

for Humanity

Patrons

A Wholly Owned Subsidiary of MPICORPORATION

Discussion Group II – Circuit Reliability

Moderator: Ben Kaczer, imec

2 IIRW 2022 – Fallen Leaf Lake, California, USA 09-13 October 2022

Assumption

- We have here representatives of "both worlds", i.e.,
 - Technology, reliability researchers and engineers
 - Circuit designers and EDA tool vendors

Why reliability is important

Ex.: As fabricated: nominal PDK performance

• E.g., a year later: degraded performance

- Functionality needs to be guaranteed throughout the entire lifespan of the application
- Degradation mechanisms are complex and difficult to be accurately captured by empirical models, which may lead to
 - "Conservative" (worst-case) approach: lower performance, loss of profit margin, market share...
 - "Cavalier" (no-reliability) approach: field failures and returns, loss of profit, credibility, market share...

Quick (digital) circuits refresher: inverter (chain) and timing

B. Kaczer et al., "Observation of hot-carrier-induced nFET gate-oxide breakdown in dynamically stressed CMOS circuits", IEDM 2002

- Current needed to drive the next stage
- Current when FETs off \rightarrow static power
- Adverse effects of degradation/aging:
 - lower on current \rightarrow timing violation
 - leakage \rightarrow higher power consumption, memory elements faster charge loss... ATIONAL INTEGRATED

HBD and SBD Ex.: impact on RO and SRAM

1.00

cumulative fraction 0.50 0.25

0.00

cumulative fraction

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.25

0.00 0.0

0.50 simulation

fraction

sumulative

Ring

0.0

0.1

 $V_{SUPPLY} = 1.5 V$

V_{INP} = 1.5 V

^{measurement}

imulatior

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

∆f / f after 1st breakdown (%)

V_{SUPPLY} = 1.5V

0.2 0.3

 $V_{SUPPLY} = 1.5 V$

= 1.5 V

0.2

△I_{on} after 1st breakdown (mA)

0.4

0.3

 $V_{INP} = 0 V$

⊿l_{off} after 1st breakdown (mA)

0.1

More detailed lumped-element model for HBD explains distributions

Model reproduces FET behavior with BD at all positions x along the channel, in both inversion and accumulation

B. Kaczer et al., "Consistent Model for Short-Channel nMOSFET After Hard Gate Oxide Breakdown". TED 2001

B. Kaczer et al., "Analysis and modeling of a digital CMOS circuit operation and reliability after gate oxide breakdown: a case study", Microel. Rel 2002

Impact of SBD on static behavior of SRAM cell

- Cell stable but consumes more power
- SBD may affect cell timings

B. Kaczer et al., "Experimental verification of SRAM cell functionality after hard and soft gate oxide breakdowns", ESSDERC 2003; Rodriguez et al., "The Impact of Gate Oxide Breakdown on SRAM Stability", EDL 2002 TERNATIONAL INTEGRATED

BTI ex.: delay intermittency and delay degradation with aging

- For simplicity, traps with randomized values of τ_c , τ_e , and ΔV_{th} "injected" only into the pFET* of an inverter
- At start: Intermittent and random delay (jitter)
- After aging: Delays degraded, still intermittent and random

B. Kaczer *et al.*, "Atomistic approach to variability of biastemperature instability in circuit simulations", IRPS 2011

 Delay variability increases at lower V_{DD}, shorter paths, smaller devices

End-of-life simulation methodology

- Short "stress" transient simulation projected to degradation at certain "age" by aging models
- For more a precise reproduction of degradation, simulation can be divided into n steps and repeated piecewise over total life

HDL/RTL Thorough understanding of the physics of degradation at individual defect level Gates 205ALU propagated to higher design abstraction Circuits levels **Reliability-Aware** Compact models Device transport Trap kinetics Use and workload propagated to lower design abstraction layers Atomic structure Standardized EDA + "Rel-aware" CM ΔQ

ESL

Compact model: intersection of worlds

Outline: Discussion topics

- Proprietary vs. Standard EDA circuit simulations?
- What should a «Reliability-aware» Compact model do?
 - Physical vs. Phenomenological?
 - Arbitrary VG, VD workload?
 - Include relaxation?
 - Mean degradation only vs. Distributions of parameter degradation?
 - Complexity vs. Accuracy vs. Speed?
 - Asymmetric HCD degradation?
 - «Playback» condition-dependencies of electrical degradation?
 - Operating V_{DD}, capacitive load, N/P balance in CMOS, ...
 - Output?
 - DVth, Dmu, D(SS)? DI-V? Noise figures? (How is noise currently simulated?)
 - Interface with Circuit Simulator
 - Wrapper circuit vs. Modify BSIM parameters vs. Proprietary vs...?

Outline: Discussion topics (2)

- Age vs. Defects
 - Individual defects with distributed properties vs. Continuous distributions of defects
- Reliability-aware circuit modeling «Ecosystem»
 - Foundries, EDA tool vendors, users, other parties: who does what?
- What are "good" "standard" circuits to simulate in order to verify reliability aware compact models?
 - "Good" in the sense "relevant for applications"
 - "Good" in the sense "feasible to collect experimental data to compare with"
 - "Good" in the sense "feasible to simulate / not too complex"
- On which metrics (e.g. gain, frequency) should we focus when comparing reliability simulations of circuits with measurements?
- How representative is accelerated stress testing of circuits, of the real-life operating conditions?
- How do we verify long-term predictions of our models, typically used in EOL simulations?

CM should be covering entire (V_G , V_D) space

- Qualify and improve technology for reliability within V_{DD}
- Provide unified physics-based FEOL reliability model, based on deep understanding of underlying reliability phenomena

The curse and the blessing of BTI: relaxation

- Major issue for measurements, interpretation, and lifetime projection
 - Relaxation typically not complete → Permanent component
- + Contains information about the mechanism; increases device lifetime
 - Detrapping
 - Recovery/Anneal of interface states
- → Models must include relaxation to be fully physical

S. Rangan *et al.*, "Universal recovery behavior of negative bias temperature instability [PMOSFETs]", IEDM 2003; B. Kaczer *et al.*, "Ubiquitous relaxation in BTI stressing—New evaluation and insights", IRPS 2008; T. Grasser *et al.*, "NBTI in Nanoscale MOSFETs—The Ultimate Modeling Benchmark", TED 2014

Arbitrary-workload, mean and variability BTI circuit simulations

Level 1

Level 2

Level 3

Level 4

 $\Delta V_{th} >$ Constant stress C \geq \rightarrow Mean W degradation accuracv # workloads V_{th} > Multi stress C W_2 \rightarrow Mean W_1 W_3 degradation complexity, Multi ΔV_{th} stress G W_2 \rightarrow Mean W_1 W_{3} degradation + variability Multi <ڻ< stress W_2 HA \rightarrow W_1 W_3 Variability + RTN

INTERNATIONAL INTEGRATED

B. Kaczer et al., SSE 2016

Gate oxide defects: the primary cause behind FET aging

Same age, different "degradation"

- Example: physics-based
 Compact Models
 - Charge-based
 - Potential-based
 - ••••

- Degradation models
 - "Age"-based
 - "Defect"-based

Both 50 years old at the time photo taken

Wrapper

BSIM implementation: asymmetry of degradation reproduced

LCH = 130 NM, EOT = 1.9 NM (UNCALIBRATED)

Captures asymmetry of degradation

ERNATIONAL INTEGRATED RELIABILITY WORKSHOP

18

Channel slicing from Lin to Sat regimes: A DD FET from a series of ballistic FETs

Fig. 2. Long chain of B MOSFETs. The contacts act as thermalizing reservoir. We also show the symbol we use for a B MOSFET in the following figures.

Lambert-W function

Physics-Based Compact Model of Nanoscale MOSFETs—Part I: Transition From Drift-Diffusion to Ballistic Transport Giorgio Mugnaini and Giuseppe Iannaccone, Member, IEEE

Fig. 9. Comparison between the transfer characteristics obtained from experiments on a FinFET with L = 80 nm reported in [33] and from a compact model fitted to the data. The comparison of output characteristics is illustrated in the inset.

$$I_{\rm ds} = \frac{\mu_{\rm no}Q_n\phi_t}{L} \left[\frac{Q_{\rm ms}^2 - Q_{\rm md}^2}{2Q_n^2} + \frac{Q_{\rm ms} - Q_{\rm md}}{Q_n}\right]$$

• The main requirement is the "local" potential continuity at each "virtual reservoir" Z. Wu et al., IRPS 2021

Minutes

- Log here a few key points that triggered lively discussion by the audience as perceived by you
- The goal is to have a short report at the end of the day

Participants

- Name, *Affiliation*
- Name, Affiliation
- Name, *Affiliation*

INTERNATIONAL INTEGRATED RELIABILITY WORKSHOP

Thanks for your participation!

22 IIRW 2022 – Fallen Leaf Lake, California, USA 09-13 October 2022