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Abstract—In this article, machine learning methods are
used to assess how well wireless sensor networks transmit
and receive radar signals. Measurements are done with
labeled and unlabeled datasets where output functions are
modified in relation to transmitted input in order to test the
transceiver of radar signals. The main contribution in the
proposed method is to focus on the possibility of choos-
ing a free space model that transmits the radar signals in
wireless sensor networks without any interruptions. Hence,
for such type of transmissions, reference time period is
selected in order to perform radar signal classification, and
at the same time, separation of unnecessary interruptions
is reduced using clustering procedures. Since the radar
signals can be monitored with automatic transmission
techniques, the outcomes are combined with supervised,
unsupervised, and reinforcement learning models to in-
crease the effect of transmissions. Therefore, the objective
functions are designed with three scenarios where rein-
forcement learning proves to provide adequate connections
for radar signals to all wireless sensor networks at reduced
error of 0.3%. In addition, with reinforcement learning, the
distance of radar signal transmission is maximized to a
level greater than 75% at minimized noise ratio of 0.8%.

Index Terms—Errors, free space model, machine learn-
ing, radar networks, wireless sensor networks.
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LIST OF NOTATIONS

Parameters Implications.
Pt,r Transmitted power of radar transmitter and

receiver.
dr Distance of reference signal.
dr1 + ..+ dri Distance of first radar to ith radar.
Er, Et Energy of transmitting and receiving radar

signals.
ρr, ρt Gain of transmitter and receiver.
SNRtarget Noise ratio of radar receiver.
SNRrn Noise ratio at threshold level.
rn1, rni, rnj Radar node signal distance.
Nu Total number of unknown nodes.
Rc Radius of communication link.
Pu Unidentified position of nodes.
sourcen Radar signal source.
ratep Radar path rate.
positionsource Position of initial signal source.
Wn Wireless nodes for input unit.
yi, zi Radar data point.
de Information that is present in attribute func-

tion.
αi Target nodes.
Oi Output values.
Cm Maximum value of energy functions.
y1, ym First and midpoint of data.
γ1 + γ2 + ..+ γi Clustered data points.
ω(yn) Frequency of transmission.
dpi Total number of data points.
ℵ Activation function.
xi Total functionality patterns.
ϑi Random data sequence.
x′
iyi Number of connected states in the system.

disr Data reduction on reward functions.
randa Total number of reward values.
rew1 + ..+ rewi Total reward functions.
datet Total number of data representations.

I. INTRODUCTION

W IRELESS networks must be implemented for the pro-
cess of producing radar signals, whether they operate in

a clustered or nonclustered fashion. When wireless networks are
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Fig. 1. Block diagram for free space radar systems.

installed, the integrated sensors must work properly to monitor
all radar signals, including flow direction, transmission distance,
and other factors. Radar signals can also be implemented in
numerous applications with low signal strength if they are
broadcast over wireless networks since long-range transmission
is ensured.

Since radar networks are linked in an ad hoc manner, no
infrastructure is needed to transmit signals, allowing for a de-
centralized method of operation. Since the majority of the data
in radar networks are still scattered, the security of transmission
is still precarious, and most of the data that are sent over long
distances are vulnerable to outside attacks. Machine learning
techniques must be used in order to increase operational security
because most user data are not properly safeguarded during
external attacks. In order to define a set of input radar data
functions, the data must also be divided into labeled and unla-
beled sets, also known as supervised and unsupervised sets. The
proposed method for enhancing the security of radar networks
incorporates reinforcement learning in addition to the previously
discussed learning techniques.

When machine learning methods are used to create radar
networks, there is a chance that dynamic data configuration with
feature set-based categorization and grouping will be possible.
With special mapping techniques, it is even feasible to pinpoint
the location of radar signals, and at the very end, the target of
data transfer can be located much more easily. Fig. 1 shows a
block diagram of radar wireless sensor networks for security.
Fig. 1 shows that the kind of data is determined at the beginning
of the data transfer process while both long- and short-distance
transmissions are being done. The sensing unit is linked after
the data have been transferred in order to identify the various
radar signals that are present at the transmitter. The recognized
data are then categorized, grouped, and wirelessly transferred in
order to interact with the data from the local user. The processing
unit uses a combination of machine learning methods to identify
the proportion of error in the transmitted signal after matching
the data. If faults are found, it means that the security of the radar
signals is low. However, in the proposed method, the cluster head
adds additional security to all clustered nodes, allowing the data
flow to the receiver to be quickly identified.

A. Background and Related Works

The majority of wireless sensor networks apply specific
algorithms to increase the quality of improvement, which is
expressed in terms of parametric design. This results in greater
operating functionality. As a result, this section analyzes the

current models that carry out various tasks linked to the operation
of wireless sensor networks. In order to comprehend and develop
the suggested method, which is based on parametric design
measurements with the integration of suitable algorithms, the
background works are given the utmost priority. Xie et al. [1]
described the development of a minimal security strategy for
wireless networks that use a localization strategy to address
the main issue of packet arrival time and rate. The high-weight
packets cannot be transmitted in the designated sequence despite
the fact that the input weights are totally lowered on the assigned
network. As a result, a fundamental framework is created for
software-defined networks in which the security framework is
constructed using a collaborative manner [2], which contrasts
with typical operational scenarios. It has been noted that the
collaborative approach on wireless sensor networks necessitates
the analysis of a greater number of parameters, which makes
the operation more difficult. When many network functions
are combined, the proposed network architecture is unable to
meet the problems at hand. The possibility of each node in
wireless sensor networks to be imprisoned must, therefore, be
understood [3] in order to offer adequate authentication. When
a certain node receives authentication, it remains active until all
of the data have been sent. After that, using the node exploration
technique, the authentication for the other user must be adjusted
in order to prevent packet loss in wireless networks [4]. A
multifactor authentication is offered during the node discovery
process, allowing the targets to be properly recognized without
outside interference.

In addition, surveys are carried out to look at the state of
software-defined radio wireless sensor networks in order to
analyze the changing user environment [5]. Due to rigid network
operations, earlier operational cases are not taken into account
during this analysis. However, it is far more challenging to
convey information under a centralized method of operation
if prior functions are not examined. In addition, if nodes are
clustered, a resource-constrained network must be created in
which a connection between data and the appropriate applica-
tion must be made. As a result of this connecting process, the
access points’ relationships with the central controlling unit—
represented by a shared wireless link—remain unchanged. In
order to reinforce the database representations, blockchain tech-
nology is integrated in addition to strengthening the security of
wireless sensor networks. Every time the blockchain method
is illustrated, it becomes apparent that some modifications to
distributed and transaction blocks are required to display a larger
volume of data in sensor networks. The quantity of energy
supplied must be less if there are more data present during the
visualization process compared with regular operation [6]. As
a result, a model of energy consumption is introduced together
with the application of radar networks to several clusters. Due to
the substantially larger energy requirements of radar signals in
wireless sensor networks, a model for the perception of residual
energy has been created to deliver transmitted data with little
energy. In addition, each node inside the cluster is represented
by a cluster head in the low-energy analysis model, ensuring
that enough energy is provided to high-operating nodes. Even the
distance representation parameter is added to determine effective
operations where the ant colony algorithm provides full support.
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TABLE I
EXISTING VERSUS PROPOSED

When continuous waves are added in representation cases,
the distance of radar signals will be maximized by taking into
account a concurrent range of vector transformation models.
The radar signal increases its corresponding range wireless
sensor network operation during the process of distance esti-
mation [7]. But if continuous waves are introduced, the signal
must be rebuilt, which necessitates greater Nyquist rate com-
pression and is far more challenging to do. It is also inves-
tigated whether changing the Nyquist rate for a radar signal
affects its compression characteristics, making it more difficult
to reconstruct particular signals while the noise factor is still at
a high level [8]. As a result, the gradient technique is integrated
for data acquisition while the signal reconstruction approach is
interpreted using low-cost sampling. Antinoise representation
is significantly harder to achieve at output units even when
such cost-effective technologies are used. A learning resource
model [9] with topology organization processes must be adopted
in order to reduce noise factors in wireless sensor networks.
It has been noted that when such networks are organized, a
location sensor is positioned in both active and passive modes,
allowing the target of a radar signal to be operated in a typical
manner using the proper receivers. In addition, all localization
methods are grouped together inside a single communication
range, where both range-free and range-based parametric op-
erations are recognized in radar signal operations [10]. Table I
compares recently published and proposed studies in wireless
sensor networks.

B. Research Gap and Motivation

From Table I, it is tacit that some of the relevant methods
that contribute to the effect of radar signals are discussed, and
solutions are achieved with respect to distance measurements.
It is significant that when a wireless sensor network is designed

for monitoring and transmission operations, the effective signals
must always be analyzed with respect to reference signals by
considering time measurements. But in the existing approach,
such types of reference signals are not provided; thus, com-
plexity rises in wireless sensor network transmission units,
and the aforementioned intricacy is identified as a major gap
that needs to be solved with automatic radar signal processing
systems. In addition to the identified gap, the following queries
must be deciphered for the effective operation of radar signal
transmissions with individual wireless network sources.

RG1: Is it possible to transmit radar signals in wireless net-
works using a free space model at limited power measurements?

RG2: Whether effective transmissions can be achieved at
minimized distance and error measurements by using learning
algorithms?

RG3: Can localization technique be used for wireless sensor
networks to identify unknown nodes at maximized radar path
rates?

C. Novelty and Research Merits

The suggested approach relies on unique testing concepts
where all developing wireless applications are examined using
radar signals, in contrast to previous approaches that test every
wireless sensor network application using optimized signals. A
radar signal is always required in wireless networks and needs to
be applied across various distance measures because all wireless
applications have a much greater range and need to monitor all
necessary results. The new aspect of the suggested approach is
that it uses radar signals to evaluate all wireless sensor networks
that are connected to one another for various purposes, enabling
current-generation networks to advance by guaranteeing smooth
network operations. Furthermore, it is crucial to use machine
learning techniques in the testing process for radar signals,
ensuring that the required protocols and suitable data formats
are followed.

D. Major Contributions

To solve the aforementioned queries that are identified as
major gaps in the existing approach, the proposed method in-
troduces a parametric radar design model integrated with three
types of machine learning algorithms. Hence, the objectives of
radar signal transmissions in wireless sensor networks are as
follows:

1) to design a free space model for radar signal transmis-
sion are reception by using a time reference period that
increases the gain of signal transmissions;

2) to minimize signal-to-noise ratio in radar signals thereby
at entire signals are transmitted with appropriate distance
in wireless sensor networks;

3) to compare the machine learning algorithms for choos-
ing the best optimization to transmit radar signals with
localization and network sources.

II. PROPOSED SYSTEM MODEL

The mathematical representations used to construct the sys-
tem model for wireless sensor networks allow it to be easily
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integrated with a variety of machine learning methods that can
identify parametric outputs. In addition, if the system model is
developed using parametric representations, it will be simple to
compare it with different machine learning techniques and see
how effective wireless sensor networks are in real time.

A. Free Space Model

Since the wireless sensors in the proposed system are linked to
radar networks, the following equation describes the free space
model for signal transmission:

fs(receiver) = minPt,r

n∑
i=1

dr
(dr1 + . . .+ dri)

. (1)

Equation (1) is formulated as a minimization goal that reduces
the power of the radar transmitter and receiver.

B. Time Reference

However, the energy given to radar for information processing
determines the power of the transmitter and receiver, therefore
the following equation is depicted using the following time
reference:

Tref = min
n∑

i=1

Erρr
Etρt

. (2)

According to (2), the energy transmitted by radar nodes is
minimized when the transmitter and receiver are separated by
time.

C. Target SNR

However, the signal-to-noise ratio can further cut down on the
energy that radar nodes use, so the minimization function for
reducing the signal-to-noise ratio is expressed in the following
equation:

SNRradar = min

n∑
i=1

SNRtarget

SNRrn
× 100. (3)

According to (3), the overall signal-to-noise ratio will be higher
if the threshold level in relation to the noise factor of the receiving
nodes is significantly higher.

D. Distance Representations

As shown in the following equation, another method to reduce
the signal-to-noise ratio is to minimize the distance between two
independent radar nodes:

dtotal = min

n∑
i=1

(rn1 − rni) + (rn1 − rnj) . (4)

Equation (4) states that the chosen location nodes must minimize
the radar signal from the true position of the nodes.

E. Wireless Error Measurements

It is necessary to prevent localization error in wireless nodes,
which is indicated in the following equation:

Elocalization = min

n∑
i=1

dtotal

Nu ×Rc
. (5)

Equation (5) states that only by reducing the number of unknown
nodes is error minimization possible.

F. Wireless Localization

The range measurement for the radar signal, however, varies
during the localization process as sensor nodes are present, and
it is calculated using the following equation:

Nu = min
n∑

i=1

(Pu − sourcen) . (6)

The node minimization problem, where inactive nodes must be
deleted from radar networks, is described by (6).

G. Radar Wireless Network Source

The following equation is used to express the parameters of
the original source signal:

sources = max
n∑

i=1

(rate p + position source)

dtotal
. (7)

According to (7), the source signal and its corresponding path
from the radar must be selected suitably in order to maximize
location accuracy.

H. Objective Functions

Equations (8) and (9) are used to generate the established
system model’s objective functions

obj1 = min

n∑
i=1

SNRradar, Elocalization (8)

obj2 = max
n∑

i=1

sources. (9)

Equations (8) and (9) define a tri-objective function where noise
ratio and localization errors must be decreased for wireless
sensor networks in radar processing units. The source signal
must be maximized in accordance with minimization when the
objective function is combined with machine learning tech-
niques, as mentioned in Section III.

III. MACHINE LEARNING ALGORITHMS

It is crucial to transfer more data to end users since the
wireless transmission process is connected to computer-aided
design. In the suggested method, data-driven recommendations
are produced before transmitting a sequence of data, and radar
information is transmitted in this way. Therefore, the operation
of machine learning is carried out by analyzing all antiquity that
is present in radar nodes in order to strengthen the security of
wireless sensor networks during data transmission [21]. Further,
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in wireless sensor networks for radar, the path information can be
found by logically identifying it. In addition, machine learning
methods are frequently chosen in wireless sensor networks due
to their primary benefit of natural processing units, which enable
the recognition and classification of projected model radar im-
ages for high-security operations. Radar data classification can
be done separately because some of the traits are also present
in wireless sensor networks with labeled and unlabeled data. In
addition, the system model is analyzed using all three types
of machine learning algorithms, including supervised, unsu-
pervised, and reinforcement learning models, where necessary
operating parameters for wireless sensor networks are specified.
In addition, machine learning techniques can further minimize
implementation costs and quickly fix automated procedures in
the event of node failures. The suggested approach applies a
machine learning technique in three steps, including localiza-
tion, mapping, and positioning of radar signals, where suitable
learning models are selected.

A. Supervised Learning Algorithm

Only specific datasets are represented at the input layer of
the supervised learning algorithm, which determines the ap-
propriate response at the output layer. The supervised learning
algorithm analyzes the training data where only inferred results
are provided in wireless sensor networks where both training
and testing data are analyzed at the input unit. Since wireless
sensor networks are used to transmit the majority of the data,
label sets are required to categorize it. As a result, the suggested
strategy specifies a distinct label for each type of data, which
lowers all process-related empirical and structural hazards. In
addition, a radar wireless sensor network must design a gener-
ative training set using supervised learning utilizing probability
analysis. A supervised learning algorithm can be used with a
prediction rule since the main goal of the suggested method is
mapping procedures. Other than mapping, the main benefit of
supervised learning is that radar data may only be processed
by end units if recommendations are made. Speech and picture
signals are processed as part of the recommendation-making
process stated above. As a result, picture signals are favored
for recommendations in radar wireless sensor networks because
they allow for a clear view of data transmission. A supervised
learning system can then be used to continuously detect radar
signals and make correct predictions. The following equation
can be used to illustrate the input and functional relationship
of the supervised learning algorithm with a particular set of
wireless data:

xi = f (wn) . (10)

The supervised learning approach uses two phases to identify
unknown inputs since the input units are modeled as wireless
nodes with functionality. These processes include classifying
active and inactive nodes and performing a deterioration analy-
sis. As a result, using distance representation, two different data
points can be separated in classification, as seen below

classificationi = min
n∑

i=1

(yi − zi) . (11)

Fig. 2. Supervised learning for wireless sensor networks.

Equation (11) states that when data points differ in radar wireless
sensor networks, the quantity of classification is reduced. The
following equation can be used to obtain information at the
receiver whether a given node has any attributes that are present
in wireless sensor networks:

Ai = min
n∑

i=1

de log (de) . (12)

Equation (12) indicates that attributes must be minimized to
maintain high security in the network; therefore, radar informa-
tion can be chosen in a random way using the following equation:

Ir = 1 −
n∑

i=1

de. (13)

Equation (13) states that only when data properties are decreased
in the network can the chosen radar data be correctly identified.
Therefore, using (14), the following error measurements for
supervised learning are calculated:

Error supervised = min

n∑
i=1

(αi −Oi) . (14)

The block representation of supervised learning is illustrated in
Fig. 2.

B. Unsupervised Learning Algorithm

The majority of the data in wireless sensor networks are
untagged, meaning that even when radar signals are transmitted,
there is no connection made between two different radar datasets.
The unsupervised machine learning approach is thus used in
these situations where the data are still untagged. In addition,
only creative material may be produced using the data included
in wireless sensor networks; as a result, the radar data stay
unlabeled. Unlabeled data allow the user to assess relevance
without relying on outside factors; hence, more time is needed
to gather the data. Radar applications perform data clustering
and association in two steps, which is where unsupervised
machine learning’s main advantage lies. Clustering allows for
the combination of more data or the combining of duplicate data
inside a single network, which enables unsupervised machine
learning algorithms to handle more complex operations for a
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Fig. 3. Unsupervised learning for wireless sensor networks.

given set of data. In addition, all concealed information is found
through a search procedure, indicating that exploratory data
analysis for radar data occurs during unsupervised machine
learning. Unsupervised machine learning also operates based
on input weights, where the cluster with more data is prioritized
above lesser data types. As a result, during the training phase,
substantially less energy will be used for a given set of data if
the wireless data representation is constructed as follows:

xi = f

(
cm

1 + e(y1−ym)

)
. (15)

Equation (15) suggests that the first and middle points’ functions
must have significantly less energy than the data functions
present at other representation locations. However, the unsu-
pervised machine learning technique uses clustering, which is
defined using the following equation, to create data representa-
tions for radar signals:

clusteringi = min

n∑
i=1

γ1 + γ2 + ..+ γi. (16)

Equation (17) states that clustered data points must be separated
with equal distance representations, so in these situations, a
neural network is used to create an individual network, which is
essential for the majority of the data that lack any labeled sets.
Radar signals’ transmission frequency plays a crucial role in the
case of clustered attribute functions, hence the support vectors
are created as follows:

γn(i) = min
n∑

i=1

ω (yn) /dpi. (17)

If the frequency of transmission is not matched, then at all data
points, error measurements are made with activation functions,
and it is represented using the following equation:

Error unsupervised = min
n∑

i=1

eK/xi . (18)

Equation (18) states that functionality patterns, whose corre-
sponding activation functions must be recorded in radar sys-
tems, minimize errors in unsupervised learning. Fig. 3 shows
the block diagrams for the unsupervised machine learning
algorithm.

C. Reinforcement Learning Algorithm

Reinforcement learning algorithms are used in wireless sensor
applications for radar signals to train the data based on reward
functions, with the exception of situations when an outside
agent is permitted to interrupt with a signal. The incorporation
of trial and error-basis functions is shown during this type of
interruption, with the majority of errors occurring as a result
of mismatched environmental circumstances. In contrast to su-
pervised and unsupervised machine learning methods, errors
are thereby avoided at the beginning of the process before data
transmission. Another significant benefit of the reinforcement
learning technique in wireless sensor network radar applications
is that since all external agents are trained by external agents,
additional rewards are added to a particular set of data. How-
ever, even after including the data incentives, the application
process does not detect duplicated data, resulting in the creation
of a distinct learning mechanism. Therefore, users may only
decide on security in radar information processing by allow-
ing different nodes to interface with one another. In contrast
to other machine learning algorithms, reinforcement learning
models decide beforehand what kind of data will be commu-
nicated next through the network. The preinteractive decision-
making procedure indicated above saves a significant amount of
time, thus the remaining time is used for the feedback system.
The following is how the reinforcement learning algorithm is
represented mathematically:

xi = ϑi + x′
iyi. (19)

According to (19), the construction of a random data sequence
must be represented in the reinforcement learning algorithm as
an input function where data representations are created in con-
junction with the establishment of the sequence. The following
equation is used to describe the expected behaviors for random
data sequences throughout the reinforcement learning process:

Aexpected = min

n∑
i=1

dis r × randa. (20)

Equation (20) states that in wireless sensor networks, the at-
tribute of predicted functions must be lowered with random re-
ward values; if dishonest awards are given out, then appropriate
action must be done, and radar signals must be verified. The
following equation can be used to investigate the error functions
during the testing process:

Errorreinforcement = min
n∑

i=1

rew1 + ..+ rewi

datat
. (21)

Equation (21) states that the system can only minimize the error
function for reinforcement learning if the system avoids using
the wrong reward functions. Fig. 4 shows the reinforcement
learning algorithm’s block representations, and a list of notations
with implications are listed in the Nomenclature.

IV. RESULTS

The assimilation results of the suggested system model with
machine learning algorithms are assessed in real time with
numerous data-gathering mechanisms in the proposed method.
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Fig. 4. Reinforcement learning for wireless sensor networks.

TABLE II
SIGNIFICANCE OF SCENARIOS

Data from the radar signal are split and made to communicate
over vast distances in order to analyze the results in real time.
The majority of signals are seen to experience delays and faults
during the transmission process, although these problems are
quickly fixed. In addition, a random data sequence is created,
which connects a greater number of distinct states instantly.
In addition, classification and clustering techniques are used in
conjunction with machine learning algorithms to further separate
the data. In total, 250 nodes are chosen for data transport,
scattered across a specific area, and equipped with cluster heads
that identify each node’s operation during transmission states.
Furthermore, replay resources are set aside for data retrieval
using a reference time system in the event that any radar data
are lost during wireless transmission. The procedure is more
complicated since the resources are typically allocated indepen-
dently, which causes the rotational speed of data functions to be
significantly higher. As the security of the suggested solution is
maximized, the previously indicated process of allocating differ-
ent resources is not conducted. The following three scenarios are
carried out to investigate the suggested radar processing signals
with machine learning algorithms:

1) Scenario 1—error localization;
2) Scenario 2—radar distance measurements;
3) Scenario 3—signal-to-noise ratio.

All the aforementioned scenarios are simulated in real time
using MATLAB to show the output representations, and com-
parisons for machine learning algorithms are made to determine
the application of radar signals. The importance of considered
scenarios is listed in Table II, and a detailed description of
all scenarios is as follows. Also, the simulation parameters are
indicated in Table III.

Scenario 1: Error localization: Local interface faults will
occur whenever a radar signal is relayed over long distances
using a machine learning technique, and these errors are tracked

TABLE III
SIMULATION ENVIRONMENTS

in this scenario. The suggested method identifies and reduces
mistakes brought on by both labeled and unlabeled datasets.
Further, in the free space model, receiver errors are minimized
below the threshold value, resulting in fewer reference errors
during the period in question. When dealing with labeled data,
faults are investigated by locating the target nodes where the
output value discrepancy is counted. However, in the case of
an unlabeled dataset, specific patterns that are represented in
an exponential form are separated to show the activation func-
tions. Thus, labeled data are considered direct representations,
whereas unlabeled data are considered indirect representations.
In addition, the reward function is distributed at each state with
distinct data representations, substantially reducing error. The
comparison of transmitted radar signal errors is shown in Fig. 5.
Fig. 5 shows that the error function in all three categories of
machine learning algorithms is reduced when compared with the
current methodology [7]. The number of target nodes is taken
into consideration to be 6, 8, 12, 15, and 19, and the error mea-
surements are seen to be 10, 7, 4, and 2 for the present method and
5, 2, 1, 0.7, and 0.3 in the case of the existing methodology [7].
In contrast, error measurements in the unlabeled dataset are
substantially greater, with 14, 11, 8, 5, and 3 for the present
technique and 7, 3, 2, 1, and 1 for the proposed method, even
when activation functions 1, 2, 3, 4, and 5 are taken into account.
Although the total number of rewards for transmitting radar
signals is 24, 32, 38, 45, and 50, respectively, where errors
remain in low-range percentages of 8, 6, 3, and 1, with 1, 1, 0.8,
0.3, and 0.1 for existing and projected models, both the proposed
and existing approaches have errors minimized after providing
appropriate reward functions. Therefore, error localization is
only reduced if the suggested method integrates a reinforcement
learning model.

Scenario 2: Radar distance measurements: As specified that
radar signals are carried over large distances, it is important
to measure how far wireless sensor networks at the specified
reference time travelled that distance according to stated input
functions. As predefined networks with the same signal informa-
tion can be used to convey data over medium to long distances,
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Fig. 5. Representation of error functions. (a) Supervised. (b) Unsuper-
vised. (c) Reinforcement.

the suggested technique first performs classification and cluster-
ing before moving on to distance measurement. The difference
between the first and mid data nodes with the summation of
total data functions is represented for distance measurements
further in the free space model where two separate radar nodes
are taken into account with reference points as i and j. The total
number of idle nodes can be identified by separating the total
distance from the total radius of communication lines. Distance
measurements also show the connection to localization issues
since complete separation causes data localization. The results
of a simulation for measuring distance are shown in Fig. 6.
Fig. 6 shows how the suggested method reduces the distance

Fig. 6. Radar data separation with distance measurements.

Fig. 7. Signal-to-noise ratio for radar signals.

between two independent radar nodes in comparison with the
conventional approach [7]. The simulation tool is connected
with independent nodes where the information is not defined to
illustrate distance measuring in MATLAB. The distance of the
existing approach with idle nodes is 8.4, 7.6, 7.2, 6.5, and 6.1 in
this scenario verification. However, using the same first and last
node measurements, the proposed method can be able to provide
minimized distance measurements as 4.8, 4.5, 4.1, 3.8, and 3.2,
respectively. Since only reinforcement learning attributes are
connected to distance measurements, the proposed method can
achieve high security at minimized distances and, in contrast
to supervised and unsupervised algorithms, only reinforcement
learning algorithms can produce better observations.

Scenario 3: Signal-to-noise ratio: In the suggested technique,
the signal-to-noise ratio is assessed using direct and indirect
measurements, with the direct measurement separating the high-
est noise level, or threshold level, from the goal noise level. As
a result, whereas in indirect measurements, the signal-to-noise
ratio is detected with distance values, direct measurements can
reach a direct signal-to-noise ratio. Radar signal transmission
distance can be fully reduced if the signal-to-noise ratio is
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significantly higher. However, if there is a poor signal-to-noise
ratio, the target receiver separation with the highest threshold
values must be measured. However, since reference points are
taken into account, both measurements will have the same effect
on the receiver, and the noise ratio will be minimized at a specific
moment. The signal-to-noise ratio of the suggested and existing
approaches is shown in Fig. 7. The signal-to-noise ratio at the
receiver, which is simulated in Fig. 7, illustrates that the noise
ratio is minimized for the proposed method as compared with the
existing approach [7]. For the demonstration case, the number
of receiving nodes is considered as 10, 20, 30, 40, and 50, and
the radar signals are transmitted with the same signal but at
different ranges to the receiver. It is observed that when labeled
and unlabeled data are represented, the receiving nodes provide
a high signal-to-noise ratio, which is beyond the threshold level.
Therefore, with the distance range that is measured in scenario
2, the observations are taken and the outcomes show that signal
to noise ratio is minimized for proposed method. Hence, direct
signal-to-noise ratio measurements are made using a total num-
ber of unknown nodes in the system. The measurements indicate
that 2.66 dB of signal-to-noise ratio are present in the existing
method, but in the proposed method, 0.8 dB is present.

A. Performance Analysis

The performance of the proposed method for radar signal
transmissions in wireless sensor networks can be proved with
an indication of cost factor. Since the substantial structure that
is provided for radar signals must tolerate maximum noise
ratio, the built-up structure of transmission units (intermediate
channels) can be designed for broad access. Hence, a broadband
unit that can be able to reformat necessary information to end
users with radar signal processing is considered and total cost
is evaluated for complete channel connections. Moreover, the
network connectivity can be made in such a way with process-
ing equipment before radar signal transmission is made. Thus,
fiber units are considered for wireless sensor networks. In the
proposed system, as a free space model is considered, the cost
of connected units can be reduced further as radar frequency
diversity is provided with a resource localization technique.
Fig. 8 indicates the comparative outcomes of the proposed and
existing approaches.

From Fig. 8, it is pragmatic that total cost is reduced for
proposed method as compared with existing approach. The re-
ductions in cost are provided in terms of reward functions where,
with indicated data sequence, the radar signals are transmitted
in channels. Due to such types of transmissions, it is possible to
reduce data errors; thus, 100% of radar signals are transmitted
without any external effect. To prove the possible reductions in
cost factor, the best epoch for the reinforcement algorithm is
considered as 20, 40, 60, 80, and 100. For the above-mentioned
step periods, the total cost for the proposed method is reduced
below 400 $, whereas due to the absence of a free space model,
the total cost in the case of the existing approach is increased
above 600 $. Hence, in real time for radar signal transmissions, it
is possible to implement a proposed method for wireless sensor
networks at reduced cost with a free space model.

Fig. 8. Comparison of cost with varying sensor units.

Fig. 9. Time complexities reductions for radar signal transmissions.

B. Time Complexity

The transmission process with individual channels for radar
signal transmissions must be executed at reduced complexities
where, at a reduced time period, more amount of signals must
be transmitted to the indicated distance. Since free space models
are used, it is possible to reduce the overall time period to the
reference time period, and even the position of nodes can be
made constant. Thereafter, the cost can be reduced further. More-
over, the computational complexities in the proposed method are
observed not only with respect to algorithmic patterns but also in
real time when the signal is transferred toward the destination.
With equivalent representations, it is possible to observe the
computations by maximizing the step size. Fig. 9 illustrates
the computational complexity of the proposed and existing ap-
proaches. From Fig. 8, it is realistic that computational complex-
ities are reduced for proposed method as compared with existing
approach. The indicated distance in radar signal processing
units is reduced, and the network source in considered paths
is provided in a free space manner across varying junctions.
To prove the outcome of computational complexity, 100 epoch
periods are considered where total complexities are reduced
below 5 s in the case of the proposed method and complexities
are increased to 14 s for the existing approach [7].
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V. CONCLUSION

When operating wireless sensor networks, the effectiveness
of machine learning algorithms that use labeled and unlabeled
datasets is crucial for enhancing data transmission security. In
order to evaluate the impact of machine learning techniques
in wireless sensor networks, the proposed method is used to
look at the relevant parameters that have been developed as
mathematical models. A free space model with an established
reference time period serves as the basis for the parameters used
to analyze the impact of wireless sensor networks. All vacant
node positions are monitored since the signal-to-noise ratio mea-
surements are also done with regard to distance minimization.
These measurements enable the recovery of information from
vacant nodes, protecting the system from all external threats.
In addition, the suggested method is used to examine radar
signals, where information is transferred over great distances
and requires extremely robust security. In order to examine the
error functions, measurements are also done in conjunction with
machine learning techniques. Anytime the error functions are
displayed, the security of radar signals is minimized, making
wireless sensor network nodes vulnerable to many types of
attacks. The suggested method uses a step approach to make
classification and clustering using incentive functions. When
incentive functions are offered, it is possible to transmit a radar
signal without any errors. Contrarily, compared with supervised
and unsupervised learning algorithms, the reinforcement learn-
ing model offers minimal error (less than 1%). The predicted
model subsequently validates the current approach at a distance
of 3.8 m in real-time execution when compared with error
measurement, signal-to-noise ratio, and distance measurements.
In terms of overall efficacy, the proposed solution achieves 80%
more security than the current system.

APPENDIX

The flow representations of integrated algorithms are as
follows.

Algorithm 1: Supervised learning.
Begin PROCEDURE SL
Given:

wn : Number of wireless nodes
xi : Total number of inputs

for i = 1 : n do
1. classificationi for Classifying the data with

radar data points
2. Ai for receiving all attribute information from

radar nodes
end for
or
for all i = 1 : n do

3. Ir for choosing the valid radar information
4. Errorsupervised to find total number of errors

end for
end PROCEDURE

Algorithm 2: Unsupervised learning.
Begin PROCEDURE USL
Given:

Model parameters: [2 × 2 structure]
Weight functions: [ 320 × 358 clusters]

for i = 1 : n do
1. clusteringi for Clustering the data with radar data
points

2. γn for setting up frequency in all defined radar nodes
end for
or
for all i = 1 : n do

3. Errorunsupervised to find total number of errors
end for
end PROCEDURE

Algorithm 3: Reinforcement Learning.
Begin PROCEDURE RL
Given:

ϑi : Random data sequence
yi : Number of connected states

for i = 1 : n do
1. Aexpected for taking appropriate actions
2. disr for data reductions in reward functions

end for
or
for all i = 1 : n do

3. Errorreinforcement to find total number of errors
end for
end PROCEDURE

REFERENCES

[1] N. Xie, Y. Chen, Z. Li, and D. O. Wu, “Lightweight secure localization
approach in wireless sensor networks,” IEEE Trans. Commun., vol. 69,
no. 10, pp. 6879–6893, Oct. 2021.

[2] C. Miranda, G. Kaddoum, E. Bou-Harb, S. Garg, and K. Kaur, “A collabo-
rative security framework for software-defined wireless sensor networks,”
IEEE Trans. Inf. Forensics Secur., vol. 15, no. 1, pp. 2602–2615, Feb. 2020.

[3] C. Wang, D. Wang, Y. Tu, G. Xu, and H. Wang, “Understanding node cap-
ture attacks in user authentication schemes for wireless sensor networks,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 1, pp. 507–523,
Jan./Feb. 2022.

[4] F. F. Jurado-Lasso, L. Marchegiani, J. F. Jurado, A. M. Abu-Mahfouz,
and X. Fafoutis, “A survey on machine learning software-defined wireless
sensor networks (ML-SDWSNs): Current status and major challenges,”
IEEE Access, vol. 10, pp. 23560–23592, 2022.

[5] S.-J. Hsiao and W.-T. Sung, “Employing blockchain technology to
strengthen security of wireless sensor networks,” IEEE Access, vol. 9,
pp. 72326–72341, 2021.

[6] T. Jiang, W. Zang, C. Zhao, and J. Shi, “An energy consumption optimized
clustering algorithm for radar sensor networks based on an ant colony
algorithm,” EURASIP J. Wireless Commun. Netw., vol. 2010, pp. 1–7,
2010.

[7] S. Ivanov, V. Kuptsov, V. Badenko, and A. Fedotov, “An elaborated signal
model for simultaneous range and vector velocity estimation in FMCW
radar,” Sensors, vol. 20, no. 20, 2020, Art. no. 5860.

[8] S. Zhu, S. Chen, X. Peng, H. Xiong, and S. Wu, “A signal reconstruc-
tion method of wireless sensor network based on compressed sensing,”
EURASIP J. Wireless Commun. Netw., vol. 2020, no. 1, 2020, Art. no. 106.



SELVARAJAN et al.: TESTING OF EMERGING WIRELESS SENSOR NETWORKS USING RADAR SIGNALS 59

[9] Z. Mathews, L. Quiriconi, C. Schüpbach, and P. Weber, “Learning resource
allocation in active-passive radar sensor networks,” Front. Signal Process.,
vol. 2, 2022, Art. no. 822894.

[10] X. Qi et al., “A combined localization algorithm for wireless sensor
networks,” Math. Problems Eng., vol. 2018, pp. 1–10, 2018.

[11] H. Kabir, J. Kanesan, A. W. Reza, and H. Ramiah, “A mathematical algo-
rithm of locomotive source localization based on hyperbolic technique,”
Int. J. Distrib. Sensor Netw., vol. 11, no. 10, 2015, Art. no. 384180.

[12] X. Liu et al., “Wireless sensor network dynamic mathematics modeling
and node localization,” Wireless Commun. Mobile Comput., vol. 2018,
pp. 1–8, 2018.

[13] S.-H. Lee, C.-H. Cheng, C.-C. Lin, and Y.-F. Huang, “PSO-based target
localization and tracking in wireless sensor networks,” Electronics, vol. 12,
no. 4, 2023, Art. no. 905.

[14] M. W. Khan, N. Salman, and A. H. Kemp, “Optimised hybrid localisa-
tion with cooperation in wireless sensor networks,” IET Signal Process.,
vol. 11, no. 3, pp. 341–348, 2017.

[15] H. Sharma, A. Haque, and F. Blaabjerg, “Machine learning in wireless
sensor networks for smart cities: A survey,” Electronics, vol. 10, no. 9,
2021, Art. no. 1012.

[16] J. Wu and X. Ding, “Using wireless sensor network to remote real-time
monitoring and tracking of logistics status based on difference transmis-
sion algorithm,” J. Sensors, vol. 2021, pp. 1–10, 2021.

[17] A. Ali, Y. K. Jadoon, S. A. Changazi, and M. Qasim, “Military operations:
Wireless sensor networks based applications to reinforce future battlefield
command system,” in Proc. IEEE 23rd Int. Multitopic Conf., 2020, pp. 1–6.

[18] R. Li, J. Wang, and J. Chen, “Movable platform-based topology detection
for a geographic routing wireless sensor network,” Sensors, vol. 20, no. 13,
2020, Art. no. 3726.

[19] R. George and T. A. J. Mary, “Review on directional antenna for wireless
sensor network applications,” IET Commun., vol. 14, no. 5, pp. 715–722,
2020.

[20] S. Mazahir, S. Ahmed, and M.-S. Alouini, “A survey on joint
communication-radar systems,” Front. Commun. Netw., vol. 1, 2021,
Art. no. 619483.

[21] R. Ahmad, R. Wazirali, and T. Abu-Ain, “Machine learning for wireless
sensor networks security: An overview of challenges and issues,” Sensors,
vol. 22, no. 13, 2022, Art. no. 4730.

Shitharth Selvarajan (Senior Member, IEEE)
received the Ph.D. degree from the Depart-
ment of Computer Science and Engineering,
Anna University, Chennai, India, in 2018, and
the Postdoctoral degree from The University of
Essex, Colchester, U.K., in 2023.

He has worked in various institutions with a
teaching experience of seven years. He is cur-
rently a Lecturer in cyber security with Leeds
Beckett University, Leeds, U.K. He has authored
or coauthored more than 85 international jour-

nals and 20 international and national conferences, and also four
patents in IPR. His current research interests include cyber security,
blockchain, critical infrastructure and systems, and network security and
ethical hacking.

Dr. Selvarajan is an active Member of IEEE Computer Society and
five more professional bodies. He is also a Member of the International
Blockchain organization. He is a certified Hyperledger Expert and cer-
tified Blockchain Developer. He is an active Researcher, Reviewer, and
Editor for many international journals.

Hariprasath Manoharan received the B.E. de-
gree in electronics and communication en-
gineering from Annamalai University, Anna-
malainagar, India, in 2013, the M.Tech. degree
in communication systems from SRM Univer-
sity, Chengalpattu, India, in 2015, and the Ph.D.
degree in electronics and communication engi-
neering from Annamalai University, in 2019.

He is currently an Associate Professor with
the Department of Electronics and Communi-
cation Engineering, Panimalar Engineering Col-

lege, Chennai, India. He has completed nine years of research experi-
ence and teaching experience. He has guided both B.Tech. and M.Tech.
students for doing projects in the areas of wireless sensor networks. He
has authored or coauthored 92 research articles, which include SCI,
SCIE, ESCI, and SCOPUS indexed articles, and has presented articles
in six international conferences. He has also authored or coauthored
a book titled Computer Aided State Estimation for Electric Power Net-
works, which provides a complete guide to all research scholars in
the field of electronics and communication engineering. His research
interests include wireless sensor networks, data communications, and
testing of communication devices.

Adil O. Khadidos received the B.Sc. degree
in computer science from King Abdulaziz Uni-
versity, Jeddah, Saudi Arabia, in 2006, and
the M.Sc. degree in Internet software sys-
tems from the University of Birmingham, Birm-
ingham, U.K., in 2011, and the Ph.D. de-
gree in computer science from the Univer-
sity of Southampton, Southampton, U.K., in
2017.

He is currently an Associate Professor with
the Faculty of Computing and Information Tech-

nology, King Abdulaziz University, Jeddah, Saudi Arabia. His re-
search interests include computer swarm robotics, entomology behavior,
machine learning, self-distributed systems, and embedded systems.

Alaa O. Khadidos received the B.Sc. degree
from King Abdulaziz University, Jeddah, Saudi
Arabia, in 2006, the M.Sc. degree from the
University of Birmingham, Birmingham, U.K., in
2011, and the Ph.D. degree from the University
of Warwick, Coventry, U.K., in 2017, all in com-
puter science.

He is currently an Associate Professor with
the Faculty of Computing and Information Sys-
tems, King Abdulaziz University. His research
interests include computer vision, machine

learning, optimization, and medical image analysis.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


