
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Review of Agile Methods for Requirement
Change Management in Web Engineering

1st Abdullah Sabih Alsharari
School of Computer Sciences

Universiti Sains Malaysia
Penang, 11800, Malaysia

upm8@hotmail.com

4th Badiea Abdulkarem Mohammed
College of Computer Science and

Engineering
University of Ha’il

Ha’il, 81481, Saudi Arabia
b.alshaibani@uoh.edu.sa

2nd Wan Mohd Nazmee Wan Zainon
School of Computer Sciences

Universiti Sains Malaysia
Penang, 11800, Malaysia

nazmee@usm.my

5th Mohammed Sabih Alsharari
Faculty of Computer Science &

Information Technology
Universiti Malaya

Kuala Lumpur, 50603, Malaysia
alshararai4m@gmail.com

3rd Sukumar Letchmunan
School of Computer Sciences

Universiti Sains Malaysia
Penang, 11800, Malaysia

sukumar@usm.my

Abstract— Web-based systems are essential in many

different applications, which makes web-based development

different from traditional software development. The agile

methodology has gained lots of popularity in the last 15 years

and become very traditional and acceptable widely among

software engineers; nevertheless, the use of agile methods has

extended to cover other areas of software engineering field

including Requirement Engineering (RE) that fit the need of

web engineering. The pace of the current web’s software

development is fast and dynamic such that the changes of the

requirements during software development and after turning to

production phase are possible and recurrent. Therefore, agile

software engineering conceptuality has evolved as an adequate

approach to overcome changes in the web’s software’s

requirements; due to frequent changes in requirements, web

engineers call for help of agile software engineering methods,

which strive to truly manage changes in requirements rather

than preventing these changes. This paper provides a review on

the available agile methodologies that used to assess

requirement change management in web engineering.

Keywords— Engineering, Agile Methodologies, Requirement

Change Management, Software Engineering

I. INTRODUCTION

The use of scientific, engineering, and management ideas
and systematic methodologies with the goal of successfully
building, implementing, and maintaining high-quality web-
based systems and applications, is a description of Web
Engineering [1]. Web engineering methods use a variety of
notations and recommend some development methodologies,
therefore using a standard meta-model as based approaches
for the web domain [2]. The modeling models’ best
delineation is the meta-model. The relationship between meta-
models and their features, with aptly-formedness instructions,
sustains the need for developing a semantic web [2]. Web
engineering methods developed based on these meta-models
as part of the meta-models promoted design. The common
meta-models should be a combination of the modeling designs
of well-known web engineering methodologies, allowing for
a thorough review and familiarization [3].

There are various classifications for webs and web apps
based on the ongoing expansion of features and complexity.
Aghaei et al. [4] categorised four generations based on the
evolution of the internet: web 1.0, web 2.0, web 3.0, and web
4.0. The characteristics of the generations are discussed and
compared. Since 1989, the web has grown tremendously. It is
adopting artificial intelligence approaches more and more, and
in the near future, it is expected to become a massive web of

sophisticated intelligent communications [4]. There are
several levels of complexity in web apps. Depending on their
progress history and level of difficulty, they may be only
informative or manage full-size and fully-featured 24/7 e-
commerce systems [5]. Wakil et al. [6] came to the conclusion
that the most recent online apps are omnipresent web apps,
intelligent web apps and semantic web apps. Furthermore,
there are Rich Internet Application (RIA), which concentrates
on the customer and the user interface of the server.

This paper is organized as follow: The following section
reviewed the agile methodologies. Section III reviewed the
agile development methods. Section IV highlighted the
advantages and disadvantages of agile methodologies. Section
V reviewed the agile requirement engineering. Finally,
Section VI conclude the paper.

II. AGILE METHODOLOGIES

Agile identifies issues that have resulted in software
development [7]. The waterfall model’s development
methodologies have always resulted in the same problem for
the last 50 years. The unsuitable approach has always been
utilized to specify requirements. Requirements, at their best,
can reveal what is desired by the end users. In general, criteria
have been developed depending on the end users’ needs, who
will be unable to do anything with the finished product. What
is desired versus what is required are two distinct issues. It is
certainly worthwhile to investigate what end users require,
rather than simply listening to what they desire.

A. Agile Manifesto

Agile development is constantly changing, where the most
important parts of the software development have been split
to four values, known as the agile manifesto. Picture of Agile
manifesto is shown in Fig. 1.

The following concepts are considered in Agile Manifesto:

1) Processes and instruments are valued less than people

and engagement.

2) Working application is valued more than overall

documentation.

3) Cooperation with customers is valued more than

contract negotiations.

4) Following the plan is valued less than reacting to

change.

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t C
om

pu
tin

g
an

d
Ap

pl
ic

at
io

n
(IC

SC
A)

 |
 9

79
-8

-3
50

3-
47

05
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SC

A5
78

40
.2

02
3.

10
08

77
34

Fig. 1. Picture of Agile Manifesto

B. What is Agile Development?

Agile approaches are sets of best practices that are
appropriate for certain sorts of projects and organizations [8],
[9]. It is important to understand that in agile, there are no
penalties. There is nothing but feedback. Agile is about
improvement, therefore if anything can be better, it must be
improved [8]. To be successful, a circle of trust with the
product owner and all the stakeholders is needed to be built.
They must be convinced that this is the way to work, and they
will benefit from this approach. This is achieved by
commitment, coordination, and excellent results. Being in
time with high quality products is the key for that [8]. Agile
development is separated into several types of techniques,
each with its own set of best uses. It is crucial to put in mind
that not one of these methods can be used in their current form.
A mix of a few or all of these may be the optimal development
process for the task at hand.

III. AGILE DEVELOPMENT METHODS

Several agile development methods were found in the
literature. Comparing with the traditional methodologies, In
the last few years, significant inroads have been made into the
software industry by agile methodologies [10], [11], [12].
Table I shows a comparison of traditional software
development methodologies versus agile software
development methodologies.

A. Scrum

Scrum is the most known method of agility. Agile is not
only scrum, but the agile war has also even been stated to
have been won by scrum [8], [13]. In rugby, scrum is an
offensive term that refers to a team pushing forward as a
single unit in order to score [14]. Scrum is seen as more of a
communication methodology than a development one, which
depends on the following rules:

• Priorities of the customer: the set of user stories
(requirements) they desire. Scrum development is split
to 1-4 weak sprints, which are equal to iterations. The
Scrum team is a multi-functional group with all of the

capabilities required to accomplish the development
project.

• A product backlog is the starting point for the Scrum
development process (see Fig. 2). The backlog’s top
items are subsequently pushed to the sprint backlog.
During the sprint, the Scrum team is jointly responsible
for developing, integrating, testing, and documenting all
of the user stories assigned to the sprint.

TABLE 1. COMPARISON OF TRADITIONAL SOFTWARE

DEVELOPMENT METHODS AND AGILE SOFTWARE
DEVELOPMENT METHODS [12]

Parameter Traditional Methods Agile Methods

Adaptability
Change

Change Sustainability Change
Adaptability

Development
Approach

Predictive Adaptive

Development
Orientation

Process-Oriented People- Oriented

Project Size Large Small/Medium

Planning Scale Long-term Short-term

Management Style Command-and-control Leadership-and-
collaboration

Learning Continuous Learning
while Development

Learning is
secondary tool

Documentation High Low

Fig. 2. Development Process of Scrum

B. Extreme Programming (XP)

The following is a one-sentence explanation of extreme
programming. “Rather than delivering everything you may
possibly want at a later date, the extreme programming
methodology gives the software you need right now” [15]. XP
is a type of iterative development that has proven to be
successful in small businesses. Extreme programming
prioritizes client satisfaction and constantly strives to deliver
software on time (see Fig. 3).

C. Agile Rational Unified Process Framework (Agile RUP)

The agile rational unified process (Fig. 4) is built on case-
driven development. In other words, it is based on observable
user requirements. It employs an iterative method and focuses
on the architecture established at an early stage in the process
of development. However, the demand of the end user has to
be thoroughly integrated in the final documented product is
different from other agile processes [16].

Fig. 3. Extreme Programming [15]

Fig. 4. Agile RUP Picture [8]

D. Feature Driven Development (FDD)

FDD was first introduced in 1997 [17]. More information
on FDD was provided in [18], [19]. FDD is a style of agile
development which concentrates on two primary stages.
These stages are used to establish the features’ list and to
implement them one by one. The first stage of FDD, which
involves identifying the features that will be included in
subsequent phases, is critical. The work quality of the first
stage determines the precision of project tracking as well as
the project code’s extensibility and maintainability.
Customers must devote 100% of their attention to this stage.
The problem domain is represented by UML diagrams, from
which the features list is created. Both developers and
customers should understand the language used to describe

features. The features mentioned in the features list are modest
in size, allowing for rapid development of the software
application. Work packages are prepared at the start of the
implementation process. A work package is a collection of
features that are linked together. To complete a work package,
one iteration will be necessary. Each iteration usually lasts one
to three weeks. Customers are given work packages to test
after they are completed [17]. The FDD lifecycle is shown in
Fig. 5.

Fig. 5. The FDD Project Lifecycle [19]

E. Feature Driven Development (FDD)

Integrating lean manufacturing ideas into software
development gave birth to Lean Software Development
(LSD) [20]. LSD is more concerned with principles. LSD is
based on the concepts of value stream mapping and
attempting to track and eliminate waste. LSD refers to a set
of principles derived from Lean manufacturing and
implemented to software development. The seven core
notions listed in Fig. 6 are the emphasis of these core
principles.

Fig. 6. Core Principles of LSD [21]

F. Adaptive Software Development (ASD)

ASD was introduced by James A. Highsmith in 2000 [17].
Instead of the static software development life cycle of plan
design build, he proposed a dynamic Speculate collaborate
learn software development life cycle [17]. The process
begins with the initiation phase of the project, which
establishes the development cycle’s goals and timelines. In
the collaboration phase, several components are being
developed at the same time. Components are constantly
refined, which is why development cycle planning is an
iterative process. It is critical to document the lessons gained
about the result’s quality from the perspective of the
customer, the result’s quality from a technical perspective,
the procedures of the delivery team and functioning, and the

project’s state at the end [22]. ASD project lifecycle is shown
in Fig. 7.

Fig. 7. The ASD Project Lifecycle [22]

G. Kanban System

The Kanban methodology, which belongs to the agile set
of techniques, is rapidly gaining favour in the software
industry. As pioneered in [23], during the process of software
development, Kanban allows you to visualize and limit your
work-in-progress. The Kanban technique focuses on work
scheduling to aid in the delivery of software products that are
just-in-time for implementation. To better simulate business
agility, Kanban is being adopted by companies all around the
world and is being integrated into their present software
development processes. The Kanban technique is
distinguished from other Agile-based techniques by a number
of characteristics [12]. A Kanban board is a tool for
visualizing workflow that allows for job optimization and
workflow guidance by categorizing tasks into to-do, in-
progress, and completed categories. The Kanban software
development method offers workflow efficiency and
scheduling, as well as increased team productivity by
decreasing idle time. The Kanban technique is directly linked
to the continuous delivery of software increments rather than
batch releases of functionalities. Customers’ dynamic
requirements are met by releasing tiny sections of the product
in consecutive iterations. Tasks are only performed when
they are genuinely necessary under the Kanban methodology.
As a result, overproduction is eliminated, as well as wasted
work and time. The fundamental goal of Kanban approach is
to keep the Work-in-Progress to a minimum in order to
optimize the system’s workflow in accordance with its
capacity. Work-in-progress constraints can be applied to
individual workflow steps or the entire process. Kanban
system methodology is shown in Fig. 8.

Fig. 8. Kanban System Methodology [24]

H. Dynamic System Development Method (DSDM)

The DSDM provides a framework for developing
applications quickly [25]. The feasibility study and the
business study are the first two parts of the DSDM. The base
requirements are elicited during these two parts. During the
development phase, further requirements are elicited. Certain
approaches are not required by DSDM. As a result, during the
development phase, any RE approach can be employed.
Testing is included throughout the lifecycle in DSDM. The
DSDM idea is to ’test as you go’ [25]. The developer and
team members perform all types of testing (technical and
functional) in stages. The usage of JAD sessions is
specifically emphasized in DSDM, as is prototyping [25],
[26].

IV. ADVANTAGES AND DISADVANTAGES OF

AGILE METHODOLOGIES

In comparison style, the advantages and disadvantaged of
the above-mentioned agile methodologies are presented in
Table II.

V. AGILE REQUIREMENT ENGINEERING (AGILE

RE)

The field of requirement engineering (RE) arose largely
as a result of the rapidly rising size of need specifications,
necessitating the development of engineering tools to aid in
the discovery of system functionality and restrictions [27].
The developer’s management of requirements ends with the
delivery of products that meet the criteria of acceptance [28].
Park and Nang confirmed that as the size of a software system
grows higher, requirement management becomes more
difficult [29]–[31]. Controlling the needs for anticipating and
responding to change requests [32]. One of the most
important processes in the software delivery and project life-
cycle is requirement management [31]. Changes in
requirements are welcomed by software development teams
that follow the agile software development approach at any
point during the product’s software development cycle. Agile
approaches do not require a lengthy requirements document
[26], [31].

RE is formally a part of agile methodologies. On the other
hand, the scale of RE is frequently quite small.
Documentation, for example, is frequently viewed as a step
that slows down the agile process and is thus avoided,
according to [26], which makes the tracking of requirements
extremely difficult. They also believe that requirement
management is not a component of agile development, but
that the remaining processes are. Agile methodologies differ
when it comes to the implementation of requirement
management. Requirements, in scrum, are addressed through
user stories. As a result, scrum requirement management is
defined as the discussion of user stories that specify genuine
requirements. As a result, the product owner takes the lead in
software development [33].

User stories and onsite clients are used to address
requirements in extreme programming (XP) [34]. User
stories with two parts: a written card and conversations
following the use of the written card. Written cards are
merely ‘promises for discussion’ [31]. Cards do not have to
be finished or even specific. After implementation, Story
cards are disposed of [35]. Gather user requirements is

TABLE 2. ADVANTAGES AND DISADVANTAGES OF AGILE METHODOLOGIES

Agile Method Advantages Disadvantages

Scrum - Adaptability and Flexibility
- Innovation and Creativity
- Time-to-Market
- Cost-Cutting
- Enhanced Quality
- Customer and Employee Satisfaction
- Synergy In the Workplace

- Requires Skill and Training
- Organizational Transformation
- Scalability
- Project/Program Management Integration

XP - Fast
- Visible
- Reduce costs
- Teamwork
- Strong relationship with the client

- Code overcomes design
- Location
- Lack of documentation
- Stress

Agile RUP - It is a complete methodology in itself
- Proactive risk resolving
- Less integration time
- Less development time
- Easy online training and tutorial

- It needs expert team members
- The process of development is complicated and disorderly
- The reuse of components is not possible on cutting edge
- Issues with integration in the software development process

with large projects and multiple development

FDD - feature Progress tracking
- Multiple teams work
- Reduce costs
- It has improved process tracking capabilities
- It is well-suited to huge groups or projects

- Not ideal for small-size projects
- High reliance on one person
- Lack of documentation
- The approach is designed in such a way that iterations aren’t

adequately defined by the process

LSD - The elimination of waste leads to the development
process’ overall efficiency

- Early Delivery
- Empowering the development team aids in members’

decision-making abilities, resulting in a more motivated
team

- The project is highly dependent on cohesiveness of the team
and the team members’ individual commitments

- Needs a highly skilled team
- Clients and project sponsors must know the growth of team

exactly what they want and make decisions they are prepared
to follow through on

- In the absence of a competent business analyst, scope creep
will inevitably occur

- It enables the SRS to progress. However, this creates its own
set of issues

ASD - Make discussion
- Get ideas
- Make demonstrations
- Able to maintain good quality work

- Requires public employees
- Time consuming

Kanban - Easy to learn
- Process flexibility
- Continuous delivery
- Improves the flow of the delivery
- Reduces the time it takes for the process to complete

- An obsolete Kanban board that could cause problems during
development

- Lack of timing
- Each phase does not have a timeframe connected with it

DSDM - A high level of user interaction
- Basic functionalities are delivered more frequently and

at a faster rate
- Projects are completed on schedule and under budget
- Provides access by developers to end users

- Not recommended for small businesses or one-time jobs
- Because it is a newer model compared to older traditional

models such as the waterfall, it is not as well known or
understood

- When compared to other agile development software
methodologies, DSDM might be restricted and difficult to
work with due to its strictness and eight principles

depicted in FDD as a UML diagram with a feature list. The
feature list is used to keep track of functional requirements
and development tasks. The scope of the system and its
context are examined at a high level in the solution
requirements analysis. For each modelling area, the team
evaluates the domain in depth. For each domain, small groups

construct a model and present it to their peers for feedback
[31].

User requirements are gathered in lean software
development by presenting displays to end-users and
soliciting feedback. To recognize specific requirements and
the environment, the just-in-time production mindset is used.
Customer input is initially provided in the form of little cards

or stories. Each card’s implementation time is estimated by
the developers. Each morning at stand-up meetings, work
organization transforms into a self-pulling system. During the
speculative phase of Adaptive Software Development (ASD),
requirements are gathered. Defining the mission and goals of
the project, comprehending constraints, organizing the
project, defining and describing requirements, estimating
initial scope, and identifying important project risks are the
first steps. In a preliminary JAD session, data on project
initiation is obtained [36].

User stories in the Kanban system aid in determining what
a sprint’s actual goals were. One story card is contained in a
sprint. A user story is divided into smaller portions by the
tasks. A division into server-side and client-side tasks is done
to the story. The jobs were broken down into smaller chunks.
To keep the project on schedule, developers keep the number
of items in a sprint to a minimum [37]. The requirement phase
of the agile rational unified process (RUP) entails identifying
stakeholders, recognizing the user’s issues, developing a
basis for estimating, and designing the system’s user
interface. Activities take place throughout the Inception and
Elaboration phases, however, they continue to enhance the
design as it progresses throughout the phases. The
deliverables are the business use case model. During the
construction phase, user stories are implemented and
iteratively revised to reflect comprehension of the issue
domain as the project progresses.

Finally, there are four requirements management phases
in the Dynamic System Development Method (DSDM).
Feasibility phase: The requirements for a specific project are
collected and evaluated for feasibility and priority. Authors
of [38] define five agile Requirements Engineering (RE)
models in terms of requirements development based on
requirements management methodologies in agile
techniques:

1) Input and output RE method: To create an output,

combine the inputs.
2) Linear RE method: Similar to the Input and output

RE method, however, the ‘black box’ is now split
into various phases.

3) Linear iterative RE method: The iterative technique
is the most significant distinction from earlier
approaches. This technique works best when
requirements must be extremely precise, allowing
requirements engineers to repeat the process until all
stakeholders are happy.

4) Iterative RE method: This model provides superior
version-by-version release support, in comparison to
the linear RE method.

5) Spiral model of RE: A complete version of the
product is represented by each spiral, and the
procedure is carried out in spirals. This model
focuses on risk management, something none of the
other models do.

Authors of [39] argue that pre-specified requirements are
frequently incompatible with agile software development.
Thus, there are seven ‘best practices’ for RE: First, face-to-
face communication over written specifications: Instead of
documenting requirements first, transfer them directly face-
to-face. Advantages: it reduces time wasted and gives the
consumer immediate control. Disadvantages: customers must

have time available, and when they are acclimated to
traditional processes, they tend to distrust agile techniques.
Second, iterative RE that during the implementation process,
requirements are being developed (which is in line with the
agile philosophy). Advantages: because of direct contact with
the consumer, good customer relations and requirements are
extremely clear. Disadvantages: poor cost/time estimates, a
lack of documentation leading to a bad overview, and a lack
of attention on non-functional requirements. Third,
requirement prioritization goes extreme: Each cycle,
prioritize requirements, including additional tasks like bug
repairs, with the goal of adding business value rather than
expense and risk, as is the case with traditional
methodologies. Advantages: each requirement’s importance
is more evident and does not need to be frozen.
Disadvantages: because of continual re-prioritization, the
system may become unstable, and non-functional
requirements are less significant in the early phases (due to a
lack of additional business value), which becomes an issue in
the later phases. Fourth, managing requirements change
through constant planning: re-adjusting the planning on a
regular basis. Advantages: a project that is dynamic in terms
of difficulties that develop. Disadvantages: changing the plan
isn’t always enough; in some cases, the entire process must
undergo a redo. Fifth, prototyping that creating prototypes in
order to receive rapid feedback from customers. Advantages:
feedback from all customers without delay. Disadvantages:
scalability and robustness are bad. Sixth, test-driven
development that before any features are introduced, tests are
run to ensure that they meet highly specific requirements
(with a significant level of detail). Advantages: It is possible
to combine documentation with existing test code, allowing
developers to experiment with new ideas because tests
provide rapid feedback. Disadvantages: developers are not
used to writing tests first; they need to know a lot of
information before they can build good tests. Finally, use
acceptance tests and review meetings: Feedback can be
created moments after each phase through the use of meetings
and tests. Advantages: besides the input, the consumer will
gain a thorough understanding of the present development
condition, which will build trust. Disadvantages: due to busy
schedules, it is often difficult to gather all stakeholders in one
place each cycle.

Apart from the fact that adequate requirements are critical
for software projects and that Agile projects usually throw
some aspects of RE out the window, Authors of [40] offer
four points to consider in order to enhance RE’s use in Agile
projects:

1) Customer interaction: Even within end-user groups,
there are frequently divergent opinions that must be
identified.

2) Analysis (validation and verification): Validation is
common in agile projects, but verification is rare.

3) Non-functional requirements: Because they do not
add business value, they are sometimes underrated in
projects, yet they are critical to the overall output.

4) Managing change: Requirements Management must
be part of agile projects.

Agile requirements engineering approaches can be
elicited in a variety of techniques, based on what has been
mentioned above. The processes are discussed in the
following subsections.

A. Interaction between the Development Team and the

Customer

A fundamental feature in all agile methodologies is to
have a client accessible or on-site. Authors of [26]
emphasizes that the client is involved throughout the
development process, but that this does not guarantee that
every user or client with the required background is there. It
is highly recommended in agile software development to
have no communication layers between the development
team and the customer. When direct communication between
the development team and the customer is made, the chances
of miscommunication between the two sides are greatly
reduced [41]. Rather than creating comprehensive
documentation, the goal of agile requirements engineering is
to successfully convey ideas from the customer to the
software development team. The time-consuming paperwork
and approval processes are no longer required when informal
communication between the client and the development team
is used. When the requirements change, these things are seen
as superfluous. To define client requirements, most firms
employ simple methodologies like user stories [39]. When
gathering customer requirements, the entire development
team should be involved, and the client’s common language
should be used. Misunderstandings will be less likely as a
result of this. Furthermore, if the requirements are too
complicated, the customer is urged to break them down into
smaller chunks [41].

B. Iterative Requirements Engineering

Functionalities are released in small, regular cycles using
agile approaches. This enables the development team to
obtain more and more frequent feedback from customers in
real time [41]. The development team gains a high-level
understanding of the software’s important features at the start
of the project. High requirements volatility, limited
knowledge of the technology utilized, or customers who
cannot accurately define the requirements before seeing them
are all reasons to not put too much effort into requirements
engineering at the start. Agile requirements engineering
continues at each development cycle after the initial brief
requirements identification. The client and development
teams meet at the start of each cycle to discuss the features
that must be implemented [39]. As the development
progresses, the requirements are incrementally and iteratively
detailed [42]. Gradual detailing guarantees that needs are
actively worked with at all stages of development, reducing
the difficulty of communication gaps both within and
between the development and business teams [42]. It is also
easier to keep system requirements specifications up to date
with an iterative approach to requirements engineering,
which leads to a more satisfying customer relationship. When
the customer-developer relationship is positive, the consumer
will provide feedback to the development team. Iterative
requirements engineering allows for frequent client feedback.
This aids in the reduction of waste in requirements such as
non-essential features. Iterative requirements engineering,
according to [39], can be employed in stable contexts when
changes in requirements are caused by unforeseen technical
challenges.

C. Requirements Prioritization

The highest-priority features are developed first in agile
development so that clients can get the most business value
[26], [39]. Because the project’s understanding grows and
new requirements are added during development, the
prioritizing should be repeated regularly throughout the
process. Authors of [39] and [41] suggested that at the start
of each development cycle, the requirements be prioritized.
The customer and development team assign priority to each
feature to ensure that the most critical requirements are
implemented first. They also mentioned that the priority of
requirements is based solely on one element, the business
value for the customer. They presented a four-step
methodology for prioritizing requirements:

The development team calculates how long it will take to

implement the feature.
For each functionality, the customer establishes business

priorities.
Based on the business priorities, the development team

assigns a risk level to each functionality.
The customer and the development team determine which

features will be implemented in the iteration.

D. Non-Functional Requirements

Non-functional requirements can be thought of as the
limitations that must be met by the entire system. In other
words, non-functional requirements describe how the
software will perform rather than what it will do [43].
Maintainability, safety, performance, scalability, and
portability are examples of non-functional requirements.
Non-functional requirements are frequently overlooked in
agile methodologies. Customers are frequently more
concerned with the core functionality [39]. Customers
specify what they want the system to perform, thus they
aren’t usually concerned with non-functional requirements
[26]. However, Customers focusing on some requirements
such as interface, simplicity of use and safety is a common
exception. Due to the customer’s lack of regard for non-
functional requirements, the development team should assist
the customer in identifying such hidden needs. Authors of
[44] also advise that clients and agile team leaders convene
meetings to discuss non-functional requirements as early as
possible. Authors of [41] also point out that because of the
continual connection with the customer, the necessity to
express non-functional requirements is less significant in the
context of agile software development than in other contexts.
After each iteration, the customer can test the program, and if
he finds any issues with non-functional needs, the
development team can adjust the system to fulfill those
requirements in the next iteration. The development team
should be aware of the majority of non-functional needs
because they can influence the architecture chosen.
Regarding non-functional requirements in this manner could
hold a significant risk due to a lack of certain techniques to
manage them.

E. Documentation in Agile Requirements Engineering

The documentation in agile approaches is low, and the
needs are not usually defined [42]. Some agile approaches,
on the other hand, advocate for the use of requirements
documents; nevertheless, this is mostly dependent on the

development team’s decision. When planning the
documentation, the size of the team should also be taken into
account. When over-documentation is eliminated, the agile
team should be cost effective and productive. When the
software is updated, the short documentation increases the
possibilities of keeping the document up to date. Customers
frequently want documentation from the team before the team
is resolved, but the scope of this material is relatively limited
and focused on the system’s basic elements. Despite the fact
that modelling is employed as part of agile requirements
engineering, the majority of the models will not become part
of the system’s permanent documentation [26].

F. User Stories

A user story describes the capabilities that a program or
system’s user or customer finds useful. The user stories are
made up of three different elements: a written summary of the
plot, Tests that convey and document specifics, as well as
conversations about the story. While the story’s material may
be included in the written description, the detailed
information is worked out in dialogues and documented in
testing [45]. The written description should be prepared on a
piece of paper and should concern a small piece of
functionality. After that, the papers are pinned on a board.
Because one user story does not contain many specifics, a
basic question is where the details are. Cohn responds by
saying that many of the requirements can be stated as new
stories. It is preferable to have several stories than to have a
few major stories [45].

G. Challenges of Minimal Documentation

Agile methodologies, on the whole, tend to produce
insufficient documentation. Because documentation is used
to transmit information between people in agile teams, a lack
of documentation may cause issues. Personnel turnover,
quick changes in requirements, a lack of the suitable client
representative, or the application’s expanding complexity can
all cause communication breakdowns. A wide range of issues
can occur if communication breaks down. Inability to scale
the program, evolve the product over time, or add new people
to the development team are examples of issues. A new team
member will have a lot of questions about the project, and if
he or she has to ask other team members questions all the
time, the job will be slowed down [26], [39].

VI. CONCLUSION

To add to the literature on web engineering methodologies in
general and agile methodologies in particular, a survey was
presented in this paper that give deep insight about the agile
methodologies and their advantages and disadvantages. This
paper discussed the agile methodologies development
methods and summarized the advantages and the
disadvantages of these methods. Furthermore, the agile
requirements engineering are discussed in detail. This work
will be an asset for further work in the field of requirements
change management in web engineering projects.

REFERENCES

[1] S. Murugesan and Y. Deshpande, Web engineering: managing
diversity and complexity of web application development, ser. Lecture
notes in Computer Science 2016. New York: Springer Science and
Business Media, 2016.

[2] K. Wakil and D. N. Jawawi, “Comparison between web engineering
methods to develop multi web applications,” Journal of Software, vol.
12, no. 10, pp. 783–794, 2017.

[3] N. P. de Koch, “Software engineering for adaptive hypermedia
systemsreference model, modeling techniques and development
process,” Thesis, 2001.

[4] S. Aghaei, M. A. Nematbakhsh, and H. K. Farsani, “Evolution of the
world wide web: From web 1.0 to web 4.0,” International Journal of
Web and Semantic Technology, vol. 3, no. 1, pp. 1–10, 2012.

[5] G. Kappel, B. Pr¨oll, S. Reich, and W. Retschitzegger, Web
engineering. New York: John Wiley and Sons, 2006.

[6] K. Wakil and D. N. Jawawi, “Model driven web engineering: A
systematic mapping study,” E-Informatica Software Engineering
Journal, vol. 9, no. 1, pp. 107–142, 2015.

[7] D. Batra, “Job-work fit as a determinant of the acceptance of largescale
agile methodology,” Journal of Systems and Software, vol. 168, p.
110577, 2020.

[8] P. O. Koivisto, “New agile process errors in software development,”
Thesis, 2010.

[9] K. Schmitz, R. Mahapatra, and S. Nerur, “User engagement in the era
of hybrid agile methodology,” IEEE software, vol. 36, no. 4, pp. 32–
40, 2018.

[10] A. Abdelghany, N. R. Darwish, and H. A. Hefni, “An agile
methodology for ontology development,” International Journal of
Intelligent Engineering and Systems, vol. 12, no. 2, pp. 170–181, 2019.

[11] D. Beerbaum, “Applying agile methodology to regulatory compliance
projects in the financial industry: A case study research,” Applying
Agile Methodology to Regulatory Compliance Projects in the Financial
Industry: A Case Study Research (April 26, 2021), vol. JADE, 2021.

[12] G. S. Matharu, A. Mishra, H. Singh, and P. Upadhyay, “Empirical
study of agile software development methodologies: A comparative
analysis,” ACM SIGSOFT Software Engineering Notes, vol. 40, no. 1,
pp. 1–6, 2015.

[13] F. Hayat, A. U. Rehman, K. S. Arif, K. Wahab, and M. Abbas, “The
influence of agile methodology (scrum) on software project
management,” in 2019 20th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD). IEEE, 2019, pp. 145–149.

[14] The lean approach to agile software development. [Online]. Available:
http://www.gatherspace.com/static/agile software development.html

[15] Extreme programming: A gentle introduction. [Online]. Available:
http://www.extremeprogramming.org/

[16] Rational unified process (rup) methodology. [Online]. Available:
https://techspirited.com/rational-unified-process-rup-methodology

[17] A. F. Chowdhury and M. N. Huda, “Comparison between adaptive
software development and feature driven development,” in
Proceedings of 2011 International Conference on Computer Science
and Network Technology, vol. 1. IEEE, 2011, Conference Proceedings,
pp. 363–367.

[18] P. Coad, J. d. Luca, and E. Lefebvre, Java modeling color with UML:
Enterprise components and process with Cdrom. Upper Saddle River:
Prentice Hall PTR, 1999.

[19] S. R. Palmer and M. Felsing, A practical guide to feature-driven
development. Upper Saddle River: Pearson Education, 2001.

[20] M. Poppendieck and M. A. Cusumano, “Lean software development:
A tutorial,” IEEE Software, vol. 29, no. 5, pp. 26–32, 2012.

[21] Lean software development (wave-ii) — 7 lean principles of software
development. [Online]. Available:
http://www.gatherspace.com/static/agile software development.html

[22] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software
development methods: Review and analysis,” VTT Technical Research
Centre of Finland Ltd, vol. 478, pp. 1–112, 2017.

[23] D. J. Anderson, Kanban: Successful Evolutionary Change for Your
Technology Business. Seattle, USA: Blue Hole Press, 2010.

[24] Lean kanban methodology to application support and maintenance.
[Online]. Available: http://www.gatherspace.com/static/agile software
development.html

[25] J. Stapleton, DSDM, dynamic systems development method. New
York: Addison-Wesley, 1995.

[26] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering and
agile software development,” in Proceedings of the Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises, (WET ICE 2003). IEEE, Conference
Proceedings, pp. 308–313.

[27] K. Wnuk, Understanding and supporting large-scale requirements
management. LU-CS-LIC: 2010-1, Licentiate thesis, 2010.

[28] S. E. M. W. Group, “Requirements management guidebook: Avionics
software engineering 4.5.7.” SRM: GDBK: SWELT: 1.0:14AUG98,
1998.

[29] S. Park and J. Nang, “Requirements management in large software
system development,” in SMC’98 Conference Proceedings. IEEE
International Conference on Systems, Man, and Cybernetics (Cat. No.
98CH36218), vol. 3. IEEE, Conference Proceedings, pp. 2680–2685.

[30] A. Zainol, “Investigation into requirements management practices in
the malaysian software industry,” in 2008 International Conference on
Computer Science and Software Engineering, vol. 2. IEEE, Conference
Proceedings, pp. 292–295.

[31] N. Baruah, “Requirement management in agile software environment,”
Procedia Computer Science, vol. 62, pp. 81–83, 2015.

[32] D. J. Reifer, “Requirements management: The search for nirvana,”
IEEE Software, no. 3, pp. 45–47, 2000.

[33] M. C. Paulk, “Extreme programming from a cmm perspective,” IEEE
Software, vol. 18, no. 6, pp. 19–26, 2001.

[34] K. Beck and M. Fowler, Planning extreme programming. Boston:
Addison-Wesley, 2001.

[35] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme programming
installed. Boston: Addison-Wesley, 2001.

[36] J. R. Highsmith, Adaptive software development: a collaborative
approach to managing complex systems. New York: Addison-Wesley,
2013.

[37] O. Liskin, K. Schneider, F. Fagerholm, and J. M¨unch, “Understanding
the role of requirements artifacts in kanban,” in Proceedings of the 7th
International Workshop on Cooperative and Human Aspects of
Software Engineering. ACM, Conference Proceedings, pp. 56–63.

[38] Q. K. Shams-Ul-Arif and S. Gahyyur, “Requirements engineering
processes, tools/technologies, and methodologies,” International
Journal of Reviews in Computing, vol. 2, no. 6, pp. 41–56, 2009.

[39] L. Cao and B. Ramesh, “Agile requirements engineering practices: An
empirical study,” IEEE software, vol. 25, no. 1, pp. 60–67, 2008.

[40] A. Eberlein and J. Leite, “Agile requirements definition: A view from
requirements engineering,” in Proceedings of the International
Workshop on Time-Constrained Requirements Engineering
(TCRE’02), Conference Proceedings, pp. 4–8.

[41] A. Sillitti and G. Succi, Requirements Engineering for Agile Methods.
Berlin, Heidelberg: Springer, 2005, pp. 309–326.

[42] E. Bjarnason, K. Wnuk, and B. Regnell, “A case study on benefits and
side-effects of agile practices in large-scale requirements engineering,”
in Proceedings of the 1st Workshop on Agile Requirements
Engineering. ACM, Conference Proceedings, pp. 3:1–5.

[43] K. M. Adams, Nonfunctional requirements in systems analysis and
design. Cham, Switzerland: Springer, 2015.

[44] A. De Lucia and A. Qusef, “Requirements engineering in agile
software development,” Journal of Emerging Technologies in Web
Intelligence, vol. 2, no. 3, pp. 212–220, 2010.

[45] M. Cohn, User Stories Applied: For Agile Software Development.
Boston: Addison-Wesley Professional, 2004.

