
ros Topics

17

Novel Techniques to Solve
Space-Exploration Problems
By Name name, affliation;
Name name, affliation;

june 2013 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

Embedded ROS
By Paul Bouchier

D o you design robots? You
probably ponder how you
should partition functions
into subsystems embedded

in the robot. If you use ROS in your
robot, you have additional concerns
around how to integrate ROS’s high-
level functions with lower-level
subsystems. You want to understand
current and future design alternatives
advantages and tradeoffs.

Embedded Systems in Robots
There are higher-level subsystems
embedded in a robot, which are respon-
sible for domains such as vision, reason-
ing, and planning. Today, software
dependencies necessitate running these
ROS applications on full-blown Ubuntu
Linux PCs—high-cost computers with
an appetite for power. This is fine for
low-volume robots that are not cost
sensitive. But the need for high-cost
PCs to run ROS is changing to the ben-
efit of robot designers.

There is current development work
focused on providing binary installs for
ARM processor-based platforms,
including the popular Raspberry Pi
board. These platforms will dramati-
cally reduce cost, power consumption,
and the physical size of each ROS
server. Clustering low-cost ARM serv-
ers will allow distributing ROS subsys-
tems to achieve scale-out expansion.
Reduced software dependencies will
mean more configuration options for
the big brains of the robot, ranging

from Ubuntu to stripped-down
configurations.

Complementing the higher-level
subsystems are small embedded systems
dedicated to low-level control and con-
necting devices (e.g., sensors, actuators,
and so on) whose electrical interfaces
are not available from a server running
ROS. These small embedded systems
must be cheap to enable manufacturing
more robots at a lower cost. Embedded
system costs can be as low as US$1.50
for a small system, to US$10 and up for
a larger system. These embedded sys-
tems are developed with a focus on
keeping parts costs low and perfor-
mance high for a very limited set of
tasks. These low-level systems are too
small to run ROS applications, but must
be able to communicate with them.

Real Time
Robot motion occurs in real time.
Robot designers care how that motion
occurs. Motion must occur with pre-
dictable timing and must meet timing
deadlines defined by the application.

ROS runs on Linux, which does not
provide timing guarantees. The need for
timing guarantees drives robot design-
ers to partition robots into real-time
and nonreal-time subsystems. It has the
additional benefit of narrowing the
focus of safety and other critical reviews
to simpler subsystems.

Attaching embedded real-time sys-
tems to ROS is one way of reaping the
benefits of ROS’ higher-level capabilities
while meeting real-time system needs.
A current example of this technique is
found in ROS Industrial. ROS on Linux

plans the motion of a robot arm and
passes the plan to a controller that exe-
cutes it, moving the arm in real-time.

A second possible approach to real-
time needs that I suggest, though not yet
seen in research, is to port some ROS
packages to a version of Unix that will
offer real-time guarantees. Designers
would need to review the design of
those packages from a real-time per-
spective. It remains to be seen whether
the ARM processor support work will
enable ROS on a real-time Unix.

Approaches for Using ROS
with Embedded Systems
ROS planners chose wisely to focus on
enabling the higher levels of robot intel-
ligence. They obtain greater value by
enabling researchers to collaborate on
different parts of the higher-level soft-
ware stack; ROS would not have become

Digital Object Identifier 10.1109/MRA.2013.2255491

Date of publication: 6 June 2013

Linux PC or PCs
Embedded in Robot

ROS Nodes (Navigation,
Planning, etc.)

ROS Infrastructure

Sensor
Drivers

Motor
Drivers

Sensor HW
(USB, Serial,
PCI Devices)

Motor HW
(PCI, Other
I/Fs, Motors)

Figure 1. The embedded ROS PC controls
peripherals.

18 • IEEE ROBOTICS & AUTOMATION MAGAZINE • june 2013

as successful had it focused on motors
and sensors. However, connection to
embedded systems is lightly addressed,
with the robot designer having to marry
different kinds of subsystems. Fieldbuses
are not supported.

There are three architecture styles
the robot designer can use to embed
ROS into robots.

Embedded ROS PC
An industrial PC is fitted with motor
control and other cards, and runs ROS/
Linux (Figure 1).

This architecture offers smooth inte-
gration with ROS and the ability to run
other nodes on the embedded PCs. It is
also complicated to configure: Linux
real-time extensions should be installed;

but even so, Linux is not a real-time OS
(RTOS). Frame rates may be limited and
jitter can be excessive. Smart motor con-
trollers can help. Memory should be
locked down to prevent swapping, but
other traps await the unwary.

Proprietary Embedded System
with Custom Interface
A variety of special-purpose embed-
ded systems, some with an RTOS, can
provide a range of control options to
the robot designer. An entire proprie-
tary robot can be managed from ROS
using this kind of control interface, as
shown in Figure 2.

An ROS device node on one of the
ROS systems translates between ROS
nodes and a proprietary interface to the
embedded subsystem, publishing or
consuming messages. It has the advan-
tage that the translation node abstracts
low-level details from higher-level ROS
applications. In addition, the embedded
subsystem can be designed to provide
real-time guarantees. A recent develop-
ment in this area is ros_arduino_bridge,
which enables the device node to get
and set pin data on an Arduino.

ROS Messaging and APIs
Extended to Embedded Systems
The interprocess communication archi-
tecture of ROS is centered on remote
procedure calls (RPCs) with publish/
subscribe support. These are used to
exchange standard or custom messages
between ROS nodes. The robot designer
can use two different approaches to pass
these messages to embedded systems.

Rosserial is an approach, shown on
the right of Figure 3. It provides a proxy
that relays messages over a link to a
C++ client on the embedded system.
The rosserial client on the embedded
system does not depend on an OS, and
provides an ROS-like API to embedded
system software, enabling it to publish,
subscribe, and offer and consume RPC
services. Rosserial is easily ported to any
platform that supports C++. Ports cur-
rently exist for Arduino, embedded
Linux, and Xbee, with wireless and
wired link support. Multiple embedded
systems are supported by using multiple
proxy instances.

Device
Node

Device
Node

Linux PC or PCs
Embedded in Robot

ROS Nodes (Navigation,
Planning, etc.)

ROS Infrastructure

Camera
Drivers

Device
Node

Cameras

Figure 2. Custom nodes control devices and a robot.

Free downloads and evaluation packages

www.reflexxes.com

Reflexes for Robots

Instantaneous &
deterministic reactions
to unforeseen sensor
signals

Smooth motion
generation within
one millisecond

Multi-platform support
(QNX, VxWorks, Linux,
Windows, Mac OS X,
and more)

Free for
academic use

Reflexxes
Motion
Libraries

Robust, reliable, broadly tested,

and utilized by renowned robot

manufacturers.

A second approach, shown on the
left of Figure 3, is enabled by the recent
(alpha) release of the uros package, and
the anticipated release of the rosc
package. Both are written in C and
built for direct connection to Ethernet;
they handle native ROS connections
and messages.

Rosbridge offers a third alternative: a
proxy provides dynamic socket and
web-socket-based access to the full
capabilities of ROS. This allows an
embedded ROS application to interact
with software in the cloud.

The general approach of sending
ROS messages to the embedded sys-
tem brings several important benefits
to robot designers. The embedded sys-
tem can be designed to provide real-
time guarantees for its software, and
may even run an RTOS. Seamless
transport of ROS messages between
higher and lower levels, and a consis-
tent ROS API, makes design easier.
Unified logging eases debugging.

Rosbag can capture and play-back
messages to and from the embedded
systems for better analysis. Tradeoffs
related to rosserial are that the proxy
could be a bottleneck, and the rosserial
client is written in C++. Concerns
related to uros and rosc are that a small
embedded system may be over-
whelmed by the overhead of TCP/IP
and XMLRPC processing.

As you design robots, think about
the advantages and tradeoffs for the
architectural alternatives presented
above. Although the general approaches
are appropriate for many higher-
level frameworks, ROS offers explicit
support that enables them. Choose an
architecture with the right qualities and
make sure the tradeoffs do not hurt
your design.�

E
th

er
ne

t

Embedded
System

Uros

Embedded
System

Rosc

Rosserial
Proxy

Rosserial
Proxy

Linux PC or PCs
Embedded in Robot

ROS Nodes (Navigation,
Planning, etc.)

ROS Infrastructure

Camera
Drivers

Rosserial
Proxy

Cameras

Xbee

Embedded Linux

Se
ria

l ARDUINO

Xbee

Embedded Linux

Se
ria

l ARDUINO

Figure 3. ROS messages passed to embedded system.

19june 2013 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

