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Abstract— Processing algorithms and processing hardware 

have developed at a very rapid pace in the last three decades. 

Sensors play a vital role in the condition monitoring of various 

components of a manufacturing system and to measure different 

variables that may affect the performance of these systems. 

Real-time collection of data, processing of the collected data, and 

decision-making are challenges. Intermittent fault diagnosis is 

difficult as it occurs randomly and does not follow a pattern. 

Non-availability of a suitably labeled dataset for testing the 

algorithms is also a challenge. Keeping these things in mind in 

the present research fault-injected sensor signals are developed 

from the publicly available Intel Lab dataset for temperature 

and light sensor signals. With the help of the proposed 

algorithm, a Matlab code for intermittent fault injection is 

developed. The performances of the various machine-learning 

algorithms extensively used in literature are also compared with 

the help of accuracy, precision, recall, and F1 score values. The 

performances of the artificial neural networks are compared 

with SVM, Ensemble, and k-NN in classifying various 

intermittent fault modes using the classification learner 

application of Matlab. The trained bilayer neural network has 

achieved an F1 score of 0.89 which is the highest among the 

other tested machine learning algorithms.       

Keywords— artificial neural network, fault classification, 

fault diagnosis, intermittent fault, sensor 

I. INTRODUCTION  

The reduction in the cost of manufacturing sensors played 
a catalytic role in their extensive use in modern industries. 
They are deployed in critical applications including space 
explorations, nuclear reactors, manufacturing systems, and in 
almost all types of industries. Faults in the sensors may occur 
due to degradation of the material, wear and tear over time, 
change in the environment, manufacturing defects, and faulty 
installations [1]. Timely fault detection and their isolation in 
sensors are critical as they can help in avoiding breakdown 
and saving a lot of resources. Isolating the faulty readings 
from the normal readings and taking real-time decisions 
accordingly is vital for avoiding major breakdowns. As the 
systems are becoming increasingly complex setting threshold 
levels and implementing a model-based approach is a 
cumbersome task. Sensors are also manufactured using 
different materials and technologies so the data-based fault 
diagnosis approach has gained traction recently. 

Intermittent faults occur randomly and don’t follow a 
specified pattern so it is difficult to isolate them compared to 
constant faults like stuck sensor faults [2]. Non-availability of 
a suitable benchmark dataset for testing the fault classification 
algorithms is also a big roadblock in the research [3]. 
Researchers [4]-[9] have extensively used k-Nearest 
Neighbour(k-NN) based classifiers for fault diagnosis. In [4] 

and [5] K-NN was used for fault diagnosis in bearings. K-NN 
was also used in heat exchangers by [6], in wireless sensors 
by [7], in multimode by [8], and in chiller systems by [9]. 
Machine learning algorithms like Support Vector 
Machine(SVM) are used by [10]-[14] and ensemble by [15]-
[19] for fault diagnosis. SVM was successfully used by [12] 
in wind turbines, whereas ensemble was used in the research 
of  [15] and [19] in gas turbines and induction motors 
respectively.   

 Developments in machine learning-based approaches 
such as Artificial Neural Networks(ANNs) have also helped 
reduce the amount of human intervention [20]. Deep 
Convolutional Neural networks(DCNNs), soft computing 
used in [21], and hybrid systems like neuro-fuzzy used in [22] 
for fault diagnosis require higher processing speed and large 
training data. These systems are not suitable where the 
requirement of response time is very short. So in the present 
research, a code is developed for creating a dataset by 
injecting intermittent faults and using it to evaluate the 
different machine-learning algorithms. The performances of 
different types of ANNs are compared with the ensemble, 
SVM, and k-NN-based machine learning algorithms, and the 
best one i.e. the bilayer ANN for isolation and classification 
of intermittent faults of sensors is proposed. In the next 
section, the relevant literature related to the present research is 
discussed.  

II. LITERATURE REVIEW 

Sensor faults can be categorized on the basis of distortion 
in the original measurements. The study [1] attempted to 
model different fault modes of the sensors used in the 
aerospace industry. Faults are mentioned as unexpected 
deviations from their normal observations by [1]. Faults were 
also classified faults into five categories such as bias, drift, 
scaling, noise, and hard fault [1]. Random faults are described 
as intermittent spikes in the readings of the sensors which 
occur with a random frequency [1]. The study [3] used three 
available sensor datasets to create benchmark datasets for 
different fault models of sensors. Random faults are 
categorized as discontinuous and occur randomly in the sensor 
observations [3]. Proportional and multiple integral fault 
detection filters for FDI in an unmanned aerial vehicle(UAV) 
using existing sensors are proposed [23]. Five faulty scenarios 
with unknown disturbances were used by [23] for developing 
the model. The stuck and bias fault detection and isolation in 
the UAV are illustrated. The study [9] used k-NN based 
approach for the diagnosis of drift faults in chiller systems. 
The study of [2] emphasized the importance of the detection 
of intermittent faults and proposed a model-based approach 
for its diagnosis. The importance of diagnosing intermittent 
faults has attracted less 



attention from researchers compared to persistent faults 
[2]. In the present study, intermittent faults are used to 
describe the faults that occur randomly without following a 
pattern. 

A. K-NN  for Fault Diagnosis   

The k-nearest neighbour(k-NN) algorithm classifies the 
sensor measurements into faulty or not faulty depending on 
the class membership of nearby neighbours. Time-frequency 
analysis approach was used by [4] for the diagnosis of the ball-
bearing fault diagnosis. Five different types of bearing were 
successfully classified with the help of the proposed model 
and found k-NN to be the best machine learning classifier 
from the experimental data [4]. A hierarchical k-NN-based 
model for fault diagnosis and classification of automotive 
motors was used in [5]. The model accurately predicted the 
bearing faults from the vibration signal and classified the 
defects from the experimental data [5]. 1100 data vectors from 
an experimental heat exchanger system are used in [6] to train 
ANN for fault classification and fault isolation. K-nearest 
neighbours(k-NN) based model was found to be the best 
among all the tested classifiers with 90% of correct detections 
[6]. The performance of different fault detection machine 
learning algorithms for wireless sensor networks was 
compared by [7]. The algorithms were tested on the available 
dataset of physiological signals. k-NN was found to be the 
fastest among other machine learning but with the highest 
misclassification [7]. The study [8] proposed a standardized k-
NN model for fault diagnosis in the multi-mode scenario. 
With the help of a case study, the effectiveness of the proposed 
method was proved [8]. A k-NN-based method for the 
detection of drift faults in the chiller system was proposed by 
[9]. A residual generator was designed for the drift fault from 
the collected sensor data for the identification of faulty sensors 
[9]. The performance of the proposed model of [9] was 
compared with other models in terms of accuracy, recall, and 
F1 score. 

B. Ensemble for Fault Diagnosis 

The ensemble approach has also attracted the researcher's 
[15]-[19] interest in fault diagnosis as it combines different 
models for better classification. A simulated setup of various 
gas turbine fault conditions was used and the FDI system 
using the multi-layer perceptron(MLP), radial basis 
function(RBF), and support vector machine (SVM)  for 
training the NN proposed [15]. The study [15] achieved a very 
high rate of accuracy and reliability by using the dynamic 
ensemble method compared to other schemes. An ensemble 
learning-based supervised machine learning model for the 
classification of faults in photovoltaic systems was proposed 
[16]. The proposed approach uses different machine learning 
algorithms for improved accuracy through the analysis of the 
electrical signals from the photovoltaic system [16]. An 
ensemble learning method for the classification of sensor 
faults combining four different machine learning algorithms 
was used [17]. The model of [17] was validated using sensor 
bias fault data and could be deployed in the building for 
temperature control systems. The performance of the model 
was compared with other models using the area under the 
ROC curve and the false positive rate [17]. The study [18] 
proposed a classification model for the intrusion detection 
system. The proposed model of [18] is based on the ensemble 
method of best model selection from a group of machine 
learning classifiers. The proposed method of [18] was 
validated in terms of its efficiency using four available 

datasets. The performance of the ensemble algorithm with the 
decision tree machine learning model in diagnosing the 
induction motor fault was compared by [19]. The time domain 
features extracted from the signal of three phase induction 
motor were used for the study and achieved 95.8% accuracy 
using the ensemble-based model [19]. 

C. SVM  for Fault Diagnosis 

Support Vector Machine(SVM) has also been used for the 
classification of faults into different classes depending on the 
line or hyperplane that separates the classes. A multi-layered 
SVM model for fault diagnosis in temperature control systems 
was used [10]. Through the residual analysis method, the 
faults are detected using SVM in a simulated environment 
[10]. The study [11] compared the performance of SVM and 
relevance vector machine (RVM) for fault classification in the 
low-speed bearing under various load conditions. Both the 
original data without feature extraction and after feature 
extraction were used in the study [11]. RVM was found to be 
more effective for fault diagnosis under low-speed conditions 
compared to SVM and acoustic emission signals were found 
more suitable than the collected vibration signal from the 
experimental setup [11]. A data-based fault classification 
model using SVM for a wind turbine system was proposed by 
[12]. The study [12] investigated the suitability of the 
proposed diagnostic system on sensors and actuators using 
multiple sensors. Kalman filter and SVM algorithm was used 
by [13] for fault detection in chillers. The proposed model of 
[13] worked well even without the faulty dataset, which can 
help in the reduction of maintenance costs and energy 
consumption. SVM and a Fuzzy DNN-based approach for 
fault detection and diagnosis in a distributed sensor 
environment proposed [14]. The proposed model of [14] 
performed better compared to the other neuro-fuzzy approach 
like ANFIS. The central diagnosis approach for better 
utilization of computational resources was also emphasized 
[14]. 

D. ANN for Fault Diagnosis 

Recently Artificial Neural networks (ANNs) are being 
extensively used for classification problems. The measure 
advantage of using ANN is that they can be trained with a 
variety of nonlinear data with a lot of predictor variables so 
they are highly adaptive. The parameters of the ANN classifier 
get auto-adjusted when real-time data are used for training. 
Both supervised learning and unsupervised learning are 
possible.   

The research [20] proposed that ANN can be used in 
pneumatic valves and actuators for fault detection and 
isolation. Differential pressure and position measurements of 
the pistons of an actuator are used and also classified ANNs 
into two broad categories of feed-forward and recurrent types 
[20]. The study of [21] emphasized the use of soft computing 
techniques such as fuzzy logic along with trained neural 
networks for fault diagnosis of dynamic systems. The 
advantages of using hybrid neural networks for reducing false 
alarms and missing faults are also emphasized [21]. A hybrid 
model of NN combined with fuzzy logic, for isolating abrupt 
faults in sugar factory actuators was used by [22]. The 
research [24] investigated the performance of a multilayer NN 
in diagnosing actuator faults in valves. It was also 
demonstrated that the trained neural network can diagnose the 
fault levels even which are absent during the training process 
[24]. The study [25] proposed a two-layer perceptron-based 
NN control loop system for reducing errors in a nonlinear 



control system having unknown parameters. A stable fault-
tolerant system through continuous updating of weights and 
biases in a simulated pH plant was achieved [25]. The study 
[26] used a hybrid technique of FDI and estimation of faults 
in a general nonlinear system using both parallel and series 
neural parameter estimators. The proposed model of [26] was 
tested in simulated wheel actuators of a satellite system. A 
knowledge-based expert system was proposed by [27] for FDI 
in an electromechanical actuator. Different outdoor sensor and 
system faults were modelled and demonstrated the robustness 
of the proposed model in situations of sensor dropouts i.e. 
even if signals were not received from some sensors [27]. A 
neural network and rule-based model for the supervision of 
heat exchangers was proposed by [28]. The proposed model 
of [28] successfully predicted the remaining life of the heat 
exchanger depending on the amount of fouling on the heat 
exchange surface.  

A voltage control-based intelligent fault-tolerant system 
using NN for FDI in wind electrical systems was proposed by 
[29]. The study [30] proposed a model using recurrent neural 
networks for FDI in nonlinear systems with disturbances and 
also discussed the problems of using neural networks for FDI. 
Fault-tolerant observer for estimating neural network state 
even when the faults are present was proposed by [31]. The 
NN parameters were updated recursively in real-time using 
the backpropagation algorithm [31]. The model proposed by 
[31] performed well in a simulated environment even with the 
noise and other disturbances. Radial basis function-based NN 
for FDI in fuel cell stacks was proposed by [32]. The least-
square method was used for updating the weights of the NN 
[32]. The method successfully detected and isolated faults up 
to ± 10% of the measured value in a simulated environment 
[32]. Two NNs were used by [33] for FDI in gas turbine 
engines having applications in aircraft. A multilayer 
perceptron network was used for fault classification by 
recognizing specific patterns of the fault signals [33]. The 
study [34] demonstrated that the parallel implementation of a 
field-programmable gate array(FPGA) of a NN using a few 
neurons can significantly reduce the processing time 
compared to software implementation of NN along with a 
high-performance computer. A deep learning strategy for fault 
isolation in analog systems with electronic components was 
used by [35]. The proposed system of [35] measures the signal 
only in the output point and generates fault patterns. The study 
[36] proposed a model for incipient fault detection by 
increasing the fault-trend ratio and fault-noise ratio in a 
simulated satellite altitude control system. 

III. RESEARCH METHODS  

A. Objectives of the Study 

The present research focuses on creating a benchmark 
dataset for intermittent faults of the sensors and uses it for 
training machine learning models, as the non availability of 
suitable testing datasets has been emphasized by [3]. It can be 
inferred from the literature that though different machine 
learning algorithms k-NN [4]-[9], Ensemble [15]-[19], SVM 
[10]-[14], ANN [20]-[22], [25]-[28]  have been deployed, 
there is no consensus in the literature about the algorithm for 
the classification of sensor faults. Also, studies related to the 
diagnosis of intermittent faults in sensors are scarce. This gap 
in the literature creates a problem for researchers in 
identifying a suitable algorithm. Keeping these in perspective 
the objective of the present study is to propose an intermittent 

fault injection algorithm and a model for intermittent fault 
classification.  

The study [6]  achieved 90% accuracy with k-NN but the 
ensemble-based model provided the best results in the study 
conducted by [15]. So the present research uses state-of-the-
art machine learning algorithms for the diagnosis of 
intermittent faults from the sensor signals. The performance 
of SVM, Ensemble, k-NN, and ANN for the classification of 
intermittent faults was compared using the fault-injected 
dataset created from [37]. Very little literature is available 
related to the isolation of intermittent faults and modelling 
them in different types of sensors. This gap in the literature is 
addressed through the present study.  

B. Research Steps 

The block diagram in fig. 1 constitutes the steps involved 
in the present research. As depicted in the block diagram raw 
dataset of sensors was pre-processed first to bring them into 
the required suitable format for fault injection. Then 
intermittent faults were injected into the pre-processed data 
using a proposed algorithm. The generated dataset containing 
intermittent faults was then labelled as per the different 
intermittent fault modes. Fault-injected and labelled data were 
then used for training different state-of-the-art machine 
learning algorithms. The performances of the machine 
learning algorithms were compared based on the different 
parameters. The training process was repeated, and training 
parameters are changed till satisfactory performance and 
proposed the best-performing model. 

 
Fig. 1. Block diagram of the research steps 

C. Data Pre-processing  

The raw dataset for this research work was taken from the 
publicly available dataset [37]. The dataset contains 54 
sensors deployed inside the lab measuring temperature, 
humidity, light, and voltage were downloaded for pre-
processing. The dataset [37] contains time-stamped sensor 
readings of Mica2Dot sensors. The sensors were used along 
with a weatherboard for measuring the environmental 
parameters. For the present research mote-1, sensor data are 
used and analyzed, which contains  43,047 readings spread 
over 33 days. The raw data which was in the form of .txt 
format was imported to Microsoft Excel for pre-processing 
using tab, space, and colon delimitation. A subset of 20,000 
observations of the mote-1 sensor for temperature and light 
were selected. The selected subset was manually analyzed for 
any missing observations. The missing measurements were 
removed and the selected subset was indexed from 1 to 20000 
after sorting the data as per the time stamp of the observations. 



The processed data were then imported into a table in the 
MATLAB workspace. The table containing the processed 
clean data of mote-1 were plotted with the help of the plot(X, 
Y) function of MATLAB as shown in fig. 2 and fig. 3  with 
the X-axis as a time index from 1 to 20000, each time index 
representing 30 seconds. Y-axis in fig. 2 represents the 
temperature in degrees Celsius and fig. 3 represents light in 
Lux. As can be observed from fig. 2 and fig. 3, light and 
temperature have some positive correlation and have 11 
cycles. As the labelled benchmark datasets for testing 
algorithms are not available, the dataset for testing the 
algorithms for this research was developed from the raw 
sensor data. Intermittent faults were injected into the clean 
dataset with the help of a developed MATLAB code using the 
proposed intermittent fault injection algorithm. 

 
Fig. 2. Temperature (degree Celsius) vs. Time index (30 seconds) 

 
 

Fig. 3. Light (Lux) vs. Time index (30 seconds) 

D. Fault Injection  

 The algorithm used for the injection of intermittent faults 
into the sensor data is mentioned in fig. 4. The input to 
proposed algorithm-1 shown in fig. 4 are the pre-processed 
dataset, the percentage of faults to be injected, and the range 
of the intermittent fault intensity. A for loop is used for the 
insertion of intermittent faults. The generated intermittent 
faults are either added to or subtracted from the original value 
depending on the counter variable of the loop. To generate the 
dataset for testing the algorithms the intensity of the 
intermittent faults varied from +1.5 to +2.5 times the original 
readings for both positive and negative spikes of intermittent 
faults. The study [3] used intensities of +1.5 to +2.5, in 4% of 
the clean data, and without any negative spikes. In the present 
study, 4 % of data contains the injected intermittent faults of 
which 2 % of the intermittent fault intensity is from -1.5 to -
2.5 whereas the remaining 2 % of the readings have fault 
intensity from +1.5 to +2.5. The intermittent faults with 
random intensity within the specified range, throughout the 
subset of the clean dataset were injected at random points, 

unlike the study of [3], where the intermittent faults were 
injected in a specified percentage of the dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Algorithm for intermittent fault injection 

Out of the total measurement of 20000 light and 
temperature sensor readings, 800 intermittent faults were 
injected with the help of a developed MATLAB program. 
Random points for intermittent fault injection and random 
intensities were generated using the rand() function of 
MATLAB, which uniformly generates random numbers 
assuming Gaussian distribution in the specified range. Step 4 
and 5 of algorithm 1 shown in fig. 4 generates the random 
values inside the loop. Fig. 5 shows the plot of temperature in 
degrees Celsius with injected intermittent faults versus the 
time index (30 seconds).  

 
Fig. 5. Temperature(degree Celsius) with injected intermittent faults vs. 
Time index(30 seconds) 

Fig. 6 shows the plot of light in Lux with injected 
intermittent faults versus the Time index (30 seconds). The 
injected intermittent faults in the temperature and light sensor 
measurements can be observed as spikes in both fig. 5 and fig. 
6. 

 



 
 

Fig. 6. Light (Lux) with injected intermittent faults vs. Time index (30 
seconds) 

E. Training of Models 

The present research attempts to develop an optimum 
model with the help of available machine learning models 
used extensively in the literature for the classification of 
intermittent faults. A 3x20000 matrix was used for training the 
classification learner. The first two columns contained 
measurements of temperature and light sensors with 
intermittent faults whereas the third column contained code 
from 0 to 3 representing different intermittent fault modes. 
Fault mode 0,1,2 and 3 represents no faults, intermittent fault 
in the temperature sensor, intermittent fault in the light sensor, 
and intermittent fault in both sensors respectively. Column-
1(temperature) having a range from -97.0556 to 138.432 and 
Column-2(light) having a range of -968.889 to 2158.89  were 
used as the predictor variables and column-3 (fault modes) had 
a range from 0 to 3 as the response variable. The five-fold 
cross-validation method was used for training the 
classification learner as it helps in avoiding overfitting the 
machine learning models, by dividing datasets into different 
folds and calculating accuracy for each fold of the dataset.  

The performances of 22 tested models of five different 
machine learning algorithms such as ANN, Ensemble, SVM, 
and k-NN are compared as shown in Table 1. Five different 
types of ANN such as narrow, medium, wide, bilayer, and 
trilayer are tested. Rectified Linear Unit (ReLU) activation 
function was used in all five different ANN models. Narrow, 
medium, and wide ANN models contain one fully connected 
layer. The first layer sizes of narrow, medium, and wide ANN 
are 10,25, and 100 respectively. The bilayer ANN constitutes 
two fully connected layers having 10 nodes in each layer. The 
trilayer ANN model constitutes three fully connected layers 
having 10 nodes in each layer. Based on the ensemble method 
five models i.e. boosted trees, bagged trees, subspace 
discriminant, subspace k-NN, and RUSBoosted trees are 
trained. The number of learners was set at 30 for all the 
ensemble models. As the name signifies the learner type was 
a decision tree for boosted, bagged, and RUSBoosted trees 
ensemble models. For subspace k-NN and subspace 
discriminant ensemble models, the learner type was nearest 
neighbour and discriminant as the learner type respectively. 
Four types of SVM models based on their kernel function such 
as linear, quadratic, cubic, and Gaussian.  fine Gaussian, 
medium, and coarse are also compared. Depending on the 
kernel scale used Gaussian SVM model was again subdivided 
into fine, medium, and coarse Gaussian SVM. A kernel scale 
of 0.35,1.4 and 5.7 was set for fine, medium, and coarse 
Gaussian SVM models respectively. Six k-NN models were 
also tested for comparing their performance with the other 

models in the classification of intermittent faults. The number 
of neighbours was set to 1, 10 and 100 for fine, medium, and 
coarse k-NN models respectively. The Euclidian distance was 
used among the data points and the distance weight was set to 
equal for fine, medium, and coarse k-NN models. The 
performance of cosine, cubic and weighted k-NN models with 
distance metrics as cosine, cubic, and Euclidean are also 
compared. The number of neighbours was set to 10 for all the 
cosine, cubic, and weighted k-NN models. Equal distance 
weights were used in cosine and cubic k-NN, whereas squared 
inverse distance among the data points was used in the 
weighted k-NN model. 

IV. RESULTS AND DISCUSSION 

A. Performance Comparison of Models 

Table 1 represents the performance comparison of the 
tested models. Speed is represented in 1000 observations per 
second. Values of accuracy, precision, recall, and F1 score are 
represented out of the maximum value of one. 

TABLE I.  PERFORMANCE COMPARISON OF MODELS 

Sl. 

No. 
Models Speed 

 

Accuracy 

 

Precision Recall 
F1 

score 

1 ANN (Narrow) 230 0.9859 0.9663 0.8032 0.8772 

2 ANN (Medium) 580 0.9858 0.9291 0.8103 0.8656 

3 ANN (Wide) 350 0.9867 0.9040 0.8076 0.8531 

4 ANN (Bilayer) 520 0.9860 0.9778 0.8172 0.8903 

5 ANN (Trilayer) 480 0.9863 0.9579 0.7916 0.8668 

6 
Ensemble  
(Boosted Trees) 

55 0.9854 0.9222 0.7843 0.8477 

7 
Ensemble  
(Bagged Trees) 

42 0.9918 0.9126 0.8463 0.8782 

8 
Ensemble  
(Subspace Disc.) 

42 0.9225 0.2306 0.25 0.2399 

9 
Ensemble  
(Subspace k-NN) 

14 0.9243 0.5703 0.2640 0.3609 

10 
Ensemble 
(RUSBoosted 
Trees) 

47 0.9403 0.6363 0.8413 0.7246 

11 SVM (Linear) 270 0.9225 0.4808 0.2503 0.3292 

12 SVM (Quadratic) 79 0.7328 0.7453 0.5819 0.6535 

13 SVM (Cubic) 190 0.2406 0.3439 0.4715 0.3977 

14 
SVM  
(Fine Gaussian) 

69 0.9833 0.7360 0.6505 0.6906 

15 
SVM  
(Medium 
Gaussian) 

140 0.9777 0.9873 0.6500 0.7839 

16 
SVM  
(Coarse Gaussian) 

100 0.9715 0.9853 0.5998 0.7457 

17 K-NN (Fine) 300 0.9877 0.8123 0.7568 0.7836 

18 K-NN (Medium) 170 0.9839 0.7254 0.6613 0.6919 

19 K-NN (Coarse) 66 0.9797 0.7285 0.6300 0.6757 

20 K-NN (Cosine) 38 0.9464 0.5692 0.4465 0.5004 

21 K-NN (Cubic) 130 0.9838 0.7238 0.6622 0.6916 

22 K-NN (Weighted) 240 0.9869 0.8418 0.7171 0.7745 

As can be observed from Table 1, wide ANN achieved a 
classification accuracy of 98.67% whereas cubic SVM 
achieved the lowest classification accuracy among the 22 
models tested in the present study. But the number of elements 
in different classes is not the same or the classes are 
imbalanced. As the classes are imbalanced classification 
accuracy cannot be used as a good metric for evaluating 
models. So F1 score of all the models for performance 
comparison along with other metrics like speed, accuracy, 
precision, and recall is used.  



The last column of Table 1 contains the F1 score of all the 
models. The F1 score of a model is derived from the precision 
and the recall value of the model calculated from the 
confusion matrix. The F1 score is the harmonic mean of both 
the precision and recall values. It is evident from Table 1 that 
the F1 score of bi-layered ANN is 0.8903 which is the highest 
among all the tested models. The ensemble model(Subspace 
Discriminant) has the lowest F1 score of 0.2399 among all the 
models. F1 score of All the five ANN models has F1 scores of 
more than 0.85, whereas no other model except the 
ensemble(Bagged Trees) could achieve more than 0.85 F1 
scores. Bi-layered ANN having two fully connected layers 
with 10 nodes each performed better than tri-layered ANN 
having 3 fully connected layers of 10 nodes each. Medium 
ANN achieved the highest prediction speed of 5,80,000 
observations per second. Bi-layered ANN achieved the 
second-highest prediction speed of 5,20,000 observations in 
one second. Ensemble(Subspace k-NN) is the slowest among 
all the models with a prediction speed of 14,000 observations 
per second. The performances of the models shown in Table 
1 were achieved by using a personal computer with a 1.6 
gigahertz processor speed and 8 gigabytes of random access 
memory. 

B. Confusion Matrix  

The confusion matrix plays a significant role in selecting 
a prediction model. Fig. 7 shows the confusion matrix for the 
bi-layered ANN. Out of the total 20,000 data points 19,721 
data points could be classified correctly by the trained bi-
layered ANN resulting in an overall accuracy of 98.60%. 
There are four different classes i.e. class 0 (no fault) class 1 
(fault in temperature sensor), class 2 (fault in light sensor), and 
class 3 (fault in both temperature and light sensor) represented 
as 0,1,2 and 3 respectively in the confusion matrix shown in 
fig. 7. Class 3 i.e. fault in both sensors was predicted with the 
lowest precision i.e. 0.5769, which is the ratio of true positive 
and total data points (true ppositives and false ppositives) in 
that class. The highest precision value of 0.9982 was achieved 
for class 0 i.e. no-fault case. The bi-layered ANN model 
achieved the second-best precision of 0.9947 for class 1 
whereas for class 2 precision of 0.7421 could be achieved. 

 
Fig. 7. Confusion Matrix of Bilayered ANN 

V. CONCLUSION 

There is little consensus in the literature regarding the use 
of any specific algorithm for intermittent fault diagnosis in 
sensors. As the complexity of the algorithm increase so the 

processing and response time also increases which is not 
acceptable for critical applications where the response time 
needs to be on a real-time basis. The availability of faulty and 
non-faulty data for training is also scarce. The present research 
addresses these problems by proposing an intermittent fault 
injection algorithm and a bi-layered ANN model for its 
classification. The accuracy of 98.6 % achieved by the model 
is comparable to the results obtained by other research. Also, 
the achieved F1 score of 89.09% is high compared to the k-
NN, SVM, and ensemble-based algorithms. Increasing the 
number of fully connected layers and nodes did not yield 
better results compared to the bi-layered ANN as evident from 
the performance of tri-layered ANN. The proposed model has 
a higher speed of prediction compared to other tested models 
except for medium ANN. The proposed model’s slightly 
lower rate of prediction is well compensated by its higher 
accuracy and F1 score. The proposed model is suitable for 
real-time critical applications having space, energy, and cost 
constraints.  

Gaussian distribution at the time of injecting faults is 
assumed and used sensor measurement data from the Intel Lab 
dataset, which may be varied in future research for testing the 
performance of the proposed model.   
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