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N
uclear facilities often require continuous mo­
nitoring to ensure there is no contamination of 
radioactive materials that might lead to safety 
or environmental issues. The current approach 
to radiological monitoring is to use human 

operators, which is both time consuming and cost in­
efficient. As with many repetitive, routine tasks, there are 
considerable opportunities for the process to be improved 
using autonomous robotic systems.

This article describes the design and development of an 
autonomous, ground-based radiological-monitoring robot, 
Continuous Autonomous Radiation-Monitoring Assistance 
(CARMA), and how, when it was deployed in an active area 
at the U.K.’s Sellafield nuclear site, it detected and located a 
fixed a  source embedded into the floor. This deployment was 
the first time that a fully autonomous robot had ever been 
deployed at Sellafield, the largest nuclear site in Europe.

Expanding Efforts in an  
Increasingly Important Field
Monitoring nuclear facilities and rapidly identifying any 
spread of radiological materials is of global concern. 
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Worldwide, there are 448 operational nuclear reactors, with a 
further 61 under construction. In addition, there are 158 re­
actors in shutdown awaiting decommissioning as well as 

180 research reactors and 
critical assemblies also 
being decommissioned. 
Approximately 273,000 
tons of spent fuel from 
reactors are currently in 
storage—an amount that 
increases by almost 7,000 
tons per year [1]. Most, if 
not all, of these facilities 
will require some form of 
radiological monitoring, 
whether continuous, such 
as in operational nuclear 
plants, or periodic, as in 
waste storage facilities [2]. 
Current monitoring tech­

nologies consider airborne/surface contaminants and worker 
dosimetry, and the sensors are either fixed point, handheld, or 
worn by operators.

There are three types of ionizing radiation that typically 
need to be monitored: alpha ( ),a  beta ( ),b  and gamma ( ) .c  
Alpha particles are the most ionizing and are generated by 
heavy elements, such as uranium, or transuranic elements, 
such as plutonium. They can be stopped by a sheet of paper 
and are only dangerous to humans if ingested. Beta radia­
tion is more penetrative than a  and is generated by a range 
of radioactive elements, but it is less harmful and still 
straightforward to shield against. Gamma radiation is a 
higher-energy electromagnetic wave that is highly penetra­
tive. It is the hardest to shield against, and personal dosime­
ters worn by nuclear workers are used to measure exposure 
to it [3].

Perhaps surprising is that the detection of a  contamination 
presents the greatest challenge: a  radiation has low permeabil­
ity in air, and so any detector must be placed within a few cen­
timeters of the source for a short period of time to ensure 
reliable detection. This is both extremely time consuming 
when monitoring large areas manually and also relies heavily 
on operators being diligent during their surveys. Beta and c  
radiation, having greater permeability in air (b less than ),c  
can be detected at a distance, although the technology to iden­
tify the precise location of any source materials is an important 
area of active research [4].

Case Study: Radiological Monitoring at Sellafield
The Sellafield site is the primary storage point for the United 
Kingdom’s nuclear waste. The country has 170 major nuclear 
facilities, all of which will be decommissioned over the next 
century. These facilities include legacy plants and laboratories, 
as well as interim storage areas. In these areas, monitoring 
known a  sources and b  and c  fields and identifying any 
spread of contamination are of considerable importance.

On the Sellafield site, radiological monitoring is under­
taken by the Health Physics team as part of the Environ­
mental, Health, Safety, and Quality group. The team’s role is 
to ensure that the As Low As Reasonably Practical policy is 
applied and that personnel are protected from the harmful 
effects of exposure to ionizing radiation. To ensure this, 
Health Physics personnel regularly monitor facilities and 
equipment for contamination. Areas are manually surveyed 
using approved commercial, off-the-shelf handheld moni­
tors. The areas surveyed can vary from roads and buildings 
to people and involve packages being transferred between 
active and nonactive areas.

Benefits of Autonomous Systems
Enhancing Health Physics’ capabilities by upgrading the cur­
rent manual surveys to more autonomous methodologies 
would increase productivity and reduce risk and cost. In addi­
tion to these general benefits, the use of mobile autonomous 
robots could provide more specific gains:

●● Automating the collection of dose rate or spectrometric 
data would allow Health Physics personnel to complete 
other tasks, such as more complex surveys, data interpre­
tation, and systems maintenance. CARMA has been 
designed to survey floor spaces in relatively simple envi­
ronments, such as corridors and open spaces with limit­
ed clutter. Laboratories, for example, represent a much 
more complex challenge, as they can require surveys at 
multiple heights, inspection of cupboards and drawers, 
and so forth.

●● Automatic archiving of the results, with positional data, in 
a readily accessible format would enable any changes in 
radiological information (e.g., dose rate and species) to be 
identified quickly and clearly.

●● Robotic systems can be designed to ensure that detectors 
are held at a fixed distance above the area being monitored, 
thus improving consistency in survey data. This is particu­
larly important for the detection of a  contamination but is 
difficult to reliably achieve manually.

Mobile Robots for Nuclear Environments
Since the Fukushima Daiichi incident in 2011, the use of 
mobile robots for characterizing and monitoring radiologi­
cal sites has increased significantly. The primary application 
areas for such systems are future incident response, gaining 
access to areas where human entry may be restricted 
because of safety concerns, and large-scale monitoring of 
open spaces [5], [6].

The majority of mobile robots developed for radio­
logical characterization of the Fukushima Daiichi 
facilities have focused on c  radiation inspections [7]. 
Robots such as the JAEA-3 [6] and Quince [7] have been 
deployed in the Fukushima faci l it ies  to conduct c  
surveys. Although each of these robots has been tele-
operated, their deployment into radiologically active 
environments has increased the nuclear industry’s confi­
dence in robotic systems.

Since the Fukushima 

Daiichi incident in 2011, 

the use of mobile robots 

for characterizing and 

monitoring radiological 

sites has increased 

significantly.
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The use of remote, mobile radiological-inspection robots 
is also being considered for more routine scenarios. The 
RICA [Robot d’Inspection pour Cellules Aveugles (blind 
cell inspection robot)] robot, which was developed by the 
French Alternative Energies and Atomic Energy Commis­
sion and Cyberia in France, has been deployed into opera­
tional nuclear facilities to conduct c  inspections [8]. A set of 
corobots has also been developed at the Georgia Institute of 
Technology to detect and localize c  and neutron sources 
embedded in floors [9]. However, no robots seem to have 
been developed for the autonomous detection of a  contam­
ination [10].

This article describes the design and testing of a mobile 
robot that can be used for autonomous radiological inspec­
tions. The CARMA robot was developed by the University of 
Manchester in direct collaboration with Sellafield Ltd. and is 
able to conduct a  and /b c  inspections. The platform was 
successfully used to survey facilities at the University of Man­
chester as well as on the Sellafield site, where it was shown to 
be able to autonomously survey a facility and locate a known 
source of a  contamination.

The CARMA Platform
The CARMA platform was initially developed to conduct 
radiological inspections of floor areas within legacy and 
operational nuclear facilities. It is a proof-of-concept 
robot that aims to showcase the use of autonomous robots 
in noncritical nuclear environments. It was designed spe­
cifically to conduct short-duration scans (up to an hour) 
and to detect and locate spots of contamination within the 
scanned area. These scans require geometric and radio­
logical maps to be generated with a resolution of approxi­
mately 5–10 cm. The robot was developed to operate 
indoors in smooth, flat areas, such as corridors, offices, 
and laboratories. Figure 1 shows the robot, and Table 1 
presents the specifications.

The CARMA platform is a modified TurtleBot 2 
equipped with a sensor package containing an /a b  sensor 
(Thermo Fisher Scientific DP6) for -a source floor moni­
toring and detection and two personal c  dosimeters (Ther­
mo Fisher Scientific RadEye), which can be used as a 
high-sensitivity c  radiation detection and dose rate mea­
surement tool. These detectors were specified by Sellafield 
Ltd. and match the equipment it currently uses in its hand­
held instruments.

The DP6 sensor is fixed at a height of 10 mm above the 
floor using a spring arrangement, which allows the sensor to 
move over uneven surfaces while maintaining the separation 
distance. One effect of not maintaining a fixed height above 
the floor is reduced accuracy for the estimated dose rate, 
which can be overcome by keeping the sensor over areas of 
interest for 20–30 s.

To ensure an accurate reading, the DP6 sensor head must 
be over a target area for at least 1  s. The sensor head has 
dimensions of ,160 80mm mm#  which means that the 
maximum forward velocity is restricted to between 0.1 and 

. ,0 2 ms 1-  depending on its orientation. The resolution of the 
measurements is an 80 80mm mm#  area, with a positional 
accuracy of 100 mm.!

The CARMA robot logs the data from the DP6 sensor, 
but the analysis is completed offline. The activity-level 
thresholds for the identification of radiation contamination 
areas are preprogrammed by the operators. These can be 
varied depending on the operating environment and type of 
deployment. The target operational environments are areas 
where humans can already conduct manual monitoring, so 
the air dose rates are negligible. However, the characteriza­
tion of some standard components with the effects of c  
radiation suggests they can withstand a total ionizing dose 
of up to 1,000 Gy [11].

A single 2D lidar (with a range of 4 m), a depth camera, 
and three infrared (IR) sensors were integrated onto the plat­
form to enable autonomous navigation. CARMA uses the 
Robot Operating System (ROS), a widely used open-source 
middleware that simplifies the control of robotic systems and 
the integration of their subsystems. The ROS framework 
allows the robot to be operated in either manual or autono­
mous mode.

2D
Lidar

Thermo RadEye
γ Radiation Detector

Thermo DP6
α /β Radiation

Detector

Figure 1. The CARMA platform. 

Table 1. The CARMA robot specifications. 
Parameter CARMA 

Base platform TurtleBot 2

Dimensions including 
sensor tail ( )l w h# #

740 350 245mm mm mm# #

Ground clearance 12 mm

Maximum speed .0 7 ms 1-

/a b  sensors One Thermo DP6

c  sensors Two Thermo RadEyes

Navigational sensors One 4-m lidar, one depth camera,  
  three IR sensors

Battery life 3 h

Total cost US$10,000
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The operator interface for the robots is shown in Figure 2. 
The image was taken during a trial conducted at the Universi­
ty of Manchester’s Dalton Cumbrian Facility using low-level 
thorium as an a  source. The display shows a 2D map of the 

environment constructed 
using the lidar. Radiation 
data are superimposed on 
the map using visual 
markers. When the robot 
is tele-operated, the oper­
ator can avoid contami­
nated areas. A significant 
issue that we is address 
in this article is the risk 
that, if the robot moves 
through movable contam­
ination, it may spread 
material through the 
environment. Hence, 

autonomous techniques were designed such that areas of con­
tamination are mapped but not entered.

The vehicle contains no radiation shielding, and no hard­
ened electronics are used. Although the environment will con­
tain c radiation (which can damage electronic components), 
only weak c sources are likely to be in the areas where CARMA 
will initially be deployed, and these sources are unlikely to affect 
the robot’s operation.

Autonomous Exploration, Localization, 
and Mapping
Autonomous exploration of an environment requires three 
components: a simultaneous localization and mapping 
(SLAM) algorithm (or only a localization algorithm if the 
map is pregenerated), an exploration algorithm for generating 
waypoints (points on the map that the robot must pass 
through), and a path-planning algorithm. All of these compo­
nents represent well-established areas of research in robotics 
[12], and a number of reliable techniques can be used. The 
primary contribution of the work presented here is the devel­
opment of an exploration algorithm that allows radiation 
maps to be constructed while ensuring the robot does not 
enter any areas of contamination.

Localization and Mapping
A number of SLAM algorithms are widely used on mobile 
robots. One of the most popular is FastSLAM, which com­
bines both a particle filter approach with an extended Kalman 
filter (EKF). This technique fuses data from the odometry 
system and the 2D lidar to construct a map of the environ­
ment and localize the robot within it. It is widely used because 
of its higher efficiency and data accuracy compared to such 
methods as EKF-based SLAM algorithms [13]. The ROS 
Gmapping package is an implementation of FastSLAM and 
was implemented on CARMA.

In principle, if the environment is static, SLAM needs 
to be run only the first time the robot explores an area; 
after the map is generated, the robot is required only to 
localize itself within that map. This is also the case if the 
map is generated before the robot is deployed. In this sce­
nario, a pure localization algorithm is needed. While a 
number of localization techniques are available, the Kull­
back-Leibler distance-sampling Monte Carlo approach was 
utilized in CARMA because it has proved sufficiently 
accurate in the environments where CARMA is expected 
to be deployed [14].

Exploration and Path Planning
The two scenarios considered for the deployment of the 
CARMA platform assume either that there is no prior 
knowledge of the environment or that the space has already 
been explored and a map generated. In the first case, way­
points need to be created to explore and map the area, while, 
in the second case, the robot needs to ensure complete cover­
age of the known map. Extensive research has been done in 
the autonomous exploration of environments using single 
and multiagent mobile robot systems, and three general 
methods have been developed to generate the exploration 
waypoints used when planning a suitable path: random, 
frontier, and human directed [15].

The most widely used approach for waypoint generation 
in an unexplored environment is the frontier technique 
[16]. In general, a map is built up by exploring the 
unknown areas of the environment. The exploration goal at 
any particular moment is the boundary between the known 
part of the environment and the unknown. This is because, 
if the robot is repositioned to this boundary, its sensors will 
have a vantage point over unknown areas of the environ­
ment; hence, the robot will be able to map those regions. 
The goal (the boundary between the unknown and known 
areas) should then be moved to allow for continued map­
ping of the environment. These boundaries between the 
known and unknown portions are called frontiers [17] and 
are explored based on a distance cost function. Different 
approaches can be taken to calculate this distance, such as 
the Euclidean distance [18] or the distance traveled avoid­
ing local obstacles [17]. Because of its widespread use, fron­
tier exploration was selected for the CARMA robot and 
implemented in ROS using the obstacle-avoidance cost 
function method [17].

External Camera
View

Geometric Map With
Radiation Data

Robot View

Augmented
Reality Overlay

Figure 2. The CARMA operator interface, with an augmented reality 
overlay of the radiological data on the point-of-view camera. The 
values of the radiation data below a set threshold are shown in 
green, and the values above this are displayed in red.

Radiation-avoidance 

navigation algorithms 

were developed for CARMA 

that allowed the robot to 

identify areas of radioactive 

contamination.
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When a map has been constructed, waypoints can be 
generated to ensure the total coverage of an area [19]. 
For CARMA, waypoints were overlaid onto the map in 
a grid, the dimensions of which can be specified by the 
user. The order in which waypoints are visited can be 
either random or systematic. During simulations, it was 
found that navigating to the waypoints in a randomized 
order provided superior coverage. However, for on-site 
deployment, the decision was made to adopt a systemat­
ic approach, as this gave the end users confidence that 
the robot was exploring the environment in a sensible 
manner, thus improving their confidence in the robot­
ic technology.

The last component required for autonomous exploration 
is a path-planning algorithm. There are many well-docu­
mented approaches to path planning [20]. The A* method, 
which uses shortest-path and heuristic-based searching to 
select the best first path, is the most utilized approach to path 
planning within the robotics community. For the types of 
environments that CARMA is to be deployed into, it was felt 
to be the most appropriate technique to use. A* planning was 
implemented on CARMA using the Adaptive Monte-Calrlo 
Localization ROS package.

Radiation-Contamination Avoidance
To identify the location of a  sources within the environment, 
the CARMA robot must physically maneuver to them 
because the required detection distance to the source is 
approximately 0.01 m. The robot should, however, avoid trav­
eling over or through the contaminated areas, so that the 
vehicle itself does not become contaminated or spread radio­
active materials elsewhere.

To minimize the risk of spreading radioactive matter 
within the environment, once a contamination area is 
detected, the robot was designed to stop its exploration 
and return to a previous location known to be safe. 
While the initial CARMA platform, as shown in Figure 
1, must itself enter into a contaminated area before it is 
able to detect -a producing materials, it was anticipated 
that future designs of the vehicle would have a raised 
detector at the front of the vehicle that would allow a  
particles to be detected without the wheels of the vehi­
cle having to enter into the contaminated area (the con­
cern being that radioactive matter in the form of dust 
particles might adhere to the wheels and be spread to 
other locations).

If the contamination is spread across the entrance to a tar­
get area, the robot will not be able to enter to complete its 
inspection. In this scenario, it is envisaged that a human oper­
ator would make the decision as to whether the robot should 
cross over the contaminated area to continue the inspection, 
running the risk of further spreading the contamination, 
or whether the area has to be cleaned before the mission 
can continue.

Once the vehicle returns to a safe location, the map is 
updated to identify the locality of the radiation source, and 

the robot is prevented from exploring that area. This func­
tionality is achieved by directing the robot to explore the 
list of waypoints determined by the frontier exploration 
algorithm, while monitoring the dose rate CARMA is sub­
jected to. If the dose rate exceeds a user-specified limit, the 
robot will stop and return to the previous safe waypoint. 
Once the machine has returned to a zone with a safe dose 
rate, the obstacle avoidance map is edited to include an 
exclusion zone.

Creating an exclusion zone is achieved by blocking out an 
area of the map, as if it were a physical obstacle. The A* path-
planning algorithm uses the map to generate a global path 
and the local obstacles as seen by the sensing equipment (in 
this case, the lidar) to determine a suitable local path as well as 
to conduct localization. This allows for both localization 
errors and map/real-world disparity to be dealt with. There­
fore, if a section of the map is blocked off, the path planner 
will avoid that area, thus keeping the robot out of the radia­
tion zone.

Figure 3 summarizes CARMA’s exploration routines in the 
form of flowcharts. Figure 3(a) assumes that the area is com­
pletely unknown, while Figure 3(b) assumes prior knowledge 
of the area and a pregenerated map.

No Prior Map Pregenerated Map

Waypoint Generation
Using Frontier

Exploration

Waypoint Generation
Using Grid Allocation

Path Planning
Using A*

Path Planning
Using A*

Move Robot Move Robot

Map Generation
Using FastSLAM

Hotspot
Detected?

Hotspot
Detected?

Update Map With
Synthetic Obstacle

Update Map With
Synthetic Obstacle

No

No

Yes

Yes

(a) (b)

Figure 3. Flowcharts of CARMA’s exploration routines: (a) with no 
prior knowledge of the environment and (b) with a pregenerated 
map given to the robot.
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Simulation
To ensure that the proposed mapping and exploration tech­
niques enabled the robot to function as required, the 
CARMA robot was simulated in Gazebo. Following this, lab­
oratory testing was undertaken using a small-scale version of 
CARMA, based on a TurtleBot 3, that had similar characteris­
tics to the actual CARMA robot. Simulations were conducted 
in the predefined house environment, shown in Figure 4(a). 
This environment was considered to be similar to those that 
the CARMA robot would be deployed into in the nuclear 
industry and requires a nontrivial path to travel between way­
points. A premade 2D map of the simulated environment is 
illustrated in Figure 4(b). Using this simulation environment, 
it was also possible for the user to insert a synthetic radiation 
contamination area that the robot would need to detect, map, 
and avoid.

The simulated waypoint exploration based on the pregen­
erated map algorithm from Figure 3 is presented in Figure 4. 
Figure 4(c) shows the 2D obstacle map. The robot is depicted 
navigating to the bottom-left waypoint marker. The figure 
shows the robot as it enters an area where the maximum safe 
radiation dose threshold is just exceeded. The waypoint the 
robot was initially navigating to is canceled, and the robot nav­
igates back to the previous waypoint known to be safe. The 

Current
Lidar
Data

StartRobot

Safe DoseRobot PathGoal

Radiation Field

Previous
Safe

WaypointContamination
Area

Waypoint
Marker

G
oa

l

(b) (c)(a)

(e) (f)(d)

Figure 4. A depiction of CARMA’s waypoint exploration of the simulated environment with radiation contamination avoidance. (a) 
The predefined “house environment.” (b) A 2D map of the simulated environment. (c) The 2D obstacle map with the waypoint 
markers (blue) and simulated radiation field (orange). The robot’s global path (as it navigates to the bottom left waypoint 
marker) is shown as a black/red line (black is the total global path, while red is the global path within the range of the robot’s 
lidar), and the blue line is the robot’s local path, which takes into account the real-time lidar data. The latter are shown in red, 
surrounding the obstacles on the 2D map. The green dots placed behind the robot indicate the safe dosage in that xy location of 
the 2D map. (d) The blocking of the exclusion zone in the 2D map. (e) A later point in the simulation where the robot has visited 
waypoints that are around the exclusion zone, showing that the path planner can create global paths to avoid it. (f) The robot’s 
expansion of the exclusion zone.

Goals

Accessible
Frontiers

Inaccessible
Frontiers

Robot Location
(a) (b)

(c) (d)

Figure 5. A frontier exploration of the office environment with 
FastSLAM map generation: the (a) initial scan, (b) generation 
of new frontiers, (c) identification of inaccessible frontiers, 
and (d) completed map. The green spheres represent the 
waypoints, the blue lines are the frontiers the robot is able 
to explore, and the red lines indicate the frontiers the robot 
cannot explore because it cannot get to a vantage point to 
observe them. The single red frontier is a result of a small gap 
in the walls making up the environment. 
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exclusion zone in the 2D map is then 
blocked, as shown in Figure 4(d), so 
the global planner will no longer direct 
the robot to that location.

Figure 4(e) shows a later point in the 
simulation, where the robot has visited 
waypoints that are around the exclusion 
zone, showing that the path planner can 
create global paths that can avoid it. In 
Figure 4(f), the robot has expanded the 
exclusion zone when it tries to visit 
another waypoint in the radiation field. 
As before, the robot returns to a previ­
ous safe waypoint before continuing 
with the navigation. Over time, the 
robot will block out all of the area sur­
rounding the radiation field.

Physical Evaluation
A set of real-world experiments was conducted in which the 
algorithms were implemented on the simplified TurtleBot 
3-based CARMA, which was deployed in an E-shaped office 
environment. The first set of tests was to validate that the 
SLAM and exploration algorithms operated as expected. Fig­
ure 5 shows the exploration of the environment using Fast­
SLAM and frontier search. This experiment was concerned 
only with map generation, so no synthetic contamination 
areas were used. 

Once the 2D obstacle map was generated, a second 
experiment was conducted that directed the robot to map 
the dose rate of the environment. A synthetic hot spot was 
generated, and the robot was tasked with finding and 
avoiding this radiation source. As shown in Figure 6, the 
robot was successfully able to identify the location of the 
hot spot and avoid navigating through the exclusion zone 
surrounding it.

Real-World Deployments
As a final proof of concept, the CARMA robot was successfully 
deployed twice into operational facilities within the Thermal 
Oxide Reprocessing Plant (THORP) on the Sellafield site. 
THORP takes spent fuel and separates the uranium and pluto­
nium in preparation for future safe storage.

The purpose of the deployments was to gain confidence 
that a robot-mounted radiation sensor could detect a con­
tamination source autonomously. Both deployments took 
place in a facility where there was a known a  contamination 
source embedded in the floor. This contamination source 
was well understood and presented no physical danger to 
humans or to the robot. Because of the nature of the con­
tamination, there was no risk of it being transferred to the 
robot, and, because of time restrictions during the real-
world deployments and the inability to spread the contami­
nation, it was decided not to implement the hot-spot 
avoidance algorithm and to focus only on generating the 
radiation map.

The area to be inspected had a flat surface, with indus­
trial equipment and pipework around the edges, as pic­
tured in Figure 7. The inspections took approximately 
30 min to complete. Figure 8 shows the outputs from one 

Robot
(a) (b)

(c) (d)

Figure 6. The (a) waypoint generation in a pregenerated map, (b) addition of an 
exclusion zone for the simulated source, (c) path planning to avoid the exclusion zone, 
and (d) final paths for full exploration.

Figure 7. An augmented reality camera perspective for operator 
control and observation. The image has been modified to 
remove radiological threshold data. Areas of no contamination 
are represented in green, and the contamination hot spot is 
shown in red.

Areas of No
Contamination

Contamination
Location

Robot

Figure 8. A radiological map generated by CARMA at the THORP 
facility. Areas of no contamination are represented in green, and 
the contamination hot spot is shown in red.
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of the real-world deployments, which highlights that the 
robot was able to successfully construct a geometric and 
radiological map of the area. The location of the contami­
nation source on the map correlated to its correct physical 
location in the real world. Quantification of the accuracy 
of the a  source location was not possible during the 
deployment. For these experiments, only a  radiation was 
of interest, and, consequently, no b  or c  measurements 
were recorded.

The CARMA robot can be maneuvered in both teleop­
erational and autonomous mode. Figure 7 shows the aug­
mented reality view from a camera on the front of the 
robot, which can be used for tele-operation or opera­
tor observation.

Future Development
The CARMA robot was developed to operate in indoor envi­
ronments free from clutter. While there are many areas where 
it could be deployed, a more robust platform is required for 
outdoor use or for areas where there are small obstacles, such 
as cables or pipework.

A second-generation CARMA robot, CARMA 2, is 
shown in Figure 9. CARMA 2 is able to survey both indoor 
and outdoor environments and maneuver in areas with 
uneven terrain and clutter. The CARMA 2 specifications 
are shown in Table 2. The robot utilizes the Clearpath Jack­
al robot as its base platform and has been equipped with 
two Thermo Fisher Scientific DP6 sensors on a height-
adjustable rig and three personal dosimeters. Its navigation 
suite consists of two 20-m lidars, two 3D cameras (Orbbec 
Astra), and a camera that provides a bird’s-eye view for 
operator observation.

The next stage of autonomy development will be to 
implement the radiation contamination avoidance algo­
rithms. One of the primary challenges to overcome is that 
the simulations assume that the radiation sensors have a 360° 
view around the robot and that the robot is holonomic. 

CARMA 2 is a nonholonomic platform, with the sensor 
package mounted at the front of the robot; consequently, fur­
ther development is required.

There are no plans to develop the CARMA 2 robot to 
explore high -c dose environments. Experience gained from 
other groups deploying robots into high -c dose environ­
ments at Fukushima Daiichi has shown that they are likely to 
fail, which has proven to be quite costly. The focus of future 
CARMA deployments will be in areas that people could 
access in environmental suits or where they perform repeti­
tive monitoring operations.

The CARMA 2 robot is in the process of being commer­
cialized, with further laboratory testing and on-site deploy­
ments planned. The long-term vision is to have a fleet of 
CARMA robots continuously monitoring facilities like the 
Sellafield sites.

Conclusions
This article presented the CARMA robot, an autonomous 
platform for conducting radiological monitoring in nuclear 
facilities. The proof-of-concept robot was successfully 
deployed in a radioactive facility on the Sellafield site, where 
it was able to autonomously locate a known a  source embed­
ded in the floor and generate a geometric and radiometric 
map of the area. This was the first time an autonomous 
inspection vehicle had been deployed at the Sellafield site, 
which represents a major milestone in making the deploy­
ment of autonomous robotic systems commonplace in the 
nuclear industry.

Radiation-avoidance navigation algorithms were devel­
oped for CARMA that allowed the robot to identify areas of 
radioactive contamination while minimizing the risk of enter­
ing the area and potentially transporting radioactive materials 
to other locations within the environment.

A more rugged version of the CARMA platform 
(CARMA 2) is now in development. CARMA 2 is being 
designed such that it will be able to operate in a larger 

Table 2. The CARMA 2 robot specifications. 
Parameter CARMA 2

Base robot Clearpath Jackal

Dimensions including sensors and cameras 
( )l w h# #

,830 044 1 030mm mm mm# #

Ground clearance 65 mm

Maximum speed 2 ms 1-

/a b  sensors Two Thermo DP6s

c  sensors Three Thermo RadEyes

Navigational sensors Two 20-m lidars,  
two 3D cameras, one webcam

Battery life 3–4 h

Total cost US$35,000

Bird’s-Eye
Camera

Lidar and
3D Camera

Radiation
Sensors

Figure 9. The CARMA 2 platform, 
currently under development. 
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range of both indoor and outdoor nuclear environments 
or scenarios.
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