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Where We Are and What Is Missing

I n this article, we address the problem of realizing a complete 
efficient system for automated management of fleets of 
autonomous ground vehicles in industrial sites. We elicit 
from current industrial practice and the scientific state of 
the art the key challenges related to autonomous transport 

vehicles in industrial environments and relate them to enabling 
techniques in perception, task allocation, motion planning, 
coordination, collision prediction, and control. We propose a 

modular approach based on least commitment, which inte-
grates all modules through a uniform constraint-based para-
digm. We describe an instantiation of this system and present a 
summary of the results, showing evidence of increased flexibil-
ity at the control level to adapt to contingencies.

Autonomous Transport Vehicles
Autonomous ground vehicles (AGVs) are key components in 
the development of flexible and efficient transport systems for 
logistics and industrial site management applications. Com-
mercial solutions consisting of fleets of AGVs have been 
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developed, e.g., for mining (Atlas-Copco mining equipment: 
http://www.atlascopco.com), automated material handling 
(Kiva Systems: http://www.kivasystems.com/), forklift automa-
tion, and industrial vehicle automation (Kollmorgen: http://
www.kollmorgen.com). Although these systems are viable 
commercial products, they can still be improved substantially 
in terms of efficiency and autonomy, and many key parts of the 
real-world deployment phase are currently ad hoc and manual.

In this article, we describe a set of core requirements for 
systems comprising a fleet of AGVs. We have distilled these 
requirements within the ongoing project Safe Autonomous 
Navigation (SAUNA: aass.oru.se/Research/mro/sauna) 
because of a decade of cooperation with several industrial 
partners, including Atlas-Copco, Kollmorgen, Fotonic (www.
fotonic.com), and Volvo Construction Equipment (www.vol-
voce.com). They point directly to a series of shortcomings in 
the state of the art (or to insufficient implementation of state-
of-the-art results) in robot perception, motion planning, task 
allocation, coordination, and control. 

A first set of challenges relates to the deployment phase. 
On one hand, the need to handcraft AGV paths for different 
settings should be avoided. We will refer to this challenge in 
the remainder of this article as Dep1. (Please see Table 1 for 
the definitions of the terms used in this article.) On the other 
hand, it should be possible to specify some or all AGV paths 
manually, albeit without committing to the particular speed at 
which these paths are traversed (Dep2). In addition, whether 
or not paths are specified manually, deadlocks should be 
avoided automatically (Dep3). Furthermore, perceptual func-

tions, particularly localization, should not rely on additional 
infrastructure such as environmental markers (Dep4).

A second set of challenges is posed by the nature of the vehi-
cles. Industrial vehicles are 
usually nonholonomic, 
which makes automatic 
trajectory generation a dif-
ficult task even when 
obstacles and coordina-
tion  are not considered 
(referred to as V1). Then, 
the mechanical structure of 
the vehicles is often non-
trivial (e.g., articulated 
vehicles and detachable 
trailers), thus increasing 
the difficulty of calculating 
individual motions (V2). 
The requirement to carry 
payloads adds extra com-
plexity to the coordination 
and motion-planning 
problem as the size, shape, and nature of the transported goods 
may have an influence on the maneuvering capabilities and as 
the dynamics of each vehicle changes according to the weight of 
its load (V3). 

The key industrial requirements of efficiency and safety 
pose significant challenges, especially for perception. Reliable 
perception is negatively affected by high speeds (up to 

Table 1. The definitions of the terms used in this article. 

Dep1 The need to handcraft AGV paths for different settings should be avoided.

Dep2 It should be possible to specify some or all AGV paths manually, without committing to particular speeds.

Dep3 Deadlocks should be avoided automatically.

Dep4 Localization should not rely on additional infrastructure such as environmental markers.

V1 Automatic trajectory generation is difficult for nonholonomic vehicles, even when obstacles and coordination  
are not considered.

V2 Nontrivial mechanical structure (e.g., articulation) increases difficulty of motion planning.

V3 The size, shape, and nature of loads influences maneuvering capabilities and dynamics vehicles.

ES1 Reliable perception is negatively affected by high speeds.

ES2 Ensuring collision-free trajectories for large fleets is more difficult at high speeds.

ES3 Autonomous machines must behave similarly to human-operated ones.

ES4 Actions available to human drivers must be considered by autonomous vehicles.

Dyn1 Dynamic objects should be perceived, and their dynamics should be identified.

Dyn2 Object dynamics should also be considered for localization.

Dyn3 Planning should account for object and vehicle dynamics to improve plant efficiency.

AP1 Automated planning should occur at different levels of abstraction.

AP2 Task allocation and vehicle coordination should continuously refine existing plans in response to new requests  
or contingencies.

AP3 Task allocation and vehicle coordination should provide temporally/spatially flexible solutions.

AP4 Task allocation and coordination should be integrated with execution monitoring.

Autonomous ground 

vehicles are key 

components in the 

development of flexible 

and efficient transport 

systems for logistics  

and industrial site 

management applications.
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3,040 km/h) (called ES1) as is the ability to generate colli-
sion-free trajectories for large fleets (ES2). High speeds also 
impact safety when autonomous vehicles share the work-
space with human-operated vehicles. This entails that the 
autonomous machines must behave in a way comparable 
with human-operated ones (ES3) and that the actions avail-
able to (noncontrollable) human drivers must be considered 
by autonomous vehicles (ES4).

In many deployed solutions, the dynamic nature of the 
environment is ignored. Fully dynamic objects (e.g., people, 
other vehicles, and so on) are often treated as normal obsta-
cles, and the vehicles simply stop when encountering them. It 
is, therefore, important to perceive dynamic objects, identify 
different types of dynamics, and learn how they are spatially 
distributed (Dynl). The obtained information should also be 
considered for localization (Dyn2) and planning (Dyn3) to 
improve plant efficiency.

The current large-scale industrial deployments of AGVs 
rarely include more than crude heuristics to optimize, e.g., 
mission scheduling. Considering the efficiency and flexibility 
requirements and the complexity of the overall task, it is thus 
clear that the system must display automated planning capa-
bilities at different levels of abstraction (AP1). Continuous 
task allocation and vehicle coordination should always be able 
to refine existing plans in response to new requests due to, 
e.g., changed deadlines, new goals, or newly perceived obsta-
cles (AP2). To achieve robustness, task allocation and vehicle 
coordination should provide flexible solutions (AP3), e.g., sets 
of collision-free trajectories instead of precise temporal 
instants, and these reasoning tasks should be integrated with 
execution monitoring (AP4). In this way, another limitation 
of current industrial solutions can be circumvented, which is 
that the resolution of spatial conflicts is often performed 
offline through manually synthesized traffic rules whose cor-
rectness cannot be formally proved.

The SAunA Approach
The SAUNA project attempts to address these requirements 
not in isolation but rather within an integrated approach. The 

approach builds upon two key principles: least commitment 
and modularity.

Least commitment means that decisions on the behaviors 
of vehicles in the fleet are not committed to until necessary. 
For instance, it may be decided that, because of an automated 
coordination procedure, two vehicles should not be in a par-
ticular area at the same time to avoid a possible collision. 
However, this decision does not result in a specific trajectory 
for the two vehicles; rather it is maintained as constraints on 
the two vehicles’ trajectories. Crucially, these constraints are 
considered by other decision-making procedures of the inte-
grated system, e.g., by the controllers, which synthesize the 
control actions that will actually displace vehicles. The 
advantage of least commitment is that decisions on vehicle 
behavior can be more informed. For instance, suppose that 
the specific speeds have not been committed to for vehicle 
trajectories, and, instead, information that excludes kinemat-
ically infeasible speeds has been computed; then, a procedure 
that coordinates multiple vehicles to avoid collisions may 
leverage the possibility to alter speeds rather than change 
paths. If specific paths were not committed to and a wider 
choice of possible paths was maintained, then collision 
avoidance could also decide whether to alter the speed or to 
alter the path to avoid a collision.

To implement least commitment, we have chosen to rely 
on an iterative constraint posting mechanism, whereby con-
straints are added to an overall constraint-based representa-
tion of vehicle trajectories. The posted constraints progres-
sively prune out possible vehicle behaviors. For instance, 
perception posts spatial constraints representing the drivable 
area of a map, and coordination imposes constraints that 
prune out colliding trajectories.

The constraint-based approach directly enables modularity 
in that the computation and imposition of constraints is per-
formed by dedicated modules. The overall schema does not 
require these modules to implement an automated procedure 
(addressing Dep2). One or more modules could indeed consist 
of a user interface for direct input or a pre-existing system used 
in the particular application domain. For instance, several 
industrial logistics companies employ handcrafted paths in 
their deployments and do not wish to deviate from this type of 
procedure for determining navigable paths.

The common constraint-based representation is grounded 
on a generalization of the notion of trajectory. A trajectory 
consists of a path and a temporal profile. (Throughout this ar-
ticle, we assume planar paths, which is consistent with the re-
quirements of most current industrial applications.) A path is 
a function : [ , ]p 0 1 R S2 1

" #  that describes the possible 
positions of the reference point of a vehicle and its orienta-
tions and has a normalized domain [ , ] .0 1  In particular,  

( )p 0  denotes the starting pose, and ( )p 1  denotes the final 
pose of the vehicle’s reference point. A temporal profile 

: [ , ]0 1R "v
+  denotes the position of the reference point 

along the path at different points in time. Together, p  (the 
path of the reference point) and v  (its temporal profile) de-
fine a vehicle’s trajectory, i.e., ( ( )).p tv
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Figure 1. A trajectory envelope for a vehicle consisting of two sets of 
polyhedral and temporal constraints.
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A trajectory is said to be feasible if perfect execution in 
nominal conditions can be achieved in the presence of 
bounds on the relevant state variables of the vehicle model 
(e.g., the steering angle) and the obstacles in the environment. 
A feasible trajectory is, in other words, such that it considers a 
first set of important mission constraints: that motions should 
be kinematically feasible and should not lead to collisions 
with known obstacles.

A collection of constraints on a trajectory is called a trajec-
tory envelope. A trajectory envelope is a set of spatiotemporal 
constraints on a vehicle’s trajectory. It is composed of a spatial 
envelope and a temporal envelope. The spatial envelope  
can be seen as a set of n  sets of polyhedral constraints 

{ , , }S S Sn1 f=  on the state variables of the vehicle. An 
example of constraints on ( , )x y  is shown in Figure 1. The 
temporal envelope is a set of n sets of temporal constraints 

{ , , },T T Tn1 f=  one associated to each set of spatial con-
straints. The temporal constraints express lower and upper 
bounds on the time a vehicle’s reference point can be in a par-
ticular spatial polyhedron. A more formal definition of trajec-
tory envelope is outside the scope of this article, and details 
can be found in [1]. For the purpose of describing the overall 
SAUNA approach, it is sufficient to state that a vehicle’s trajec-
tory envelope E is a set of spatial and temporal constraints on 
its reference point, i.e., , .E S T=^ h  E is said to be feasible if 
it contains at least one feasible trajectory ( ) .p v

The spatial and temporal envelopes of each vehicle consti-
tute two constraint satisfaction problems (CSPs) [2]. A solu-
tion of the spatial CSP represents a particular choice of path 
p  for all vehicles, while a solution of the temporal CSP repre-
sents a particular choice of temporal profile .v  Consequently, 
the union of the two CSPs defines the collection of all possible 
trajectories for all vehicles.

While the trajectory envelopes of all vehicles in a fleet may 
be individually feasible, the set of trajectory envelopes as a 
whole may not be. This is because global constraints exist, 
such as the admissible concurrent use of the floor space  
(a shared resource). All of these constraints can be seen as 
implicit spatial and temporal constraints. Therefore, the pro-
cess of enforcing the global constraints can be reduced to that 
of inferring the spatial and temporal constraints entailed by 
the global ones and imposing them on the set of trajectory 
envelopes. This process yields what we call a feasible set of tra-
jectory envelopes.

Overall, the SAUNA system is such that commitment 
increases from goal specification to coordination by means 
of increasingly tight constraints. This is shown in Figure 2; 
starting from an empty environment [Figure 2(a)], task allo-
cation posts temporal bounds on areas to reach as a result of 
task allocation [Figure 2(b)], motion planning, in conjunc-
tion with perception, defines temporally sequenced sets of 
polyhedra that encapsulate admissible paths [Figure 2(c)], 
and coordination and collision prediction add constraints 
that disallow collisions and deadlocks [Figure 2(d)]. Con-
trollers also avoid commitment to a specific trajectory 
(Dep2) as the spatial placement of the reference point 

remains bounded by constraints, and its temporal place-
ment can be altered by selecting an alternative reference tra-
jectory [Figure 2(e)].

The fact that every constraint, local to one vehicle or 
global, can be reduced to spatial and/or temporal constraints 
suggests a modular approach to feasibility enforcement. In 
particular, the refinement process, which excludes infeasible 
trajectories from the set of all trajectory envelopes, can be car-
ried out by distinct modules separately, each imposing a 
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Figure 2. An increasing amount of constraints are posted by the various 
modules into the common constraint network. The commitment to a 
specific trajectory is also re-evaluated during execution as controllers 
have the faculty to choose among one of several precomputed reference 
trajectories based on tracking performance. (a) Given an example 
environment, (b) the task planning posts temporal bounds on areas to 
reach as a result of task allocation, (c) motion planning, in conjunction 
with perception define temporally sequenced sets of polyhedra, which 
encapsulate admissible paths, (d) coordination (and collision prediction) 
adds temporal (and spatial) constraints that disallow collisions and 
deadlocks, and (e) vehicle controllers follow one of a set of N alternative 
trajectories within the given spatial constraints.
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particular set of constraints. In SAUNA, we have divided this 
collection of reasoning capabilities into six functional mod-
ules, as shown in Figure 3.

 ●  Perception is responsible for constructing collections of 
spatial constraints, which subsume vehicles’ paths, given 
the perceived drivable area. In addition, perception is 
responsible for localization and fixed/mobile obstacle 
tracking. Note that perception dynamically posts spatial 
constraints, as obstacles may become known gradually 
over time.

 ●  Task allocation addresses mission goals and computes start-
to-destination pairs of regions that vehicles should visit 
(given the perceived drivable area). It also posts temporal 
constraints stating the desired deadlines or release times 
(i.e., when vehicles should be in the designated areas).

 ●  Motion planning uses the perceived drivable area to com-
pute sets of spatial constraints, sequenced by temporal con-
straints, which identify how vehicles should displace them-
selves across the drivable area to achieve the constraints 
posted by task allocation. These sequences are trajectory 
envelopes containing paths that are guaranteed to be kine-
matically feasible.

 ●  Coordination is responsible for further refining the trajec-
tory envelopes with constraints that exclude deadlocks and 
collisions between controlled vehicles. The input, calcu-
lated by motion planning, is a sequence of overlapping 
convex polyhedra for each robot. The output consists of 
temporal constraints that exclude trajectories leading to 
vehicles being in overlapping areas during overlapping 
temporal intervals as well as temporal profiles that exceed 
the known speed limits for vehicles.

 ●  Collision prediction imposes constraints that exclude colli-
sions with vehicles that are not autonomously guided and 
other dynamic obstacles in the environment. It enriches the 
trajectory envelopes with spatial and temporal constraints, 
which guarantee the absence of collisions, given current 

perception, known trajectory envelopes for controlled vehi-
cles, and the predicted behavior of dynamic obstacles.

 ●  Control modules on board the vehicles are responsible for 
computing control actions for vehicles in such a way that all 
spatial and temporal constraints (which have been refined 
by the previous modules) are enforced. In addition, control-
lers measure the performance they achieve in following a 
reference trajectory. This allows them to dynamically im-
pose further constraints that restrict the trajectories of all 
vehicles in the fleet to maximize the collective performance. 
As shown in Figure 3, all modules reason upon the current 

collection of spatial and temporal constraints (S  and ,T  
respectively) in the common constraint-based representation. 
They post specific constraints—spatial, temporal, or both—to 
the common constraint-based representation to refine the tra-
jectory envelopes because of their particular inference proce-
dures. The modules refine the representation continuously and 
are triggered by their inputs. Perception may refine the spatial 
envelopes when sensors detect changes in the environment; 
task planning is activated when mission goals appear or 
change, or when the temporal or spatial envelopes of existing 
trajectories are modified; motion planning recomputes poly-
hedra sequencing when new goals appear and/or when spatial 
constraints change; coordination is triggered when trajectory 
envelopes overlap both spatially and temporally, a condition 
that can exist when envelopes are first computed or when tem-
poral constraints are added by collision prediction; the tempo-
ral and spatial envelopes, as well as newly perceived moving 
objects, trigger collision prediction; and control modules on 
board the vehicles adapt control actions in the face of new tra-
jectories to follow. The overall result is a constraint network 
that represents a feasible set of trajectory envelopes for all vehi-
cles in the fleet.

In the remainder of this article, we provide a brief over-
view of each module and present an instance of the en-
tire  system. The description also focuses on which of the 
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challenges shown in the “Autonomous Transport Vehicles” 
section are tackled and how.

Rich Three-Dimensional Perception
A key role of the perception system in the overall SAUNA 
architecture is the computation of trajectory envelopes that 
avoid collisions with obstacles. Extracting the safe drivable 
area of the environment and posting the appropriate spatial 
constraints is a central perception task.

Because often neither two-dimensional (2-D) nor three-
dimensional (3-D) geometrical information is sufficient, it is 
important to consider rich 3-D perception, i.e., perception 
based on geometrical information combined with additional 
sensor data [e.g., red green blue (RGB) color, reflected light 
intensity, or temperature values] integrated into environment 
models that store occupancy together with additional dimen-
sions (patterns of dynamic changes, for example).

To address challenges ES1, ES2, and ES4, fast and efficient 
sensor processing and fusion algorithms are necessary. Given 
the large amount of data obtained from current 3-D and 
vision sensors, a compact yet accurate spatial modeling tech-
nique is vital to the performance of the perception module. 
The SAUNA perception system uses the 3-D-normal-distri-
butions-transform (NDT) [3]—a fast, grid-based Gaussian 
mixture estimate—to represent and reason about space. The 
3-D-NDT representation is accurate yet compact and, thus, is 
well suited to address the challenges of real-time and long-
term operation in an industrial environment. An example top 
view of a 3-D-NDT map computed from data obtained with 
an actuated SICK laser range scanner is shown in Figure 4(a), 
while Figure 4(b) shows a detailed view of the same environ-
ment (an underground mine). This representation has been 
used in multiple autonomous navigation contexts, including 

scan registration [3], [4], path planning [5], and loop closure 
[6], and has also been extended to a rich 3-D context by 
incorporating color information [7].

An important application of rich 3-D perception is the 
computation of drivable areas. The 2-D occupancy maps, 
traditionally used in indoor environments, offer a straight-
forward extraction of traversable regions but are often not 
informative enough to make correct decisions. A simple 
example of a potential failure in an industrial environment 
is moving a forklift truck through a door, which can result 
in collisions with the top of the frame if the fork has not 
been lowered. Conversely, reasoning about traversable 
regions in a 3-D-aware framework prevents collisions with 
the environment or dynamic entities, leading to reduced 
wear, tear, and accidents. The 3-D-NDT representation is 

(a)

(b)

Figure 4. (a) The top view and (b) a detailed view of a 3-D-NDT map of 
an underground mine. Each Gaussian component is represented as an 
oriented ellipsoid scaled at 3v  levels. The color coding represents the 
results of a terrain traversability algorithm: green represents drivable, and 
red represents nontraversable space. 

(a)

(b)

(c)

Figure 5. The 3-D-NDT models constructed from incremental 3-D range 
updates: (a) the map built without accounting for dynamics, (b) the static 
parts of the environment as learned by our novel algorithm, and (c) the 
dynamic parts of the environment can be identified and aggregated.
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readily usable for fast traversability analysis based on 3-D 
information alone [5], producing a reachability map (as in 
Figure 4), given a set of geometric and kinematic vehicle 
parameters. Using additional, nongeometric information 
available in rich 3-D perception can increase the speed and 
reliability of the traversability analysis and improve the com-
putation of drivable areas.

Another set of perception-related challenges (Dyn1 and 
Dyn 2) stems from the time scales of operation in industrial 
environments. Vehicles are often required to operate around 
the clock on ever-changing factory floors and, thus, must 
account for variability in the areas that are drivable. Vehicle 
position estimates in indoor industrial environments are often 
performed using static landmarks, such as reflective laser or 
visual beacons. This localization strategy produces accurate 
results but has several shortcomings, chief among which is 
beacon occlusion. Localization by comparing range measure-
ments to a prerecorded map of the environment is a viable 
alternative (Dep4), promising shorter system setup times and 
increased robustness to dynamics and occlusions [8]. In the 
SAUNA system, we use 3-D range sensors to localize against a 
dynamically evolving rich 3-D model. The challenge thus 
becomes to maintain a consistent model of the environment 
and to learn how to distinguish static parts from dynamic 
ones. In addition, the different levels and types of dynamics 
can be identified depending on a chosen time scale. Identify-
ing slowly changing elements, such as piles of goods to be 
transported in a factory automation scenario, is particularly 
important for localization. Failure to identify slow changes can 
lead to drift in localization estimates, while quickly changing 
portions of the environment are of interest to the traversability 
analysis and collision avoidance tasks. We employ 3-D-NDT 
maps to perform such dynamic mapping. Our approach 
extends the iMac representation to create independent Markov 
chain occupancy grid maps of dynamic environments [9] and 
employs a novel 3-D-NDT update algorithm [10]. The 
approach is shown in Figure 5, which shows a busy round-
about (the models were created by incrementally updated 3-D 
range data collected with a Velodyne-HDL64 laser scanner). If 
dynamics are not considered, an inconsistent model [Fig-
ure 5(a)] is produced. Application of our dynamic mapping 
approach, however, produces separate static [Figure 5(b)] and 
dynamic [Figure 5(c)] models of the environment.

The output of the SAUNA perception system consists of 
several modes of information: position estimates, drivable 
and obstacle areas in the map, and dynamically updated 
local maps. These results of the perception system are 
posted to the common constraint-based representation in 
the form of spatial constraints: 1) the drivability map is uti-
lized to obtain a spatial envelope of safe states around a 
nominal trajectory and 2) the set of allowed vehicle configu-
rations is represented as a sequence of overlapping convex 
polyhedra. Using convex polyhedra is particularly beneficial 
for the control module (see the “Control” section) as it 
allows for reasoning about the allowed states of the vehicle 
in an efficient manner.

Task Allocation
In the context of autonomous industrial vehicles, tasks are 
often fairly well specified, involving a number of places to be 
visited and a number of loads to be picked up or delivered. The 
decisions that the task allocation (see Figure 3) needs to make 
mainly concern which vehicles to allocate to each task and 
how to schedule the tasks. The former issue has been studied 
in the area of multirobot task allocation [11]. The problem of 
allocating tasks to industrial autonomous vehicles is character-
ized by some general features that span across different appli-
cation domains. The positions of vehicles are important, as are 
the load capacities and constraints on the load types; there 
may also be deadlines on pickups and deliveries; the contents 
of an order can vary, from a simple start-goal point pair to 
complex programs with conditionals and loops; and orders 
may either be known beforehand or arrive during operation.

Presently in SAUNA, we employ a centralized task alloca-
tion system (AP1) that satisfies deadlines (when possible) 
while minimizing the total driving distance to the starting 
points of orders. Each vehicle can be assigned a sequence of 
orders, and previous assignments can be reconsidered when 
new orders arrive (AP2).

The output of the task allocator in our approach is a collec-
tion of start-goal point pairs for all vehicles (i.e., no specific 
path is committed to, AP3). The correct sequencing of tasks is 
ensured by temporal constraints (e.g., deadlines), which are 
computed and added to the constraint-based trajectory enve-
lope representation. There might also be feedback from 
motion planning or coordination if those modules detect that 
a route is not navigable or that a deadline cannot be fulfilled 
(AP2). This feedback can be included as constraints when a 
new allocation is computed, e.g., a constraint stating that, at 
most, one vehicle can move either from A to B or from C to D 
during a given time interval.

Motion Planning
Many of the problems underlying automated motion plan-
ning for autonomous vehicles have been addressed in [12]. As 
a result, important advancements have been made in separate 
parts of the overall problem, e.g., in multirobot path planning, 
which is to date a very active research area [13], [14]. How-
ever, these approaches usually rely on unrealistic restricting 
assumptions, such as that the agents move on a grid [15], or 
lack the ability to provide important guarantees in the 
planned motions, e.g., not ensuring deadlock-free situations 
[16], [17].

The spatial envelope S  for a fleet of vehicles can be calcu-
lated starting from an initial reference path for each vehicle. 
These paths, as is the case in many industrial applications 
[18], may be given or may be computed dynamically. In our 
current implementation, we employ the latter approach 
(Dep1). In particular, we use a centralized lattice-based mo-
tion planner (AP1) to compute optimal or highly optimized 
paths between destinations (where each node of the lattice 
represents a pose of the vehicle) [19]. The cost function is 
based on the distance between nodes (along the edges) of the 
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lattice, scaled by a cost factor that penalizes backward and 
turning motions. These paths can be seen as an initial, very 
tight collection of convex polyhedra, which is then relaxed to 
obtain a larger spatial envelope for each vehicle.

The planner uses a set of predefined, kinematically feasible 
motion primitives, which are repeatedly applied to obtain a 
directed graph that covers the state space. The graph is then 
explored using A)  [20], or anytime repairing A)  (ARA)) (an 
efficient anytime variant) [21], which can provide provable 
bounds on suboptimality. Effective heuristic functions [22], as 
well as offline computations for collision detection, are 
employed to speed up exploration of the lattice. Our approach 
is inspired by existing lattice-based path planners [23] that are 
successfully used in real-world applications. It extends exist-
ing work by providing the possibility to compute paths for 
multiple robots jointly. This ensures that the computed spatial 
envelopes provide the opportunity for vehicles to yield to oth-
ers. All paths are generated such that there exists a time pro-
file that yields feasible trajectories (V1, 2), under the assump-
tion of car-like and waist-actuated vehicles.

Coordination
The feasibility of a set of trajectory envelopes cannot be ascer-
tained without checking global constraints such as floor 
space. In particular, two trajectory envelopes (of different 
vehicles) that overlap in both time and space imply the possi-
bility of a collision. The temporal and spatial overlap defines a 
conflict set, i.e., a set of pairs of spatial polyhedra with non-
empty intersections and whose associated temporal con-
straints also intersect (i.e., it is possible for the vehicles’ refer-
ence points to be in a common area at the same time).

Note that since trajectory envelopes constitute both a 
temporal and a spatial CSP, it is sufficient to eliminate solu-
tions from these CSPs that entail the possibility of both tem-
poral and spatial overlap. In other words, we are interested in 
enforcing the feasibility of the set of all trajectory envelopes 
for all vehicles (AP3). The problem of finding an overall set 
of trajectory envelopes that is feasible requires a significant 
computational overhead. Several strategies are possible, one 
being to refine only the spatial envelopes of spatiotemporally 
intersecting trajectory envelopes to eliminate the spatial 
overlap. Another possibility is to add temporal constraints 
that eliminate temporal overlap. The third option is to per-
form one or both refinements, depending on some particu-
lar heuristic indicating the impact of the refinement on the 
feasible trajectories. In SAUNA, we have explored the second 
option, i.e., the trajectory coordination algorithm resolves 
concurrent use of floor space by altering when different 
vehicles occupy spatially overlapping polyhedra. More pre-
cisely, the algorithm refines the temporal envelopes by add-
ing temporal constraints .Ta  This yields a feasible set of tra-
jectory envelopes.

Finding a set of additional constraints that make the set of 
trajectory envelopes feasible can itself be cast as a CSP. The 
variables of this CSP are conflict sets, i.e., pairs of polyhedra 
that intersect and whose associated temporal variables may 

overlap. The values of these variables are temporal constraints 
Ta  that eliminate this temporal overlap. It can be shown that 
a solution to this CSP prunes out of the trajectory envelopes 
those trajectories that lead to a collision between controlled 
vehicles (ES2). In addition, the identified temporal constraints 
guarantee the absence of deadlocks (Dep3).

In real deployments of AGVs, it is common practice to 
dynamically impose deadlines on vehicles reaching their 
destinations (AP2). Accounting for such constraints renders 
the previously mentioned 
trajectory coordination 
problem NP-hard. Note 
also that the minimizing 
makespan (i.e., the total 
completion time of all 
trajectories) is equivalent 
to resolving the problem 
with increasingly tight 
deadlines on all vehicles 
and is therefore NP-hard. 
The (centralized) coordi-
nation algorithm pro-
posed in SAUNA, detailed in [1], employs a powerful heu-
ristically guided, systematic CSP search to find the 
resolving  temporal constraints .Ta  The search employs a 
spatial heuristic for deciding which pair of spatiotempo-
rally overlapping polyhedra to separate in time and a well 
known temporal heuristic [24] to decide which vehicle 
should take precedence.

Collision Prediction
To address the collision prediction challenge, we focus on 
(noncontrollable) human-driven vehicles (ES4) and go 
beyond reactive collision-avoidance solutions to account 
for possible collisions before they happen. The key idea is 
to make vehicles proactive, i.e., able to adapt their motion 
as early as possible to minimize the risk of collision while 
still moving toward their targets. To do so, our solution 
uses the continuous flow of refinements to the trajectory 
envelopes provided by the perception and coordination 
modules. Each obstacle detected by perception is described 
by a set of probabilistic attributes that includes an oriented 
bounding box and color information. Such perceptual 
information is used to perform short-term tracking of 
nearby perceived moving objects, with the aim of extract-
ing information about their motion, i.e., position and veloc-
ity. Motion information is then used to compute probabilis-
tic estimates of the future positions of each of the tracked 
objects. Possible future collision with a specific object is 
estimated as the probability of future intersection between 
the bounding box of that object and the spatial envelope of 
a vehicle. In our current implementation, we compute the 
probability of intersections using sequential Monte Carlo 
estimation techniques [25]. For each tracked object, we cre-
ate a particle filter that estimates the future positions of the 
object. The probability of collision is calculated as the ratio 

The key industrial 

requirements of efficiency 

and safety pose significant 

challenges, especially for 

perception.
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of the number of particles that result in intersections and 
the total number of particles for each object.

If the estimated probability of collision exceeds a pre-
defined threshold at some time t  in the near future, the tem-
poral and spatial constraints are revised to ensure collision-
free motion of the vehicle. Note that this entails a 
(arbitrarily) small possibility of collision. For this reason,  
all vehicles possess an emergency stop behavior, which 
relinquishes proactiveness in favor of guaranteeing safety in 
all situations.

Control
After coordination, trajectory envelopes contain many kine-
matically feasible, collision- and deadlock-free trajectories for 
each vehicle. A tracking controller on board each vehicle is 
capable of computing control actions for the vehicle given 
these envelopes, if the temporal profile is fixed (i.e., one solu-
tion of the temporal CSP is extracted). This fixed temporal 
profile, combined with a path contained in the spatial enve-
lope, can be used to obtain a reference trajectory.

The aim of a vehicle controller is to compute control 
actions that follow the reference trajectory as closely as possi-
ble. In SAUNA, this computation is implemented by an 

embedded optimization process. Deviations from the refer-
ence trajectory that fall within the spatial constraints in the 
trajectory envelope are guaranteed to be deadlock and colli-
sion free, both with respect to the other controlled vehicles 
and static obstacles. In addition, they will not lead to colli-
sions with other human-driven vehicles, as collision predic-
tion has refined the spatial and temporal envelopes to reflect 
the predicted motion of the human drivers.

The embedded optimization schema assumes that a spe-
cific temporal profile is used. On one hand, this implies a 
restriction on how the controller compensates for deviations: 
only through spatial adjustments. On the other hand, the 
temporal commitment implies that the control problem can 
be formulated in such a way that it is easily solvable. The tem-
poral commitment means that the controller is bound by a 
fixed schedule, i.e., control actions must lead the vehicle to 
enter and exit polyhedra at specific times. However, a devia-
tion from the path could require a compensation that leads to 
unacceptable accelerations (e.g., because the vehicle is carry-
ing a heavy load), therefore making it undesirable to respect 
the schedule. In SAUNA, we have developed [1] a schema 
that relies on precomputing multiple alternative temporal 
profiles. These alternatives can be selected according to the 

tracking performance: all have 
the same spatial envelopes but 
different fixed temporal pro-
files, thus leading to alterna-
tive reference trajectories.

The embedded optimiza-
tion approach used here is 
known as model predictive 
control (MPC) because con-
trol actions are computed con-
sidering the kinematic model 
of the vehicle. MPC is one of 
the most successful embedded 
optimization schemes and has 
been used in a wide variety of 
industrial applications [26]. 
The application of MPC in the 
context of tracking a reference 
trajectory using a nonholo-
nomic vehicle has been dis-
cussed by several authors, e.g., 
[27]. In our work, the fact that 
spatial constraints are convex 
polyhedral makes it possible to 
compute control actions in the 
millisecond (or even micro-
second) range. Therefore, it is 
possible within one sampling 
time to compute control 
actions for several alternative 
reference trajectories and 
choose the one that provides 
the best tracking performance.

(a) (b)

(c) (d)

(e) (f)

Figure 6. The first scenario: (a) vehicles 1 and 2 and their targets, (b) vehicle 1 is braked, causing vehicle 2 to 
yield, (c) the brake is released and vehicle 1 resumes motion, (d) vehicle 2 resumes motion, and (e) vehicle 1 
and (f) vehicle 2 reach their final poses. (Photos courtesy of Ola B. Pettersson.) 
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During execution, control-
lers write to the common rep-
resentation their current state 
of execution. This information 
is modeled as temporal con-
straints on polyhedra. These 
constraints update the time in 
which vehicles will reach poly-
hedra further along in their 
missions, hence refining the 
temporal profile of all vehicles. 
Consequently, a delay of a vehi-
cle will be propagated to the 
temporal profiles of all other 
vehicles; this, in turn, may 
require recoordination or a 
change in task allocation. Fur-
ther details on this approach to 
execution monitoring (AP4) 
are reported in [28].

Toward an Integrated 
System
An instantiation of the SAUNA 
approach with specific automated reasoning modules has 
been realized in the robot operating system (ROS) frame-
work. Communication among modules is achieved through 
ROS topics and specialized ROS message formats.

Evaluation of the approach has focused on both individual 
modules and on the entire system. Two of the most computa-
tionally challenging subproblems of the overall fleet manage-
ment problem are motion planning and coordination: 1) the 
former must solve a graph search problem that is exponential 
already for one vehicle and 2) the latter also has exponential 
worst case complexity if deadlines are included in .T  Despite 
the high complexity, we have shown [1] that lattice-based 
motion planning, coupled with constraint-based vehicle coor-
dination, renders these individual problems practically feasi-
ble in realistically sized environments.

Several evaluations have 
been performed to validate the 
overall SAUNA system in 
terms of practical usability and 
suitability for realistic scenar-
ios. For the former, we have 
employed two Linde forklift 
platforms. One of the test sce-
narios involved repeatedly 
posting goal poses for the two 
forklifts. The limited space in 
the test environment leads to 
significant spatiotemporal 
overlap, thus incurring fre-
quent yielding behavior. These 
vehicles are shown executing a 
coordinated maneuver when 

an unforeseen contingency is created by sending vehicle 1 a 
brake command [Figure 6(b)], causing vehicle 2 to yield. 
When the brake command is retracted and vehicle 1 moves 
out of vehicle 2’s path, vehicle 2 resumes navigation. This 
behavior is because the coordinator and the two controllers all 
read from and write to the common representation, thus 
ensuring collision-free motions. (Videos of the scenarios 
described here are available at http://aass.oru. se/~ fpa/
SAUNA- movies.)

A second scenario is shown in Figure 7, which shows the 
continuous refinement of the common representation 
because of perception. In particular, the vehicle’s task is to 
pick a pallet whose position is only roughly known. When 
the vehicle reaches the area [Figure 7(a)], its onboard RGB 
depth sensor re-estimates the pose of the pallet. To achieve 

(a) (b)

(c) (d)

Figure 7. The second scenario: (a) a vehicle reaches the loading zone and observes the pose of the pallet, 
(b) the observed pose requires the vehicle to realign, and (c) the vehicle has realigned and (d) commences 
the pickup operation. (Photo courtesy of Henrik Andraesson.)
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the necessarily precise alignment between the vehicle and the 
pallet, a new goal pose is added to the common representa-
tion, which in turn leads the motion planner, coordinator, 
and all other involved modules to reposition the vehicle 
appropriately. (Videos of the scenarios described here are 
available at http://aass.oru. se/~ fpa/SAUNA- movies.)

To evaluate the perfor-
mance of the entire system 
in a realistically sized sce-
nario, we performed a set 
of runs in a simulated in-
dustrial production site 
(using a physical simula-
tion in Gazebo). The runs 
involved one to five vehi-
cles in an area that affords 
long motions. The layout 
used in the simulation is 
part of an actual factory in 
which automatically guid-
ed vehicles transit along 

predefined paths (see Figure 8). The vehicles were required to 
transport goods between the production and storage areas. 
Our analysis shows that the vehicle idle time never exceeded 
30%, even with five vehicles and under the assumption that the 
motion planning and coordination are triggered only when 
previous goals are reached. This extremely unsophisticated 
form of task dispatching represents a worst case as it forces ve-
hicles to enter an idle state while new envelopes are computed 
and is far less advanced than current industrial practice.

Formal Properties
All modules in the SAUNA system share a common formal 
representation. This allows to state useful formal properties 
of the approach. Two of these are: 1) soundness, i.e., whether 
trajectory envelopes are guaranteed to contain only kinemat-
ically feasible and collision- and deadlock-free trajectories 
and 2) completeness, i.e., whether the approach guarantees 
finding such trajectories if they exist. It has been shown that 
the SAUNA system is both sound and complete under rea-
sonable assumptions regarding the discretization of working 
space and resolution of the motion primitives used by the 
motion planner [28]. By contrast, in most current approach-
es (including those used in industrial practice), it is not pos-
sible to formally guarantee the absence of deadlocks, and 
collision avoidance does not account for the other con-
straints in the system (e.g., deadlines may be unnecessarily 
missed as a result of local trajectory adjustments).

Discussion and  
Future Work
We have proposed a general, modular functional schema 
designed to be used in different application scenarios. Modu-
larity is motivated by the fact that different real-world applica-
tions require different levels of automation. In particular, indi-
vidual functionalities (task planning/vehicle allocation, motion 

planning, perception, control, and so on) are often already 
provided through proprietary tools that companies do not 
wish to replace. The SAUNA approach enables the exclusion 
of one or more modules by establishing a common constraint-
based model that represents constraints on trajectories rather 
than committing to specific trajectories. The use of spatial and 
temporal constraints in the shared representation provides an 
intuitive language with which custom user interfaces can inter-
act with the fleet. An operator can therefore easily substitute or 
complement the decision process of an automated procedure 
without disrupting automated fleet management.

It is worth commenting on the centralized nature of the 
SAUNA system. This facilitates maintaining a shared represen-
tation, which in turn provides the benefit of upholding formal 
properties and ease of integration of new modules. However, it 
also poses a hindrance when it comes to scalability—going be-
yond tens of vehicles in the current setup is not computationally 
feasible. For this reason, we will investigate in the near future 
possible ways to decentralize the approach while still maintain-
ing the desirable features obtained so far. Good starting points 
for doing so are the many related results in the field of multia-
gent systems. These include protocols for distributed task alloca-
tion, such as contract net [29], decentralized hash tables [30] and 
auction-based methods [31], decentralized coordination tech-
niques [32], and distributed algorithms for safe navigation [33].

Future work in SAUNA will address the primary issue of 
realizing a complete deployment using industrial vehicles in 
a controlled environment. In addition, to verify the claim 
that the SAUNA approach facilitates selective module 
deployment, we will focus on deploying the system in two 
industrial application scenarios: an automated milk produc-
tion factory and an underground mine site in Sweden. These 
applications require the integration of different legacy mod-
ules and different levels of involvement of human operators. 
We also plan to make the current implementation of the 
SAUNA system and of its modules available as open-source 
ROS packages.

In the longer term, we aim to study specific techniques for 
addressing the remaining challenges not addressed so far, spe-
cifically, V3, ES3, and Dyn3. A further challenge that will be 
addressed is the integration of meaningful optimization strat-
egies for particular applications (e.g., throughput of goods 
through a warehouse).
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