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T
raditional rigid robots, such as those used in 
manufacturing, have been effective at precise, 
accurate, rapid motions in well-structured 
environments for many decades now. However, 
they operate largely behind cages due to the 

danger of injury when moving in close proximity to 
people. A significant and recent shift in robotics involves 
trading rigid links and rigid actuators for soft, deformable 
links and compliant actuators. These soft robots generally 
have lower inertia and avoid many of the problems caused 
by the high effective inertia resulting from the high gear 
ratios necessary for rigid robots. 

This shift to soft robots will allow robots to safely operate 
in close proximity to humans. The design of such soft robots, 
which has been a major emphasis in research, does not com-
pletely enable soft robots to effectively perform tasks. The 
focus of this article is the development of dynamic models 
and control methods to allow multiple-degrees-of-freedom 
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(DoF) soft robots to perform useful tasks. We present results 
on fully inflatable, pneumatically actuated soft robot plat-
forms that include a 14-DoF humanoid robot.

The Benefits of Soft Robots
There has been significant interest in making robots more 
effective at interacting with humans and operating in human 
environments. Robots currently have limited uses in homes, 
hospitals, schools, or other areas where safe interaction with 
people or the environment may be necessary. One reason why 
robots are not common in these places is because traditional 
robots can be dangerous to people or property when there is 
incidental contact.

Benefits from soft robot platforms such as the one for con-
trol development that we describe in this article include the 
fact that the compliance comes from passive elements (air) 
instead of requiring active sensors and controllers for added 
safety. In addition, we control the robot at fairly low pressures, 
including 6.9–13.8 kPa (1–2 lbf/in2) gauge in the main body 
chamber and 172.4 kPa (25 lbf/in2) gauge in the actuation 
bladders. In comparison, these pressures are less than a bike 
tire, where pressures range from 206.8 to 896.3 kPa  
(30–130 lbf/in2). This means there is lower risk of injury when 
there is failure such as bursting or leaking of air. In addition to 
compliance, lightweight robots, such as the platform for which 
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we present results, have less inertia and are less likely to cause 
bodily harm, because of lower contact forces and lower overall 
momentum when moving at varying speeds. Finally, this spe-
cific platform can be contained in a very small packing volume 
when deflated. This combination of low weight and small 
packing volume is very beneficial for applications where the 
cost of larger and heavier robots becomes prohibitive, such as 
in space or even in search and rescue operations. Our 
research is motivated by a desire to take advantage of the posi-
tive characteristics of soft and inflatable robotic systems while 

maintaining a level of con-
trol that will allow them to 
be useful. Applications for 
a robot of this type include 
search and rescue, health 
care, assistance with activ-
ities of daily living, and 
space exploration.

In this article, we pres-
ent dynamic models and 
control methods for soft 
robots. Our results show 
the feasibility of an ap
proach that is consider-
ably different than most 

current soft robotics research for manipulation, since the 
complete structure and actuation of our robot comes entirely 
from air instead of any rigid links or cable-driven actuators. 
Although control of our fabric-based, pneumatically actuated 
soft robots is a particularly difficult problem, we present 
encouraging and repeatable results.

Related Research on Soft Robots and Control
In [1], lightweight structures are listed as a desirable design 
characteristic for a soft robot. The soft robots we use in this 
article are at least an order of magnitude lighter than most 
multi-DoF robots, even those previously referenced as light-
weight in [1], since our entire humanoid robot (not including 
the pneumatic control valves) has a mass of approximately 
13.6 kg (30 lb). Past research similar to that presented in this 
article can be divided into two main areas: first, control meth-
ods for other soft robots, and second, past applications of a 
specific type of optimal control that we are using called model 
predictive control (MPC).

Controlling Soft Robots
Our soft robot platform is a pneumatically actuated, inflatable 
robot that is lightweight and has a high strength-to-weight 
ratio. Related to this fabric-based test bed, there has been a 
significant amount of work done in developing materials, sen-
sors, structures, and actuators that are lightweight and com-
pliant. These materials are often inspired by biological 
systems, and many are discussed in the literature [2]. Past 
research involving inflatable robots has mostly looked at the 
design and performance of an actuator or a series of actuators. 
In our research, we show that an entire system can be 

inflatable and that control methods can be developed for the 
system to effectively complete tasks normally done by a robot 
with a rigid structure. The lack of literature on the control of 
inflatable structures where there is a wide range of applica-
tions suggests a novel and important area of robotics research.

In previous work on controlling soft robots, researchers 
were able to limit contact forces using inflatable links with 
cable tendon and dc servo motor actuators [3], [4]. While 
cable-driven actuators are an effective means of actuation for 
inflatable structures, our work has focused on using antago-
nistic pneumatic bladders, which are more consistent with the 
design intent of completely inflatable structures.

In [5]–[7], using an actuation method similar to that 
described in this article, it was found that motion planning 
was possible for fluid-driven elastomer actuators using 
dynamic models and constant-curvature kinematics. Howev-
er, although they use multiple DoF, the manipulator motion 
is restricted to two dimensions in a plane. Additionally, to 
reach specific locations, they require learning a new control 
policy. Also similar to our work is research that uses rotary 
elastic chamber actuators, such as in [8] and [9], where two 
antagonistic bellows impart torque on an armature rotating 
about a rigid rotary joint. However, these compliant joints 
and their benefits are limited by the fact that they are still 
connected by rigid, higher-inertia links.

A major improvement in the results we present in this arti-
cle is that previously we modeled torque on an inflatable joint 
with a linear impedance model [10]. This model included a 
mapping between a desired joint angle and corresponding 
equilibrium pressures. This mapping overly simplified the 
model from two individual actuation chamber pressures for 
each joint to representing actuation pressures as a single 
input. In preliminary work with a single DoF, we showed that 
including actuation pressures as state variables significantly 
improved performance and allowed us to control position 
and stiffness simultaneously [11]. In this article, we show how 
we identified new models that related pressure in the antago-
nistic actuation chambers to torque applied at the joint. We 
show significant improvement in performance as compared 
to our results in [10] and quantify repeatability for a multi-
DoF soft robot manipulator unlike that in [11]. We expect 
that relating torque to pressure on an individual link-by-link 
basis will allow us to more accurately model joint coupling in 
future work.

MPC for Robotics
The fact that for our hardware platform we have two control 
inputs for each joint (i.e., the dynamics between the states and 
inputs are coupled) makes traditional proportional-integral-
derivative (PID) control or other single-input, single-output 
(SISO) control methods less applicable. The SISO designation 
simply means that a dynamic system has one control input 
and one state variable or output of interest. Instead, we use 
MPC, a model-based control method. MPC is a form of opti-
mal control that has long been used in the chemical process-
ing industry. The main idea is that we can minimize a cost 
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function over a finite time horizon subject to the dynamics of 
our system expressed as an equality constraint. This is similar 
in many ways to a linear-quadratic regulator (LQR) with a 
finite horizon. However, there are two major differences. The 
first is that we often include other constraints on the states 
and inputs that are useful in either describing real limitations 
or in forcing certain states to be within user-defined limits. 
The second difference between MPC and LQR is that we 
solve this optimization for every time step that the controller 
is running and apply only the first resultant control input. 
This allows us to update the system model, constraints, and 
disturbances to get some of the benefits of both closed-loop 
feedback control and optimal control.

Recent advances in computing power and dynamic opti-
mization techniques such as those presented in [12] have 
made MPC a viable control method in applications that 
require a high control rate. MPC has been demonstrated in 
robotics applications such as in the control of unmanned aeri-
al and surface vehicles [13]–[15] and more recently in robot 
manipulation with rigid links [16]–[19].

Soft Robot Test Beds
The platforms used for this research include a 14-DoF 
humanoid robot called King Louie (Figure 1) and a single-
DoF joint called a grub (Figure 2). Both were developed and 
built by Pneubotics, an affiliate of Otherlab. The robot plat-
forms are based on the designs for rotary, fabric-based, pneu-
matically actuated joints that were shown as the PneuArm in 
[20] and [21]. Besides internal electronics such as inertial 
measurement units (IMUs) and pressure sensors, these plat-
forms are made entirely of ballistic nylon fabric with internal 
bladders to prevent air leakage. The structure of these robots 
comes from an inflatable main bladder that is pressurized to 
6.9–13.8 kPa (1–2 lbf/in2) gauge.

At each joint, there are two antagonistic actuators that can 
be filled to pressures of 0–172.4 kPa (0–25 lbf/in2) gauge. For 
this research, we use pressures of 0–117.2 kPa (0–17 lbf/in2) 
gauge because of pinching effects in the main chamber at 
higher pressures. The source pressure is provided by an air 
compressor regulated to 172.4 kPa (25 lbf/in2) gauge.

Enfield LS-v25s five-port spool proportional flow valves 
are used to control the variable flow of air from the pressure 
source to the actuation bladders or from the actuation blad-
ders to the atmosphere. This platform utilizes only one output 
port of the Enfield valves, effectively using the valves as three-
port spool valves. As seen in Figure 3, each actuation bladder 
has an individual valve for control of air flow, while both blad-
ders share the same pressure source.

We use the Robot Operation System (ROS) to access 
pressure sensor data and motion-capture data as well as to 
send valve and pressure commands. Our controller code is 
operating in nonrealtime on an Ubuntu workstation. Data 
for the pressure sensors can be read at approximately 
1,000 Hz, while data from the motion-capture system, 
which is used to estimate joint angles, is limited to approxi-
mately 300 Hz. Pressure for each bladder is controlled by an 

underlying PID controller also operating at approximately 
1,000 Hz. Commanded pressures are published over the 
ROS, and the valves are actuated to achieve commanded 
pressure values.

Initial work for model development and control of the 
inflatable robotic systems was done with the grub. After we 
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Figure 1. A 14-DoF soft robot named King Louie with no rigid 
internal structure. 

Figure 2. A single-DoF soft robot platform called a grub.
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performed initial analysis and testing on the one-DoF system 
(the grub) we applied the same methods to the more complex 

six-DoF arm on the 
14-DoF humanoid system, 
King Louie. King Louie’s 
arm configuration, orien-
tation, and motion can be 
approximated with De
navit–Hartenberg (DH) 
parameters using an 
assumption of rigid links 
and compliant joints. We 
use DH parameters to esti-
mate joint angles. Howev-
er, these parameters are 
currently measured by 
hand. To calculate more 
accurate forward and 
inverse kinematics, we 
will need to perform a 
more accurate kinematic 
calibration for this soft 

robot platform. The focus of this article is instead on our 
results for direct joint control to known locations.

Sensing and Joint-Angle Estimation
We use two different angle estimation methods for the 
grub and for King Louie. The joint angle for the grub is 
measured with an IMU located on the distal link. With the 
grub oriented at rest parallel to the gravity vector, the joint 
angle can be estimated from the measurements of two per-
pendicular accelerometers measuring the direction of 
gravity at any angle. We use a Kalman filter during actua-
tion to produce a smoothed state estimate for both the 
joint angle and velocity.

King Louie has six controllable DoF for each arm. One of 
those six is the gripper. However, to reduce position error at 
the end effector, we modeled King Louie as having six joint 
angles (five controlled and one passive at the shoulder). These 
joint angles are estimated using data from a motion-capture 
system from Motion Analysis. The standard DH convention 
was used to place coordinate frames at each axis of rotation. 
We approximate all of our joints as rotary pin joints. The rea-
son for choosing pin joint models over piecewise constant 
curvature models is that in initial tests we found both models 
to be comparable in terms of kinematic accuracy, and rotary 
models are obviously simpler. The motion-capture frames 
corresponding to the shoulder and links are seen in Figure 4. 
Infrared markers were placed at the shoulder and at the first, 
second, and third links, and nominal rotations were estab-
lished between these marker frames and their corresponding 
DH frames.

The motion-capture system gives us the rotation from a 
global frame to the DH frame on each link, from which we 
can find the rotation between individual DH frames on links. 
We intentionally do not use the position information from the 
motion-capture system for joint configuration estimation, 
because we want to be able to use the same joint estimation 
approach with other orientation sensors that do not require 
multiple external cameras. The reflective markers for motion 
capture were located on the same links where King Louie has 
embedded IMUs. For this work, we are currently not using the 
IMU sensors with King Louie. However, the measurements 
we use from the motion-capture system for control are the 
link orientations represented as quaternions. This is the same 
data output that we expect to use with IMUs in future work.

Dynamic Soft Robot Models
To effectively control the soft robot platforms, we use model-
based control methods that include the effect of multiple 
inputs on our desired output of each joint angle. This requires 
that we have reasonably accurate models of the system 
dynamics, where reasonably accurate is simply defined as 
being accurate enough that we achieve satisfactory control 
performance using that model.

For this research, we have made rigid-body assumptions 
to simplify the model for the soft robot system. These 
assumptions include there being no lateral or torsional deflec-
tion along the links, except in the passive joint that we model 
at King Louie’s shoulder for joint-angle estimation. We also 
treat each joint and link as being a decoupled dynamic 

Figure 3. A representative figure of a valve and actuator bladder 
configuration.
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Figure 4. King Louie’s arm, with motion-capture frames shown 
relative to the corresponding links. 
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system. Deviations from this approximate model will degrade 
the overall system performance, but we currently treat them 
as disturbances in the system. Although approximate, the 
results of MPC for the models presented here show that this 
rigid-body, decoupled model is sufficient for basic control of 
the system.

Link Dynamics
The differential equation that we use to describe the motion 
of a single link is that of an inverted pendulum:

	 ( ) ,sinIq K q mg L q2d ax+ + =p o � (1)

where q, qo , and qp  are the joint angle, velocity, and 
acceleration, respectively; I is the moment of inertia of the 
link about its joint; Kd is a damping coefficient; m is the 
mass of the link; g is the gravity constant; L is the length of 
the link; and τa is the actuation torque applied. Initial 
system identification for the grub found that gravity 
effects were three orders of magnitude less than pressure 
effects, which include damping and stiffness. This led to 
making the assumption that gravity terms are negligible 
due to the low mass of the linkages, which reduced (1) to

	 .Iq K qd ax+ =p o � (2)

Adding a more significant link-side load to a single joint or 
controlling a multijoint robot more accurately will require 
reexamining this approximation. An important improvement 
that we present in this article over our past work is a model 
relating the actuation chamber pressure and the resultant 
torque applied on the link.

The Link Torque Model
Our new torque model is developed with the idea that each 
bladder produces an independent torque on a joint that is a 
function of the pressure in the bladder and the current 
angle of the arm [Figure 5(a)]. The difference of these 
torques produces the total torque τa that is seen by the 
links. To test this model and find the form of the torque 
functions, we first measured the torque produced by a sin-
gle bladder. For the test, we kept the base link of the grub 
fixed while we filled a given bladder to different pressures 
and measured the resultant force. Figure 5(a) shows a pic-
ture of the grub in the test rig and the force sensor, a setup 
where 1x  was being characterized.

After taking the initial data, we realized that there was 
another torque term that we had not taken into consideration. 
This was the torque due to the stiffness of the fabric joint and 
internal body bladder. We measured this stiffness using the 
same setup as in Figure 5(a), but we left the actuation blad-
ders empty and measured the passive torque output of the 
link at different angles. The results suggested that the torque 
from the joint stiffness (τstiffness) can be approximated as a 
linear function of the joint angle, with its x and y intercept at 
the origin.

We then reevaluated the data for the actuator while sub-
tracting the force due to the joint stiffness and produced the 
results shown in Figure 5(b). Once again, the results suggest-
ed a linear relationship, but this time between force and pres-
sure while being essentially independent of angle. It is 
important to note that while force was the value we measured, 
the relationship between the force output measured and the 
actual torque output of the system is just a scalar multiplier, 
which is the moment arm. The final description for the new 
torque models is shown in the following equations, where (3) 
is the torque due to the actuators, (4) is the torque due to the 
joint stiffness, and (5) is the full torque seen by the links.

	 ,P P0 1 0 0 1 1x x c c- = - � (3)
	 ,K qsstiffnessx = � (4)
	 .a 0 1 stiffnessx x x x= - + � (5)

We initially found values for γi in (3) by using the data in 
Figure 5(b). In this case, γi was the slope of the line in this fig-
ure multiplied by a scalar. The scalar was the moment arm 
between the joint and the force sensor shown in Figure 5(a), 
and it converts the units on the slope from force (newtons) to 
torque (newton meters). Ks in (4) was found a similar way 

Figure 5. The torque model verification testing: (a) The testing 
setup with a force sensor mounted at 0°. (b) The actuator force 
at different pressures and angles. 
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from the data, where no pressures were applied and the out-
put force was still measured at different angles. We then opti-
mized and tuned these parameters as described later in the 
article. However, the form of the pressure-to-torque relation-
ship that we found was essential to being able to improve our 
overall model and control.

Pressure Dynamics
Accurate models of the gas dynamics in the actuation cham-
bers can be quite complicated. However, examining the pres-
sure response to a step in commanded pressure for our PID 
pressure controller shows that the response is very close to a 
first-order, linear system. This means that we can represent 
the pressures dynamics as follows:

	 P P Pda b=- +o ,� (6)

where P is the pressure in the chamber and Pd is the com-
manded pressure that is sent to the high-bandwidth PID con-
troller. We can write equations like this for each individual 
actuation chamber on each joint and label them with sub-
scripts 0 and 1 to differentiate between the chambers for a 
given joint.

Parameter Identification
The damping and torque coefficients were estimated by a 
gradient-free optimization minimizing the absolute error 
between the simulated angle and the measured angle. 
The initial parameters fed into the optimization were 
found using a least-squares estimation. Figure 6 shows a 
forward simulation using the least-squares and optimized 
estimated coefficients in the state-space model compared 
to measured data from the grub. The optimized parame-
ters show better predictive accuracy for both the joint 
angle and velocity.

The coefficients for the pressure dynamics were found 
by comparing the first-order equation output to data col-
lected from the grub with different step commands. These 
coefficients were then also tuned manually in line with the 
controller to improve the final performance. We expect 
that automating this procedure as a next step would signifi-
cantly improve the performance and the time efficiency of 
the tuning.

Despite the optimized model performance in simulation, 
when we applied the model to the actual single-DoF system, 
the controller initially failed to reach the commanded angles 
with large magnitudes. Stiffness in the joint was initially set 
as a static, linear relation from the test platform, but the con-
troller performance indicated that this was not the case. As 
such, we defined the stiffness to be a function of the joint 
angle, increasing the modeled stiffness when larger angles 
were commanded.

Given the single-joint dynamic model (including the 
effect of pressures in terms of torque) and the simplified 
pressure dynamics for the actuation chambers, we can dis-
cretize our state-space equations that we use for prediction 
using the bilinear transform, such that we have the following 
resultant difference equations instead of continuous time dif-
ferential equations:
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where k is a discrete time index. In terms of using this model 
for control, it assumes that the stiffness of the joint is constant 
over the time horizon for which we are predicting. This equa-
tion can then be used to predict the effect of commanded 
pressure inputs on the joint angle.

In this work, due to the low inertia of each link, we 
make the assumption that we can treat each link as an inde-
pendent system, with no cross-coupling in the joints. We 
do this for two major reasons. The first is that it allows us to 
apply the models described in (7) to each joint individually 
after we have identified acceptable model parameters. This 
means that any actual cross-coupling and gravity-based 
torques are currently being treated as disturbances. We fully 
expect that doing system identification to identify these 
terms and at least including them as a known disturbance 
for each joint model would improve performance. The sec-
ond reason we do this is that it allows us to solve an optimi-
zation that we describe next at the rate of 300 Hz. These 
higher control rates tend to improve the overall perfor-
mance, which is not surprising.

Comparison with Past Control Performance
Because control for completely soft robots is a new area, 
we needed a straightforward way to compare the improve-
ments in modeling and control. Specifically, the work 
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estimated parameters for the state-space model.
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presented in [22], although most similar to ours, is still a 
very different type of actuator and does not provide 
dynamic performance for joint position tracking but 
instead uses a learning algorithm to attain desired posi-
tions in a plane. Therefore, we compare our recent 
advances against our own past work described in [10]. To 
differentiate, we will refer to the older controller as a two-
state MPC controller and to the new controller presented in 
this article as a four-state torque-based MPC controller.  
By including pressures in the actuation chambers as 
states, we expected the performance of our soft robot 
control to improve when compared with our past work. 
We now describe at a high level the formulation of the 
new model predictive controller and then present the 
results of this comparison.

The Controller Formulation
The model predictive controller solves an optimization by 
predicting states over a time horizon that is T steps long while 
varying the pressure inputs to produce a trajectory resulting 
in the smallest cost subject to constraints. The discretized 
matrices Ad and Bd; the current states [ ], [ ], [ ]q k q k P k0o , and 

[ ]P k1 ; the previous inputs [ ]P k 1,d0 -  and [ ]P k 1,d1 - ; the 
final goal joint angle qgoal; and the model constraints and 
weights are fed into an MPC solver at every time step. The 
cost function minimized across the horizon T is
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subject to the system model (7) as a constraint, as well as the 
following additional constraints:

	 q qmin$ ,� (9)
	 q qmax# ,� (10)
	 P P Pmin maxd# # ,� (11)
	 P Pmaxd #D D ,� (12)

where Q, R, and S are manually tuned scalar weights, PT is a 
target pressure, qmin and qmax are joint limits, Pmin and Pmax are 
bladder pressure limits, PdD  is the change in desired pressure 
from the previous time step, and PmaxD  is the maximum change 
allowed in the desired pressure per time step. While simplified 
pressure dynamics are included in our model, the slew rate 
constraint on commanded pressure in (12) serves to prevent 
valve chatter.

We generated a solver for the MPC problem using CVX-
GEN [12], a web-based tool for developing convex optimiza-
tion solvers. The optimization solver written in C and 
subsequent Python code that calls the solver can be run at up 
to 300 Hz, predicting a trajectory horizon of T = 20 time steps 
(or 0.067 s) into the future. Once solved, the first time step 
from the optimized trajectory of desired pressures is made 
available over ROS. These desired pressures are received by 
the underlying pressure PID controller, and valve position 

commands are then sent to the individual valves. As shown in 
Figure 7, the current pressure states are measured and fed 
back into the pressure controller, while both the current esti-
mated joint angle states and pressure states are fed into the 
MPC controller.

The Results for a Single DoF
In our preliminary modeling and control design, we focused 
on results for the single-DoF platform or grub. To compare 
performance, we com-
manded a series of 30° 
step-angle commands 
ranging from −60° to 
6 0 ° ,  c h a n g i n g  t h e 
command at time incre-
ments of 10 s. The resul-
tant q of both controllers 
and commanded qgoal 
are plotted over time in 
Figure 8.

Compared to the 
previous two-state con-
troller, utilizing pres-
sure  s tates  in  the 
four-state torque-based MPC controller significantly 
improved overall performance. As described in Table 1, 
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the new controller produced a comparable 90% rise time, 
improved 15% in the settling time, and significantly 
decreased the percent overshoot. With angular step com-
mands of only 30°, the two-state controller saw an average 
percent overshoot of 24.408% or 7.3°. The introduction of 
pressure dynamics reduced the average percent overshoot 
to just 2.587% or less than 0.78°.

The Results for Simultaneous Control of Multiple DoF
Again using the assumption that each link can operate 
independently of the others and that coupling between the 

joints was minimal, we tested our performance for control-
ling five DoF simultaneously. For comparison with our pre-
vious controller, the system response to a step input sent to 
each joint can be seen in Figure 9. In Figure 10(a) and (b), 
King Louie’s arm can be seen at the commanded angles. 
This orientation was chosen to show that the robot can 
grab and manipulate objects in front of itself. Overall, we 
see that the new controller results in faster rise and settling 
times. This is especially true in joints 0 and 1, which are the 
two shoulder joints. These joints are especially difficult to 
control, given that we are neglecting the coupling and grav-
ity effects.

Repeatability for Reaching in Free Space
Although the trials comparing the new controller to our 
previous controller for multi-DoF control are useful, they 
show nothing about the overall ability of the soft robot plat-
form to repeatedly reach the same location. We do not 
expect soft robots to need the same precision as an indus-
trial robot used for welding or other high-precision and 
high-accuracy tasks. However, a certain amount of preci-
sion may be necessary to perform useful tasks. We there-
fore tested the precision of our soft robot to reach to a 
commanded joint configuration.

We followed a process similar to the ISO 9283:1998 stan-
dard, but reached successively between only two locations for 
any given trial instead of three. In addition, although we 
allowed the robot to run and reach a steady-state tempera-
ture, the effect of this steady-state temperature for a pneumat-
ic soft robot is much less clear, given that air is constantly 
being passed through the actuation bladders and that heating 
in the valves likely has a very different effect than the tem
perature of geared motors. These differences aside, we 
commanded the soft robot arm to go to 0° on all joints (Fig-
ure 11). After it settled, we commanded the arm to move to a 
given joint configuration and waited a set amount of time 
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Figure 9. A step response comparison between the current four-
state MPC control response and the past two-state MPC control 
for King Louie’s right arm. 
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Figure 10. King Louie moving to a set of specific joint angles:  
(a) King Louie, arm down and (b) King Louie, arm up. 

Table 1. A performance comparison between the 
previous controller and the new controller.

Average  
Rise

Average  
Settling Average % 

Time Time Overshoot

Two-state MPC 1.319 s 2.985 s 24.408% 

Four-state  
torque-based MPC

1.360 s 2.592 s 2.587% 

Improvement −3.02% 15.13% 843.35% 
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before recording the final Cartesian position. We chose three 
different joint configurations, as shown in Figure 11 and 
commanded the arm to go to each location ten times. For one 
trial out of the 30, we had an error in our controller and joint 
estimation code, which we discarded as an outlier. We then 
calculated repeatability in the standard way as the radial dis-
tance that would encompass 99.8% of end effector measure-
ments, given exactly the same joint commands. To measure 
the end effector location, we used the motion-capture posi-
tion measurement of the end effector link that we used to esti-
mate repeatability but did not use for control. It is also 
important to note that although the hip joints were inflated, 
they were not controlled to a specific joint position. This 
means that we have good reason to believe that the repeatabil-
ity values reported in Table 2 could be even better with mini-
mal effort. A video of these reaching trials is available at 
https://youtu.be/4T-FN581RkA. 

The Effect of Manipulating an Unknown Load
In addition to free space reaching and repeatability, we test-
ed the repeatability of the controller and joint-angle estima-
tion when manipulating a load of unknown mass. For a 
normal, rigid robot manipulator, moving an unknown mass 
would not be expected to change performance. However, for 
a soft robot like ours, an unknown and unmodeled mass 
may have a significant effect on control performance, which 
is what we wanted to test. A ball with an approximate diam-
eter of 18 cm was placed at pose 2, as shown in Figure 11. 
King Louie picked up the ball from the location at pose 2, 
moved it to pose 1, which can be seen in Figure 12, and 
then released it. This was repeated ten times. The arm was 
successful at grabbing the object all ten times and successful 
at placing the ball in the bucket nine out of ten times. The 
only placement failure was when the ball hit the edge of the 
bucket. A video of these trials is available at https://youtu.
be/p30jKn7_pV4. Although this is a simple trial, it shows 
that the soft robot platform is capable of repeatedly picking 
up an unknown object from the same location and placing it 
at a desired location.

Conclusions
In this article, we have presented an approach to manipula-
tion with soft robots. In particular, we have shown the validity 
of a new method for joint-angle estimation for robots with 
compliant links and joints. We have also developed a torque 
model for inflatable joints with pneumatic actuation and have 
validated the model. We have been able to use this torque 
model with MPC of a single joint to significantly improve 
upon our past controller’s performance. Applying this control 
to multiple DoF allowed us to demonstrate repeatability of 
approximately 2 cm for multiple locations in the robot’s work-
space and also allowed us to repeatedly perform a simple 
pick-and-place task.

The work we have presented is preliminary in the sense 
that we expect future progress to bring improvements for 
control performance with our soft robot. However, the fact 

Table 2. The repeatability measures  
for reaching to three different poses.

Pose 1 2 3 

Repeatability (cm) 0.43 2.8 2.6

Figure 11. The initial pose and the three poses for the position controller repeatability tests: (a) King Louie, initial pose; (b) King 
Louie, pose 1; (c) King Louie, pose 2; and (d) King Louie, pose 3. 

(a) (b) (c) (d)

Figure 12. The initial pose and the final pose for King Louie 
grabbing a ball and placing it in a bucket: (a) the initial pose for 
grabbing the object and (b) the final pose for releasing the object. 

(a) (b)
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that a soft robot with no internal structure besides the struc-
ture provided by air can reach a location with a repeatability 
of approximately 2 cm is promising. Much of the current vari-
ability in end effector control comes from only controlling 
King Louie’s hip joints to specific pressures instead of angles 
as well as limitations in our rigid-body kinematic models. We 
expect that specific improvements in modeling kinematics, 
link flexibility, and multi-DoF joint dynamics will provide 
immediate opportunities to improve the performance of our 
controllers. The fundamental ability presented in this article 
to control soft robots to a reasonable degree of precision will 
open avenues of research and applications for human–robot 
interaction and robot assistance that will change the way 
humans currently view and interact with robots.
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