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Autonomous and reliable robotic grasping is a desirable func-
tionality in robotic manipulation and is still an open problem. 
Standardized benchmarks are important tools for evaluating 
and comparing robotic grasping and manipulation systems 
among different research groups and also for sharing with the 
community the best practices to learn from errors. An ideal 
benchmarking protocol should encompass the different 
aspects underpinning grasp execution, including the mecha-
tronic design of grippers, planning, perception, and control to 
give information on each aspect and the overall problem. This 
article gives an overview of the benchmarks, datasets, and 

competitions that have been proposed and adopted in the last 
few years and presents a novel benchmark with protocols for 
different tasks that evaluate both the single components of the 
system and the system as a whole, introducing an evaluation 
metric that allows for a fair comparison in highly cluttered 
scenes taking into account the difficulty of the clutter. A web-
site dedicated to the benchmark containing information on the 
different tasks, maintaining the leaderboards, and serving as a 
contact point for the community is also provided.

INTRODUCTION 
Since the first years of life, children learn by experience how 
to grasp objects of different shapes and in different scenari-
os. Thanks to that, for an adult human being, pick and place 
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becomes a mechanical movement, and it is quite easy to 
understand how to grab an object never seen before thanks 
to their own baggage of experience [1]. Nowadays, pick and 
place is one of the most repetitive tasks for human workers, 
and it is also one of the golden standard tasks used to assess 
the capabilities of manipulator robots. Even today, in many 
warehouses, a lot of human pickers stand in front of a shelf 
all the time and repeatedly pick objects from that shelf to 
place them into bins. It appears clear that the automation of 
pick and place actions is a hot topic for industries because it 
would allow increasing the throughput while lowering 
expenses. On the other hand, it is a challenging problem for 
the robotics research community. Even if it is a simple task 
for a human, depending on the boundary conditions, it 
could be difficult for a robot to pick and place objects, espe-
cially when they are in a cluttered environment. For this 
purpose, many technical issues have to be solved. So far, 
there are no autonomous robots able to face the unpredict-
ability of complex industrial environments that can be envi-
sioned in the near future. As happens when a topic becomes 
popular, many solutions have been proposed to tackle this 
issue. Each of them adopts its own workflow and performs 
validation tests on a different set of objects using distinct 
modalities and criteria. For this reason, a unified bench-
mark that provides the guidelines and the set of objects 
enabling reproducibility and comparison across different 
solutions represents an important step to advance the devel-
opments in the area.

Note that evaluating pick and place operations, and in 
general, manipulation tasks, is not easy, since the involved 
pipeline is often complex, encompassing vision, planning, 
control, actuation, sensors, and grasping. Disentangling each 
component is not trivial, and understanding which of them 
gives the most significant contribution to the overall system 
performance is of crucial importance to evaluate and, eventu-
ally, redesign and improve the overall system. In recent years, 
several protocols, benchmarks, and datasets have been pro-
posed to provide a contribution to the community and offer 
tools for the evaluation of autonomous robotic platforms [2], 
[3], [4], but some of them did not use standardized objects 
or scenarios, making the experiments not reproducible or 
comparable; others evaluated just some parts of the complex 
system without taking into account the ensemble [5]; others, 
on the contrary, focused just on the whole system, neglecting 
the single components in favor of the completion of the task 
[6]; and others used stringent protocols that are not effective 
for the unpredictability and flexibility of the future industrial 
scenarios [7]. Furthermore, differently from research fields 
that can be precisely evaluated just on data and simulations, 
for robotics applications, it is important to test the system 
with real experiments on physical objects since simulations 
cannot be considered reliable. An easily reproducible proto-
col and a methodical benchmark that would allow engaging 
a vast community of robotic researchers for the comparative 
evaluation of the results to improve previously developed 
approaches has not been established yet.

This work proposes to bridge this gap by providing the fol-
lowing contributions:

■■ a comprehensive literature survey of existing benchmarks, 
challenges, and datasets employed in the different sub-
problems of the pick and place task

■■ a novel benchmark framework consisting of
•• a selected list of objects to be used in the tests
•• protocols for different tasks that evaluate both the single 
components (vision, planning, control, sensors, and 
grabbing) of the system and the system as a whole

•• an evaluation metric for each of the proposed tasks 
■■ a novel photorealistic dataset developed to mimic the clut-

tered scenes of the proposed benchmark (Figure 1), thus 
containing both rigid and soft/deformable objects and even 
objects filled with liquid that present a complex dynamic, 
which can be useful as a tool for training deep learning-
based vision pipelines

■■ the introduction of a complexity estimation algorithm vali-
dated on the photorealistic dataset

■■ a baseline for one of the tasks
■■ a website at http://cepbbenchmark.eu/ that provides some 

guidelines for the protocols and that allows continuous 
submissions and updated leaderboards.
The proposed protocols span from tasks on individual 

objects for evaluating targeted components of the system to 
heavily cluttered scenes. The experimental setup, the proce-
dures, and the evaluation metrics have been designed aim-
ing at reproducibility without constraining the scenario and 
allowing comparisons among research groups. For this pur-
pose, the novel evaluation metric guarantees a fair compari-
son, leaving some flexibility due to the randomness of the 
scenarios, thus mimicking the unpredictability of the future 
industrial environments.

This work does not introduce yet another completely new 
object set to reinvent the wheel but proposes a selection of objects 
taken from adopted existing benchmarks. The objects in the pro-
posed set have the objective of stressing the components of the 
manipulation pipeline separately and as a system. The objects 
not only present different sizes, shapes, and weights but also 
have diverse rigidity and texture properties that pose difficul-
ties to the grasping and perception part. Having access to these 

FIGURE 1. A possible scenario to face within the benchmark 
with the complete forty-object set.
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objects is important for the experiments since it is not possible to 
have a general overview of the performance relying on simula-
tions only. Through the website, it is possible to find the neces-
sary information to get all the objects used for the benchmark. 
The website will serve as a contact point for other researchers 
who would like to contribute to establishing an active communi-
ty. As the world of robotics is growing very fast, the benchmark 
has been designed to be modular, allowing it to be updated with 
new protocols reflecting new industrial challenges.

The remainder of the work is structured as follows: the 
“Literature” section reviews the existing benchmarks, compe-
titions, and datasets highlighting their scope and limitations; 
the “Design Choices” section describes and motivates the 
objects chosen for the test; the “Guidelines” section introduces 
the guidelines to reproduce the experiments; the “Evaluation 
Metrics” section explains the novel procedure adopted for 
evaluating the performance of the system exploiting a com-
plexity evaluation algorithm trained on the photorealistic 
dataset presented in the “Photorealistic Dataset” section; the 
“Baseline” section depicts the approach used for accomplish-
ing one of the benchmark’s tasks; and the “Conclusions” sec-
tion summarizes the contribution of this work.

LITERATURE 
A robotic system for pick and place in a cluttered environ-
ment typically consists of a manipulation arm, a vision sys-
tem, and objects to be manipulated. Grasping is a complex 
problem since it is a multidisciplinary task that spans from 
the mechatronic design of grippers to higher-level domains 
like perception, planning, and control. The lack of common 
guidelines causes difficulties in quantitatively understanding 
the performances of different systems.

Many related works concentrated on only one of the aspects 
of the manipulation system. The Cornell Grasping dataset [8] 
and VisGraB [9] concentrate on the aspect of manipulation. 
In particular, the former provides data for the manipulation 
task representing antipodal grasps as rectangles aligned to the 
pose of the end-effector, focusing on two-finger grippers only. 
The latter puts attention more on the simulation providing 
open frameworks to compare object manipulation capabilities. 
Although many manipulation activities start from simulated 
environments since simulations can give access to unavailable 
platforms, are intrinsically safe, and facilitate the reproducibil-
ity of the experiment, they are not realistic and fully reliable 
for what concerns the control level and the interaction with 
the objects [10]. Furthermore, most simulations are designed 
for rigid bodies but cannot deal with deformable objects or 
liquids. Unfortunately, unlike perception algorithms or other 
disciplines like navigation and SLAM, robotic manipulation 
cannot be primarily evaluated just on digital data, but real 
experiments on physical objects are necessary for accurately 
understanding the system’s performance [11].

The YCB benchmark [2] responds to the lack of a standard-
ized set of physical objects, selecting a dataset of daily life 
items leveraging studies concerning the rehabilitation of the 
human upper limb. It also proposes an evaluation framework 

and several examples of task protocols where the grasp-
ing aspect of manipulation is preponderant over the vision 
or planning factors, as also suggested by the selected set of 
objects. In addition, the proposed setups do not consider clut-
tered environments of heterogeneous items that are the most 
critical scenario to face for Industry 4.0. The ACRV picking 
benchmark [7] is a recent work that presents a set of 42 physi-
cal objects and illustrates a detailed procedure on how to con-
duct the experiments to be reproducible. Even if it proposes a 
well-defined way to evaluate the complete robotic system, it 
specifies the placement of the objects to guarantee the repro-
ducibility of the experiment.

Mnyusiwalla et al. [3] propose a bin-picking benchmark 
with a protocol, objects, and evaluation system for picking 
fruits and vegetables from a container and placing them in an 
ordered bin. The work uses just a limited number of items, 
not covering all possible manipulation difficulties, and it pro-
poses 15 different scenarios, from very simple to more com-
plex, focusing on a particular type of clutter with a multitude 
of the same object. Morgan et al. [12] introduce a benchmark 
for pick and place inspired by the clinical box and block tests 
used for the evaluation of the upper limb manipulation dex-
terity of physically impaired individuals. Even if the test is 
conducted in cluttered conditions, the items are only square 
bricks of the same size and varying colors. Furthermore, the 
considerations for the experiment are focused just on hand-
shaped end-effectors. Recently, Bekiroglu et al. [4] presented 
a benchmarking protocol for the evaluation of grasp plan-
ning algorithms. They selected seven objects from the YCB 
dataset and described how to set up the workspace and where 
to place the objects. Even this work concentrated mostly on 
robotic hands and was not effective for industrial scenarios, 
since the placement of the objects was too stringent and did 
not consider cluttered cases.

In this discussion, robotics challenges should also be 
taken into account. In recent years they have been a decisive 
way to drive scientific progress. The DARPA Autonomous 
Robotic Manipulation Competition and the IROS Robotic 
Grasping and Manipulation Competition (RGMC) [13] push 
for manipulators with a high degree of autonomy able to 
grasp and manipulate a wide range of object geometries in 
unstructured environments across diverse application spac-
es. In particular, the IROS RGMC was also held during the 
pandemic era due to the SARS-CoV-2 virus in the online 
version with the Open Cloud Robot Table Organization 
Challenge cloud-based benchmark [14], where the partici-
pants uploaded their solutions to a remote server that exe-
cuted the code on remote robot setups. Another example is 
the Amazon Picking Challenge (APC) [6]. It was one of the 
most visible events in the robotic scenario. It was an annual 
competition from 2015 to 2017 that tried to strengthen the 
ties between industry and the research community to real-
ize an autonomous robotic platform for picking objects in a 
cluttered environment.

Even though the competitions have the merit to spur the 
advance of the research, concerning benchmarking and 
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repeatability, they are limited to the participants, use objects 
and setups that are hard to replicate by other researchers not 
involved in the challenge, and evaluate the solutions only at the 
system level, making it difficult to understand which compo-
nent of the complex system contributed most to the success or 
the failure of the task.

The literature review denotes that a lot of work has been 
done to facilitate the comparison of the performance of 
manipulation systems at different levels thanks to datasets, 
competitions, and benchmarks. To summarize, many contri-
butions focus on a single aspect (i.e., perception, planning, 
control, or holding/grasping of objects) of the solution, not 
considering that the orchestration of the single components 
would also be important for a sweet melody; others, instead, 
evaluate the solutions only at the system level, losing a finer 
understanding of which component contributes most to the 
success or failure of the system. If YCB tried to standard-
ize the set of objects, at least for the manipulation aspect, 
much more needs to be done, especially for what concerns 
the practical industrial field and more complex cluttered 
scenarios. Note that most of the works consider the diffi-
culty of the objects in absolute value during their selection 
and sometimes in the scoring phase give more points for the 
more challenging ones. Such a decision can lead to unprec-
ise evaluations and encourage the use of a particular type of 
gripper over others since the difficulty is not in correlation 
to the typology of the end-effector used by the robotic sys-
tem and its perception pipeline or to the arrangements of the 
object in the scene.

It is worth noticing that if the aforementioned works 
have gained a lot of popularity in the research community, 
the protocols they proposed have been rarely adopted by 
other research groups, excluding from this computation the 
manuscripts produced by the same group that proposed that 
benchmark and without taking into account the competitions 
for the reasons already discussed. We found that only one or 
two articles used each of the benchmarks proposed in the lit-
erature at the moment of writing. On the other hand, the vast 
majority of articles that cited YCB [2] and ACRV [7] only 
used the standardized set of objects for their experiments but 
not the protocols, demonstrating that the effort in standard-
izing the object set is perceived as important in the research 
community. The motivations behind the poor adoption of the 
protocols are multiple and diverse for each of the works. Most 
of the protocols proposed in [2] refer to general tasks that are 
not suitable for the specificity of the experimental validation 
required by the research groups. The selected objects in [3], 
[4], and [5] are not representative of the complexity of real-
world tasks without offering a challenging test bench that 
could help to advance the research in the field. In addition, for 
[3] and [5], the set of objects is different from the widely used 
objects proposed in [2] and [7] and too specific for that task. 
Moreover, [4] and [7] decided to constrain the positions of the 
objects to allow a fair comparison in settings that probably 
are not representative of a big audience. The lack of a website 
with a leaderboard or a way to attract interested people work-

ing in the same field to build a community in [3], [4], and [5] 
can also be a big limitation.

The presented benchmark framework proposes objects 
mainly coming from already adopted datasets leveraging 
previous research. The characteristics of the items are taken 
into account during the selection process, evaluating the diffi-
culty that different gripper typologies and vision systems may 
have in grabbing and perceiving them in cluttered situations, 
respectively. The protocol guarantees repeatability and com-
parability but leaves some degree of randomness to emulate 
the unpredictability of industrial environments thanks to the 
evaluation metric that considers the difficulty of the clutter. 
The benchmark proposes several protocols that test the manip-
ulation system at each level, requiring the users to report the 
characteristics of the adopted solution and the causes of each 
failure to better exploit the purpose of a benchmarking system 
in favor of the research community and drive progress. The 
focus of the benchmark proposed in this work is specifically on 
bin-picking in cluttered environments, which is a hot topic for 
the industrial/logicist sector but also for the research commu-
nity in several aspects. However, this work should be intended 
as the starting point to build a globally shared community ori-
ented to the evaluation of industrial protocols enriching the 
benchmark with protocols reflecting the new challenges of the 
future. For example, in the future, it could be interesting to add 
other sensing modalities, e.g., tactile sensing, or to introduce 
human–robot collaboration scenarios to our protocols.

DESIGN CHOICES
The set of objects has been chosen to pose difficulties to the 
end-effector and the perception system. In such a way, the 
hardware design of the gripper and the software level built 
upon it can be evaluated. This benchmark mostly uses the 
objects already present in existing datasets for the different 
subproblems that constitute the manipulation task.

A. GRIPPERS
The most used grippers in manipulation tasks, especially 
when they are related to industrial objectives, are parallel-
jaw grippers, suction grippers, and, for the last few years, 
soft grippers like the universal jamming gripper or pneumat-
ic soft grippers. Magnetic grippers are also simple to actu-
ate, but they are not effective for the tasks discussed in this 
work, since they can pick only ferromagnetic objects. There-
fore, magnetic grippers are not investigated in the following. 
More elaborate solutions like multifingered hands are not 
commonly employed in these kinds of tasks due to their 
hardware complexity and/or the software effort needed to 
control them. However, their interest is also increasing in the 
industrial field, especially in cobotics applications. They 
come with a wider range of hardware characteristics: anthro-
pomorphic and not anthropomorphic, with a different num-
ber of fingers that can be completely actuated or 
underactuated in the form of rigid or soft (continuous or 
articulated) devices. Each of these solutions comes with spe-
cific control strategies for the execution of grasping and 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



IEEE ROBOTICS & AUTOMATION MAGAZINE     MONTH 20236

manipulation actions, resulting in a significant task depen-
dence of the performance that can be achieved [15]. For such 
a reason, it is very challenging to identify a unique bench-
marking framework that can be valid for all state-of-the-art 
technologies. There is an open debate on how to evaluate all 
the pipelines correctly in autonomous manipulation systems 
endowed with hands as end-effectors. Dealing with this 
issue is out of the scope of this work.

B. PERCEPTION 
Vision systems and perception algorithms are related to the 
typology to which the gripper belongs. Procedural algo-
rithms inspect the scene to find geometrical features rele-
vant to the type of gripper employed in the system. In 
particular, antipodal grasping points are suitable for paral-
lel-jaw grippers, planar surfaces are the best for suction 
grippers, and edges or corners are convenient for universal 
jamming grippers. Compared with industrial grippers, arti-
ficial hands come with a wider range of hardware character-
istics, and thus, a rule of thumb to search for the best 
grasping point does not exist.

C. OBJECTS 
Forty objects coming from existing benchmarks and datas-
ets have been chosen. The standardized set of objects of the 
YCB dataset [2] is not enough to test all the components of 
the manipulation pipeline, and therefore, it has been 
enriched with other objects of the ACRV picking bench-
mark from the APC [7] and T-LESS [16]. Changes to the 
objects have been applied only to very few of them to guar-
antee easy availability worldwide to buy them while main-
taining the same original properties. They present 
different levels of difficulty. Indeed, they can vary in size, 
shape, and weight, and have diverse surface materials and 
texture properties. There are objects with reflective, perfo-
rated, or symmetric surfaces that are challenging for the 
vision; others have deformable surfaces or strong orienta-
tion constraints and shift their centers of mass when 
manipulated. All these problems are accentuated in the 
clutter because accurate segmentation and stable grasp are 
more difficult. Table 1 lists all the objects, and for each 
one of them, it shows the original dataset to which the 
object belongs, the level of difficulty assigned for the dif-
ferent grippers, and the final score that will be useful for 
the performance evaluation. The difficulties have been 
assigned through a consensus protocol disseminating 
questionnaires among several colleagues. They were invit-
ed to select a difficulty score among three possible levels 
of difficulty (easy, medium, and hard) for each of the forty 
objects concerning a generic pick and place task using the 
aforementioned grippers (parallel-jaw, suction, and soft) 
without considering issues related to the vision pipeline. 
They had to assign an average score trying to imagine 
multiple scenarios in which a single object could be found 
in diverse configurations ranging from the simplest pose 
to pick to the most challenging configuration. A total of 68 

questionnaires should have been collected according to the 
known formula (1)
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for computing the required sample size to have a confidence 
level z of 90% and an error margin e of 10%, considering that 
the population of the Robotic and Automation Society, N, is 
about 15,000 members. In particular, 75 questionnaires have 
been received from colleagues who have different expertise 
levels on such topics. Analyzing the data, the distributions for 
each of the forty objects and gripper categories follow a uni-
modal profile having the mode being at least 60% of the 
total. The total score for each object is the average of the dif-
ficulties of each gripper and the vision system. The difficulty 
can assume only three different discrete values that go from 
1 to 3, resembling the linguistic variables “easy,” “medium,” 
and “hard,” respectively.

The objects are subdivided into four subsets of ten ele-
ments each (see Table 2). For every subset, the mean dif-
ficulty should be the same for all the gripper typologies 
considered in Table 1, thus preventing the selection of a par-
ticular gripper in favor of the others, relying on the nature of 
the objects.

Table 1 reports the difficulties concerning just the vision 
and the most used industrial grippers, but even other end-
effectors like anthropomorphic hands or other soft grippers 
can be used for this benchmark. For these other grippers, each 
item is considered as having a “medium” difficulty.

GUIDELINES 
Considering the vast robotic applications and the increasing 
attention in always wider fields, it would be overbearing to 
cover all the possible areas of interest and remain relevant 
forever. However, we provide several industrial-oriented task 
protocols that are meant to examine most of the recent needs 
of such an industrial revolution (Industry 4.0) and beyond 
ranging from flexible automation and generalizable grasping 
to cluttered environments.

The benchmark has a modular design and is organized 
in stages that can have intermediate phases. In principle, 
stages are meant to represent an industrial relevant task, 
which is identified by the final phase test, while the inter-
mediate phases of each stage aim at evaluating a specif-
ic subproblem of the manipulation task before getting to 
the final phase test, which puts all the intermediate skills 
together for different objectives. The user can apply for 
each stage independently and even for a specific intermedi-
ate phase using one of the subsets or the full dataset. There-
fore, the website has a leaderboard for every component 
of the stages, separating the results per subset. However, 
stages are presented with an increasing level of complex-
ity and should be addressed following that order and also 
completing the intermediate phases to have a clear picture 
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TABLE 1. Dataset for the Cluttered Environment Picking Benchmark (CEPB).

 OBJECT ORIGINAL DATASET GENERALIZATION

DIFFICULTY

PARALLEL  
JAW SUCTION

SOFT  
GRIPPERS  
(I.E., UJG) VISION TOTAL

1 Cheez-It cracker box YCB obj#1 1 1 3 1 1.5

2 French’s mustard bottle YCB obj#9 3 2 3 1 2.25

3 Tomato soup can YCB obj#10 2 1 3 1 1.75

4 Scissors YCB obj#35 3 2 1 2 2

5 Foam brick YCB obj#57 1 3 1 1 1.5

6 Small clamp YCB obj#46 3 3 2 2 2.5

7 StarKist tuna fish can YCB obj#7 1 1 1 2 1.25

8 Plastic banana YCB obj#11 2 2 1 1 1.5

9 Meat can YCB obj#5 1 2 3 1 1.75

10 Mug YCB obj#31 2 2 1 1 1.5

11 Padlock YCB obj#38 X 2 3 1 2 2

12 Baseball YCB obj#51 X 3 2 3 1 2.25

13 Bowl YCB obj#25 X 3 1 3 1 2

14 Sleeve T-LESS obj#13 X 1 2 1 2 1.5

15 Coca-Cola bottle, half CEPB X 3 3 3 3 3

16 ICRA duckie APC/ACRV obj#1 X 2 3 2 1 2

17 Elmers school glue APC/ACRV obj#20 X 1 1 2 1 1.25

18 Dice YCB obj#58 X 3 1 1 2 1.75

19 Eggs plush puppies APC/ACRV obj#13 X 2 3 3 1 2.25

20 Scotch duct tape APC/ACRV obj#16 X 1 2 2 1 1.5

21 Haribo golden bears CEPB 3 1 3 1 2

22 Plint board* T-LESS obj#14 1 2 1 3 1.75

23 Flat screwdriver YCB obj#43 3 3 2 1 2.25

24 Clamping plate* T-LESS obj#15 1 2 1 3 1.75

25 Coca-Cola bottle, full CEPB 2 2 3 2 2.25

26 Kong duck dog toy APC 2 3 3 1 2.25

27 Spoon YCB obj#27 3 3 2 2 2.5

28 Plastic strawberry YCB obj#12 3 3 2 1 2.25

29 Paper towels CEPB 3 3 3 1 2.5

30 Stabilo OHPen CEPB 2 1 3 2 2

31 Plastic white cup APC/ACRV obj#30 3 3 3 2 2.75

32 Wine glass YCB obj#30 3 3 2 3 2.75

33 Key YCB obj#38 3 3 2 2 2.5

34 Nail YCB obj#40 3 3 2 3 2.75

35 Adjustable wrench YCB obj#44 3 3 3 1 2.5

36 T-shirt YCB obj#70 2 3 3 2 2.5

37 Rolodex jumbo pencil cup APC/ACRV obj#3 2 2 2 3 2.25

38 Glove APC/ACRV obj#22 2 3 3 2 2.25

39 Laugh Out Loud joke book APC 3 1 2 1 1.75

40 Pringles chips can YCB obj#8 1 1 3 1 1.5

41 Timer YCB obj#71

42 Clear box YCB obj#63

43 Clear box IKEA 
obj#SAMLA(301.029.74)

The objects with the generalization mark should be used in stage 2. The difficulty values are easy, medium, and hard. The total difficulty varies from a 
minimum of 1 to a maximum of 3 and is computed as the average among the difficulties for each gripper and the vision system. 
*These two objects belonging to the T-LESS dataset have been replaced with similar objects that can be easily bought.
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of the system’s performance. Each of the proposed task pro-
tocols should be repeated a minimum of three consecutive 
times to be meaningful while balancing experimental time. 
This number has been chosen considering the most recent 
research approaches discussed in the literature review (the 
“Literature” section). Such a compromise allows for test-
ing the robustness of the system and collecting important 
information that can enable a deeper understanding of its 
properties.

The user can conveniently place the robotic platform 
by choosing a desired placement since the success of the 
experimental tests will depend on the reachable work-
space of the arm in each task. The working area must 
be divided into two parts, which hereafter will be called 
working table A for the pick phase and working table B for 
the placement phase. However, they must not necessarily 
be two physically separated tables but could also be two 
clearly distinct regions of the same table. The placement 
is considered successful if the target object is anywhere 
on working table B everywhere unless otherwise specified 
in the task protocol. A box (obj#42 or obj#43 in Table 1), 
which contains the objects, is laid down on working table 
A, whose dimensions can be arbitrarily chosen. Obj#42 
and obj#43 differ just in their dimensions. Indeed, obj#42 
is used for the intermediate tasks in which at most ten 
objects are involved, while obj#43, which is larger, is used 
for the final tasks where the items are employed altogether. 
The system must not have any prior knowledge of the posi-
tion of the objects. It should only know the employed sub-
set. At the end of each task, the user(s) should report the 
time (in seconds) the robotic system employed to complete 

the task, possibly giving the average time spent for the 
perception, grasp planning, and execution. Grasping and 
placing multiple items at the same time is considered an 
error unless specified by the task protocol. Furthermore, 
any external interventions are inadmissible after the robot 
has started moving. Therefore, dropped objects cannot be 
reintroduced.

The following paragraphs introduce the experimental stag-
es that can be executed separately per subset.

A. STAGE 1 

PHASE 1 (VISION):
VISION OF NONSEQUENTIAL INDIVIDUAL OBJECTS 
The items are placed in the middle of the large clear box 
(obj#43) on working table A, and the vision system should 
be able to detect each of them in isolation, regardless of 
their configuration. Every object should be posed in differ-
ent configurations that could vary depending on the 
object’s geometry and its characteristics. Figure 2 gives 
some visual hints. The website documents for each object 
the configurations that should be tested in this stage. In 
this way, each object has to be recognized multiple times. 
The score is determined by the number of objects correctly 
detected in each of their configurations. The detection can 
be 2D or 3D and is considered correct if the intersection 
over union between the prediction and the (manually) 
labeled instance is greater than 0.75, matching the class of 
the item instance. When fails occur, the user(s) should 
report in which displacement it was not able to identify the 
identity of the object.

TABLE 2. Subsets for the CEPB benchmark. 

 SUBSET 1 SUBSET 2 SUBSET 3 SUBSET 4

1 Cheez-It cracker box Padlock Plastic strawberry Plastic white cup

2 Tomato soup can Bowl Haribo Wine glass

3 Plastic banana Sleeve Flat screwdriver Key

4 StarKist tuna fish can Coca-Cola bottle, half Clamping plate Adjustable wrench

5 Scissors Baseball Kong duck dog toy Dice

6 Foam brick ICRA duckie Coca-Cola bottle, full Rolodex jumbo pencil cup

7 Meat can Dice Spoon Nail

8 Small clamp Elmers washable no-run  
school glue

Paper towel Gloves

9 Mug Kygen Squeakin’ Eggs plush Highlighters Laugh Out Loud joke book

10 French’s mustard bottle Scotch duct tape Plint board Pringles chips can
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PHASE 2 (PICKING): 
PICK AND PLACE OF NONSEQUENTIAL  
INDIVIDUAL OBJECTS 
The items are placed in five different positions in the large 
clear box (obj#43) on working table A, and the system 
should be able to pick the target, regardless of its pose. 
The five positions are the middle and the corners of the 
box to check if the manipulator has sufficient dexterity in 
all the workspace. The object’s configurations are those of 
the previous phase. Figure 3 clarifies the concept, provid-
ing a visual example using the same objects depicted in 
Figure 2. The storage system for the place of the target and 
its position in the workspace are arbitrary choices. They 
do not affect the evaluation of the system performance 
and, therefore, can be designed considering the details of 
the robotics setup.

When failures occur, the system user(s) should describe 
the cause of the error. In particular, they should report if the 
failure has happened because the path planning was not cor-
rectly computed or if the hardware was not able to follow the 
path, if the end-effector could not grasp the target, or if the 
object was dropped before the placing. If the item falls out of 
the working table or is broken, it should be reported as well, 
and the object cannot be reintroduced in the pool for a further 
trial. The score is given by the number of objects correctly 
picked and placed in the storage system for each position and 
configuration.

FINAL PHASE TEST (CLUTTER):
PICK AND PLACE OF NONSEQUENTIAL OBJECTS  
IN A CLUTTERED ENVIRONMENT 
The protocol proposes the bin-picking task, where the robot 
should grasp a single arbitrary instance of the specified item. 
The objects used in the intermediate phases of this stage 
should be used in their subsets in a final test that assesses the 
performance of the overall system taking into account 

vision, path planning, and holding of objects at the same 
time. The final stage should be repeated three consecutive 
times. When using the individual subsets, the ten objects 
should be placed in the larger clear box (obj#43) for shaking 
and then thrown gently in the smaller clear box (obj#42) on 
working table A. On the contrary, when using the full subset, 
the objects should be placed in the smaller clear box (obj#42) 
per subset, shaken, and thrown gently in the bigger clear box 
(obj#43) on working table A. The score is given by the num-
ber of objects correctly picked and placed in the storage sys-
tem. When failures occur, the user should report the causes 
of the failures, as it is stated in the aforementioned interme-
diate phases (1 and 2), not specifying, of course, the configu-
ration of the objects since they are determined by the 
randomness of the shake. The user should also report if the 
robotics system is blocked for some reason, trying to pick 
the same target without any progress. In this case, after ten 
attempts, the test is considered concluded, and the score 
counts just the objects correctly placed in the storage system 
until that moment.

B. STAGE 2 
For systems based on neural networks, it is strategic to evalu-
ate the generalization capacities of the perception part, which 
is fundamental for computing the correct pose of the end-
effector to grab the target. For this reason, such systems can 
be trained with all the available objects in the dataset except 
the ones labeled as generalization items (see Table 1). In this 
stage, the system should be able to pick objects that it has not 
encountered during the training phase.

PHASE 1 (UNKNOWN PICKING):
PICK AND PLACE OF NONSEQUENTIAL  
UNKNOWN INDIVIDUAL OBJECTS
This test is similar to picking, but the targets are all 
the  generalization items. When failures occur, the 

(a)

(b) (c)

FIGURE 2. An illustrative example of the orientation configurations for three objects with different geometry and texture properties to as-
sess the performance of the vision pipeline in phase 1 of stage 1. (a) The Cheez-It cracker box has more configurations with respect to 
the other two due to its symmetry along all the three principal axes (x, y, z) and its diversified texture, (b) the tomato soup can has just 
four configurations due to its cylindrical symmetry, and (c) the Kong duck dog toy can only be placed laying on the floor of the box since 
it has only two different stable poses on a table but presents different visual appearances depending on the side it is lying on. 
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system  user(s) should also report if it happens because 
the vision part could not detect the correct pose of the 
end-effector.

FINAL PHASE TEST (UNKNOWN CLUTTER):
PICK AND PLACE OF NONSEQUENTIAL UNKNOWN 
OBJECTS IN A CLUTTERED ENVIRONMENT 
This test is similar to clutter, but the clutter is composed only 
of the objects of subset 2 (generalization items).

C. STAGE 3 
Until now, the stages presented before do not consider a 
precise order for picking the objects, but every robotic sys-
tem can decide depending on their needs. This stage con-
siders a possible application of the manipulation system in 
an industrial environment in which the robot interacts with 
other devices like Programmable Logic Controllers, receiv-
ing information on which target to pick at each time. This 
stage has no intermediate phases but only the final 
stage test.

FINAL PHASE TEST (SEQUENTIAL):
PICK AND PLACE OF SEQUENTIAL OBJECTS  
IN A CLUTTERED ENVIRONMENT 
This test is similar to the clutter test, but the sequence in 
which objects have to be picked and placed is predefined. The 
website also reports the sequence order for all the subsets. 
When failures occur, the system user(s) should also report if 
this happened because the sequence was not respected.

The benchmark is meant to be open to the research com-
munity. The organization of the task protocols in stages allows 
the benchmark to be modular and flexible. Anyone interested 
in contributing to proposing new task protocols should respect 
the general organization of the other task protocols articulated 
in the intermediate phase(s) and the final phase and can share 
their work by contacting the organizers through the website 
http://cepbbenchmark.eu/.

EVALUATION METRICS 
The score of the intermediate phases of each stage (the 
ones  that present the objects in isolation) is computed 

(a)

(b)

(c)

FIGURE 3. (a)–(c) An illustrative example of the position configurations in the box for the same objects presented in Figure 2 to assess 
the dexterity of the manipulator in phase 2 of stage 1. The Cheez-It cracker box (a) has more possible configurations than the other 
two, but to assess the system dexterity, it is sufficient to test fewer orientation configurations. The same consideration applies to all 
objects. It could happen, like in the case of the Kong duck dog toy (c), that many objects that could not stand isolated in the center of 
the box can instead lean on the corners. 
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algorithmically, performing the weighted sum of the total dif-
ficulty of the successfully picked objects. N being the total 
number of objects employed in the experiment, di  being the 
difficulty of the ith item (see last column of Table 1), and di)  
being the difficulty of the ith item that has been successfully 
picked and placed, the score can be formulated as follows:

	 s
d
d

I
i

i

i

N

1

=
)

=

/ � (2)

The score for the final stage tests (the ones in a cluttered 
environment) takes into account the involved objects and the 
difficulty of the clutter. Many related works compute the 
evaluation metric at the system level as /R n N= )  consider-
ing just the amount of objects picked and placed correctly n)  
over the total of the N objects. Only a few other benchmarks 
weigh the score by taking into account the difficulty of the 
objects, but none of them deal with the level of clutter in the 
scene. The weight of each item in the evaluation metric corre-
sponds to its “total” difficulty reported in the last column of 
Table 1. The complexity of the clutter is measured by analyz-
ing the occlusion percentage of the scene that depends on the 
random placement of the objects after the shaking of the con-
tainer. This randomness allows for generating scenes always 
diverse from each other that can reproduce the unpredictabil-
ity of industrial environments.

The evaluation metric is formulated as follows:

	 ( )s s d 1F I i
i

N

1

# c= +
=

/ � (3)

where sI  is computed as formulated in (2) and represents 
the score that can be obtained in a scenario in which all the 
objects are isolated and well separated from each other, 
while c  depends on the clutter percentage (from 0.0 to 1.0) 
denoting the difficulty introduced by the disorder. The fac-
tor c  is computed by summing up the outputs of the sig-
moid function / / ,e1 2 1 1 ( . )x30 0 25+ - +^ ^h h  which, for each 
object employed in the test, takes as input the surface per-
centage x occluded in the clutter. Roughly speaking, the sig-
moid function has been designed to start accounting for the 
additional difficulty of an object introduced by the clutter 
when its surface is occluded more than 10% and saturate the 
contribution of the disorder complexity up to 0.5 when the 
occluded surface is greater or equal to 50%. The algorithm 
used to find out the factor c  is shown in the form of pseudo-
code in Algorithm 1, where the 3D cuboid information from 
the photorealistic dataset is assumed to be known. It is 
worth noticing that at the moment of the performance eval-
uation, the occluded surfaces are computed using the poly-
gons derived from the manual segmentation provided by 
the  users, as also shown in the “Baseline” section. The 
segmentation consists of multipoint polygons that should 
shape the silhouette of the objects, but the objective is to 
employ a neural network to automate the process. Accord-
ing to the latest results reported by the benchmark for 6D 
pose estimation (BOP) benchmark [17], state-of-the-art 
solutions cannot yet achieve a reliable performance in 

reconstructing the 6D pose of the objects in cluttered 
scenes. Indeed, the statistics shown by the BOP benchmark 
reported that the scores suffered from a huge drop even at 
low levels of occlusion, as demonstrated by the 30% gap of 
difference in performance obtained in LINEMODE and 
Occluded-LINEMODE that provides the same objects but 
partially occluded. Estimating the 6D pose of objects is an 
active field with important practical implications, and after 
2018, other works [18], [19] have been published, showing a 
margin of improvement for several aspects. Therefore, the 
authors believe that in the near future, such methods can be 
employed for the proposed benchmark to automatically 
detect the occlusion percentage of cluttered scenes in the 
evaluation metric, but in the meanwhile, manual segmenta-
tion guarantees more accurate measurements.

Of course, the time required by the robotic system to com-
plete the task can affect the score. This benchmark establishes 
two score categories: one with an unlimited amount of time 
at disposal for those who want to concentrate mostly on the 
accuracy of the manipulation task moving the robot at a mod-
erate speed and the other with elapsing time for those who 
want to take into account time constraints moving the robot 
at high speed. For the latter category, the score is computed 
as follows:

	 ( )
( )

s t
s t

max_time
max_time

F
F #

=
-

� (4)

where t is the elapsed time, and max_time is the estimated 
maximum time which is ,N40 2s#  thus giving two possibili-
ties of grasping per object.

    �Data: 3D bounding box for each object cuboid, objects 
difficulties, difficulties 

    Result: ,c  scene_difficulty 
  1  objects = objects used in image I; 
  2  cuboids = 8 x, y, z coordinates of the objects in I; 
  3  polygons = 2D polygons derived from cuboids; 
  4  for each obj in objects do 
  5      cuboidobj = pose corresponding to obj ; 
  6      polygonobj = 2D polygon corresponding to obj ; 
  7      _ ( ( ));max maxdepth cuboid zobj obj=

  8   �   compute the union unionother  of the other polygons for  
  which _ _ ;max maxdepth depthobj other$  
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#c
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ALGORITHM 1: Algorithm used to compute  
the clutter percentage of the starting scene and  
the scene difficulty.
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The proposed score has been tested using the generated 
photorealistic dataset on about 25,000 synthetic scenes, mea-
suring for each subset the mean and the variance of the scene 
difficulty, as reported in Figure 4.

PHOTOREALISTIC DATASET 
The benchmark proposed in this work is also supported by a 
synthetic dataset. The peculiarity of the dataset is the huge 
amount of clutter in many of the scenes compared with 
existing datasets with a similar scope. Furthermore, it pro-
vides three different views of the same scene, seen under 
three different lighting conditions, and seven high dynamic 
range imaging maps for domain randomization purposes. 
The dataset is generated synthetically using 3D computer-
aided design (CAD) models of the selected objects. The 
scenes are photorealistic images of objects inside a clear box 
generated through the Unity 3D engine with the support of 
Flex, a position-based physical simulation library. Thanks to 
this peculiar physical simulation, the clutters contain rigid, 
soft, and deformable objects, and the interaction among the 
different objects is properly resolved. In addition, by assum-
ing some simplifications, even items filled with liquid, thus 
having a complex internal dynamic, are considered, resulting 
in realistic rendering. For each subset, 10,000 scenes have 
been generated for a total of 50,000 (also considering the 

full dataset), and for each scene, the dataset provides the 
RGB and depth image along with the object-oriented bound-
ing box of the involved objects in screen space coordinates 
and in the world (camera) coordinates as a list of eight points 
enclosing the objects and the segmentation and normal 
images. Such information is provided in a YAML file that 
also contains the transformation (translation and rotation) 
between the camera and the ground truth pose of the objects. 
Figure 5 gives some examples.

The synthetic dataset can be useful for training vision algo-
rithms based on deep learning techniques and has been used 
for designing and testing the goodness of the evaluation metric.

BASELINE 
We also provide a baseline for stage 1, the final phase test 
(clutter), with subset 1. For the experiments, we used a recent 
multimodal grasp planning framework for hybrid grippers 
[20]. The approach exploits only geometrical information (3D 
bounding box). The grasp pipeline leverages on Deep Object 
Pose Estimation (DOPE) [18] for extracting the bounding 
boxes and the 6D poses for the objects involved in the scene 
to compute two-finger grasps and suction grasps. DOPE is a 
model-based approach that only uses an RGB image as input. 
First, it estimates the belief maps of 2D key points of all the 
objects in the image coordinate system and then the 6D pose 

of each object instance with a standard 
perspective-n-point (PnP) algorithm on 
the peaks extracted from these belief 
maps. The final step uses the detected 
projected vertices of the bounding box, 
the camera intrinsic parameters, and 
the object dimensions to recover the 
final translation and rotation of the 
object with respect to the camera. 
Starting from the 3D bounding box, 
the upward faces, i.e., the faces that 
point toward the camera, are computed 
for each object. Then, the parallel-jaw 
and suction grasps are synthesized 
using geometrical computations and 
are refined and filtered to get more 
precise and feasible grasps. Finally, a 
scoring mechanism returns the target 
object and the best grasp modality, 
depending on the arrangement of the 
objects in the scene. Figure 6 depicts 
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FIGURE 4. The difficulty distributions for the four subsets computed from 5,000 
photorealistic generated scenes each.

(a) (b) (c) (d) (e) (f) (g) (h)

FIGURE 5. Some information provided for each scene: the scenes seen by the (a) left, (b) middle, and (c) right cameras under direc-
tional lighting conditions; the scenes seen by the middle camera as RGB images (d) with spot lighting and (e) with point lighting, also 
showing the objects’ bounding boxes; (f) the depth image; (g) the normal image; and (h) the segmentation mask.
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the approach schematically. The experiments have been per-
formed using the DLR Hybrid Compliant Gripper (HCG) 
(see Figure 7) mounted as an end-effector of a DLR Light 
Weight Robot (LWR). The HCG has eight degrees of free-
dom (DoF), with each finger equipped with a suction cup at 
the fingertip providing three grasping modalities: 1) two-fin-
ger grasp, 2) single suction grasp, and 3) double suction 
grasp. Each finger has three DoF (one-DoF distal interpha-
langeal and two-DoF metacarpophalangeal joint), and the 
finger’s stiffness can be controlled independently of the posi-
tion. The fingers are mounted on a base that provides an 
additional DoF per finger to tilt them away from the palm, 
enhancing the grasp span up to 260 mm. The maximum 
object weight for a pinch grasp is about 1.5 kg (for friction 
coefficients above 0.75) and about 500 g for one suction cup. 
Figure 7 shows the adopted setup where a Realsense D435 
RGB-D camera looking down at the objects has been 
employed for the vision system.

The average object pose estimation time required by the 
selected vision module DOPE is 1.1 s. The average time for 
the grasp planner to return the grasping pose and modality for 
the next target is 1.8 s. Five, eight, and six objects have been 
successfully grasped in three trials. The main problems were 
related to the 6D pose estimation network, which in heavy 
clutter scenes with the transparent bin does not detect some 
objects at all or makes the wrong orientation estimation, and 
to the collisions with the bin walls. The environmental con-
straints of the bin walls are considered in the space filtering 

check for the two-finger grasps, which leaves few feasible 
grasps for final selection. In addition, to a lesser extent, some 
grasping poses were not kinematically feasible, and the robot 
was not able to grasp the object after moving in the pregrasping  
pose, especially in the corners of the box. The approach used 
for accomplishing the task was always to try to grasp the 
highest object, which is less occluded. However, the task was 
never completely finished since at some point, after remov-
ing the top objects, the pose estimation network detected the 
same wrong pose more than ten times, violating the bench-
mark constraint to proceed further. Figure 8(a) shows the 
initial scenes of the three trials used in the scoring phase to 
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FIGURE 6. A block diagram of the grasping pipeline for two-finger and suction grasp modes. The diagram shows the modularity of the 
design and flow of information. The input images (RGB and depth) are fed to the DOPE backbone network for pose estimation and 
a pose estimation adjustment exploiting the depth image is applied. Then, the grasps are computed, and the two-finger grasps are 
refined using the available CAD models of the object. Grasps are filtered based on some feasibility criteria, and after a scoring stage, 
the best grasp candidate is selected.

FIGURE 7. The setup used for the experiments.
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compute the scene difficulty and the clutter percentage. The 
scores achieved for each trial were 0.95, 1.60, and 1.14, over 
maxima of 1.80, 1.72, and 1.97, respectively, getting the final 
score of 1.22 out of 1.83.

For the sake of completeness, Figure 8(b) depicts the 
images annotated manually for computing the score. It is 
sufficient to segment each object providing its 2D polygon 
(line 7 of Algorithm 1) and the corresponding occluded por-
tion taking into account the depth arrangement (line 10 of 
Algorithm 1). Figure 8(c) shows the data processed by the 
proposed algorithm. Any annotation tool can be used, but 
the authors suggest CVAT (https://www.cvat.ai/), exporting 
the annotation in the coco format.

DISSEMINATION OF RESULTS 
The users interested in competing using this benchmark for 
any of the proposed protocols should register on the website 
http://cepbbenchmark.eu/ and submit their solution. During 
the submission phase, the user is required to report other 
relevant data that are important to more deeply understand 
the strengths and weaknesses of the system and to have a 
detailed overview of the proposed solution. They are

■■ a model of the robot (if it is not a commercial one, a brief 
description of the main features will be appreciated)

■■ the position of the robot with respect to the working table
■■ the typology of the gripper
■■ the hardware and software details of the vision system (i.e., 

RGB or depth-only camera, point cloud, or neural network)

■■ the displacement of the components of the vision system 
with respect to the manipulator

■■ the subset number
■■ the grasping strategy
■■ the motion planning algorithm
■■ the grasping synthesis algorithm
■■ the time spent for the vision and decision-making, plan-

ning, and execution (optional if the system competes for 
the category without time)

■■ the overall time spent (optional if the system competes for 
the category without time)

■■ an image of the clutter at the beginning of the test (only for 
final stage tests)

■■ the score.
A video at its normal speed of the entire test case (including the 
shaking for the clutter tests) is also required as validity checking.

Different leaderboards exist for each phase of each stage, 
with and without considering the time. When the proof of 
the video is validated, the results will be uploaded to the 
leaderboard corresponding to the category for which the 
participant has applied. The website also reports some visual 
clues for a better understanding of how to conduct the tests.

CONCLUSION 
Evaluating and comparing robotic grasping and manipulation 
systems among different research groups to share the best 
practices with the community and learn from errors requires 
standardized benchmarks. After reviewing the existing  
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benchmarks, datasets, and competitions published in the last 
years, the proposed work presents a novel benchmark that 
evaluates the single components of perception, planning, con-
trol, and grasping of the manipulation system and the system 
as a whole with its protocols for different tasks. In addition, 
the benchmark exploits a new evaluation metric that takes into 
account the difficulty of the clutter in the scene depending on 
the objects’ arrangement allowing for a fair comparison with-
out constraining the objects’ placement in fixed positions. The 
task protocols are industrial-oriented and meant to be modular 
to follow the needs spread out with Industry 4.0 covering flex-
ible automation and generalizable grasping. In addition, a 
website dedicated to the benchmark contains information on 
the different tasks, maintains the leaderboards, and serves as a 
contact point for the community. A baseline approach that 
exploits geometrical computation for synthesizing grasping 
points starting from 3D bounding box information provided 
by a neural network demonstrates the complexity of the 
benchmark.

Since the robotic field is evolving very fast and is subject 
to cross-fertilization with other fields of research, it would 
be overbearing to cover all the possible areas of interest and 
remain relevant forever. However, the benchmark is open to 
new opportunities coming from the research community and 
to add new popular tasks and emerging testing procedures fol-
lowing the baseline proposed in this work.
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