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T
he success of the Robot Operating System 
(ROS) and the advance of open source ideas 
have radically changed and improved the 
experience of sharing software among members 
of the robotics community. Yet the lack of a 

suitable workflow for continuous integration and 
verification in robotics represents a significant obstacle to 

developing software that can be run by independent users 
for testing and reusing purposes.

A typical situation is that a developer produces a new 
ROS package and shares it through a public source reposito-
ry from which users can download and execute the soft-
ware. However, the execution environment may be 
incompatible due to users running different ROS distribu-
tions, incompatible versions of package dependencies, and 
third-party libraries. Another obstacle is the lack of suitable 
documentation for running the software. Most shared code 
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is barely documented because it was developed primarily 
for internal use within a research group. Developers are 
experts in robotics but not necessarily in software engi-
neering. Some configuration or execution steps may not be 
well explained in the documentation because of the devel-
oper’s familiarity with the software.

Consequently, there is a need for a complete, unambigu-
ous runnable environment for testing publicly available ROS 
code that guarantees a program functions correctly, no matter 
the particular host configuration. Such an environment 
should be compatible with the typical workflow of ROS devel-
opment to avoid any extra burden in the process.

Recently, Docker has proved to be a useful framework 
for enabling better, repeatable, and reproducible environ-
mental setups [1]. Docker is an implementation of Linux 
containers; in other words, it is an OS-level virtualization 
method for running isolated systems on a control host. It 
is similar to a virtual machine but with fewer overheads. 
While Docker is steadily gaining popularity, it is not 
familiar to many users in the robotics community. In this 
article, we aim to lower the barriers to adopting Docker 
by introducing ROSLab, a framework combining Docker 
and JupyterLab that turns a code repository into a 
reproducible, runnable software package. ROSLab auto-
matically generates a Docker image using a simple speci-
fication from the developer’s environment.

The motivation for using JupyterLab is the need to integrate 
documentation with software, because there is a tendency for 
experimental code to be accompanied by little explanatory 
material. JupyterLab is based on notebooks, interactive docu-
ments containing executable code, and narrative text, thus 
allowing the developer and the user to share explicitly the 
commands for running the software. In previous research, we 

have observed that incomplete or ambiguous documentation is 
a significant obstacle to the reuse of robotics code [2].

Figure 1 illustrates the code-sharing process and how it 
is extended with ROSLab. After the development of a 
novel research experiment programmed with ROS, users 
typically have access to a public code repository (for 
instance, GitHub), which contains one or several ROS 
 packages, a documenta-
tion file (README) with 
a description of the code, 
and some instructions for 
building and running the 
code. An inexperienced 
user who is interested in 
testing new developments 
faces two main difficul-
ties. The first is that the 
ROS distribution in the 
user’s host may be differ-
ent than the developer’s, 
whether newer (with de -
precated packages) or older (lacking functionality), caus-
ing a situation where the package and library dependencies 
are liable to break down—the so-called dependency hell. 
The second concern is that the documentation may be 
incomplete or inconsistent. Instructions about third-party 
libraries could be missing, or some configuration and exe-
cution steps might not have not been included.

What ROSLab does is automatize the creation of Dock-
er images. Instead of writing a complete Dockerfile, the 
developer needs only to specify the necessary components 
for running the image, namely, the ROS distribution, build 
method, and library dependencies. Those components are 
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Figure 1. Using ROSLab for sharing a code repository circumvents the trouble of installing and running the software on different  
system configurations. 
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described in a Yet Anoth-
er Markup Language 
(YAML) file, which is 
processed to generate the 
Dockerfile, a script for 
building the image, and 
another script for run-
ning it. Additionally, 
ROSLab processes the 
Git repository’s READ-
ME file for producing a 

JupyterLab notebook, where the command snippets are 
automatically separated into executable cells.

This process for creating Docker images is generic and can 
be extended to other software frameworks, but we have 
focused initially on ROS because of its widespread use in 
robotics. Nevertheless, the destination needs to install only 
Docker and a web browser to run the software. No local ROS 
installation is necessary; even if it exists, it will not interfere 
with the ROSLab Docker image.

The following is a simple example of a YAML file (publicly 
available at https://github.com/ICRA-2018/nanomap_ros) 
written for the code repository of a paper published in the 
2018 IEEE International Conference on Robotics and Auto-
mation (ICRA) proceedings [3]:

name: nanomap_ros
distro: kinetic
build: catkin_make

packages:
 - libeigen3-dev
 - ros-kinetic-cv-bridge
 - ros-kinetic-image-transport
 - liborocos-kdl-dev
 - ros-kinetic-tf2-sensor-msgs

To process the YAML file, Docker must be installed in  
the host. The ROSLab processing step is executed with the 
command

docker run --rm -v <DIR>:/project:rw 
roslab/create

with <DIR> being the full path of the local folder con-
taining the Git repository where the YAML file is stored. 
The command produces the following files in the same 
directory:

 ●  Dockerfile: the full description of the Docker image, based 
on the requested ROS distribution, with the instructions 
for installing all third-party dependencies and building the 
repository code

 ●  docker_build.sh: a script file that invokes Docker for build-
ing the image

 ●  docker_run.sh: a script file that invokes Docker for running 
the image and launching the JupyterLab server.
Next, the build script is run in a terminal, and the actual 

Docker image is built. Finally, the run script is triggered, and 
the image is executed with a JupyterLab server launched in the 
local host, to which the user can connect by opening a uniform 
resource locator (URL) in a browser (http://localhost:8888/lab/
tree/README.ipynb). Figure 2 depicts the browser window 
after executing a testing command in the README notebook 
of the processed repository. It is worth noting that the change 
directory command must be added to transition to the correct 
working directory; otherwise, the command produces an exe-
cution error.

A more complex example from another ICRA paper [4] 
includes the use of a graphics processing unit (GPU)-acceler-
ated runtime environment for 3D applications, installation of 
packages from their source, and mounting a host folder for 
accessing data set files. It is available at https://github.com/
ICRA-2018/VINS-Mono.

name: vins-mono
distro: kinetic
build: catkin_make
runtime: nvidia

volume:
 - host_path:/Data/EuRoC_MAV_Dataset
   container_path:/EuRoC_MAV_Dataset
   options: ro

packages:
 - ros-kinetic-cv-bridge

Figure 2. The execution of the testing command in the 
nanomap_ros repository’s README notebook.

Incomplete or ambiguous 

documentation is a 

significant obstacle to the 

reuse of robotics code.



67SEPTEMBER 2019  •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •

 - ros-kinetic-tf
 - ros-kinetic-message-filters
 - ros-kinetic-image-transport

source:
 - name: ceres-solver

 repo: https://github.com/ceres-
solver/ceres-solver.git
 depends:
  - libgoogle-glog-dev
  - libatlas-base-dev
  - libeigen3-dev
  - libsuitesparse-dev
 build: cmake

The information about the dependencies has been 
obtained from the README file in the repository and the 
home page of the third-party library, Ceres. The outcome 
of the execution is shown in Figure 3, which depicts the 
browser window and the ROS visualization (RViz) tool 
that has been launched by one of the commands in 
the notebook.

In the final example, which is also based on an ICRA 
conference paper [5], the visualization tool is not RViz but a 
custom application, demonstrating that ROSLab does not 
interfere with the package workflow. It is available at 
https://github.com/ICRA-2018/fast_change_detection, and 
the YAML file is

name: fast-change-detection
distro: kinetic
build: catkin_build
runtime: nvidia

packages:
 - libeigen3-dev

 - libboost-all-dev
 - qtbase5-dev
 - libglew-dev
 - libopencv-dev

source:
 - name: glow

  repo: https://github.com/jbehley/glow.git
  depends:
  build: catkin_build

The output of the example is depicted in Figure 4.
Based on the examples presented in this article and in 

other repositories of robotics software, we propose the follow-
ing guidelines for writing the ROSLab YAML file in an exist-
ing Git repository:
1)  Define the ROS distribution (kinetic , lunar , or 
melodic).

2)  Select the building method of the ROS package (catkin_
make, catkin_build).

3)  If 3D graphical output 
is needed, activate the 
nvidia runtime.

4) Add the software de -
pendencies.

a)  Whenever possible, 
use binary packages.

b)  O t her wis e ,  us e 
source repositories. 
In this case, besides 
the URL of the repos-
itory, you should 
specify its dependencies and building method.

The necessary disk space for running Docker containers 
can be large, especially in graphical environments. However, 
software layers can be shared among different Docker 

Figure 3. Running the VINS-Mono example.
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images, thus reducing the 
total amount of disk space 
used in the system. Table 1 
summarizes the size of the 
Docker images for the three 
presented examples as well 
as the size of the ROSLab 
base images. The “Tag” col-
umn refers to the Docker 
tag that indicates some 
information about the ver-
sion or variant of the Dock-
er image (“Latest” means 

the most recently built version for the examples; for ROSLab, 
there are two versions: ROS kinetic with or without the 
graphical Open Graphics Library runtime environment).

For each image, there is a shared part and a unique part. 
The shared layers are stored on disk only once, thus saving a 
great deal of space. For our examples, the total size would be 
5.131 GB + 4.471 GB + 2.517 GB = 12.119 GB, but, thanks 
to the sharing feature of Docker, it is reduced to 3.742 GB + 
1.474 GB + 1.39 GB + 0.729 GB + 1.042 GB = 8.377 GB. The 
savings would be even more significant if additional reposi-
tories were installed (based on the same ROSLab images).

The size of ROSLab images is quite similar to that of the 
official ROS images with the addition of the JupyterLab soft-
ware, which is rather small in comparison to ROS. The kinetic-
ros-base-xenial image already takes 1.191 GB, and the 
size of the Open Source Robotics Foundation/ROS kinetic-
desktop-full image amounts to 3.367 GB.

When the ROSLab images are used for the first time, 
they must be downloaded from the Docker cloud (https://
hub.docker.com/r/roslab/roslab) to the local computer. 
The images are compressed, so their size is 511  MB and 
1  GB for the kinetic and kinetic-nvidia versions, respec-
tively, which is approximately one-third of the uncom-
pressed size. The download time will obviously depend on 
the user’s Internet connection. For a typical 100-Mb/s line, 
it takes approximately 1 min 30 s to download and uncom-
press the ROSLab kinetic image and 3 min 50  s for the 
kinetic-nvidia image. The remainder of the time needed to 
build a repository is the same as if it were built natively. 
Downloading the extra packages and compiling the source 
code run on Docker at practically the same speed as in a 
native system.

The main benefit of using JupyterLab is the strong 
link between documentation and execution. The code 
documented in the README file is actually executed in 

Table 1. Image space usage resulting from the 
command docker system df -v.

Repository Tag Size (GB)
Shared 
Size (GB)

Unique 
Size

VINS-Mono Latest 5.131 3.742 1.39 GB

Fast Change 
Detection

Latest 4.471 3.742 729.6 MB

Nanomap_ros Latest 2.517 1.474 1.042 GB

ROSLab/ 
ROSLab

Kinetic-
nvidia

3.742 3.742 0 B

ROSLab/ 
ROSLab

Kinetic 1.474 1.474 0 B

Figure 4. The Fast Change Detection repository’s JupyterLab notebook and 3D visualization tool. The (a) notebook with the 
commands for running the example and (b) the 3D visualization of the execution.

(a) (b)
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execution.
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the same notebook. The alternative would be to open 
one or more terminals in the Docker image, copy and 
paste the code examples from the README file to the 
terminal, and execute the code. This process is prone to 
errors and can produce inconsistencies if the documen-
tation is not updated with the changes derived from 
testing or if the developer forgets to document a step in 
the terminal.

The JupyterLab README notebook always contains 
the latest version of the executable commands, which can 
be readily tested by simply restarting the notebook and 
running all the code cells. The absence of errors is a guar-
antee that the code will run similarly for any user of the 
same Docker image. In addition, employing Docker 
enables the software to run no matter which OS is installed 
on the user’s computer. It also isolates the running envi-
ronment from the local system, avoiding clashes with any 
preinstalled library or third-party software. The Docker 
image includes all the necessary dependencies as defined 
by the developer.

The executable commands in the README file of a Git 
repository should be written according to the Markdown spec-
ification (https://github.github.com/gfm/), for example, fenced 
by triple backticks ``` before and after the code block or 
indented by four spaces. The computing environment beyond 
ROS does matter in reproducibility. For example, some deep-
learning robotics algorithms are implemented in TensorFlow 
[6], which is under active development and, therefore, very 
dependent on the software version. In the near future, ROSLab 
will be extended with additional base images for TensorFlow 
and other popular packages.

ROSLab is being developed at the Robotic Intelligence Lab 
at Jaume I University, Castelló de la Plana, Spain, and it is free-
ly and publicly available for creating images for ROS Kinetic, 
Lunar, and Melodic at https://github.com/RobInLabUJI/
ROSLab. While still experimental, it is fully functional, as 
demonstrated by the previous examples. We have published 
video tutorials to enable users to rerun our examples from 
scratch (https://tinyurl.com/ROSLabExamples) and one step-
by-step example of how to set up a proper code repository for 
the application of ROSLab.

All the examples in this article were tested on a 
machine having a CPU equipped with four Intel Core 
i5-2500 processors at 3.3 GHz, 8 GB of random-access 
memory, and a GPU with an NVIDIA GeForce GTX 960 
graphics card. The computer was running Ubuntu 14.04.5 
LTS and Docker 18.03.1-ce with nvidia-docker 2.0. The 
examples provide a tiny demonstration of the power of 
JupyterLab notebooks, because only shell commands are 
executed: more ambitious examples could include Python 
or C++ code snippets.

Although the generated Docker images are executed 
locally in a host, they are compatible with online services, 
such as Binder (https://mybinder.org/), which allow the 

remote execution of JupyterLab servers. Obviously, RViz 
and other graphical commands could not be executed; 
instead, the ROS image would run in the cloud, and the 
software could be tested by any user with a browser and 
Internet connection.

We also aim to make ROSLab compatible with other 
online software platforms like CodeOcean (https://
codeocean.com/), which has been proposed as the rec-
ommended framework for implementing reproducible 
research articles for IEEE Robotics and Automation  
Magazine [7].
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