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Abstract—Recent studies in machine learning have demon-
strated the effectiveness of applying graph neural networks
(GNNs) to single-cell RNA sequencing (scRNA-seq) data to pre-
dict COVID-19 disease states. In this study, we propose a graph
attention capsule network (GACapNet) which extracts and fuses
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) transcriptomic patterns to improve node classification perfor-
mance on cells and genes. Significantly different from the existing
GNN approaches, we innovatively incorporate a capsule layer
with dynamic routing into our model architecture to combine and
fuse gene features effectively and to allow those more prominent
gene features present in the output. We evaluate our GACapNet
model on two scRNA-seq datasets, and the experimental results
show that our GACapNet model significantly outperforms state-
of-the-art baseline models. Therefore, our study demonstrates
the capability of advanced machine learning models to generate
predictive features and evolutionary patterns of the SARS-CoV-2
pathogen, and the applicability of closing knowledge gaps in the
pathogenesis and recovery of COVID-19.

Index Terms—Bioinformation, COVID-19, Natural Language
Processing, Node Classification, Text Mining.

I. INTRODUCTION

THE week of July 19, 2022 marks the two years and seven

months anniversary since the World Health Organization

announced the global outbreak of COVID-19. This COVID-

19 pandemic has spread across the globe and has hit us hard

with severe public health and economic consequences for two

years and a half. The infection of the Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2), similar to its same

virus family members of Severe Acute Respiratory Syndrome

(SARS) and Middle East Respiratory Syndrome CoV (MERS-

CoV), can lead to fatal pneumonia that is in association with

rapid replication of the deadly virus, an elevation of proin-

flammatory cytokines, as well as an infiltration of immune

cells. While people from all over the world are still in process
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of receiving a number of doses of vaccines, the virus itself

has been evolving rapidly and continuing to surprise experts

around the world. The cost of human capital continues to

mount over the past few months, with more than 615.16

million cases confirmed worldwide, more than 14.38 million

active cases and more than 6.52 million deaths as of Thursday,

September 15, 20221.

During the course of two and a half years, a great amount

of COVID-19 related data from a wide range of sources

and formats have been accumulated. These data collections

are considered as valuable and key theoretical basis and

evidence for further clinical research and biomedical analyses.

Since the disease belongs to the department of respiration by

nature, most of the existing COVID-19 related data collections

are constructed and presented in a graph structure. Indeed,

there is a great portion of important real-world information

and data that have long been presented in a form of graph

structure before COVID-19. These graph structured data in-

clude person-person relationship in social networks [1], [2],

product knowledge graph for e-commerce [3]–[5], medical

knowledge graph in healthcare industry [6]–[10], and those

publicly available COVID-19 related knowledge graphs [11]–

[16] etc.. Even though various evidences have hinted it as an

important research direction for machine learning to extend

neural networks to process graph structured data, this research

domain has not caught high attention until very recently.

Graph Attention Networks (GATs) [17] is a lately intro-

duced neural network architecture that is capable of operating

graph structured data and supporting predictive tasks, such

as node classifications and link predictions. In the past few

years, a great number of studies have been published using

the GAT and regular graph neural networks (GNNs) approach.

Specifically, these models have been widely adopted to explicit

relational data structures such as knowledge graphs [18], [19],

non-explicit relational data structures such as texts [17], and

other applications such as generative models [20]. Although

1https://www.worldometers.info/coronavirus/
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Fig. 1. An example of sub-graph in the COVID-19 patients [24] dataset. The
purple node represents the center cell node and the blue nodes represent the
neighboring cell nodes. All cells are classified into three infectious levels,
namely the healthy controls, moderately infected and severely infected.

these existing studies have shown promising results, they also

share one deficiency that they usually model each interactions

individually without considering complex relations between

them enough. This characteristic of these past studies restrict

them from absorbing more relevant and useful neighboring

features, and transforming them into more representative out-

puts. In the context of COVID-19, it is important for us to

empower our current medical research with these advanced

machine learning methodologies to uncover secrets hidden in

the infection and pathogenesis of SARS-CoV-2, and to suggest

viable therapeutic directions.

Given that the counts of transcripts are correlated with

expressions of genes, the technology of single-cell RNA

sequencing (scRNA-seq) is often used to capture thousands

of expressions of cell genes under different circumstances

to comprise large data collections [21]–[23]. Even though

massive single-cell data can be captured effectively, the high

sparseness, high heterogeneity and high dimensions character-

istics of these single-cell data pose challenges in sorting out

significant features that can formulate causal relations to the

pathophysiological trajectory and interactive reactions.

Our research interest thus arises from two recently published

work [25], [26]. The first paper applies GATs to disease states

prediction with scRNA-seq data [27]. Building on top of the

prior work, the second paper utilizes GNNs and GATs to

improve node classification tasks with edge features which

are derived from graphs and self-supervised learning.

Aligning with the work above, we focus on identifying

the patterns of SARS-CoV-2 transcriptome and the types of

molecular cells linked to the degree of disease infectiousness

and severity with single cell transcriptomic data collections.

However, different from all prior works, in this paper, we

take a new approach by proposing a graph attention capsule

network (GACapNet) which stacks the multi-head attention

networks above a capsule network, comprising of a primary

capsule layer and a dynamic routing procedure. To the best

of our knowledge, we are the first one to extend GATs

and Capsule networks to scRNA-seq datasets for COVID-19

disease state predictions.

The proposed architecture GACapNet has a strong advan-

tage in dealing graph structured data and in generating more

useful and representative node features for enhancing GATs’

performance on node classification on cells. To align with the

prior work [25], we use the processed and clustered dataset

in graph structure as inputs to our model. The prior work

constructed the graphs from cells by utilizing batch-balanced

weighted KNN graph [28] with matrices of gene features.

In other words, the structure of the graph was constructed

by finding the closest cell nodes with KNN. The task of

our study is to identify and classify SARS-CoV-2 infected

cells that are linked to different degrees of infectiousness.

For example, Figure 1 shows an example of sub-graph in the

dataset which aims to group cells into three levels of cell node

infectiousness, namely the severely infected class, the mildly

infected class, and the healthy controls. All cells are grouped

under the assumption that the cells with similar gene features

should be closer to each other. If the two cell nodes belong

to the same category, an edge is formed in between these two

nodes.
For a given constructed graph G, we first use multi-head

graph attention to aggregate features from the neighbors of a

center node, shown as the purple node in Figure 1. The center

node stands for a cell with a sequence of gene features. Each

cell in the dataset can be a center node, and the surrounding

nodes are defined as neighboring cell nodes, shown as the blue

nodes in Figure 1. In order to preserve the center node feature

(or the cell’s feature), we use a simple feed-forward network

on the node features to obtain a transformed node feature from

the center node. Then, the neighborhood features generated

from different attention heads and those transformed node

features are fed into a capsule network. The capsule network

comprises of a primary capsule layer and a dynamic routing

process. From the experimental results on two scRNA-seq

datasets, we prove and reason that our proposed GACapNet is

able to classify cells according to its severity level effectively.

In other words, it outperforms other GATs in extracting

insightful data of SARS-CoV-2 transcriptomic patterns and

molecular cell types that are linked to the infection and severity

of COVID-19.
This work makes four primary contributions, summarized

as follows:

• We apply advanced machine learning models of GATs

and Capsule networks to COVID-19 domain of medical

research. To the best of our knowledge, our GACapNet

is the first one to extend the GATs and Capsule networks

models to scRNA-seq data, aiming to uncover the secrets

hidden in the infection of SARS-CoV-2, to understand the

COVID-19 pathogenesis, and to suggest the therapeutic

directions and development by identifying the patterns of

SARS-CoV-2 transcriptome and the types of molecular

cells that are linked to the degree of disease infectiousness

and severity;

• We propose to use multi-head graph attention networks

in our model architecture to aggregate more information-

rich neighboring features of the center node, and to

preserve its original node feature to the maximum;
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• We incorporate a capsule layer with dynamic routing

into our model to effectively combine and fuse the gene

features, and to allow more prominent features of the

severely infected cells and healthy controlled cells to

present in the output;

• The outstanding experimental results of our model on

two scRNA-seq data collections and the in-depth analysis

we provide on the SARS-CoV-2 infections can be used

as basic hypotheses in further medical and biomedical

COVID-19 research and clinical validations.

The full paper with experimental results will be presented in

a separate work, which will give a thorough literature review

on relevant research approaches and various models, describe

the architecture of our proposed graph attention capsule net-

work (GACapNet) model, illustrate our experimental results

and model comparisons, and conclude our paper with some

ideas for future research.
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