otherwise, the covariance may not hold.

q

Furthermore, we  now  consider  the  constitutive  rela-
tion in a  realistic  medium. If  we ignore the dependence of
dielectric permittivity on the momentum transfer term , for
a simple linear medium, in the frequency space, we obtain
 

D(r,ω) = ε (ω) E(r,ω) (7a)

In time  space,  and  using  the  inverse  Fourier  transfor-
mation, equation (7a) becomes [32]
 

D(r, t) =
w ∞
−∞
ε (t− t′) E (r, t′)dt′ (7b)

D E
D (r, t) = εE(r, t) ε

ω

ε (ω)

This means that if we consider the anisotropic proper-
ty of a dielectric medium and its frequency dependence, the
constitutive  relationship  between  the  displacement  vector

 and  the  electric  field  cannot  be  simply  treated  as
 unless  is a constant. Therefore, as a gen-

eral case, the covariance of the MEs holds exactly in vacu-
um but may not hold exactly in a dielectric medium unless
the medium’s property is independent of the excitation fre-
quency , which  means  that  there  is  no  dispersion  depen-
dence [3],  [4],  [33]. Such cases may not be true for apply-
ing  to  practical  materials.  For  an  inhomogeneous  material,
such as ferroelectric or piezoelectric crystals,  the dielectric

 is described using a tensor, depending on the orienta-
tion  of  the  medium.  Therefore, the  covariance  of  the  MEs
holds exactly for the electromagnetic phenomena occurring
in vacuum.

 IV. Medium Polarization

 1. Polarization induced by an electric field

P

It is well established that a dielectric material can be polar-
ized if it is placed in an external electric field. The general-
ized medium polarization  is an average description of the
macroscopic structure  for  a  linear  medium,  which  is  ex-
pressed as
 

P = ε0χE (8)

ε0 χ

E

ρb = −∇ · P
σb = −P · n̂

where  and  represent  the  permittivity  of  vacuum  and
the electric susceptibility of the medium, respectively. Here,

 is the  total  local  electric  field.  The  potential  of  a  polar-
ized  dielectric  is  the  same  as  that  created  by  a  volume
charge  density  plus  a  surface  charge  density

 [27], [29].
 2. Mechanoinduced polarization
In  classical  electromagnetism,  the  medium  boundary  and
shape  are  time-independent,  but  the  whole  medium/object
can move with a uniform speed along a straight line. In en-
gineering  applications,  media  can  move  with  acceleration

Recent Progress on the Maxwell’s Equations for Describing a Mechano-Driven Medium System with Multiple... 0020171-5  
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along complex trajectories, and their shapes may vary with
time.  The  surfaces  of  the  media  may  have  electrostatic
charges, so their relative movement may introduce an addi-
tional polarization  term.  Therefore,  we  need  to  find  an  ef-
fective approach to describing such a case.

P

Ps

Taking  the  triboelectric  nanogenerator  (TENG)  as  an
example,  the  device  needs  at  least  one  moving  medium to
generate electrostatic charges caused by contact-electrifica-
tion and excited  by an external  mechanical  force.  As a  re-
sult,  the  media  will  be  polarized  due  to  the  electric  field
generated  by  the  electrostatic  charges.  This  polarization  is
essentially different from the  that arises due to an exter-
nal electric field. In fact,  variations in the moving medium
object and medium shape lead to not only a local time-de-
pendent  charge  density  but  also  a  local  “virtual ”  electric
current density.  To account  for  these  phenomena,  an  addi-
tional term  termed mechano-driven polarization is intro-
duced [11]:
 

D = ε0E+ P+ Ps = ε0(1+χ)E+ Ps (9)

ε0E

P

Ps

Ps

Ps

where  the  first  term  is  due  to  the  field  created  by  the
free charges, which is the field for exciting the media. The
vector  is  the  medium  polarization,  and  it  is  responsible
for the screening effect of the medium to the external elec-
tric field. The added term  is mainly due to the existence
of  surface  electrostatic  charges  and  the  time  variation  in
boundary shapes. The charges that directly contribute to the
term  are  neither  free  charges  nor  polarization-induced
charges; instead,  they  are  intrinsic  surface-bound  electro-
static charges as introduced by external mechanical trigger-
ing to the media.  We note that  since the research object  is
not considered a point charge, the existence of a new term,

, which is also called the Wang term, needs to be consid-
ered.  This  term  applies  to  both  isotropic  media  and
anisotropic media and is necessary for developing the theo-
ry  of  TENGs  [6],  [21].  The  corresponding  space  charge
density is
 

ρs = −∇ · Ps (10a)

σs = n · Psthe  surface  electrostatic  charge  density  is ,  and
the  displacement  current  density  contributed  by  the  bond
electrostatic charges owing to medium movement is
 

J s =
∂

∂t
Ps (10b)

D′For easy notation, we define  to represent the field-
induced displacement vector term
 

D′ = ε0E+ P (11a)

Please note  the  prime  does  not  stand  for  a  moving  refer-
ence frame  as  in  classical  electrodynamics!  The  total  dis-
placement vector is
 

D = D′+ Ps (11b)

PsThe calculation of  is as reported previously [6], [21].

 V. Deriving  Maxwell’s  Equations  for  a  Mechano-
driven System

Two methods  have  been  developed  to  address  the  electro-
dynamics  of  moving  media:  relativistic  electrodynamics
and Galilean electromagnetism [1]–[3], [9], [10]. Using the
Lorentz  transformation,  the  electromagnetic  behavior  of  a
moving medium is described using classical MEs. Howev-
er, the preconditions are that the velocity of the moving me-
dia is uniform in the inertia frame, and the constitutive rela-
tionships of the moving media are known. Minkowski’s ap-
proach is taken as the formal method for a moving medium.
The  second  method  uses  Galilean  Electromagnetism.  Note
that Galilean electromagnetism is not an alternative to spe-
cial relativity but is precisely its low-velocity limit in classi-
cal  electromagnetism  [10]. Under  quasistatic  approxima-
tion,  this  method  is  utilized  for  magnetic-dominated  and
electric-dominated systems.  Similar  to  Minkowski  electro-
dynamics, this approach applies to the case in which the ob-
ject moves with uniform speed along a straight line.

v≪ c0

However, in practice, the medium always moves with
acceleration,  or  more  generally,  several  media  move  at
complex velocities  along  various  trajectories  in  a  noniner-
tial frame, and some efforts focus on the scattering, reflec-
tion and transmission of electromagnetic waves from slow-
moving media [34]–[36]. To develop an effective approach
for  solving  for  the  electromagnetism  of  moving  objects,
we  start  from  the  integral  forms  of  the  four  physics  laws:
a)  Gauss’s  law  for  electricity,  b)  Gauss’s law  for  mag-
netism,  c)  Faraday’s  electromagnetic  induction  law  (Lenz
law), and d) Ampere-Maxwell law. Since the moving veloc-
ity  of  the  object  is  and  the  physical  dimension  we
consider is much smaller than the distance traveled by light
within the  duration  of  the  event,  the  Galilean  transforma-
tion is an excellent approximation [37]. In such a case, we
can neglect  the  relativistic  effect  so  that  the  final  formula-
tion  can  be  more  amenable  for  applying  to  engineering
problems [6], [11].
  ww

⃝
S

D′ ·ds =
y

V
ρfdr (12a)

  ww
⃝

S
B ·ds = 0 (12b)

  z
C

E ·dL = − d
dt

x
S
B ·ds (12c)

  z
C

H ·dL =
x

S
Jf ·ds+

d
dt

x
S

D′ ·ds (12d)

ρf Jf

B D′
S C

where  is  the  density  of  free  charges  in  space,  and  is
the current  density.  The surface integrals  for  and  are
for a surface  that is defined by a closed loop , and they
are the  magnetic  flux  and  displacement  field  flux,  respec-
tively. The integral forms are provided based on the physics
phenomena that have been observed experimentally: the to-
tal electric flux through a closed surface is the total charges
contained  inside  (equation  (12a));  the  total  magnetic  flux
through a  closed  surface  is  zero  (equation  (12b));  the  de-
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creasing rate of the magnetic flux through an open surface
is the circulation of the electric field around its looped edge
(equation (12c));  the  total  electric  current  through an  open
surface  plus  the  changing  rate  of  the  electric  flux  through
the surface is the circulation of the magnetic field around its
looped edge (equation (12d)).

There are two more laws to consider. The charge con-
servation law expressed as [11]
  ww

⃝
S

Jf ·ds+
d
dt

y
V
ρfdr = 0 (13)

q
v E

B

indicates that the total current flowing into a closed surface
equals the changing rate of the total charges inside. The fi-
nal law is the Coulomb-Lorentz force,  which describes the
force  experienced  by a  particle  with  charge  and  moving
velocity  in the presence of an electric field  and a mag-
netic field , and it can be expressed as
 

F = q(E+ v×B) (14)

Maxwell’s  equations  (12),  the  continuity  equation  of
charge  (13),  and  the  Coulomb-Lorentz  force  equation  (14)
establish the foundation of classical electrodynamics.

S

S E(r, t) B(r, t)
H(r, t) D′(r, t) ρ(r, t) Jf(r, t)

The  conditions  for  the  classical  Maxwell’s  equations
to hold exactly are that the boundaries and distribution con-
figurations of the dielectrics in space are fixed or time-inde-
pendent  [28],  [29].  However,  such  a  condition  is  rarely
mentioned in  textbooks,  which  might  lead  to  a  misunder-
standing that the MEs can be utilized to describe any and all
of the  electromagnetic  phenomena.  For  the  electrodynam-
ics  of  a  moving  medium,  the  primary  method  is  to  solve
Minkowski’s equations that were derived based on the prin-
ciple  of  relativity.  However,  this  method  requires  that  the
constitutive relationships  of  the  moving  media  are  rede-
fined,  and  these  equations  hold  only  for  the  case  that  the
media is moving at a constant velocity along a straight line
[1]–[3].  In  a  more  general  case,  a  medium/object  moves
along a complex trajectory or there are several different me-
dia that move at complex velocities along various trajecto-
ries. Solving  the  above  problems is  extremely  difficult  us-
ing the Lorentz transformation, which describes the electro-
magnetic fields  from  the  comoving  frame  to  the  observa-
tion frame via a specific coordinate transformation by cor-
relating space and time. Our goal is to express all of the ob-
served fields in frame  with a systematic consideration of
the movement  of  the objects  and their  interactions without
going  through  the  coordination  transformation  so  that  the
fields in frame  can be directly calculated: , ,

, , , .  Using  the  flux  theorem  in
field theory [6], [11]:
  ww

⃝
S

D′ ·ds =
y

V
ρfdr (15a)

  ww
⃝

S
B ·ds = 0 (15b)

  z
C

E ·dL = −
x

S

∂

∂t
B ·ds+

z
C
(v×B) ·dL (15c)

 

z
C

H ·dL=
x

S
(Jf+ρfv) ·ds+

x
S

∂

∂t
D′ ·ds−

z
C
(v×D′) ·dL

(15d)

v(r, t)where  is the velocity field of the moving medium that
is  time  and  space  dependent.  Using  Stokes’s  theorem  and
divergence theorem,  the  governing equations  for  the  space
inside the moving medium are provided in differential form
as follows:
 

∇ · D′ = ρf (16a)
 

∇ ·B= 0 (16b)
 

∇× [E− v×B] = − ∂
∂t

B (16c)
 

∇× [H+ v× D′] = Jf+ρfv+
∂

∂t
D′ (16d)

v×B
v× D′

v

The results  are  consistent  with  those  reported  previ-
ously [34], [35]. It is important to note that the terms 
and  are  the  sources  of  generated  electromagnetic
waves due to media movement even if  their  change rate is
zero.  This  observation  is  new,  and  its  application  will  be
explored in  the  near  future.  Note  that  if  the  velocity  de-
creases to zero, equations (16a)–(16d) become the classical
Maxwell’s  equations  [38]. For  the  space  outside  the  mov-
ing medium, the terms containing  drop out, and equations
(16a)–(16d)  resume  the  standard  format  of  the  MEs.  Both
sets  of  mathematical  solutions  inside  and  outside  of  the
medium satisfied the boundary conditions, which can be de-
rived from equations (15a) and (15d) [6], [11]
 

[D′2− D′1] · n= σf (17a)
 

[B2−B1] · n= 0 (17b)
 

n× [E2−E1− v× (B2−B1)] = 0 (17c)
 

n× [
H2−H1+ v× (

D′2− D′1
)]
= Ks+σfvs (17d)

ρf Ks

vs

n

where  represents  the  surface  free  charge  density,  is
the surface current density,  is the moving velocity of the
media parallel to the boundary surface, and  represents the
surface normal direction.

The charge conservation law is given by
 

∇ · (Jf +ρfv)+
∂

∂t
ρf = 0 (18)

ρfvwhere  represents the local current generated by the free
charges owing to medium movement.

Ps

D′ D=D′+Ps

In  addition,  the  deformation  of  the  medium geometry
and  medium  movement  produce  a  time-dependent  charge
density  and  an  effective  electric  current  density,  which  is
represented by the mechano-driven polarization . We re-
place  with  in equations (16a)–(16d) [6], [11]
and have
 

∇ · D′ = ρf −∇ · Ps (19a)
 

∇ ·B = 0 (19b)
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∇× (E− v×B) = − ∂
∂t

B (19c)
 

∇× [H+ v× (D′+ Ps)] = Jf +ρfv+
∂

∂t
[D′+ Ps] (19d)

v× (D′+ Ps)

Using these equations, the coupling between mechani-
cal, electrical and magnetic performances and behaviors of
the  system  can  be  systematically  described.  In  (19d),  the
term  is the  local  induced  magnetic  field  be-
cause of medium movement in the local electric field.

 VI. Maxwell’s  Equations  for  a  Mechano-Driven
System  Including  Feynman’s “Anti-flux ”  Ex-
amples

The  mathematical  expression  of  Faraday’s law  of  electro-
magnetic induction is the flux rule: the reducing rate of the
magnetic flux is the electromotive force (emf for short, dis-
tinguished from EMF, namely electromagnetic field). It can
be expressed as
 

ξemf = −
dΦB

dt
= − d

dt

x
s(t)

B ·ds (20)

∇×E = − ∂
∂t B F =

q(E+ v×B)

Equation (20) is the flux rule, which can be used to de-
scribe  most  of  the  electromagnetic  phenomena,  especially
for  power  generation  and  electric  motors.  However,  there
are  a  few cases  that  appear  to  describe  an “anti-flux-rule,”
as presented by Feynman [26]. Figure 4 shows such a case
in  which  the  circuit  contains  a  rotating  metal  disc  with  a
sliding  needle  at  its  edge.  Once  the  disc  rotates,  the  total
magnetic  flux  that  passes  through  the  circuit  does  not
change, so there should be no emf according to  (20), but an
emf does exist experimentally. This paradox was not clear-
ly explained by Feynman. In his textbook, he said, “It must
be applied to circuits in which the material of the circuit re-
mains the same. When the material of the circuit is chang-
ing, we must return to the basic laws. The correct physics is
always  given  by  the  two  basic  laws , 

”  [26].  Therefore,  a  more  detailed  explanation
is missing.
 

B0

ω

(a)

B0

ω
P1

OO

t=0 t=t

(b)

P2 P1

 

P1

P2

Figure 4  An example  of  the  “anti-flux  rule”  as  first  presented  by  Feyn-
man. A rectangular thin wire circuit that is stationary in a uniform magnet-
ic field; one end slides on the edge of a rotating conductive disc.  (a) The
point  charge  starting  moving  from  at t =  0,  and  (b)  the  point  charge
reaches point  at t = t.
 

The “anti-flux-rule”  is  likely attributed to  the  path of
the  unit  charge  moving  in  the  disc  (as  indicated  by  a  blue
dashed  line)  deviating  from  the  original  rectangular  “ cir-

P1

t = 0 P2

t = t

cuit” (as indicated by the black dashed line in Figure 4(b))
along which the integral for calculating the magnetic flux is
performed.  As  the  charge  enters  the  disc  at  point  at  its
edge at , it moves along the radial direction to point 
as the disc rotates to ; its moving path is indicated by a
blue  dashed  line.  Therefore,  the  area  defined  by  the  two
dashed lines in Figure 4(b) is the effective area of change in
magnetic flux. This change in flux is due to the deviation of
the  unit  charge transport  path  from that  of  the  geometrical
path  as  the  disc  rotates.  This  is  caused by the  existence of
the large metal disc in the circuit, the rotation of which pro-
duces the observed emf. To include this argument officially
in the equation, we first focus on the expansion of Faraday’s
law.

If there is no change in the circuit, using the flux theo-
rem in field theory, equation (20) can be mathematically de-
rived as [5], [12]
 

ξemf = −
d
dt

x
s(t)

B ·ds = −
x

s(t)

{
∂

∂t
B−∇× [v×B]

}
·ds

(21)

v

v

where  is  the  velocity  at  which  the  boundary  surface
moves. Equations (20) and (21) are supposed to be mathe-
matically identical  due  to  the  definition  of  the  looped  cir-
cuit.  However,  equation  (20)  applies  to  the  case  in  which
there is no change in the closed circuit; for instance, there is
no relative sliding between the wire and the disc. In (21), 
means  the  moving  velocity  of  the  circuit,  and  it  allows  a
flexible  or  changeable  contact  between  the  wire  and  the
disc.  Most  importantly,  if  the  circuit  is  not  a  closed  loop,
equation (21) should be used, but (20) cannot be utilized.

There are two integral  forms of Faraday’s law: one is
given in (15c), and the other form is written as
  z

C
E′ ·dL = − d

dt

x
C

B ·ds (22)

E′
dL

E′ E B

where  represents  the  electric  field  in  the  rest  frame  of
each segment  of the path of integration. We now need to
express  in terms of the fields  and  in the Lab frame.
Using equation (21) into (22), it gives
  z

C
(E′− v×B) ·dL = −

x
s(t)

∂

∂t
B ·ds (23)

q

∂

∂t (mv)
m

When  the  medium  moves  with  an  acceleration,  the
electromagnetic  behavior  of  the  moving  medium  becomes
very complex. We take a unit charge  as an example. If the
medium that carries the unit charge experiences an acceler-
ation  motion,  the  force  acting  on  the  unit  charge  includes
the  inertia  force  in  addition  to  the  electromagnetic
force, where  is the mass of the point charge. In this case,
we have [5]
 

qE′− ∂
∂t

(mv) = qE+qvt ×B (24a)

vtwhere  is  the  total  moving  velocity  of  the  unit  charge  in
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S vt

v
S ′

vr

the  frame.  can be split into two components for a gen-
eral case (see Figure 5): moving velocity  of the origin of
the  reference  frame ,  which  is  only  time-dependent  and
can be viewed as a rigid translation, where  is the relative

S ′
moving velocity of the point charge with respect to the ref-
erence frame , which is space and time dependent.
 

vt = v (t)+ vr(r, t) (24b)

 

Δ

Δ

Δ

Δ

·D′=ρf

In vacuum: Inside medium:

·B=0

×E=−

×H=Jf+

Lab frame

S

∂
∂t
B

∂D′
∂t

·D′=ρ
f
−

·B=0

×(E+vr×B)=−

×[H−vr×(D′+P
s
)]=J

f
+ρ

f
v+

Translation velocity of the origin of the S' frame: v (t)

Relative rotation velocity of the object in the S' frame: vr (r, t)

Mechano-polarization due to relative motion of the multi-objects in the S' frame: P
s

Solutions to meet

boundary conditions

S′
Moving frame

·P
s

Δ Δ
Δ
Δ

Δ

∂
∂t
B

∂
∂t

[D′+P
s
]

 

v (t) vr (r, t)
Ps

Figure 5  We use a flying disc to illustrate the applications of the MEs-f-MDMS for engineering purposes. The electromagnetic behavior inside the medi-
um (the moving disc) is the MEs-f-MDMS, while that in vacuum is the classical ME; the solutions of the two sets of equations meet the boundary condi-
tions at the medium interfaces/surface. is the moving velocity of the origin of the S’ reference frame;  is the relative movement velocity of the
object in the moving reference frame;  is the polarization introduced due to the relative movement of the objects in the moving reference frame if there
are more objects to be considered.
 

vrThe space dependence of  represents the shape defor-
mation and/or rotation of the medium, and the time depen-
dence represents  the  local  acceleration.  Substituting  equa-
tions (24a) and (24b) into (23), we obtain
  z

C

[
E+ vr ×B+

1
q
∂

∂t
(mv)

]
·dL = −

x
s

∂

∂t
B ·ds (25)

There are two cases considered here [5]:

vr dL [vr×B] ·dL
1) If a circuit is a thin wire so that the moving velocity

 is  parallel  to  the  integral  path ,  the  term 
vanishes, equation (25) leads to the standard MEs.

vr

dL vr×B

2)  If  the  medium  is  a  large  piece  so  that  the  moving
velocity  inside the medium is not parallel to the integral
path , the  term remains. This describes the case on
which  we  are  focused  in  the  following  discussions.  Using
the Stokes theorem, equation (25) becomes
 

∇×
[
E+ vr ×B+

1
q
∂

∂t
(mv)

]
= − ∂
∂t

B (26a)

S ′

v (t) ∇×
(
∂

∂t (mv(t))
)
= ∂
∂t [m∇×v(t)] =

0

Since  the  movement  of  the  origin  of  the  reference
frame  that is affixed to the moving medium can be treat-
ed as a rigid translation (thus it is only time dependent), the
expression for  is given as 
,  so  that  the  inertia  force  term  drops  out  naturally  in  the

differential equation, allowing us to obtain [5]
 

∇× (E+ vr ×B) = − ∂
∂t

B (26b)

CIn equation (25), when the integral path  is intercept-

vr ×B

vr

v(t)

ed by a bulk size medium, inside which the practical mov-
ing velocity  of  the  point  charge  may not  be  parallel  to  the
integral path within the conductive medium, the term 
appears in the equation. It should be noted that the relative
velocity  of the charge inside a medium may not be small
in  comparison  to  the  moving velocity  of  the  reference
frame.

∂

∂t B = 0
∇×E = −∇× (vr ×B)

∇×E = 0
E = 0

Now, we consider the case presented in Figure 4. If the
magnetic field is time-independent, , from (26b), we
have , which  means  that  the  move-
ment of the medium in a magnetic field generates an elec-
tric field, the calculation is in agreement with experimental
observations.  However,  the  situation  is  different  if  we  use
the  classical  MEs;  for  which ,  indicating  that

 in apparent disagreement with experimental observa-
tions. Such discrepancy is because medium motion was not
considered in classical MEs! This is another reason that we
need to expand the MEs.

Equation  (26b)  is  the  expanded  format  of  Faraday’s
law of electromagnetic induction,  and it  includes the cases
of Feynman’s “anti-flux-rule” examples. Similarly, the ex-
pansion  of  Ampere-Maxwell’s law  for  a  macroscopic  me-
dia system that  moves  with  acceleration  could  be  straight-
forward.  If  we  consider  the  symmetry  between  electricity
and magnetism as well as the equivalence of the two fields
and uses (19d) as an example, Ampere-Maxwell’s law can
be expanded as
 

∇× (H− vr × D) = Jf +ρfv+
∂

∂t
D (27)

Therefore, the electrodynamics inside the media can be
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described by [5], [13]
 

∇ · D′ = ρf (28a)
 

∇ ·B = 0 (28b)
 

∇× (E+ vr ×B) = − ∂
∂t

B (28c)
 

∇× (H− vr ×D′) = Jf +ρfv+
∂

∂t
D′ (28d)

The above equations are  the MEs-f-MDMS for  a  me-
dia  system  that  moves  with  an  arbitrary  but  low  velocity
even with  acceleration.  If  motion-induced  mechanopolar-
ization  is  considered,  the  above  equations  are  transformed
into [5], [13]
 

∇ · D′ = ρf −∇ · Ps (29a)
 

∇ ·B = 0 (29b)
 

∇× (E+ vr ×B) = − ∂
∂t

B (29c)
 

∇× [H− vr × (D′+ Ps)] = Jf +ρfv+
∂

∂t
[D′+ Ps] (29d)

v(t) vr = vr (r, t)where  is  only  time  dependent,  but  is  more
general. Note that equations (29a)–(29d) are regarded as the
general  MEs for  shape-deformable,  mechano-driven,  slow-
moving media at an arbitrary velocity field. This full MEs-
f-MDMS  describes  the  coupling  among  three  fields:
mechano–electricity–magnetism. The law of charge conser-
vation is
 

∇ · [Jf +ρfv
]
+
∂

∂t
ρf = 0 (29e)

v
S ′

S vr

S ′ Ps

S ′

The physical meaning of each term in equation (29e) is
explained as follows (see Figure 5), where  is the moving
velocity  of  the  origin  of  the  moving  reference  frame  in
the rest frame ;  is the relative movement velocity of the
medium  in  the  frame;  is  the  polarization  introduced
due to the relative movement of the objects in the  frame
if there is more than one object present.

We  note  that  the  MEs-f-MDMS  is  utilized  for  the
space inside of a moving medium, while outside the medi-
um in  vacuum space,  the  governing  equation  is  the  classi-
cal  MEs (Figure 5). The solutions of the two sets of equa-
tions meet at  the media boundaries as governed by bound-
ary conditions [5], [13]
  [

D′2− D′1+ Ps2− Ps1
] · n= σf (30a)

 

[B2−B1] · n= 0 (30b)
 

n× [E2−E1+ vr2×B2− vr1×B1)] = 0 (30c)
 

n× [
H2−H1−vr2×

(
D′2+Ps2

)
+vr1×

(
D′1+Ps1

)]
= Ks+σfvs

(30d)

c0

In addition, we can neglect consideration of the speed
of light in the medium exceeding that of the speed of light
in vacuum .

 VII. Conservation of Energy
The  conservation  of  energy  in  the  mechano-electric-mag-
netic coupling  system  is  next  studied.  Starting  from  equa-
tions  (29a)–(29d),  the  energy  conservation  process  in  this
mechano-electric-magnetic coupling system is given by [5],
[13]:
 

− ∂
∂t

u−∇ ·S =E · Jf +ρfv ·E+ {H · [∇× (vr ×B)]

+E · [∇× (vr × (D′+ Ps))]} (31)

Swhere  is the Poynting vector, representing the energy per
unit time per unit area transported by the fields
 

S = E×H (32)

uand  is  the  energy  volume density  of  the  electromagnetic
field, which can be given by
 

∂

∂t
u = E · ∂D

∂t
+H · ∂B

∂t
(33)

Equation (31)  indicates  that  the  decrease  in  the  inter-
nal  electromagnetic  field  energy  within  a  volume  plus  the
rate of electromagnetic wave energy radiated out of the vol-
ume surface  is  the  rate  of  energy  done  by  the  field  on  the
external  free  current  and  the  free  charges,  plus  the  media
spatial  motion-induced  change  in  electromagnetic  energy
density.  And  importantly,  the  contribution  made  by  media
movement  can  be  regarded  as  a  “source ”  for  producing
electromagnetic energy.

vr (t)
Furthermore,  if  the  medium  movement  only  depends

on time , e.g., solid translation, the above equations are
simplified as
 

− D
Dt

u−∇ ·S = E · Jf (34a)

with 

D
Dt

u = E · DD
Dt
+H · DB

Dt
(34b)

and 

D
Dt
=
∂

∂t
− (vr · ∇) (34c)

E · Jf is  a  source  term  that  transfers  energy  from  (to)
the electromagnetic field to (from) the charged medium that
interacts  with  the  field.  The  mechanical  energy  of  the
charged medium increases (decreases) accordingly.

 VIII. Mathematical  Solutions  of  the  Expanded
Maxwell’s Equations

Inside the moving object,  the general solution of the equa-
tions has two components: a homogeneous solution that sat-
isfies [6], [11]
 

∇ · D′h = 0 (35a)
 

∇ ·Bh = 0 (35b)
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∇× (Eh+ vr ×Bh) = − ∂
∂t

Bh (35c)
 

∇× (
Hh− vr × D′h

)
=
∂

∂t
D′h (35d)

and a special solution that satisfies
 

∇ · D′s = ρf −∇ · Ps (36a)
 

∇ ·Bs = 0 (36b)
 

∇× (Es+ vr ×Bs) = −
∂

∂t
Bs (36c)

 

∇× [
Hs− vr ×

(
D′s+ Ps

)]
= Jf +ρfv−∇× (vr × Ps)

+
∂

∂t
[
D′s+ Ps

]
(36d)

Apparently, both the homogenous solution and special
solution are affected by the motion of the medium.

Outside of  the object  in vacuum, the homogenous so-
lution of the MEs is determined by
 

∇ · D′h = 0 (37a)
 

∇ ·Bh = 0 (37b)
 

∇×Eh = −
∂

∂t
Bh (37c)

 

∇×Hh =
∂

∂t
D′h (37d)

The special solution is given by
 

∇ · D′s = ρf (38a)
 

∇ ·Bs = 0 (38b)
 

∇×Es = −
∂

∂t
Bs (38c)

 

∇×Hs = Jf +
∂

∂t
D′s (38d)

The total  solution is  a  sum of  the  homogeneous solu-
tion  and  the  special  solution,  and  it  needs  to  meet  the
boundary conditions as defined by equations (30a)–(30d).

s(r, t) = 0
r0(t)

r s(r− r0(t), t) = 0

s(r− r0(t), t) = 0

If the instantaneous shape of the medium is defined by
 and  the  moving  trajectory  of  the  center  of  the

moving  reference  frame  is  defined  as  (see Figure  5),
the  governing  equations  are  (35a)–(35d)  and  (36a)–(36d)
when  is within the volume of the surface ;
otherwise,  the  governing  equations  are  (37a)–(37d)  and
(38a)–(38d). The solutions of the two sets of equations sat-
isfy  the  boundary  conditions  given  in  (30a)–(30d)  at  the
surface defined by . This is the general prin-
ciple for finding the numerical solutions for the entire sys-
tem.
 1. Perturbation theory for a general moving velocity
Although the  MEs-f-MDMS  provide  a  complete  descrip-
tion  of  the  electromagnetics  of  the  system,  their  solutions
are  most  important.  Analytical  solutions  are  only  possible

v≪ c
vr

vr = 0

vr

for  very  simple  cases.  For  most  engineering  applications,
numerical calculations are therefore required. Since the the-
ory  was  derived  for  the  low-speed  case , we  can  ex-
pand  the  full  solution  in  the  order  of .  Considering  the
dominant  contribution  made  from  the  stationary  medium
case, e.g.,  (the zeroth order), we can use the perturba-
tion approach as developed in quantum mechanics for solv-
ing the MEs-f-MDMS. In the time/frequency space, the so-
lution  of  the  MEs-f-MDMS can  be  derived  order  by  order
using perturbation theory on the order of . The higher-or-
der  solution  is  received  using  the  iteration  method.  More
details have been covered previously [5], [12].
 2. Vector  potential  for  an  object  that  moves  as  a  solid

translation

vt (t)

We  now  present  the  solution  of  the  MEs-f-MDMS  if  the
motion  of  the  object  is  a  solid  translation,  which  indicates
that  is  space-independent,  the  object  is  a  solid  object
and  its  movement  is  a  translation  without  rotation.  If  the
medium  is  a  simple  linear  medium,  equations  (29a)–(29d)
can be further derived as [6]
 

∇ · D′ = ρ′ (39a)
 

∇ ·B = 0 (39b)
 

∇×E = − D
Dt

B (39c)
 

∇×H = J ′+
D
Dt

D′ (39d)

where
 

ρ′ = ρf −∇ · Ps (39e)
 

J ′ = Jf +ρfvt+
D
Dt

Ps (39f)

AWe now define the vector potential  as follows:
 

B = ∇× A (40a)

φand  a  new  scalar  electric  potential  for  electrostatics,  we
define
 

E = −∇φ− D
Dt

A (40b)

Substituting equations (40a) and (40b) into (39a)–(39d) and
make use of the constitutive relations, we have
 

∇2 A−εµ D2

Dt2 A = −µJ ′ (41a)
 

∇2φ−εµ D2

Dt2φ = −
ρ′

ε
(41b)

D2

Dt2 =
[
∂

∂t − (vr · ∇)
] [
∂

∂t − (vr · ∇)
]
= ∂2

∂t2 2(vr · ∇) ∂
∂t

(vr · ∇) (vr · ∇)
where  −  +

, and the Lorentz gauge must be satisfied
 

∇ · A+εµ D
Dt
φ = 0 (41c)
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A φ
These are nonhomogeneous wave equations for vector

potentials  and , which  are  nonlinear  differential  equa-
tions.  Equations  (41a)  and  (41b)  have  a  similar  format  as
the  Navier-Stokes  equations  for  fluid  except  with  the  3
space variables plus time.  They are simple approximations
for  isotropic  media.  The  total  solutions  may  have  to  be
solved numerically, and the total solutions must satisfy the
boundary conditions as defined in equations (30a)–(30d).

We express the MEs-f-MDMS equations in tensor for-
mat.  We  use  the  classical  expressions  of  the  following
quantities  for  electrodynamics,  the  anti-symmetric  strength
tensor of the electromagnetic field [5]
 

Fαβ = ξαAβ− ξβAα (42a)
 

Fαβ = ξαAβ− ξβAα (42b)

where α, β = (1,2,3,4), and the newly defined operators are
 

ξα =

(
1
c

D
Dt
,−∇

)
(43a)

 

ξα =

(
1
c

D
Dt2
,∇

)
(43b)

 

Aα = (cφ, A) (43c)
 

Aα = (cφ,−A) (43d)

We prove
 

Fαβ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 (44a)

 

Fαβ =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (44b)

c = cm = 1/(µε)1/2where .  Equations  (39a)–(39e) can  be  re-
stated as
 

ξαFaβ = µJβ (45)

Jβ = (cρ′, J ′)

∂α
ξα

where .  This  is  Maxwell’s  equation  for  a
mechano-driven system. Note that equation (45) is the same
as  that  for  the  classical  MEs  except  the  operator  is re-
placed by . The density of the Lagrangian for the electro-
magnetic field is given by
 

Λ = FαβFαβ+µJαAα (46)

 IX. Nanoscale  Electromagnetic  Phenomena  and
Boundary Conditions

Here,  we  review  additional  progress  made  in  the  field  for
expanding  the  boundary  condition  for  nanoscale  media,
such as nanoparticles, which may not be directly related to
what we  have  presented  above.  Macroscopic  electromag-

netic  boundary  conditions  (EMBCs)  have  been  proposed
for over a century and have a wide range of applications in
physics. The  EMBCs  are  built  based  on  the  abrupt  inter-
face assumption by neglecting the intrinsic electronic length
scales associated with interfaces;  more specifically,  the in-
tegral  contribution  of  the  traditional  electromagnetic  field
along the sidewall of the integrating box is neglected [39].
This treatment results in considerable discrepancies when it
is utilized  to  describe  electromagnetic  phenomena  in  sys-
tems with nanoscale feature sizes, such as surface photoex-
citation and nanoplasmonics. To reconcile classical predica-
tions  and  experimental  observations,  the  Feibelman d pa-
rameters,  which  are  interfacial  response  functions  (IRFs),
were developed by Feibelman to capture nanoscale electro-
magnetic  phenomena  [39]–[41].  Since  then,  two  forms  of
nanoscale  electromagnetic  boundary  conditions  have  been
proposed according to these d parameters.

Assuming an interface that is formed by two isotropic
bulk materials with different permittivity and permeability,
there  simultaneously  exists  a  transition  layer  in  which  the
permittivity and permeability change continuously from one
material to the other. Through MEs and the contributions of
the  transition  layer  as  the  first-order  perturbation  of  the
classical  EMBCs,  the  nanoscale  EMBCs  are  deduced  [40]
as follows:
  [[

E∥
]]
= −d⊥∇∥ [[E⊥]]− iωb∥

[[
B∥

]]× n̂ (47a)
  [[

H∥
]]
= −b⊥∇∥ [[H⊥]]+ iωd∥

[[
D∥

]]× n̂ (47b)
 

[[D⊥]] = d∥∇∥ ·
[[

D∥
]]

(47c)
 

[[B⊥]] = b∥∇∥ ·
[[

B∥
]]

(47d)

[[Wi]] =Wi (z1)−Wi (z2)
i = ∥ i =⊥−→

W ∇∥ = ∂

∂x n̂x+
∂

∂y n̂y n̂

E∥
(
H∥

)
E⊥ H⊥

D∥
(
B∥

)
D⊥ B⊥

D∥
(
B∥

)
d⊥

d∥

where  represents  the  discontinuity
of  the  tangential  ( )  /  normal  ( )  component  of  the
field  across  the  interface. .  is  the  unit
vector  perpendicular  to  the  interface  from  one  medium  to
the other. From the above equations, it is observed that the
discontinuity of the electromagnetic field tangential compo-
nent  across  the  interface  is  coupled  not  only  with
the  normal  component ( )  but  also  with  the  inductive
field component . The discontinuity of the inductive
field ( )  is  proportional  to  the  in-plane  divergence  of
the  corresponding  tangential  component .  We  now
focus on the physical meanings of interfacial response func-
tions.  represents the centroid of the interface-induced po-
larization  charge,  and  is  the  centroid  of  the  normal
derivative of the tangential current, which are expressed as
 

d⊥ =

w ∞
−∞
zρinddzw ∞

−∞
ρinddz

(48a)

 

d∥ =

w ∞
−∞
z

d jpy

dz
dz

w ∞
−∞

d jpy

dz
dz

(48b)
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ρind

jpy

b⊥
b∥

Note that  is the surface-induced polarization charge
density,  and  represents the  tangential  polarization  cur-
rent on the surface.  represents the centroid of the equiva-
lent magnetization charge density, and  represents the cen-
troid  of  the  equivalent  magnetization  current  density;  they
are rewritten as
 

b⊥ =

w ∞
−∞
zρmdzw ∞

−∞
ρmdz

(49a)

and
 

b∥ =

w ∞
−∞
z jmdzw ∞

−∞
jmdz

(49b)

respectively.
Moreover, based on the definition of electric and mag-

netic dipole  moments,  the  interface-induced  dipole  mo-
ments  are  introduced;  thus,  the  nanoscale  EMBCs  are
rewritten as [40]
  [[

E∥
]]
= −

(
−1
ε0
∇×π⊥+µ0

∂m∥
∂t

)
× n̂ (50a)

  [[
H∥

]]
=

(
∇×m⊥+

∂π∥
∂t

)
× n̂ (50b)

 

[[D⊥]] = −∇∥ ·π∥ (50c)
 

[[B⊥]] = −µ0∇∥ ·m∥ (50d)

π⊥ = ε0d⊥ [[E⊥]] n̂ π∥ = −d∥
[[

D∥
]]

m⊥ = b⊥ [[H⊥]] n̂ m∥ = −b∥
[[

B∥
]]where  and  for  the  electric

dipole and  and  for the mag-
netic dipole. Therefore, the interface with a transition layer
can  be  regarded  as  the  abrupt  interface  with  interface-in-
duced  electric  and  magnetic  dipole  moments.  A  general
conclusion is that the nanoscale EMBCs are different based
on  the  results  of  assuming  polarization  and  magnetization
across the abrupt interface in the basic physical model; they
are obtained from the transition interface model with inho-
mogeneous  electromagnetic  field-induced  polarization  and
magnetization. As stated, we have derived the macroscopic
boundary  conditions  of  the  MEs-f-MDMS.  Undoubtedly,
these EMBCs can be  extended to  obtain  nanoscale  bound-
ary  conditions  through  a  special  interface  mode  in  which
the  intrinsic  electronic  length  scales  must  be  considered.
Another important aspect is that the above macroscopic and
nanoscale  EMBCs  are  proposed  for  classical  MEs,  which
are  initially  built  for  media  having  a  fixed  boundary  and
volume,  particularly  in  a  stationary  state.  However,  these
assumptions are typically not focused on in the general lit-
erature.

 X. Summary and Outlook
This paper systematically reviews the recent progress in de-
veloping Maxwell’s equations for a mechano-driven media

system (MEs-f-MDMS). These equations are utilized to de-
scribe the electromagnetism of multimoving media. The ba-
sic theoretical framework, formulation and solutions of the
equations  are  fully  elaborated  in  reference  to  the  classical
MEs.  The  main  insights  of  this  review  are  summarized  as
follows [5], [13]:

a) Based on the integral forms of the four physics laws
and in  the  Galilean  space-time,  the  MEs-f-MDMS  are  de-
rived to  describe  the  electrodynamics  of  slow-moving me-
dia that may move with acceleration.

vr(r, t)

b) ME-f-MDMS is typically used to reveal the dynam-
ics of an electromagnetic field for a general case, in which
the  medium  has  a  time-dependent  volume,  shape,  and
boundary  and  may  move  in  an  arbitrary  velocity  field

 in a noninertial system.
c)  By  neglecting  the  relativity  effect,  the  expanded

MEs-f-MDMS are applicable to reveal the electrodynamics
of a mechanical force-electricity-magnetism system.

d) The total energy of electricity and magnetism is not
conserved  since  an  external  mechanical  energy  is  input;
however, the total energy of the closed mechano-driven me-
dia system is conserved.

e)  The  charged  moving  media  are  regarded  as  the
sources for generating electromagnetic radiation (a motion-
generated electromagnetic  field).  The  created  electromag-
netic  wave  within  the  moving  media  can  be  described  by
the  expanded  MEs-f-MDMS,  and  its  propagation  in  space
satisfies the standard MEs and special relativity; they meet
at the medium interface as governed by the boundary condi-
tions.

f) Distinct  from  the  methods  of  relativity  electrody-
namics in  which the electromagnetic  fields  in  the observa-
tion  frame  and  the  comoving  frame  are  correlated  by  the
Lorentz  transformation,  the  expanded  MEs-f-MDMS  are
for  the  case  in  which  the  observation  is  in  the  observation
frame,  while  the  media  are  moving  at  complex  velocities
along various trajectories. In other words, all fields are ex-
pressed in  the variables  in  the observation frame,  which is
more useful for describing engineering problems.

cm

c0

c0

g) Because the speed of light inside media  is gener-
ally lower than ,  there is no need to consider the case of
exceeding  the  speed  of  light  in  vacuum  even  when  the
medium is moving. Once the electromagnetic wave is gen-
erated from the mechano-driven media system, its trajecto-
ry outside the medium is governed by the classical MEs, re-
gardless of whether the media are moving or not.

h) The expanded MEs-f-MDMS can describe the elec-
trodynamics  of  fluid/liquid  media  because  it  has  been
proven that  these  equations  can  describe  the  electromag-
netism  of  the  mechano-driven  system  in  the  noninertial
frame  with  acceleration  and  even  time-dependent  volume,
shape, and boundary.

v vr = 0
i)  If  the  medium moves  at  a  constant  velocity  so  that

 =  constant  and ,  equations  (29a)–(29d)  resume  the
format of the classical MEs, so there is no logical inconsis-
tency with the existing theory.

In comparison to the classical Maxwell  equations,  the
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MEs-f-MDMS has made the following expansions:
1) Accelerated motion in a noninertia reference frame

vs. uniform motion along a straight line in the inertia refer-
ence frame;

2) Electromagnetism that includes the Feynman “anti-
flux rule” examples vs. that excludes such cases;

3) Electrodynamics for multimoving media vs. that for
one moving medium; and

4) The entire field (both near field and far-field) elec-
trodynamics vs.  the far-field plus partial  near-field electro-
dynamics.

Much  existing  research  focuses  on  the  far-distance
transmission and reflection of electromagnetic waves, such
as  wireless  communication and propagation,  antennas,  and
radar, demonstrating  the  special  solutions  of  MEs.  The ef-
fects  from  the  motion  status  of  the  electric  current  source
and the mechanical action for generating the current on the
distribution  of  electromagnetic  fields  in  the  vicinity  have
been ignored. Such a near-field effect can be important for
new technological applications in short-range wireless sens-
ing.  MEs-f-MDMS  provide  an  accurate  and  practical
method to  systematically  investigate  both  far-field  electro-
magnetic  behavior  and near-field electromagnetic  behavior
for engineering applications.

Importantly,  we  note  that the  covariance  of  the  MEs

holds exactly  for  the  electromagnetic  phenomena  in  vacu-
um! If  there  are  moving  objects/media  in  space  at  any
speed, the Lorentz transformation may not be applicable for
treating the  electromagnetic  behavior  because  the  covari-
ance of the MEs may not hold in this case; therefore, MEs-
f-MDMS  is  probably  the  most  effective  approach  if  the
moving velocity  is  low.  We  have  also  discussed  the  revi-
sion of the Lorentz transformation from the vacuum case to
the medium case, which is subjected to further studies.

MEs-f-MDMS is  a  unification  of  the  theory  for  elec-
tromagnetic generators/motors  and  the  theory  of  electro-
magnetic  waves  (Figure  6).  The  theory  of  electromagnetic
generators relies on the rotation of a rotor to cut through a
magnetic  field  so  that  the  mechanical  energy  is  converted
into electric power. Most important is that the electric cur-
rent  and  voltage  are  carried  by  the  conduction  coil,  which
disregards  electromagnetic  waves  radiated  to  the  space
nearby. MEs consider these electromagnetic waves that ra-
diate when an oscillating current  is  supplied.  Once the ob-
servation  point  is  close  to  the  electromagnetic  generator,
near to which the rotation of the rotor is quite dominant, the
MEs can predict the electromagnetic behavior arising from
the  current  conducted  in  the  metal  wire,  but  they  may  not
precisely predict the effect of the rotating rotor on the field
distributed nearby. This is why we need the MEs-f-MDMS.

 
Electromotor, Electric generator

Faraday (1831)

N

+ −

S

+

Maxwell’s equations for a mechano-driven system (2022)

Maxwell’s equations

z

x

Maxwell (1861)

Assumption:

stationary media 

Conduction current

inside the wire and the 

corresponding Lorentz 

force: F=(I×B)L;

The generated torque

and output power:

P=ωT

Electromagnetic wave 

outside the wire

Assumption:

moving media 

ξemf=−

=

d

dt
B·ds

s(t)

s(t)

∫∫
{− Δ∫∫ ∂

∂tB+ ×[v+B]}·ds

Δ

Δ

Δ

Δ

·D′=ρf

·B=0

×E=−

×H=Jf+

∂
∂t
B

∂D′
∂t

·D′=ρf−
·B=0

×(E+vr×B)=−

×[H−vr×(D′+P
s
)]=Jf+ρfv+

·P
s

Δ Δ
Δ

Δ

Δ

∂
∂tB

∂
∂t [D′+Ps]

Electromagnetic wave

 

Figure 6  The MEs-f-MDMS are a unification of the theory for electromagnetic generator/motor and the theory of electromagnetic waves, so that the field
in the entire space can be calculated. MEs-f-MDMS are likely to make a key difference in the regions near the moving objects, which may not be fully
covered by the classical MEs. This is the contribution of the MEs-f-MDMS to the fundamentals of electrodynamics [13].
 

Because  MEs  have  tremendously  impacted  modern
science and technology, many scientists are still now focus- Ps

ing  on  their  new  development  [42],  [43].  Mechano-driven
polarization ,  which  is  also  called  the  Wang  term,  was
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first introduced in MEs to quantify the output performance
of TENGs. ME-f-MDMS describes the electromagnetism of
media systems in the noninertial  frame with a  time-depen-
dent volume,  shape,  and  boundary  by  neglecting  the  rela-
tivistic  effect.  MEs-f-MDMS  is  not  an  alternative  to  MEs
but is  precisely  for  developing  engineering  electromag-
netism  toward  today’s technology  needs.  Emerging  poten-

tial fields directly or indirectly impacted by MEs-f-MDMS
could include wireless communication and propagation, an-
tennas, radar,  radar  cross-section  (RCS)  analysis  and  de-
sign, electromagnetic compatibility (EMC) and electromag-
netic  interference  (EMI)  analysis  and  design  (Figure  7),
which  could  inspire  new  discoveries  with  unprecedented
technological advances.
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Figure 7  Emerging areas that may be impacted by f MEs-f-MDMS, with potential technological importance [13].
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