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ABSTRACT

Segmentation of COVID-19 lesions can assist physicians in
better diagnosis and treatment of COVID-19. However, there
are few relevant studies due to the lack of detailed informa-
tion and high-quality annotation in the COVID-19 dataset.
To solve the above problem, we propose C2FVL, a Coarse-
to-Fine segmentation framework via Vision-Language align-
ment to merge text information containing the number of
lesions and specific locations of image information. Intro-
ducing text information allows the network to achieve better
prediction results on challenging datasets. We conduct ex-
tensive experiments on two COVID-19 datasets, including
chest X-ray and CT, and the results demonstrate that our
proposed method outperforms other state-of-the-art segmen-
tation methods.

Index Terms— Coarse-to-Fine, Vision-Language, Se-
mantic Segmentation

1. INTRODUCTION

Deep learning technique has been widely used in medical im-
age processing, and the segmentation of lesions using neural
networks can significantly reduce time and labor costs. Since
multimodal images exhibit more relevant information [1] than
unimodal images, some studies [2, 3] merge images of differ-
ent modalities to segment the target. However, medical im-
ages lack detailed information, making it challenging to seg-
ment precisely only by medical images. Some works [4, 5, 6]
use the method of image information fusion with text infor-
mation for image segmentation. Although Tomar et al. [7]
applied image and text information fusion to medical image
segmentation, it did not consider the target’s location infor-
mation. The segmentation of the lesion area is an effective
means to diagnose and treat COVID-19. However, only expe-
rienced radiologists can accurately label lesions, and with few
publicly available datasets [8], make it difficult to improve the
accuracy of segmentation networks [9, 10, 11]. To solve the
above problems, we introduce text information in the process
of COVID-19 segmentation. Since the text contains the num-
ber and specific location information of lesions, it can assist
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the network in learning more features with rich semantic in-
formation from coarse to fine on a limited and poorly labeled
dataset. In summary, the main contributions of this paper are:

• We construct the C2FVL segmentation framework us-
ing CNN and Vision Transformer to achieve accurate
segmentation of COVID-19 effectively.

• We propose a Vision Language Alignment Module
(VLAB) and a novel loss function to facilitate the
alignment of text and image information, which im-
proves segmentation accuracy.

• We compare our C2FVL with the state-of-the-art seg-
mentation methods on two COVID-19 datasets, and the
experiments show that the performance of C2FVL is
optimal. The code of our proposed C2FVL is made
available at GitHub1.

2. RELATED WORKS

Multi-modal Information Fusion: Multiple modality can
provide complementary information, and their fusion can ef-
fectively improve the accuracy of the segmentation of medical
images. Dolz et al. [2] used dense connections between dif-
ferent modalities to swap information. CLIP [4] used a con-
trast learning approach to learn image and text information,
achieving zero-shot transfer learning. TGANet [7] introduced
text about the size and number of polyps, enabling automatic
segmentation of polyps of different scales.
COVID-19 Segmentation: Saeedizadeh et al. [10] added a
regularization term to the loss function of the UNet to de-
tect chest regions infected with COVID-19 in CT images.
Alom et al. [11] used the NABLA-N model to segment the
COVID-19-infected region in the designed system. Amyar
et al. [12] improved segmentation results on the COVID-
19 dataset by jointly performing classification, segmentation,
and reconstruction tasks.

3. METHOD

3.1. Structure of C2FVL Model
As shown in Fig. 1, our model follows an encoder-decoder
structure, where the encoder uses hierarchical CNN and Vi-
sion Transformer to extract coarse image features. At the skip

1https://github.com/HUANGLIZI/C2FVLIC
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Fig. 1. Overview of the C2FVL framework. It consists of three parts, encoder, VLAB branch and decoder.

connection, the text information is fused with image informa-
tion, and design the VLAB module to facilitate cross-modal
alignment between text and images. The decoder consists of
CNN that processes low-level detail information and aligned
text-image features to reconstruct fine segmentation masks.

3.2. Encoder Module

For medical image segmentation tasks, both global and lo-
cal features are essential. Traditional convolutional neural
networks use a fixed-size receptive field to learn local fea-
tures of an image. [13] uses average pooling to extract global
features, but its capability is limited. In contrast, the Multi-
headed Self-attention mechanism in the Vision Transformer
works directly on the whole image and can learn more global
features. Therefore, we use several CNN and Vision Trans-
former blocks in the encoder module to extract image features
jointly. First, we take the image as the input of the CNN block
and then send the feature map to the Vision Transformer af-
ter convolution operation, batch normalization, and activation
function. Meanwhile, max-pooling is used to downsample the
feature map to retain more texture features. For the activation
function, we use ReLU to enhance the expression ability of
the network. In the Vision Transformer part, the features ex-
tracted by the CNN are encoded to capture global features.
At each stage, the Vision Transformer output is adjusted to be
the same as the feature size of the CNN block output, adding
them together for the fusion of global and local features, as
shown in the following equations.

Frt,i = σ (BatchNorm (Conv (Upsample (Fvit,i))))(1)
Fencoder,i = Fcnn,i + Frt,i (2)

where Fvit,i denotes the output of the i-th layer Vision Trans-
former, Frt,i denotes the result of the reconstruction of Fvit,i,

and Fcnn,i denotes the output of the i-th layer CNN, σ is
ReLU activation function.
3.3. Multi-sclale Vision-Language Aggregation
We convert the text information into a vector with dimen-
sion of 8. The first dimension indicates whether the lesion
area is bilateral, the second dimension indicates the number
of lesions, and each subsequent three dimensions indicates
the location of the lesions in the left and right lungs in that
order. For example, suppose the text message is “Bilateral
pulmonary infection, two infected areas, upper middle left
lung and middle lower right lung”. In that case, we trans-
form it into a vector Vtext = [1, 2, 1, 1, 0, 0, 1, 1]. Unlike [7],
which uses text-guided image classification to assist in the
segmentation task, we use text information to select features.
Specifically, for feature maps of different scales, we employ
the repeat operation to align Vtext with the number of chan-
nels of the image features and then weight the image features
with text to extract the lesion’s location and quantity features
while suppressing other irrelevant features, as shown in the
Eqn. (3).

Fvl,i = Fencoder,i ⊙ (Vtext.repeat (channeli/8, 1)) (3)

3.4. Vision-Language Alignment Block (VLAB)
Inspired by the convolutional block attention module [14] and
CUM [15], we design our Vision-Language Alignment Block
(VLAB) with a parallel structure to facilitate the alignment
of text and image features. As shown in Fig. 1, in the left
and right branches, the input features are first processed using
the MLP structure and then the feature maps are subjected
to global max pooling (GMP) and global average pooling
(GAP), respectively. The outputs of two branches are added
to enhance the same features further and finally multiplied
with the input after two layers of MLP structure. The process
can be defined as follows.



(a) Input (b) Ground Truth (c) UNet++ (d) nnUNet (e) TGANet (f) GLoRIA (g) Ours (C2FVL)

Fig. 2. Visualization results on the QaTa-COVID dataset (row 1) and MosMedData+ dataset (row 2). From left to right: (a) input
image, (b) ground-truth, (c) UNet++ and (d) nnUNet are predictions of baseline without text information, while (e) TGANet
and (f) GLoRIA are predictions with text information. And (g) is the prediction of our proposed C2FVL.

Favg = GlobalAvgPool (MLP (x)) (4)
Fmax = GlobalMaxPool (MLP (x)) (5)

y = MLP (Favg + Fmax)⊗ x (6)

In addition, We also calculate the cosine loss between differ-
ent VLAB outputs to force each network layer to focus on
the same focal region and append the loss after the dice loss
LDice and the cross entropy loss LCE . The designed loss
function is defined as shown in Eqn. (7) and (8).

L4,i = 1− y4·Downsample(yi)
|y4|×|Downsample(yi)| (7)

LV 1 = 1
2LDice +

1
2LCE + αL4,1 + βL4,2 + γL4,3 (8)

where L4,i (i ∈ 1, 2, 3) denotes the cosine loss between the 4-
th layer VLAB output y4 and the i-th layer VLAB output yi.
The default values of α, β, γ are all 0.5. In addition, we also
design L1,i (i ∈ 2, 3, 4) to calculate the cosine loss between
the outputs of the first layer VLAB and the output of the lower
layer VLAB, as shown in Eqn. (9) and (10).

L1,i = 1− y1·Upsample(yi)
|y1|×|Upsample(yi)| (9)

LV 2 = 1
2LDice +

1
2LCE + αL1,4 + βL1,3 + γL1,2 (10)

4. EXPERIMENTS
4.1. Setup
Datasets: We use open-access QaTa-COVID dataset [16] and
MosMedData+ dataset [17, 18] in the experiments to evaluate
the performance. The training and test sets of QaTa-COVID
contain 7145 and 2113 chest X-ray images with annotations,
respectively. We use a 4:1 ratio to split the initial training
set into training and validation. MosMedData+ contains 2729
CT scan slices of lung infections. To balance the different
morphologies of the lesion, we consider the images with four
prefixes as four classes. For each class, we distribute them in
a ratio of 8:1:1 in the training set, validation set, and test set.
Implementation Details: Our experiments are conducted on
four NVIDIA GeForce GTX 1080 Ti GPUs with the initial

learning rate of model training set to 1e-3 and the batch size
to 4. The total number of iterations is 2000 rounds, and the
number of early stop rounds is set to 50.

Table 1. Performance comparison between our method
(C2FVL) and other state-of-the-art methods on datasets.

Method Text QaTa-COVID MosMedData+
Dice (%) IoU (%) Dice (%) IoU (%)

UNet [19] × 79.02 69.46 64.60 50.73
UNet++ [20] × 79.62 70.25 71.75 58.39
AttUNet [21] × 79.31 70.04 66.34 52.82
nnUNet [22] × 79.89 70.58 72.59 60.36

TransUNet [23] × 78.63 69.13 71.24 58.44
Swin-UNet [24] × 77.27 67.96 63.29 50.19

UCTransNet [25] × 79.15 69.60 65.90 52.69
TGANet [7] ✓ 79.87 70.75 71.81 59.28
GLoRIA[13] ✓ 79.94 70.68 72.42 60.18

Ours ✓ 83.40 74.62 74.56 61.15

4.2. Comparison with SOTA Methods
We conducted comparison experiments on the two datasets
with state-of-the-art methods, including methods with only
image input and with image-text input. As shown in Fig.
2, the first row shows that other methods occur in the up-
per part of the lung with different missing sizes, but our pro-
posed C2FVL model can segment the lesion relatively com-
pletely. As seen in the second row, the results predicted by
C2FVL are closer to the ground truth for the right lung region,
which is more important for diagnosis. As shown in Table 1,
comparing the best-performing method nnUnet without text,
C2FVL has a 3.51% higher Dice score and 4.04% higher IoU
on the Qata-COVID dataset. Meanwhile, on the MosMed-
Data+ dataset, the Dice score and IoU are improved by 1.97%
and 0.79%, respectively. Compared with the baseline model
with text like GLoRIA [13], C2FVL achieves all improve-
ments of 3.46%, 3.94%, 2.14% and 0.97% under these two
datasets in both two metrics.

4.3. Ablation Study
We perform a series of ablation experiments on the QaTa-
COVID dataset for the associated hyper-parameters and dif-



ferent model components.
Ablation study on different hyper-parameters: For batch
size, we selected three values of 2, 4 and 8 for comparison,
and for learning rate, we set 1e-4, 1e-3 and 1e-2. The results
in Table 2 show that when batch size is 4 and learning rate is
1e-3, the model has the best Dice score and IoU value. For
the loss coefficient, we start with α = 0.5, β = 0.5, γ =
0.5, fixing two values among α , β, γ as 0.5, and change the
other value to observe the trend of the model performance.
As shown in Fig. 3, the optimal set of parameters is α = 0.5,
β = 0.5, γ = 0.5.

83.4

83.22
83.09

82.85

83.17
83.07

82.7

𝛼𝛼 ∈ 𝑋𝑋,𝛽𝛽 = 0.5, 𝛾𝛾 = 0.5

𝛽𝛽 ∈ 𝑋𝑋,𝛼𝛼 = 0.5, 𝛾𝛾 = 0.5

𝛾𝛾 ∈ 𝑋𝑋,𝛼𝛼 = 0.5,𝛽𝛽 = 0.5

𝑋𝑋 ∈{0.3,0.5,0.7}

Fig. 3. Ablation study with different cosine loss coefficients.
The gray, red and blue lines represent the trend of dice with
α, β and γ as variables, respectively.

Table 2. Ablation study on different hyper-parameters.

Hyper-Parameters Value QaTa-COVID
Dice (%) IoU (%)

Batch Size
2 82.03 73.32
4 83.40 74.62
8 83.32 74.57

Learning Rate
1e-4 82.93 74.19
1e-3 83.40 74.62
1e-2 82.83 73.92

Table 3. Ablation study on effectiveness of different compo-
nents on QaTa-COVID dataset.

Method CNN Text Input C2FVLloss VLAB Dice (%) IoU (%)Single Multi LV 1 LV 2

UNet++ ✓ 79.62 70.25

C2FVL

✓ ✓ 83.01 74.26
✓ ✓ 83.18 74.43
✓ ✓ ✓ ✓ 83.08 74.42
✓ ✓ ✓ ✓ 83.40 74.62

Ablation study on effectiveness of different components:
As shown in Table 3, we use CNN that extracts image fea-
tures as the backbone and then gradually added text infor-
mation and VLAB. It is worth noting that when the single
text is added to the original image input, the model’s per-
formance was substantially improved compared to the back-
bone, with Dice score improving by 3.39% and IoU by 4.01%.
The model’s performance is further improved after adding
the corresponding scale text in each layer. On this basis, the
performance of VLAB with cosine loss using the downsam-
pling method decreases, but the Dice score and IoU values of
VLAB with cosine loss using upsampling method reach the
optimum. Therefore, we use LV 2 for the VLAB in the subse-
quent experiments.

(a) GT (b) CNN1 (c) CNN2 (d) CNN3 (e) CNN4

Fig. 4. Saliency map for interpretability study on QaTa-
COVID dataset. From (a) to (d) are the saliency maps cor-
responding to the outputs of four CNN decoders from bottom
(CNN4) to top (CNN1) of different outputs in each CNN de-
coder. (e) “GT” represents the corresponding ground truth.

4.4. Interpretability Study
As shown in Fig. 4, to verify that our cosine loss enhances the
network’s focus on the lesion region, we use Grad-CAM [26]
to show the activation region of the decoder part on the QaTa-
COVID dataset. As seen from the left lung in the first row, the
activation mapping of CNN4 shows a relatively narrow region
of strong activation. As the layers of the network become pro-
gressively shallower, the region of strong activation begins to
spread from the location of CNN4 to nearby regions, eventu-
ally focusing on the entire lesion region. For the left lung in
the second row, the activation map of CNN4 shows the strong
activation region mainly at the center of the lesion region, then
splits to the edge of the left lung, followed by spreading from
the edge to the central region. This result also demonstrates
that the designed cosine loss in C2FVL can help the model
detect the location of inaccurate focus and force it to refocus
on the correct lesion region.

5. CONCLUSION
In this paper, we propose a new segmentation network called
C2FVL, which uses text and image information in the train-
ing process. In addition, we design a VLAB to facilitate the
alignment of image and text information and add cosine loss
between different layers in the loss function to make each
layer of the network focus on the lesion region. The exper-
imental results show that our model improves performance
compared to other state-of-the-art models. While our current
work scratches the surface on multi-scale Vision Transform-
ers for image classification, we anticipate that in future there
will be more works in developing C2FVL for more applica-
tions, including more new released datasets.
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