
IEEE JOURNAL OF SELECTED AREAS IN SENSORS 1

MASTER: Machine Learning-based Cold Start
Latency Prediction Framework in Serverless

Edge Computing Environments for Industry 4.0
Muhammed Golec, Sukhpal Singh Gill, Huaming Wu, Talat Cemre Can, Mustafa Golec, Oktay Cetinkaya,

Felix Cuadrado, Ajith Kumar Parlikad and Steve Uhlig

Abstract— The integration of serverless edge computing
and the Industrial Internet of Things (IIoT), like Industry 4.0
applications, is seen as a promising development that can
make industrial processes more efficient and faster. These
two technologies can be integrated to optimize production
by enabling faster adaptation in critical industries with vari-
able environmental conditions. However, challenges that
have a negative impact on latency, such as cold start due
to the serverless paradigm, are one of the challenging
problems in this adaptation process. Cold start latency has
recently received much attention in academia, but most
proposed solutions lead to wasted resources. To address
this issue, we propose a new machine learning-based re-
source management framework called MASTER which uti-
lizes an Extreme Gradient Boosting (XGBoost) model to
predict the cold start latency for Industry 4.0 applications
for performance optimization. Further, we created a new
cold start dataset using an IIoT scenario (i.e. predictive
maintenance) to validate the proposed MASTER framework
in serverless edge computing environments. We have eval-
uated the performance of the MASTER framework using a
real-world serverless platform, Google Cloud Platform for
single-step prediction (SSP) and multiple-step prediction
(MSP) operations and compared it with existing frameworks
that used Deep Deterministic Policy Gradient (DDPG) and
Long Short-Term Memory (LSTM) models. The experimen-
tal results show that the XGBoost-based resource manage-
ment framework is the most successful model in predicting
cold start with Mean Absolute Percentage Error (MAPE)

M. Golec is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, United Kingdom, and Ab-
dullah Gul University, Kayseri, Turkey. Email: m.golec@qmul.ac.uk.

S. S. Gill and S. Uhlig are with the School of Electronic Engineering
and Computer Science, Queen Mary University of London, United
Kingdom. Email: {s.s.gill, steve.uhlig}@qmul.ac.uk

H. Wu is with the Center for Applied Mathematics, Tianjin University,
300072, Tianjin, China. E-mail: whming@tju.edu.cn

T. C. Can is with the TFI TAB Food Investments, Turkey. Email:
talatcemrecan@gmail.com

M. Golec is with the Faculty of Engineering, Computer
Engineering, Dumlupınar University, Kütahya, Turkey. Email:
mustafagolec36@gmail.com

O. Cetinkaya is with the Oxford e-Research Centre (OeRC), Depart-
ment of Engineering Science, University of Oxford, Oxford, UK. Email:
oktay.cetinkaya@eng.ox.ac.uk

F. Cuadrado is with the School of Telecommunications Engineer-
ing Madrid, Technical University of Madrid (UPM), Spain. Email: fe-
lix.cuadrado@upm.es

A. K. Parlikad is with the Institute for Manufacturing, Department
of Engineering, University of Cambridge, Cambridge, United Kingdom.
Email: aknp2@cam.ac.uk

(Corresponding author: Huaming Wu)

values of 0.23 in SSP and 0.12 in MSP. It has been also
identified that the Linear Regression model (utilized in
the MASTER framework) has the least computational time
(0.03 seconds) as compared to other deep learning and
machine learning models considered in this work. Finally,
we compare the energy consumption and CO2 emissions
of all models to emphasize resource awareness.

Index Terms— Serverless Computing, Edge Computing,
Industry 4.0, Predictive Maintenance, Cold Start Latency.

I. INTRODUCTION

THE rapid developments in sensor technologies have re-
sulted in the spread of the Internet of Things (IoT)

applications in many different areas, including civil, military,
healthcare, and education [1], [2]. One of the IoT application
areas that has attracted attention in recent years is the Industrial
Internet of Things (IIoT), which aims to optimize industrial
processes and increase efficiency [3]. IIoT allows industrial
devices to share data through sensors and networks. Analyzing
this data aims to make production processes more efficient
[4]. To better understand the impact of IIoT on production
processes, predictive maintenance applications in Industry 4.0,
which enables the integration of digital technologies into
industrial areas, can be given as an example [5]. Predictive
Maintenance is an application that analyzes data collected
through sensors from industrial machines and production pro-
cesses, offering advantages such as: (i) reducing downtime,
(ii) increasing the reliability of machines, and (iii) providing
strategies for maintenance [6]. These IIoT-based applications
also mean vast amounts of data that must be processed in real
time. New developments with low latency and high processing
capacity are needed to process this data [7]. Serverless edge
computing may be a promising solution to meet this need.

Serverless edge computing is a new paradigm that extends
the advantages of serverless computing to the network’s edge
[2]. This paradigm aims to benefit from the following main
advantages of serverless and edge computing [8], [9]:

• Dynamic Scalability: System resources can be automati-
cally scaled up or down in line with incoming demands
[10]. Thanks to this feature, the system can respond to
users quickly, even when transaction demand is high.

• Low Latency: The latency is much lower than on central
servers since the data will be processed at the edge

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

[11]. This provides an excellent advantage for real-time
operations where response time is critical, such as IIoT
and Industry 4.0.

• Bandwidth Saving: Since data is processed at the edge,
server usage and network congestion are minimized.

• Easy Infrastructure Management: Encourages code de-
velopers to focus only on coding and business logic,
abstracting from the control and management level.

• Economic Model: Customers are priced only for the
duration of resource usage. This model is known as pay-
as-you-go and allows customers to optimize costs.

Besides the advantages of serverless computing, it also
has challenges such as security, privacy, platform dependency,
and cold start latency [12]. This paper focuses on the cold
start problem in serverless edge computing, which can cause
latency in real-time IIoT applications [13].

In serverless edge computing, functions are executed by
assigning them to containers [14]. After the execution, idle
containers are deleted to avoid unnecessary energy and re-
source consumption. This process is called scale to zero and
is the main reason for a cold start [15]. Because the deleted
containers may be needed again in line with the increasing
demand, and it will take time for these containers to be rebuilt.
This preparation time causes a cold start. Another reason for
a cold start is when a container receives more requests than it
can handle [16]. New containers will be launched to meet this
excessive demand, causing cold start delays. Cold start latency
has adverse effects such as User Experience, Scalability, and
Cost in serverless edge computing [17]. (i) User Experience:
In scenarios where response time is critical, cold start latency
should be minimized for a smooth user experience [18]. (ii)
Scalability: One of the essential features of serverless edge
computing is its ability to scale resources up and down for
variable workloads. An increase in cold start latency will mean
an increase in the creation time of containers, so the execution
of incoming requests will be delayed, negatively affecting the
scalability feature [19]. (iii) Cost: In Serverless, with the pay-
as-you-go model, only the resources used are charged. In a
serverless environment with a high cold start, a short-term
and heavily used function will cause unnecessary costs [20].

A. Motivation and Contributions

Industry 4.0 is the fourth industrial revolution that emerged
with huge advantages, such as increasing efficiency and prod-
uct quality by digitizing production processes [21]. Despite
these advantages, it brings its own problems, such as invest-
ment costs (e.g., new equipment), data security, unsuitability of
the existing infrastructure, and latency, which are still waiting
to be addressed [22]. Managing latency is critical in real-time
IIoT applications in Industry 4.0, as well as automotive and
robotic applications [23], as these often require high speed,
efficiency, and accuracy. Latencies may delay data processing
and bring data integrity in the system [24]. In addition,
although Industry 4.0 necessitates quick transactions, latencies
may cause undesirable consequences, such as performance
degradation and therefore, loss of competitive advantage. The
main reasons for latencies in IIoT are (i) Constant transfer

of data created on IIoT devices to servers for processing
(bandwidth waste and network congestion), and (ii) Time
taken for data collected on IIoT devices to return after being
processed on the server (response time). The serverless edge
computing paradigm can be used to solve these concerns and
improve the capabilities of IIoT [25]. Serverless edge com-
puting reduces response time by bringing processing power
closer to the network’s edge and saves bandwidth because it
reduces the data sent to the server. In this way, latency time
in IIoT can be reduced [26]. On the other hand, in serverless
edge computing, the cold start latency problem caused by the
serverless paradigm continues. Few studies have been done
in the literature to solve this problem, and most of these
studies include solutions such as ”Keeping Container Warm”
that require resources to be idle [22]. Therefore, there is a need
for approaches that can be the basis for new studies that solve
the cold start problem by considering resource consumption.

In this paper, we propose a new MAchine Learning-Based
Cold STart Latency Prediction Framework in SERverless edge
computing environments For Industry 4.0, i.e., MASTER, to
predict the cold start latency in serverless edge computing
environments for Industry 4.0 applications to optimize per-
formance. In the MASTER framework, we have utilized two
machine learning models such as eXtreme Gradient Boosting
(XGBoost) & Linear regression (LR), and deep learning
models such as DeepAR, Neural Hierarchical Interpolation for
Time Series (NHITS), & Temporal Fusion Transformer (TFT).
The performance of the MASTER framework is compared
with the state-of-the-art frameworks such as ATOM [27], and
Two-layer Adaptive (TLA) [28] to prove its novelty in predict-
ing the cold start latency. ATOM framework used the Deep
Deterministic Policy Gradient (DDPG) Deep Reinforcement
Learning (DRL) model while TLA used the Long Short-
Term Memory (LSTM) model to predict cold start latency.
MASTER used the above-mentioned machine learning and
deep learning models [29] due to the following reasons: (i)
Capture complex patterns: it is expected to be successful in
non-linear and complex patterned data such as cold start. (ii)
Automatic feature extraction: automatically extracts features
in the cold start dataset. This eliminates the need for special-
ized feature engineering processes. (iii) Robustness against
outliers: withstands noisy and outliers in cold start datasets
and makes accurate predictions.

The main contributions of this work are as follows:
• Proposing a new machine learning-based resource man-

agement framework called MASTER to predict the cold
start latency in serverless edge computing environments.
Thus, it is aimed at forming the basis for future resource-
sensitive cold start prevention studies.

• Creating a new cold start dataset based on an IIoT
scenario, i.e., predictive maintenance, to validate the pro-
posed MASTER framework in serverless edge computing
environments. Thus, a public dataset is created for future
cold-start studies.

• Incorporating two machine learning (XGBoost and LR)
and three deep learning models (DeepAR, NHITS, and
TFT) into the MASTER framework to predict the cold
start latency, thereby determining the model with the best

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GOLEC et al.: MASTER: MACHINE LEARNING-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING ENVIRON-
MENTS FOR INDUSTRY 4.0 3

cold start prediction performance.
• Comparing the performance of the MASTER framework

to those of two baseline works, namely ATOM [27] and
TLA [28], in terms of cold start prediction performance.
IThus, it demonstrates the MASTER framework’s cold-
start prediction superiority.

• Evaluating the performance of the MASTER framework
using a real-world serverless platform, the Google Cloud
Platform (GCP), for single-step prediction (SSP) and
multiple-step prediction (MSP) operations.

• Comparing the computational time, energy consumption,
and CO2 emission amounts of the above-mentioned
machine learning and deep learning models. In this way,
it is aimed at raising awareness about CO2 emissions,
which are one of the main causes of global environmental
problems.

B. Organization

The rest of the paper is organized as follows: Section II
discusses the related work of various existing solutions for
the cold start problem. Section III presents the methodology
including main architecture, pseudo code and dataset. Section
IV discusses the experimental setup, workload details, eval-
uation metrics and results. Finally, Section V concludes the
paper and highlights future directions.

II. RELATED WORK

Cold start latency originating from the serverless paradigm
is still a problem to be solved. The cold start latency can
range from tens of milliseconds to a few seconds, causing
an undesirable delay in time-sensitive scenarios [30]. When
the literature is reviewed, the proposed solutions are generally
grouped under two headings [28].

A. Studies on Reducing Cold Start Latency Time

These studies are aimed at making container preparation
processes such as runtime, library initialization, and function
preload faster. Thus, the container preparation process takes
less time and the cold start latency can be reduced. Solaiman
et al. [31] aimed to reduce the cold start latency time by
proposing a new container management called WLEC. The
WLEC management architecture uses S2LRU++, an enhanced
version of S2LRU Cache replacement policies. The prepa-
ration time is shortened in containers where functions are
executed using S2LRU++. The authors tested WLEC on AWS-
OpenLambda and a local Virtual Machine (VM). The results
showed that the cold start latency time was reduced by up
to 31%. The authors in [32] did work with a new technique
they proposed to decide when to create a snapshot in a
function. The technique was prototyped using the Linux-
based Checkpoint/Restore In Userspace (CRIU) application
developer, and experiments were performed by comparing it
with standard Unix process creation. Results show that the
start-up time of function has improved between 40-70%. This
way, as the runtime initialization time is shortened, the cold
start latency time is also reduced.

B. Studies on Reducing the Frequency of Cold Start

It is about working to reduce the frequency of cold start by
using methods such as keeping the container warm [33]. In
[34], the authors introduced HotC, a new lightweight container
management framework that adjusts the runtime reuse to client
requests. In HotC, it performs live container control using
the exponential smoothing model and Markov chain models.
Moreover, it reuses containers by selecting from the runtime
pool according to user requests. Experiments on OpenFaaS
show that HotC reduces the frequency of cold starts. Daw
et al. [35] aimed to reduce the frequency of cold starts by
recommending a tool called Xanadu. Xanadu prevents cold
starts by providing speculative and just-in-time resources for
serverless platforms. Experiments on Knative and Openwhisk
platforms show that Xanadu reduces cold start occurrence by
10-18 times. They aim to reduce the frequency of cold start
by using a ‘hot’ container creation technique according to
user requests suggested by the authors in [36]. The authors
tested their work on the Knative platform using their auto
scaler technique, and the results show an 85% success rate.
Other works such as Warm-Start Containers (WSA) [37],
and Two-layer Adaptive (TLA) [28] methods to reduce the
cold start frequency. In the WSA method, authors used a
Reinforcement Learning (RL) model to predict call functions
and container patterns. In the second stage, the call time
of a function is estimated using the LSTM model, and the
number of containers to be heated is decided based on this
prediction result. Similarly, there is a two-step approach in
the TLA method. In the first step, a Deep neural network
(DNN) model is used to estimate the number of idle containers
(window length). In the second step, the number of requests
is estimated using the LSTM model. In the ATOM framework
[27], the authors used a Deep Reinforcement Learning (DRL)
method (i.e. Deep Deterministic Policy Gradient (DDPG)),
which is effective in solving complex and nonlinear problems,
to estimate the number of users using the server and the time
of cold start occurrence in serverless edge computing. As a
result of their experiments, they obtained a Root Mean Squared
Error (RMSE) value of 148.76 for cold start prediction. This
framework, unlike previous studies, is a basis for energy-
sensitive cold start prevention studies.

C. Critical Analysis

Table I compares the proposed MASTER framework with
existing works. The columns in Table I and what they mean
can be examined as follows: (i) “Mechanism" represents what
techniques were used in the studies reviewed, (ii) “Monitoring"
represents which platforms/simulators were used in the re-
viewed studies, (iii) “Serverless Platform" represents whether
a serverless-based platform is used in the studies reviewed,
(iv) “Resource-Aware (RA)" represents whether an RA-based
method is used in the studies reviewed, (v) “MSP" represents
whether MSP was performed in the studies reviewed, (vi)
“Edge" represents whether the work under review was tested in
an edge environment, (vii) “Domain" represents which domain
is targeted in the studies reviewed.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

TABLE I: Comparison of the proposed MASTER framework with existing works.

Study Mechanism Monitoring Serverless Platform RA MSP Edge Domain

Studies on Reducing Cold Start Latency Time

[31] WLEC AWS, Local VM ✓ ✗ ✗ ✗ Image Resizing
[32] Prebaking Standard Unix ✓ ✗ ✗ ✗ Snapshots

Studies on Reducing the Frequency of Cold Start

[27] DRL GCP Cloud Functions ✓ ✓ ✗ ✓ Healthcare
[37] WSA AWS Lambda, Azure, Openfaas, Openwhisk ✓ ✗ ✗ ✗ Function Invocation Patterns
[28] TLA Openwhisk ✓ ✗ ✗ ✗ Number of Containers
[34] HotC OpenFaaS ✗ ✗ ✗ ✗ Container Runtime Pool
[35] Xanadu Knative,Openwhisk ✗ ✗ ✗ ✗ Sequence of Functions
[36] Autoscaler Knative ✗ ✗ ✗ ✗ Parallel Loops
MASTER ML & DL GCP Cloud Functions ✓ ✓ ✓ ✓ Industry 4.0

Existing methods focus on keeping the container warm and
container pooling, which is not RA and requires the constant
operation of resources. In addition, in current studies, no
data set has yet been created by considering the dynamically
changing “Function Calls”. Additionally, none of these studies
performed MSP for cold start using Machine Learning (ML)
and Deep Learning (DL)-based models. Only two studies
use serverless edge computing environments for experiments,
namely ATOM [27] and our proposed framework (MASTER).
Compared to ATOM, the MASTER framework provides a
huge advantage in cold start detection, such as capturing long-
term trends by estimating MSP. Thus, cloud providers can be
informed up to 15-20 minutes earlier, and precautions can
be taken for a cold start. Additionally, the ATOM frame-
work targets the Healthcare domain, whereas the Industry
4.0 domain is targeted in MASTER. While the DRL-based
algorithm is used to make cold start predictions in the ATOM
framework, DL- & ML-based models are used in MASTER,
which have advantages like capturing complex patterns and
automatic feature extraction and also have higher prediction
performance. More details on these will be provided in Section
IV-E.

III. PROPOSED MASTER FRAMEWORK

In this section, firstly, the MASTER framework and its
working mechanism are described in subsection III-A. Then,
the methodology is given in subsection III-B, so that the reader
can better understand the research stages. The datasets used
in the article are explained under subsection III-C.

A. Main Architecture

The structure of the MASTER framework with four layers
is shown in Fig. 1. The first layer consists of assets, the second
layer consists of an edge network, the third layer consists of a
network and the fourth layer consists of a serverless platform.

The asset layer forms the first layer in the MASTER
framework. In the industry, all machines, sensors, and systems
that are included in the production process and monitored in
predictive maintenance applications are in this layer. These
assets can consist of a variety of equipment such as Computer
Numerical Control (CNC) machining and Heating, Ventilation,
and Air-Conditioning (HVAC) systems. The dataset used in

the MASTER framework is obtained from a freeze machine
[38]. A freeze machine is an industrial machine that can rotate
around its own axis and shape various materials such as metal
and furniture with the help of a cutting edge. Various types
and numbers of sensors are used to collect relevant data from
the freezing machine.

The edge network is the layer where IoT devices and end
nodes, such as Programmable Logic Controller (PLC) and
Supervisory Control and Data Acquisition (SCADA) systems,
with limited processing powers, are located [39]. It also
forms the first of the two main layers in serverless edge
computing. This layer has a heterogeneous structure since
it accommodates devices with different system features and
processing capabilities. The edge network layer is closer to the
data center than central servers and therefore can respond to
the resource (assets) with lower latency. In the edge network,
Google Cloud Platform (GCP)-based Google Cloud Function
(GCF) is deployed. In this way, nodes can not only control
the lifecycle of the function (f(x)) but also interact with each
other. Edge network transmits f(x) from assets to edge nodes
in the edge network using different protocols (HTTP is used in
this work) with trigger logic. Edge nodes trigger the function
on the serverless platform with this f(x) and return a response
to the asset.

Network Layer is responsible for all inter-layer data com-
munication. It is especially critical in real-time applications.
Satellite communications can be used for industrial production
lines distributed over large geographies. Additionally, the
network layer may consist of various network systems, such as
intranets, usually wireless. The serverless layer is used when
high processing power and capacity are required for f(x)
sent from assets to the edge network. This is decided by the
edge nodes in the edge network. The MASTER framework
constantly monitors the network and detects the occurrence of
a cold start. It uses XGB Regressor and the reason for using an
XGB Regressor is explained in Section IV. The XGB model
is trained using the cold start dataset. By using the time period
in the dataset and the latency amounts corresponding to each
time period, the latencies of future time periods are estimated.
The MASTER framework has two different prediction modes.
The first prediction mode is Single Step Prediction (SSP),
which makes a cold start prediction 5 minutes in advance,
and the second prediction mode is Multi Step Prediction

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GOLEC et al.: MASTER: MACHINE LEARNING-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING ENVIRON-
MENTS FOR INDUSTRY 4.0 5

EDGE NETWORK

SERVERLESS PLATFORM

Edge Device 1 Edge Device 2 Edge Device N

ASSETSASSETS

Network

SVC for predictive
maintenance

Scalability

Sensors Robots Production Smart Grids Sensors Energy Production

f(x) f(x) f(x)

f(x)

Fig. 1: The MASTER framework.

(MSP) mode, which makes a cold start prediction 20 minutes
in advance. Prediction results provide useful information for
efforts to reduce cold start latency frequency. These results can
be used by cloud providers in the future to reduce cold start
frequency and provide smoother operations and cost savings
for customers.

In Algorithm 1, the pseudo-code of the MASTER frame-
work is given for time series prediction. The first phase
involves creating a cold start data set. The second stage shows
the cold start prediction process of the trained model using this
dataset. The MASTER framework is positioned between the
client and server to monitor transaction information. Predictive
maintenance data (ψ1,2,...,n) coming from the sensors, such
as AirTemperature and RotationalSpeed, are sent to the ML
model (Support Vector Classifier (SVC)) deployed on the
serverless platform. The prediction result (∆) made in the SVC
model is sent back to the client. The MASTER framework
saves ∆ and transaction information (Ti). In this way, it creates
a cold start dataset by monitoring the communication channel
24 hours a day and five days a week. In the second stage, the
ML model (XGBoost) in the MASTER framework is trained
using the cold start dataset. The variables given as input are the
amount of delay corresponding to each time period in the cold
start dataset (τ), the loss function value used in the XGBoost
(XGB) model (ι), the base learner value (g), and the number
of subtrees (κ). As output, the model’s prediction result for
the cold start is returned (ℜ). In the last part, the cold start
in the system can be determined according to a previously
determined λ value.

Time complexity: There are two loops in the algorithm,

so the time complexity value is O(n2). This means that the
algorithm performance will deteriorate as the square of the
number of elements increases.

B. Methodology

Figure 2 is designed to better explain the MASTER work-
flow in technical terms. (i) In the first stage, the cold start
dataset containing client-server communication information
and the cold start statuses are created. To do this, a predictive
maintenance application is deployed on a serverless platform.
Then, the system is followed for 24 hours a day and five days
a week, as explained in the previous subsection. (ii) After the
cold start dataset is created, outliers are detected through pre-
processing operations. Feature engineering operations, such
as the standard scaler and lag features, are performed for
Artificial Intelligence (AI)-based time-series models that will
be used in cold start prediction. Our aim in doing this is to
increase the prediction accuracy as much as possible. (iii) SSP
and MSP prediction processes are performed with ML and DL-
based time-series models. (iv) In the last step, a performance
evaluation for ML and DL models is performed.

C. Dataset

This subsection describes the two different datasets used
in this research work. In particular, we used the predictive
maintenance dataset to create the cold start dataset and then
used the cold start dataset to train the AI-based time-series
models.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

Algorithm 1 The Pseudo code of MASTER for time series
prediction.

1: Input: ψ1,2,··· ,n, τ ∈ (τ1, τ2, · · · , τn), ι(y,y’), g(X,µ), κ
2: Output: ∆, ℜ
3: Variables:
4: Predictive maintenance data ← ψ1,2,··· ,n
5: Support Vector Classification ← SVC
6: Prediction Result ← ∆
7: Transaction Information ← Ti
8: XGBoost ← eXtreme Gradient Boosting
9: Time Period ← τ

10: Loss Function ← ι
11: Base Learner Value ← g
12: the Number of Subtrees ← κ
13: Prediction result ← ℜ
14: Threshold Value ← λ
15: Begin
16: for Day=1:5 do
17: Cold Start Dataset Creation
18: Send ψ1,2,··· ,n −→ Serverless ML

(∑n
0 ψ1,2,··· ,n

)
19: Return ∆ ⊕ Ti
20: Save Ti
21: Cold Start Prediction
22: for τ = 1:κ do
23: Initialize g0(Xi) =

∑N
i=1ι(yi,p))

24: Compute ∇gt(X)
25: Start New g g(X,µ)
26: ℜ = argminp

∑N
i=1κ(yi,g

′

k−1(Xi)+pgXi,µi)
27: If ℜ >λ:
28: Return Cold Start
29: End

Create the Cold Start
Dataset

Deployment of an Predictive
Maintanance Application

2

1

The Preparation Step

Pre-processing Operations

Standart Scaler & Lag
Features

The Time Series Model
Evaluation

The Cold Start Prediction
Comparison

Energy Consumption and
Carbon Emissions

The Models Deployment

Deployment of AI-based
Time Series Models

3

Fig. 2: The flowchart to show the workflow in MASTER.

1) Predictive Maintenance Dataset: The predictive mainte-
nance dataset used in this paper was produced by Stephan
Matzka [38] and shared via Kaggle1. Modeled after a milling
machine, this dataset contains 14 features and 10,000 data,
and Table II explains what each feature means. Five fault
errors in the dataset were added to the Failure Type variable.
Additionally, the “Machine Failure" variable has been named
“Target" for convenience. First, feature engineering operations
were performed on the dataset and meaningless data in the
“Failure Type" variable was removed. Later, the variables
“UDI", “Failure Type", and “Product ID" were removed
because they would not be used in this experiment. The
categorical variable “Type" was subjected to one-hot encoder
processing, and numerical variables “Air temperature", “Pro-
cess temperature”, “Rotational speed", “Torque", and “Tool
wear" were subjected to standard scalar processing. And the
variable “Target" was selected as the target variable. Logistic
Regression and SVC ML models, which are known to have
high prediction performance for Predictive Maintenance, were
compared. It was determined that the model with the highest
accuracy rate was SVC with 97.78%.

TABLE II: Predictive Maintenance Dataset.

UID
Unique id
numbers
(1-1000)

Rotational
Speed

Rotation
speed (in rpm)

Product
ID

Item
numbers Torque Torque

value (Nm)

Type Product
quality (L, M, H)

Tool
Wear

tool wear value
(5/3/2 min for
H/M/L respectively)

Air
Temperature

Temperature
(2-300 K) Target

Indicates whether
there is a machine
malfunction

Process
Temperature

Process
temperature

Machine
Failure

Shows Machine
Failure Type

2) Cold Start Dataset: This subsection explains how to
obtain the cold start dataset that will be used to train the
ML/DL model of the MASTER framework. The predictive
maintenance scenario described in the previous subsection was
deployed on GCP-Cloud Functions, a serverless platform as
shown in Fig. 3.

API

IoT & Sensors Layer

Send Requests

Transaction Informations

AI CPU

Storage

Server Layer

Fig. 3: The Cold Start Dataset Creation.

The environment parameters for this instance are as
follows: “Region”: europe-southwest1-a, “Runtime”: Python

1https://www.kaggle.com/datasets/stephanmatzka/predictive-maintenance-
dataset-ai4i-2020

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GOLEC et al.: MASTER: MACHINE LEARNING-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING ENVIRON-
MENTS FOR INDUSTRY 4.0 7

3.10, “Function call format”: HTTP, “Memory”: 512 MB.
To create the workload, a varying number of simultaneous
requests (1-350) are sent to the server using the Apache J-
Meter application between 1 and 6 January 2024. To simulate
the production process in a factory, the system is set to send
requests to the server 5 days a week between 09-18.00. Using
the HTTP trigger mechanism in J-Meter, 6 variables are sent to
the SVC model deployed on the server to obtain the prediction
result and transaction information. Transaction information in-
cludes the following data: “Date”, “Time”, “Day”, “Latency”,
“RequestNumber”, “CPU (%)”, and “Ram (%)”. Using this
information, the cold start dataset shown in Fig. 4 is created.
Eq. (8) is used to calculate cold start, and when the dataset is
examined, it is seen that cold start occurs in three ways:

• When the first request comes to the server, a cold start
occurs because the environment parameters are loaded
into the container for the first time.

• If there is no request to the Server for more than 15 min-
utes. In GCP-Cloud Functions, after function execution is
completed, containers continue to run for a certain period
of time (15 minutes) [40]. Similar measures are taken on
other trading platforms to prevent cold start.

• In case more than 300 simultaneous requests are sent
to the Server. This number is the threshold required to
launch a new container for this scenario.

Fig. 4: The Coldstart Dataset.

3) The Data Preparation Steps: The following are the data
preparation steps:

• Standard Scaler: Scales the features in the dataset
and converts it to a dataset with zero mean and unit
variance. This aims to improve the performance of ML
algorithms, which are affected by the size differences
between features in the dataset. In addition, it is to prevent
a single feature from dominating the learning process.

• Lag Features Class Created: It is values from previous
time steps in a time series dataset. It helps capture the
correlation between a variable and the values of past
variables. Patterns that are useful in seasonality analysis
can be easily detected.

• Window Features Class Created: Calculates summary
statistics of historical values. They provide helpful out-

puts such as anomaly detection or trend analysis by
presenting information such as Moving averages and
Rolling standard deviation.

• Autocorrelation Function (ACF): Used to examine the
correlation of a time series with its lagged values. It is
generally used to detect seasonality in time series.

• Partial Autocorrelation Function (PACF): Statistical
tool used to examine the correlation between time series
and delays as in ACF. Unlike ACF, it does not include
intermediate delays in the correlation analysis.

IV. PERFORMANCE EVALUATION

This section discusses the experimental setup, workload,
evaluation metrics, and results. The subsection IV-A discusses
the experimental setup used to conduct experiments. Next,
the workloads created throughout the paper are introduced
in subsection IV-B. We discuss the baselines frameworks
in subsection IV-C, which are used to compare the cold
start prediction performance with the proposed MASTER
framework. We describe the evaluation metrics used in all
performance comparisons in subsection IV-D. In subsection
IV-E, the performance of the proposed MASTER framework
is compared experimentally with the above-mentioned baseline
frameworks in terms of cold start prediction performance, en-
ergy consumption, computational time, and carbon emissions.

A. Experimental Setup

TABLE III: Hyperparameter Settings for ML/DL models for
both proposed (MASTER) and baseline (ATOM and TLA)
frameworks

Framework Model Name Hyperparameters

ATOM [27] DDPG Nf = 2, LRa = 0.0001, LRc = 0.01,
Nah = 30, Nch = 30, MAXep = 100

TLA [28] LSTM epoch=50, activation=’softmax’,
input shape=(10, 1), Dense =1

MASTER

XGB Regressor ’objective’: ’reg:squarederror’,
’n_estimators’: 100, random_state’: 33

Linear Regression ’copy_X’: True, ’fit_intercept’: True,
’normalize’: ’deprecated’, ’positive’: False

DeepAr
training,learning_rate=0.1,log_interval=10,
log_val_interval=1,hidden_size=32,
rnn_layers=2, optimizer="Adam"

NHITS

training,learning_rate=0.01,log_interval=10,
log_val_interval=1,weight_decay=1e-2,
backcast_loss_ratio=0.0,hidden_size=64,
optimizer="Rprop"

TFT

training_learning_rate=0.6,hidden_size=32,
attention_head_size=2, dropout=0.3,
hidden_continuous_size=8,
loss=QuantileLoss(), log_interval=10,
optimizer=’Adadelta’, loss=’mse’.

In this section, parameter information for all ML and DL-
based models used in the MASTER framework is given along
with the system configuration details for the reproduction of
this work in the future. All experiments were carried out
on a system with “CPU": Intel® Core™ i7-10750H, “Clock
Speed": 2.6 GHz to 5.0 GHz, “RAM": 16 GB, “OS": Windows
10 Pro system. The hyperparameter settings for all ML/DL
models tested in this work are shown in Table III. Additionally,
the environment parameters for Google Cloud Functions used
when creating the cold start dataset are given in Table IV.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

TABLE IV: Environment parameters for Google Cloud Func-
tions.

Region europe-southwest1-a

Runtime Python 3.10
Function call format HTTP
Memory 512 MB

B. Workloads
One of the biggest obstacles to serverless edge computing

and IIoT integration to make industrial processes more effi-
cient is cold start latency. In this work, we propose a ma-
chine learning-based resource management framework called
MASTER. In this way, it provides the basis for future cold
start prevention studies by performing cold start prediction
and monitoring in serverless edge computing environments.

Firstly, the Industry 4.0 scenario, an IIoT application, was
deployed using Google Cloud Functions. To create the work-
load, requests were sent to the server via JMeter, simulating
a real industrial production process. This involves sending 1-
350 HTTP requests to the server between 09.00-18.00 for 5
days. The cold start dataset was created using the responses
and transaction information returned for all requests from
the ML model deployed on the server. Secondly, ML/DL
models were trained using this cold start dataset and all models
were compared according to Single-step prediction (SSP) and
Multi-step prediction (MSP) to find the model with the most
successful prediction result.

C. Baselines
In this section, we discuss briefly about baselines, which are

used to compare the performance of the proposed MASTER
framework. In serverless edge computing, each function is
assigned to a new container for execution. Setting up en-
vironment parameters such as requires a certain amount of
time, which causes cold start latency. A new container is
started in the following three cases: (a) When the first request
comes to the Server. (b) When the container is not used for
a certain period of time. Idle containers are released to save
energy (zero to scale). If a new request comes to the released
container, the container must be restarted. (c) If the number of
requests to the container exceeds the capacity of the container,
a new container is started. For this reason, the correlation
between cold start occurrence and the number of requests
sent to the server can give important clues. Another important
correlation information is cold start delay patterns. Because,
when delay patterns exceed a certain threshold value, action
can be taken to prevent cold start occurrence. In this paper, we
compare the proposed framework (MASTER) concerning the
performance of SSP and MSP with current cold start-based
baselines: ATOM [27] and TLA [28].

• ATOM [27]: In the proposed approach, cold start occur-
rence times and the number of requests to be sent to
the server are determined by using a DRL-based model
(DDPG). The authors chose a DRL-based model because
it has proven to be successful for complex and non-linear
problems. In this way, it is aimed to provide a sustainable

solution for future resource-sensitive cold start prevention
studies.

• TLA [28]: This approach model has two stages. In the
first stage, how much longer the container will be kept
warm is calculated using the actor-critic model. In the
second layer, call times are determined by monitoring
function patterns. By determining the function call times,
the heating times of the containers are determined. Thus,
cold start latency frequency and duration are tried to be
reduced.

D. Evaluation Metrics and Formulations
The metrics and formulations used when evaluating DL &

ML models are as follows:
• Accuracy Rate: It shows how accurately the ML model

predicts [23]. It is obtained by dividing True Positive and
True Negative by the total value. Accuracy is calculated
as follows:

Accuracy =
TP + TN

TN + FP + FN + TP
. (1)

• Precision: It indicates how many of the samples predicted
as Positive in the ML model are actually positive [11].
Precision is calculated as follows:

Precision =
TP

FP + TP
. (2)

• Recall: It gives how many of the situations that need to
be predicted as Positive are predicted positively using the
ML model [10]. Recall is calculated as follows:

Recall =
TP

TP + FN
. (3)

• F-Score: It is used to find the harmonic mean between
Precision and Recall [23]. F-Score is calculated as fol-
lows:

FScore = 2× Precision×Recall
Precision+Recall

. (4)

• Mean Absolute Error (MAE): It is calculated by aver-
aging the absolute differences between the true value Y
and the predicted value Y

′
[13]. It is another metric used

to evaluate forecasting models in statistics.

MAE =
1

N

∑
|Y − Y ′| . (5)

• Mean Squared Error (MSE): It is calculated by squar-
ing the difference between the actual value Y and the
predicted value Y

′
[11].

MSE =
1

N

∑
(Y − Y ′)2. (6)

• Root Mean Squared Error (RMSE): It is calculated by
taking the square root of the MSE [27]. It is used more
than MSE because the MSE value can be very large in
some comparison situations.

RMSE =

√
1

N

∑
(Y − Y ′)2. (7)

• Cold Start: It originates from the serverless paradigm
and is calculated using the formula below. Here τi

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GOLEC et al.: MASTER: MACHINE LEARNING-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING ENVIRON-
MENTS FOR INDUSTRY 4.0 9

represents the response time for the first request, and τi
represents the response time for the second request [8].

ζ = τi − τii. (8)

Energy-efficient solutions are needed for edge computing,
which has evolved into a net zero emission policy. These
solutions contribute to net zero emissions by reducing global
electricity use. Using the formulations explained below, energy
consumption and CO2 emissions can be calculated for all AI
models examined in this paper:

• Energy Consumption: The following formula is used to
find the energy consumption E used by the models [41].
Here, P represents the Thermal Design Power (TDP) of
the processor. t is used to represent both the train and
test time of the models.

E = P× t

100
. (9)

• Carbon Emission: Cloud providers provide services such
as storage and processing power to users over the Internet
through data centers. Operations that require electricity
consumption such as energy and cooling to provide
all these services contribute to carbon emissions [27].
Although calculating the amount of carbon emissions is
a complex process, it is generally calculated as follows:

C£ = P × t× CIE , (10)

where C£ is the amount of carbon emissions, P is the
power consumption, t is the train or test time for an AI
model, and CIE is the coefficient that varies regionally.
In this research work, this coefficient is taken as 182
gCO2/kWh2.

E. Results

This section discusses the experimental results in terms
of serverless platform performance, machine learning and
computing parameters.

1) Serverless Platform Performance:: Figures 5 & 6 show
the latency and throughput values obtained in response to
the increasing number of users in Google Cloud Functions
respectively. Apache J-Meter application was used to create
a workload on the server. The throughput value tends to
increase in proportion to the increasing number of users.
After the number of users reaches 500, the throughput starts
to decrease gradually. The reason for this is the resource
contention that occurs due to the use of common resources
on the servers. Likewise, the amount of latency is expected to
increase depending on the number of users. However, when
Fig. 5 is carefully examined, it is seen that the latency of 100
users is higher than the latency of 200 users. This is because
of cold start occurring on serverless platforms.

2https://carbonintensity.org.uk/

200 400 600 800 1,000
0

100

200

300

400

41 34
53

89

210

381

The Number of Users

Latency (mS)

Serverless_Latency

Fig. 5: Performance measurements in terms of latency while
deploying the predictive maintenance dataset.

200 400 600 800 1,000

100

200

300

400

500

100

170

488

430

The Number of Users

Throughput (P/S)

Serverless_Throughput

Fig. 6: Performance measurements in terms of throughput
while deploying the predictive maintenance dataset.

2) Machine Learning Parameters: Cold Start Prediction Per-
formance: We have considered cold start prediction perfor-
mance as a machine learning parameter. To measure the cold
start prediction performance, we consider the latency and
throughput of Google Cloud Functions, which are measured
for an increasing number of requests. Then, the SSP and MSP
performances of the five ML/DL models within the MASTER
framework are compared to choose the best-performing model
for cold start prediction. Then, the superiority of MASTER is
demonstrated by comparing the SSP and MSP performances
of the MASTER framework with two baselines [27], [28]. In
the next experiment, the computational time of the MASTER
framework is compared with baselines. In the last experiment,
we evaluate the energy consumption and CO2 emissions for

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

Fig. 7: Cold start prediction performance comparison in terms of latency for proposed (MASTER) and baseline frameworks
(ATOM and TLA).

proposed and existing frameworks.
Two different prediction processes were performed to find

the model that made the most successful cold start estimation
among all DL/ML models examined in this paper. In the
first prediction model, SSP, the cold start occurrence time
is predicted five minutes in advance by monitoring the past
300 steps. Performance results for all models are given in
Table V. The results show that the best model in SSP is the
XGB Regressor with a MAPE ratio of 0.23. In the second
prediction model, MSP, the cold start occurrence time was
predicted 20 minutes in advance by monitoring the past 300
steps. Performance results for all models are given in Table VI.
The results show that the best model in MSP is again the XGB
Regressor with a MAPE ratio of 0.12. Both SSP and MSP
results show that the MASTER framework is more successful
in cold start prediction than ATOM and TLA. Furthermore, it
has been identified that the ML models performed much better
than DL and DRL models due to the following reasons:

• The size of the cold start dataset is small. DRL and DL
models generally learn better on large datasets. Complex
DRL and DL models do not perform well on small-size
datasets.

• DL models are more sensitive to the quality of data than
ML models. Therefore, ML models perform better on
datasets containing noisy data, such as the cold start
dataset generated.

TABLE V: SSP Prediction Performances on Test Data for
Proposed (MASTER) and Baseline Frameworks (ATOM and
TLA)

Work Model MAPE MAE RMSE MSE
ATOM [27] DDPG 0.52 65.53 78.43 6151.26
TLA [28] LSTM 0.48 60.37 83.40 6955.56

MASTER

XGBR 0.23 31.9 34.43 1185.54

LR 0.45 60.74 68.35 4672.94

NHITS 0.61 84 100.62 10126.37

TFT 0.78 102.36 121.67 14804.22

DeepAr 0.81 111.22 112.37 12627.87

TABLE VI: MSP Prediction Performances on Test Data for
Proposed (MASTER) and Baseline Frameworks (ATOM and
TLA)

Work Model MAPE MAE RMSE MSE
ATOM [27] DDPG 0.47 189.40 225.60 50895.36
TLA [28] LSTM 0.33 170.66 257.43 66270.20

MASTER

XGBR 0.12 47.75 6.76 45.69

LR 0.40 136.25 11.59 134.32

NHITS 0.58 259.30 372.36 138614

TFT 0.86 365.67 467.77 218808

DeepAr 0.77 332.95 428.20 183355

Fig. 7 shows the actual values for the cold start dataset and
the prediction results of all DL/ML models.

3) Computing Parameters: We have considered computa-
tional time and energy consumption & carbon emissions as
computing Parameters.

(i) Computational Time: It is very important to measure
the Computational Time for ML/DL models with resource
limitations. Fig. 8 shows the computational time for these
models. It has been noted that the Linear Regression (LR)
is the fastest model with 0.04 seconds for MSP and 0.017
seconds for SSP. The slowest model is the NHITS model
with 3.16 seconds on the MSP and 0.79 seconds on the SSP.
When compared in terms of training times, it is noted that the
slowest model is the DRL model (DDPG) used in the ATOM
framework. This is due to the exploration versus exploitation
trade-off for the DRL agent to learn, which means the agent
has to make a lot of attempts to understand the environment
and maximize the reward. The results showed that ML models
are preferable in terms of practicality.

(ii) Energy Consumption and Carbon Emissions: In this
subsection, energy consumption and CO2 emission amounts
are compared for MASTER with baselines [27], [28]. In
this period when concerns about environmental sustainability
increase, it is of great importance to reduce operational costs
by minimizing the carbon footprint. By carrying out these
experiments, we aim to identify the most efficient models by
emphasizing this awareness.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GOLEC et al.: MASTER: MACHINE LEARNING-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING ENVIRON-
MENTS FOR INDUSTRY 4.0 11

(a) Training (b) SSP (c) MSP

Fig. 8: Performance Comparison In terms of Latency for Proposed (MASTER) and Baseline Frameworks (ATOM and TLA)
in terms of Computation Time

(a) Training (b) SSP (c) MSP

Fig. 9: Performance Comparison In terms of Latency for Proposed (MASTER) and Baseline Frameworks (ATOM and TLA)
in terms of Energy Consumption

(a) Training (b) SSP (c) MSP

Fig. 10: Performance Comparison In terms of Latency for Proposed (MASTER) and Baseline Frameworks (ATOM and TLA)
in terms of CO2 Emission

We compared the MASTER with baselines in terms of
energy consumption which is calculated using Eq. (9) as
shown in Fig. 9. It has been noted that the LR consumes
the least energy for training with 45 joules, while the DDPG
model consumes the most energy with 20264 joules. In DRL
models such as DDPF, agents learn by trial and error using
an exploration and exploitation strategy. This form of learning
takes longer than other models (ML and DL) and therefore
results in higher energy consumption. The LR model uses

the method of linearly relating input variables, which is an
uncomplicated learning model. Additionally, it has a small
number of hyperparameters. For all these reasons, it is faster
and consumes less energy than other models. When looking
at the SSP and MSP results, it is seen that the model that
consumes the least energy is LR for this reason (0.45, 1.8),
while the model that consumes the most energy is NHITS
with values of 35.55 and 142.20 Joules. NHITS has an ar-
chitecture consisting of several stacks and blocks to eliminate

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12 IEEE JOURNAL OF SELECTED AREAS IN SENSORS

long-horizon forecasting and computational complexity and
therefore will bring higher energy consumption compared to
other models.

Fig. 10 shows the emission amounts of CO2 obtained
using Equation 10. Since the amount of CO2 emission is
directly proportional to the amount of energy consumption,
similarly for training the least CO2 emission belongs to the LR
model with 1.25e-05 gCO2 and the highest COThe2 emission
belongs to the DDPG model with 0.005 gCO2. For SSP and
MSP, the lowest CO2 emissions belongs to the LR model with
5e-07 and 1.25e-07 gCO2, while the highest CO2 emissions
belongs to NHITS model with 9.87e-06 and 3.95e-05 gCO2.

V. CONCLUSIONS AND FUTURE WORK

The integration of serverless edge computing and the In-
dustrial Internet of Things (IIoT) is a promising approach that
can make industrial processes more efficient. In addition to
the advantages that the serverless paradigm offers, such as
an affordable pricing model and dynamic scalability, there
is still a cold start latency problem waiting to be solved.
This article explores the potential of AI models for predicting
cold start latency. For this, we propose MASTER, an ML-
based framework that performs cold start monitoring and
prediction in serverless edge computing environments. The
MASTER framework is positioned between the client and
server, monitors all communication information, and creates a
cold start dataset. It trains the ML algorithm in the MASTER
framework using this cold start dataset. To evaluate the per-
formance of the MASTER framework, we used the predictive
maintenance application, which is an Industry 4.0 scenario.
As a result of the experiments performed for the model to
be used in the AI module of the MASTER framework, it
was determined that the most successful model was XGBoost,
with MAPE values of 0.23 in SSP and 0.12 in MSP. We
also compared the performance of the MASTER framework in
terms of cold start latency prediction with baselines, such as
ATOM and TLA. In this paper, the performance of time series
models was compared according to energy consumption and
CO2 emissions. The results showed that Neural Hierarchical
Interpolation for Time Series (NHITS) was the model with the
highest computation time and CO2 emissions.

This paper demonstrates that ML models can accurately
forecast cold start latency and hence hold significant promise
for reducing cold start latency in the future. Further, additional
resource management issues in serverless computing, such as
execution cost and scalability, can be constructively addressed
by extending generative AI models in future research. Cold
start prediction accuracy can be enhanced using modern ML or
DL models. It is also possible to mitigate the cold start latency
problem in serverless settings by making extensions to the
MASTER framework. Furthermore, public datasets containing
multiple applications and functions offered by cloud service
providers, such as Microsoft Azure, can be used for real-time
predictions. As a result, many functions can be used to create
a dataset, which can be utilized in the future. Additionally,
in settings with limited resources, a faster and less expensive
system can be developed with the help of online ML.

SOFTWARE AVAILABILITY

The dataset is publicly published for future researchers at:
https://github.com/MuhammedGolec/Cold-Start-Dataset-V2.

ACKNOWLEDGEMENTS

Muhammed Golec would express his thanks to the Min-
istry of Education of the Turkish Republic for their sup-
port and funding. This work is supported by the Na-
tional Natural Science Foundation of China (No. 62071327),
and Tianjin Science and Technology Planning Project (No.
22ZYYYJC00020).

REFERENCES

[1] G. Liu, “Frequency-switchable routing protocol for dynamic magnetic
induction-based wireless underground sensor networks,” IEEE Journal
of Selected Areas in Sensors, 2024.

[2] X. Li, P. Russell, C. Mladin, and C. Wang, “Blockchain-enabled applica-
tions in next-generation wireless systems: Challenges and opportunities,”
IEEE Wireless Communications, vol. 28, no. 2, pp. 86–95, 2021.

[3] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (iiot): An analysis framework,” Computers in industry,
vol. 101, pp. 1–12, 2018.

[4] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An
overview,” The internet society (ISOC), vol. 80, pp. 1–50, 2015.

[5] S. S. Gill, H. Wu, P. Patros, C. Ottaviani, P. Arora, V. C. Pujol,
D. Haunschild, A. K. Parlikad, O. Cetinkaya, H. Lutfiyya et al., “Modern
computing: Vision and challenges,” Telematics and Informatics Reports,
vol. 13, p. 100116, 2024.

[6] T. Zonta, C. A. Da Costa, R. da Rosa Righi, M. J. de Lima, E. S.
da Trindade, and G. P. Li, “Predictive maintenance in the industry 4.0:
A systematic literature review,” Computers & Industrial Engineering,
vol. 150, p. 106889, 2020.

[7] S. S. Gill, I. Chana, M. Singh, and R. Buyya, “Radar: Self-configuring
and self-healing in resource management for enhancing quality of cloud
services,” Concurrency and Computation: Practice and Experience,
vol. 31, no. 1, p. e4834, 2019.

[8] M. Golec, G. K. Walia, M. Kumar, F. Cuadrado, S. S. Gill, and S. Uhlig,
“Cold start latency in serverless computing: A systematic review, tax-
onomy, and future directions,” arXiv preprint arXiv:2310.08437, 2023.

[9] C. Tang, G. Yan, H. Wu, and C. Zhu, “Computation offloading and
resource allocation in failure-aware vehicular edge computing,” IEEE
Transactions on Consumer Electronics, pp. 1–1, 2023.

[10] M. Golec, D. Chowdhury, S. Jaglan, S. S. Gill, and S. Uhlig, “Aiblock:
Blockchain based lightweight framework for serverless computing using
ai,” in 2022 22nd IEEE International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). IEEE, 2022, pp. 886–892.

[11] M. Golec, S. Iftikhar, P. Prabhakaran, S. S. Gill, and S. Uhlig, “Qos
analysis for serverless computing using machine learning,” in Serverless
Computing: Principles and Paradigms. Springer, 2023, pp. 175–192.

[12] X. Liu, J. Wen, Z. Chen, D. Li, J. Chen, Y. Liu, H. Wang, and X. Jin,
“Faaslight: general application-level cold-start latency optimization for
function-as-a-service in serverless computing,” ACM Transactions on
Software Engineering and Methodology, 2023.

[13] M. Golec, S. S. Gill, A. K. Parlikad, and S. Uhlig, “Healthfaas: Ai-based
smart healthcare system for heart patients using serverless computing,”
IEEE Internet of Things Journal, vol. 10, no. 21, pp. 18 469–18 476,
2023.

[14] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” Research advances in
cloud computing, pp. 1–20, 2017.

[15] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, vol. 62, no. 12, pp.
44–54, 2019.

[16] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One step
forward, two steps back,” arXiv preprint arXiv:1812.03651, 2018.

[17] H. Lee, K. Satyam, and G. Fox, “Evaluation of production serverless
computing environments,” in 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). IEEE, 2018, pp. 442–450.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

GOLEC et al.: MASTER: MACHINE LEARNING-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING ENVIRON-
MENTS FOR INDUSTRY 4.0 13

[18] P. K. Gadepalli, G. Peach, L. Cherkasova, R. Aitken, and G. Parmer,
“Challenges and opportunities for efficient serverless computing at the
edge,” in 2019 38th Symposium on Reliable Distributed Systems (SRDS).
IEEE, 2019, pp. 261–2615.

[19] M. Sewak and S. Singh, “Winning in the era of serverless computing
and function as a service,” in 2018 3rd International Conference for
Convergence in Technology (I2CT). IEEE, 2018, pp. 1–5.

[20] T. Elgamal, “Costless: Optimizing cost of serverless computing through
function fusion and placement,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 300–312.

[21] Y. K. Teoh, S. S. Gill, and A. K. Parlikad, “Iot and fog computing
based predictive maintenance model for effective asset management in
industry 4.0 using machine learning,” IEEE Internet of Things Journal,
2021.

[22] M. Shurrab, D. Mahboobeh, R. Mizouni, S. Singh, and H. Otrok, “Over-
coming cold start and sensor bias: A deep learning-based framework for
iot-enabled monitoring applications,” Journal of Network and Computer
Applications, vol. 222, p. 103794, 2024.

[23] M. Golec, R. Ozturac, Z. Pooranian, S. S. Gill, and R. Buyya, “Ifaasbus:
A security-and privacy-based lightweight framework for serverless com-
puting using iot and machine learning,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 5, pp. 3522–3529, 2021.

[24] M. Javaid, A. Haleem, R. P. Singh, S. Rab, and R. Suman, “Significance
of sensors for industry 4.0: Roles, capabilities, and applications,” Sensors
International, vol. 2, p. 100110, 2021.

[25] S. S. Gill et al., “Ai for next generation computing: Emerging trends
and future directions,” Internet of Things, vol. 19, p. 100514, 2022.

[26] Z. Jan, F. Ahamed, W. Mayer, N. Patel, G. Grossmann, M. Stumptner,
and A. Kuusk, “Artificial intelligence for industry 4.0: Systematic review
of applications, challenges, and opportunities,” Expert Systems with
Applications, vol. 216, p. 119456, 2023.

[27] M. Golec, S. S. Gill, F. Cuadrado, A. K. Parlikad, M. Xu, H. Wu,
and S. Uhlig, “Atom: Ai-powered sustainable resource management
for serverless edge computing environments,” IEEE Transactions on
Sustainable Computing, pp. 1–13, 2023.

[28] P. Vahidinia, B. Farahani, and F. S. Aliee, “Mitigating cold start problem
in serverless computing: A reinforcement learning approach,” IEEE
Internet of Things Journal, vol. 10, no. 5, pp. 3917–3927, 2023.

[29] S. F. Ahmed, M. S. B. Alam, M. Hassan, M. R. Rozbu, T. Ishtiak,
N. Rafa, M. Mofijur, A. Shawkat Ali, and A. H. Gandomi, “Deep learn-
ing modelling techniques: current progress, applications, advantages, and
challenges,” Artificial Intelligence Review, pp. 1–97, 2023.

[30] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless
programming (function as a service),” in 2017 IEEE 37th International

Conference on Distributed Computing Systems (ICDCS). IEEE, 2017,
pp. 2658–2659.

[31] K. Solaiman and M. A. Adnan, “Wlec: A not so cold architecture to
mitigate cold start problem in serverless computing,” in 2020 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 2020,
pp. 144–153.

[32] P. Silva, D. Fireman, and T. E. Pereira, “Prebaking functions to warm
the serverless cold start,” in Proceedings of the 21st International
Middleware Conference, 2020, pp. 1–13.

[33] S. Pan, H. Zhao, Z. Cai, D. Li, R. Ma, and H. Guan, “Sustainable server-
less computing with cold-start optimization and automatic workflow
resource scheduling,” IEEE Transactions on Sustainable Computing, pp.
1–12, 2023.

[34] K. Suo, J. Son, D. Cheng, W. Chen, and S. Baidya, “Tackling cold start
of serverless applications by efficient and adaptive container runtime
reusing,” in 2021 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2021, pp. 433–443.

[35] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading cold
starts in serverless function chain deployments,” in Proceedings of the
21st International Middleware Conference, 2020, pp. 356–370.

[36] S. Ristov, C. Hollaus, and M. Hautz, “Colder than the warm start and
warmer than the cold start! experience the spawn start in faas providers,”
in Proceedings of the 2022 Workshop on Advanced tools, programming
languages, and PLatforms for Implementing and Evaluating algorithms
for Distributed systems, 2022, pp. 35–39.

[37] A. Kumari, B. Sahoo, and R. K. Behera, “Mitigating cold-start delay
using warm-start containers in serverless platform,” in 2022 IEEE 19th
India Council International Conference (INDICON). IEEE, 2022, pp.
1–6.

[38] S. Matzka, “Explainable artificial intelligence for predictive maintenance
applications,” in 2020 third international conference on artificial intel-
ligence for industries (ai4i). IEEE, 2020, pp. 69–74.

[39] H.-H. Hsu, T.-H. Wen, W.-H. Huang, W.-S. Khwa, Y.-C. Lo, C.-J. Jhang,
Y.-H. Chin, Y.-C. Chen, C.-C. Lo, R.-S. Liu et al., “A nonvolatile ai-
edge processor with slc–mlc hybrid reram compute-in-memory macro
using current–voltage-hybrid readout scheme,” IEEE Journal of Solid-
State Circuits, 2023.

[40] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold start in serverless com-
puting: Current trends and mitigation strategies,” in 2020 International
Conference on Omni-layer Intelligent Systems (COINS). IEEE, 2020,
pp. 1–7.

[41] E. Kristianto, P.-C. Lin, and R.-H. Hwang, “Sustainable and lightweight
domain-based intrusion detection system for in-vehicle network,” Sus-
tainable Computing: Informatics and Systems, vol. 41, p. 100936, 2024.

This article has been accepted for publication in IEEE Journal of Selected Areas in Sensors. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JSAS.2024.3396440

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Motivation and Contributions
	Organization

	Related Work
	Studies on Reducing Cold Start Latency Time
	Studies on Reducing the Frequency of Cold Start
	Critical Analysis

	Proposed MASTER Framework
	Main Architecture
	Methodology
	Dataset
	Predictive Maintenance Dataset
	Cold Start Dataset
	The Data Preparation Steps

	Performance Evaluation
	Experimental Setup
	Workloads
	Baselines
	Evaluation Metrics and Formulations
	Results
	Serverless Platform Performance:
	Machine Learning Parameters: Cold Start Prediction Performance
	Computing Parameters

	Conclusions and Future Work

