
64 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2019 1070-9932/19©2019IEEE

T
he success of the Robot Operating System
(ROS) and the advance of open source ideas
have radically changed and improved the
experience of sharing software among members
of the robotics community. Yet the lack of a

suitable workflow for continuous integration and
verification in robotics represents a significant obstacle to

developing software that can be run by independent users
for testing and reusing purposes.

A typical situation is that a developer produces a new
ROS package and shares it through a public source reposito-
ry from which users can download and execute the soft-
ware. However, the execution environment may be
incompatible due to users running different ROS distribu-
tions, incompatible versions of package dependencies, and
third-party libraries. Another obstacle is the lack of suitable
documentation for running the software. Most shared code

©
IS

TO
C

K
P

H
O

TO
.C

O
M

/A
N

D
R

E
Y

 S
U

S
LO

V

ROSLab

By Enric Cervera and Angel P. del Pobil

Sharing ROS Code Interactively With Docker and JupyterLab

Digital Object Identifier 10.1109/MRA.2019.2916286

Date of publication: 15 July 2019

65SEPTEMBER 2019 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

is barely documented because it was developed primarily
for internal use within a research group. Developers are
experts in robotics but not necessarily in software engi-
neering. Some configuration or execution steps may not be
well explained in the documentation because of the devel-
oper’s familiarity with the software.

Consequently, there is a need for a complete, unambigu-
ous runnable environment for testing publicly available ROS
code that guarantees a program functions correctly, no matter
the particular host configuration. Such an environment
should be compatible with the typical workflow of ROS devel-
opment to avoid any extra burden in the process.

Recently, Docker has proved to be a useful framework
for enabling better, repeatable, and reproducible environ-
mental setups [1]. Docker is an implementation of Linux
containers; in other words, it is an OS-level virtualization
method for running isolated systems on a control host. It
is similar to a virtual machine but with fewer overheads.
While Docker is steadily gaining popularity, it is not
familiar to many users in the robotics community. In this
article, we aim to lower the barriers to adopting Docker
by introducing ROSLab, a framework combining Docker
and JupyterLab that turns a code repository into a
reproducible, runnable software package. ROSLab auto-
matically generates a Docker image using a simple speci-
fication from the developer’s environment.

The motivation for using JupyterLab is the need to integrate
documentation with software, because there is a tendency for
experimental code to be accompanied by little explanatory
material. JupyterLab is based on notebooks, interactive docu-
ments containing executable code, and narrative text, thus
allowing the developer and the user to share explicitly the
commands for running the software. In previous research, we

have observed that incomplete or ambiguous documentation is
a significant obstacle to the reuse of robotics code [2].

Figure 1 illustrates the code-sharing process and how it
is extended with ROSLab. After the development of a
novel research experiment programmed with ROS, users
typically have access to a public code repository (for
instance, GitHub), which contains one or several ROS
 packages, a documenta-
tion file (README) with
a description of the code,
and some instructions for
building and running the
code. An inexperienced
user who is interested in
testing new developments
faces two main difficul-
ties. The first is that the
ROS distribution in the
user’s host may be differ-
ent than the developer’s,
whether newer (with de -
precated packages) or older (lacking functionality), caus-
ing a situation where the package and library dependencies
are liable to break down—the so-called dependency hell.
The second concern is that the documentation may be
incomplete or inconsistent. Instructions about third-party
libraries could be missing, or some configuration and exe-
cution steps might not have not been included.

What ROSLab does is automatize the creation of Dock-
er images. Instead of writing a complete Dockerfile, the
developer needs only to specify the necessary components
for running the image, namely, the ROS distribution, build
method, and library dependencies. Those components are

ROSLab

Docker Image: ROS + JupyterLab

Dockerfile
Build
Script

README
Notebook

Run
Script

YAML

Developer Git Repository

Inconsistent
Documentation

Dependency
Hell

User

Figure 1. Using ROSLab for sharing a code repository circumvents the trouble of installing and running the software on different
system configurations.

There is a need for a

complete, unambiguous

runnable environment for

testing publicly available

ROS code.

66 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2019

described in a Yet Anoth-
er Markup Language
(YAML) file, which is
processed to generate the
Dockerfile, a script for
building the image, and
another script for run-
ning it. Additionally,
ROSLab processes the
Git repository’s READ-
ME file for producing a

JupyterLab notebook, where the command snippets are
automatically separated into executable cells.

This process for creating Docker images is generic and can
be extended to other software frameworks, but we have
focused initially on ROS because of its widespread use in
robotics. Nevertheless, the destination needs to install only
Docker and a web browser to run the software. No local ROS
installation is necessary; even if it exists, it will not interfere
with the ROSLab Docker image.

The following is a simple example of a YAML file (publicly
available at https://github.com/ICRA-2018/nanomap_ros)
written for the code repository of a paper published in the
2018 IEEE International Conference on Robotics and Auto-
mation (ICRA) proceedings [3]:

name: nanomap_ros
distro: kinetic
build: catkin_make

packages:
 - libeigen3-dev
 - ros-kinetic-cv-bridge
 - ros-kinetic-image-transport
 - liborocos-kdl-dev
 - ros-kinetic-tf2-sensor-msgs

To process the YAML file, Docker must be installed in
the host. The ROSLab processing step is executed with the
command

docker run --rm -v <DIR>:/project:rw
roslab/create

with <DIR> being the full path of the local folder con-
taining the Git repository where the YAML file is stored.
The command produces the following files in the same
directory:

 ● Dockerfile: the full description of the Docker image, based
on the requested ROS distribution, with the instructions
for installing all third-party dependencies and building the
repository code

 ● docker_build.sh: a script file that invokes Docker for build-
ing the image

 ● docker_run.sh: a script file that invokes Docker for running
the image and launching the JupyterLab server.
Next, the build script is run in a terminal, and the actual

Docker image is built. Finally, the run script is triggered, and
the image is executed with a JupyterLab server launched in the
local host, to which the user can connect by opening a uniform
resource locator (URL) in a browser (http://localhost:8888/lab/
tree/README.ipynb). Figure 2 depicts the browser window
after executing a testing command in the README notebook
of the processed repository. It is worth noting that the change
directory command must be added to transition to the correct
working directory; otherwise, the command produces an exe-
cution error.

A more complex example from another ICRA paper [4]
includes the use of a graphics processing unit (GPU)-acceler-
ated runtime environment for 3D applications, installation of
packages from their source, and mounting a host folder for
accessing data set files. It is available at https://github.com/
ICRA-2018/VINS-Mono.

name: vins-mono
distro: kinetic
build: catkin_make
runtime: nvidia

volume:
 - host_path:/Data/EuRoC_MAV_Dataset
 container_path:/EuRoC_MAV_Dataset
 options: ro

packages:
 - ros-kinetic-cv-bridge

Figure 2. The execution of the testing command in the
nanomap_ros repository’s README notebook.

Incomplete or ambiguous

documentation is a

significant obstacle to the

reuse of robotics code.

67SEPTEMBER 2019 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

 - ros-kinetic-tf
 - ros-kinetic-message-filters
 - ros-kinetic-image-transport

source:
 - name: ceres-solver

 repo: https://github.com/ceres-
solver/ceres-solver.git
 depends:
 - libgoogle-glog-dev
 - libatlas-base-dev
 - libeigen3-dev
 - libsuitesparse-dev
 build: cmake

The information about the dependencies has been
obtained from the README file in the repository and the
home page of the third-party library, Ceres. The outcome
of the execution is shown in Figure 3, which depicts the
browser window and the ROS visualization (RViz) tool
that has been launched by one of the commands in
the notebook.

In the final example, which is also based on an ICRA
conference paper [5], the visualization tool is not RViz but a
custom application, demonstrating that ROSLab does not
interfere with the package workflow. It is available at
https://github.com/ICRA-2018/fast_change_detection, and
the YAML file is

name: fast-change-detection
distro: kinetic
build: catkin_build
runtime: nvidia

packages:
 - libeigen3-dev

 - libboost-all-dev
 - qtbase5-dev
 - libglew-dev
 - libopencv-dev

source:
 - name: glow

 repo: https://github.com/jbehley/glow.git
 depends:
 build: catkin_build

The output of the example is depicted in Figure 4.
Based on the examples presented in this article and in

other repositories of robotics software, we propose the follow-
ing guidelines for writing the ROSLab YAML file in an exist-
ing Git repository:
1) Define the ROS distribution (kinetic , lunar , or
melodic).

2) Select the building method of the ROS package (catkin_
make, catkin_build).

3) If 3D graphical output
is needed, activate the
nvidia runtime.

4) Add the software de -
pendencies.

a) Whenever possible,
use binary packages.

b) O t her wis e , us e
source repositories.
In this case, besides
the URL of the repos-
itory, you should
specify its dependencies and building method.

The necessary disk space for running Docker containers
can be large, especially in graphical environments. However,
software layers can be shared among different Docker

Figure 3. Running the VINS-Mono example.

This process for creating

Docker images is generic

and can be extended to

other software frameworks.

68 • IEEE ROBOTICS & AUTOMATION MAGAZINE • SEPTEMBER 2019

images, thus reducing the
total amount of disk space
used in the system. Table 1
summarizes the size of the
Docker images for the three
presented examples as well
as the size of the ROSLab
base images. The “Tag” col-
umn refers to the Docker
tag that indicates some
information about the ver-
sion or variant of the Dock-
er image (“Latest” means

the most recently built version for the examples; for ROSLab,
there are two versions: ROS kinetic with or without the
graphical Open Graphics Library runtime environment).

For each image, there is a shared part and a unique part.
The shared layers are stored on disk only once, thus saving a
great deal of space. For our examples, the total size would be
5.131 GB + 4.471 GB + 2.517 GB = 12.119 GB, but, thanks
to the sharing feature of Docker, it is reduced to 3.742 GB +
1.474 GB + 1.39 GB + 0.729 GB + 1.042 GB = 8.377 GB. The
savings would be even more significant if additional reposi-
tories were installed (based on the same ROSLab images).

The size of ROSLab images is quite similar to that of the
official ROS images with the addition of the JupyterLab soft-
ware, which is rather small in comparison to ROS. The kinetic-
ros-base-xenial image already takes 1.191 GB, and the
size of the Open Source Robotics Foundation/ROS kinetic-
desktop-full image amounts to 3.367 GB.

When the ROSLab images are used for the first time,
they must be downloaded from the Docker cloud (https://
hub.docker.com/r/roslab/roslab) to the local computer.
The images are compressed, so their size is 511 MB and
1 GB for the kinetic and kinetic-nvidia versions, respec-
tively, which is approximately one-third of the uncom-
pressed size. The download time will obviously depend on
the user’s Internet connection. For a typical 100-Mb/s line,
it takes approximately 1 min 30 s to download and uncom-
press the ROSLab kinetic image and 3 min 50 s for the
kinetic-nvidia image. The remainder of the time needed to
build a repository is the same as if it were built natively.
Downloading the extra packages and compiling the source
code run on Docker at practically the same speed as in a
native system.

The main benefit of using JupyterLab is the strong
link between documentation and execution. The code
documented in the README file is actually executed in

Table 1. Image space usage resulting from the
command docker system df -v.

Repository Tag Size (GB)
Shared
Size (GB)

Unique
Size

VINS-Mono Latest 5.131 3.742 1.39 GB

Fast Change
Detection

Latest 4.471 3.742 729.6 MB

Nanomap_ros Latest 2.517 1.474 1.042 GB

ROSLab/
ROSLab

Kinetic-
nvidia

3.742 3.742 0 B

ROSLab/
ROSLab

Kinetic 1.474 1.474 0 B

Figure 4. The Fast Change Detection repository’s JupyterLab notebook and 3D visualization tool. The (a) notebook with the
commands for running the example and (b) the 3D visualization of the execution.

(a) (b)

The main benefit of

using JupyterLab is the

strong link between

documentation and

execution.

69SEPTEMBER 2019 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

the same notebook. The alternative would be to open
one or more terminals in the Docker image, copy and
paste the code examples from the README file to the
terminal, and execute the code. This process is prone to
errors and can produce inconsistencies if the documen-
tation is not updated with the changes derived from
testing or if the developer forgets to document a step in
the terminal.

The JupyterLab README notebook always contains
the latest version of the executable commands, which can
be readily tested by simply restarting the notebook and
running all the code cells. The absence of errors is a guar-
antee that the code will run similarly for any user of the
same Docker image. In addition, employing Docker
enables the software to run no matter which OS is installed
on the user’s computer. It also isolates the running envi-
ronment from the local system, avoiding clashes with any
preinstalled library or third-party software. The Docker
image includes all the necessary dependencies as defined
by the developer.

The executable commands in the README file of a Git
repository should be written according to the Markdown spec-
ification (https://github.github.com/gfm/), for example, fenced
by triple backticks ``` before and after the code block or
indented by four spaces. The computing environment beyond
ROS does matter in reproducibility. For example, some deep-
learning robotics algorithms are implemented in TensorFlow
[6], which is under active development and, therefore, very
dependent on the software version. In the near future, ROSLab
will be extended with additional base images for TensorFlow
and other popular packages.

ROSLab is being developed at the Robotic Intelligence Lab
at Jaume I University, Castelló de la Plana, Spain, and it is free-
ly and publicly available for creating images for ROS Kinetic,
Lunar, and Melodic at https://github.com/RobInLabUJI/
ROSLab. While still experimental, it is fully functional, as
demonstrated by the previous examples. We have published
video tutorials to enable users to rerun our examples from
scratch (https://tinyurl.com/ROSLabExamples) and one step-
by-step example of how to set up a proper code repository for
the application of ROSLab.

All the examples in this article were tested on a
machine having a CPU equipped with four Intel Core
i5-2500 processors at 3.3 GHz, 8 GB of random-access
memory, and a GPU with an NVIDIA GeForce GTX 960
graphics card. The computer was running Ubuntu 14.04.5
LTS and Docker 18.03.1-ce with nvidia-docker 2.0. The
examples provide a tiny demonstration of the power of
JupyterLab notebooks, because only shell commands are
executed: more ambitious examples could include Python
or C++ code snippets.

Although the generated Docker images are executed
locally in a host, they are compatible with online services,
such as Binder (https://mybinder.org/), which allow the

remote execution of JupyterLab servers. Obviously, RViz
and other graphical commands could not be executed;
instead, the ROS image would run in the cloud, and the
software could be tested by any user with a browser and
Internet connection.

We also aim to make ROSLab compatible with other
online software platforms like CodeOcean (https://
codeocean.com/), which has been proposed as the rec-
ommended framework for implementing reproducible
research articles for IEEE Robotics and Automation
Magazine [7].

Acknowledgments
This article describes research conducted at the Jaume I Uni-
versity Robotic Intelligence Laboratory, Castelló de la Plana,
Spain. Support for this laboratory is provided, in part, by
Spain’s Ministry of Economy and Finance under grant
DPI2015-69041-R and Jaume I University under grant
UJI-B2018-74.

References
[1] R. White and H. Christensen, “ROS and Docker,” in Robot Operating
System (ROS): The Complete Reference (Volume 2), A. Koubaa, Ed. New
York: Springer, 2017, pp. 285–307.
[2] E. Cervera, “Try to start it! The challenge of reusing code in robot-
ics research,” IEEE Robot. Autom. Lett., vol. 4, no. 1, pp. 49–56, 2019. doi:
10.1109/LRA.2018.2878604.
[3] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “NanoMap: Fast,
uncertainty-aware proximity queries with lazy search over local 3D
data,” in Proc. 2018 IEEE Int. Conf. Robotics and Automation (ICRA),
Brisbane, Australia, pp. 7631–7638.
[4] T. Qin, P. Li, and S. Shen, “Relocalization, global optimization and
map merging for monocular visual-inertial SLAM,” in Proc. 2018 IEEE
Int. Conf. Robotics and Automation (ICRA), Brisbane, Australia,
pp. 1197–1204.
[5] E. Palazzolo and C. Stachniss, “Fast image-based geometric change
detection given a 3D model,” in Proc. 2018 IEEE Int. Conf. Robotics and
Automation (ICRA), Brisbane, Australia, pp. 6308–6315.
[6] M. Abadi, P. Barham, J. Chen, and X. Zheng, “TensorFlow: A system
for large-scale machine learning,” in Proc. 12th USENIX Symp. Operat-
ing Systems Design and Implementation, 2016, vol. 16, pp. 265–283.
[7] F. Bonsignorio, “A new kind of article for reproducible research in
intelligent robotics,” IEEE Robot. Autom. Mag., vol. 24, no. 3, pp. 178–
182, 2017. doi: 10.1109/MRA.2017.2722918.

Enric Cervera, Department of Computer Science and Engi-
neering, Jaume I University, Castelló de la Plana, Spain. Email:
ecervera@uji.es.

Angel P. del Pobil, Department of Computer Science and Engi-
neering, Jaume I University, Castelló de la Plana, Spain, and
Department of Interaction Science, Sungkyunkwan Universi-
ty, Seoul, South Korea. Email: pobil@uji.es.

