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Although robotic grasp planning has been extensively studied 
in the literature, comparing the performance of different 
approaches still proves challenging due to the lack of stan-
dardization in hardware setup and benchmarking protocols. 
This work addresses the issue with a threefold contribution. 
First, it provides a standardized hardware platform and a soft-
ware framework integrating a benchmarking protocol for 
grasp planning algorithms (GRASPA). Second, it uses such a 
framework to benchmark three state-of-the-art algorithms in a 
reproducible way. Third, it employs the framework to investi-
gate the effect of camera pose variance in visual-based grasp 
planning. We show how the proposed benchmarking setup 
can be used to provide insight into the results, not only to 
compare different vision-based grasp planners but also to 
evaluate different parameter configurations within the same 
grasp planner, for instance, camera viewpoint with respect to 
the scene. To ease the reproducibility of our results and usabil-
ity of the platform, we provide extensive information for repli-
cating the experimental setup and installing our software in 
the supplementary material (available at https://doi.

org/10.1109/MRA.2023.3256272). All the software used in 
this article is freely available online in the form of Docker 
images.

INTRODUCTION
Grasping is usually considered a stepping stone for many 
robotic tasks involving manipulation as a means of interaction 
with the environment. Its importance as a research field is piv-
otal to robotics and has seen active study and exploration for 
decades. Nevertheless, comparing the performance of different 
approaches to grasp planning in a rigorous and replicable way 
still proves to be challenging. This can be blamed on the scar-
city of completely replicable benchmarking protocols and a 
lack of standardization in terms of tasks, setups, and metrics.

Despite benchmarks such as Yale-CMU-Berkeley (YCB) 
[1] having gained traction in vision and robotics literature, 
identifying benchmarking tasks and scenarios is still an open 
problem. Competitions such as the Amazon Picking Challenge 
[2] and RoboCup@Home [3] aim at comparing different grasp-
ing strategies in increasingly challenging scenarios, however, 
the tasks themselves are often difficult to reproduce and the 
number of competing teams is typically small. To address 
these limitations, a cloud-based competition [4] was recently  
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proposed to benchmark manipulation algorithms, although 
using a fixed, remote platform could reduce the scenario- 
customization potential.

Even though there are no widely adopted standard protocols 
and platforms for benchmarking grasp planners, recent litera-
ture contains a number of significant contributions. Bekiroglu 
et al. [5] present a method for comparing the performance of 
several grasp planning algorithms, even though the proposed 
metrics do not encompass a way to evaluate the grasp quality 
nor the capabilities of the robot being used. In [6], the authors 
focus on end-effector performance by comparing a number of 
hands and grippers on grasping tasks. Although this work pres-
ents an in-depth benchmark of features like grasp and finger 
strength, it does not factor in robot arm capabilities nor does 
it consider grasp synthesis in its methodology. Concerning 
reproducibility, a reproducible low-cost arm benchmark [7] 
was proposed as a low-cost platform to benchmark grasping 
pipelines. On the one hand, this constitutes a substantial con-
tribution to the needs of the manipulation research community, 
on the other, it carries two main limitations. The first being the 
absence of metrics to evaluate grasp quality, the second being 
the limited range of shapes and sizes in the object set. With 
GRASPA [8], we made our own attempt at addressing the need 
for replicable benchmarking protocols for real robot setups. 
It provides reproducible layouts and a set of metrics to assess 
performance of the overall grasping pipeline and the contribu-
tion of each component. The protocol is adaptable to different 
robotic setups and has been deployed on the iCub humanoid 
robot. At the time of writing this manuscript, GRASPA layouts 
are also being adopted as a base for BURG-Toolkit [9], a set of 
open source tools to further enhance reproducibility of scenes 
for grasp planning tasks.

This article builds upon our previous work with a three-
fold aim. First, it presents and describes a robotic setup and 
software framework compliant with GRASPA specifications 
that can be used for benchmarking of grasp planners. Second, 
it provides a reproducible set of experiments to compare the 
performance of three planners according to GRASPA indi-
ces. Finally, it investigates the impact of camera pose on the 
performance of the grasp synthesis process. To maximize the 
impact on the community, the proposed benchmarking plat-
form is based on hardware currently widespread in the field of 
robotic manipulation, i.e., the Franka Emika Panda robot arm 
and Intel RealSense red, green, blue plus depth (RGB-D) cam-
eras. We also provide a Robot Operating System (ROS)-based 
software framework that can be easily extended to integrate 
and test other vision-based grasp planning approaches.

The “Benchmarking Setup and Platform” section out-
lines the main hardware and software components of our 
replicable benchmarking setup. The “Grasp Planners” 
section briefly describes the three different grasp plan-
ning algorithms that have been benchmarked in this work. 
The “Experimental Data Collection” section explains the 
experimental methodology and details how the data are col-
lected. Finally, in the “Results and Discussion” section, 
such results are presented in the form of GRASPA indi-

ces and discussed in detail. The accompanying document  
provides a step-by-step tutorial to reproduce the proposed robot-
ic platform, install the software, and replicate our experiments.

BENCHMARKING SETUP AND PLATFORM
In this section, we provide an end-to-end overview of the hard-
ware and software platform we propose for benchmarking 
grasp planning algorithms on real robots. Detailed information 
on how to reproduce the experimental setup, install all the 
needed software, and perform experiments is provided in the 
supplementary material (available at https://doi.org/10.1109/
MRA.2023.3256272).

A ROBOTIC PLATFORM
The components of the robotic platform (displayed in Fig-
ure 1) were selected by taking into account the following 
three main aspects:
1) Grasp planners are usually designed to address precision 

picking tasks using manipulators equipped with parallel 
jaw grippers.

2) Visual-based grasp planners are usually designed to con-
sume 2D, 2.5D, or 3D visual data.

3) Individual components must be either already widespread in 
the research community, inexpensive and available in the 
market, or easily manufacturable (e.g., through 3D printing).
We chose a Franka Emika Panda seven-degree-of-freedom 

(7-DoF) robot arm as the manipulator, equipped with the 

FIGURE 1. The proposed robotic platform and experimental setup 
used to benchmark GRASPA. It comprises a seven-degree-
of-freedom (7-DoF) Franka Emika Panda arm, a Franka Hand 
gripper, an Intel RealSense D series RGB-D camera, and a 
custom marker board. The system is controlled via a number of 
open source ROS packages. The experimental setup involves a 
subset of YCB objects used as manipulation targets. 
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default Franka Hand, as the backbone of the platform. An Intel 
RealSense D415 (although other models of the D RealSense 
series are compatible) RGB-D camera was attached to the end 
effector with a custom 3D-printed mount. An additional tripod-
mounted RealSense camera is also used for visual calibration 
assessment (see the “Camera-Calibration Score S1” section). 
The rest of the benchmarking setup comprises a 3D-printable 
marker support structure and printable marker boards.

BENCHMARKING SOFTWARE ARCHITECTURE
Vision-based grasp planning algorithms consume visual 
input data and produce grasp candidates (in the form of end-
effector configurations) to be executed. To reuse as many 
software modules as possible and standardize the pipeline 
(outlined in Figure 2), we designed and implemented a light-
weight software framework to be used for benchmarking on 
the platform defined in the “Robotic Platform” section. Such 
a framework provides

 ■ base Python classes and helper functions for input and out-
put data (respectively, visual data and 6D grasp candi-
dates). It also defines a common interface class whose 
methods can be implemented to wrap existing implemen-
tations of grasp planners. Such methods involve operations 
such as planning grasps given visual data, storing configu-
ration data, or displaying planned grasps in a GUI.

 ■ an ROS node template to expose the functionality of the 
aforementioned Python classes with the rest of the ROS 
pipeline via standardized messages and services.
In this work, we used our framework to integrate and 

benchmark three popular grasp planners: Dex-Net [10], grasp 
pose detection in point cloud (GPD) [11], and 6-DoF Graspnet 
[12]. Additionally, we provide software for each component of 
the grasp planning and benchmarking pipeline (in Figure 2)  
deployed on the proposed robotic platform. Point cloud seg-
mentation is performed by an ROS node, which consumes 3D 
point clouds coming from the RGB-D camera, and filters them 
to separate the object point clouds from the rest of the work-

space. This is obtained by first cropping the input point cloud 
around the robot’s workspace and then fitting a plane with ran-
dom sample consensus iterations to detect and finally remove 
the table surface. The filtered visual data, together with cam-
era parameters (extrinsics and intrinsics), are then passed to 
the grasping benchmark manager’s ROS node whose purpose 
is to ensure coherent communication between the grasp plan-
ners and the motion planning stack through standardized 
service requests. The motion planning stack is a ROS node 
built on top of the MoveIt! framework, and it takes care of 
implementing motion primitives (e.g., homing, grasping, and 
cartesian motion) and exposing them to the rest of the pipe-
line. In particular, its main function is to generate feasible, 
collision-free joint trajectories given 6D goals in the Cartesian 
space. Finally, an ROS node based on the Augmented Reality 
University of Cordoba OpenCV library performs GRASPA 
board detection using RGB images from the in-hand camera 
to estimate the layout pose in the robot’s root reference frame.

GRASPA ON THE PANDA PLATFORM
We employ GRASPA v1.0 [8] as a benchmark for grasp plan-
ners. GRASPA defines reproducible setup conditions, an 
experimental protocol, and a set of metrics to evaluate the 
performance of grasping pipelines, accounting for platform 
limitations that might hinder the overall performance. The 
benchmark specifies a subset of the YCB object set as grasp-
able targets [see Figure 3(a)], selected to encompass a range 
of shapes, dimensions, and challenges. Reproducible experi-
mental conditions are specified in the form of three scenarios 
of increasing complexity in terms of number, shape, and pose 
of the included objects [see Figure 3(b)–(d)]. To ease physical 
reproducibility, each printable layout board (594 × 420 mm, 
A2 standard paper size) includes object “footprints,” as seen 
in Figure 3(e). In compliance with the GRASPA experimental 
protocol, the grasp planner under examination must generate 
and execute a number of grasps for each graspable target 
and ensure grasp stability by performing a trajectory while 

FIGURE 2. A functional diagram of the benchmarking pipeline as deployed on the Franka Emika Panda robotic platform.
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the object is being held. Moreover, GRASPA specifies a 
procedure to evaluate camera calibration accuracy and the 
robot reachability over the marker board workspace to assess 
any limitations of the robotic platform. The benchmarking 
protocol summarizes the performance of grasp planners 
through a number of metrics, reported in Table 1 for ease of 
reference. We recommend consulting the original work [8] 
for further details.

Although the iCub humanoid (used as a platform in the 
original GRASPA article) and the Franka Panda arm are 
very different robotic platforms, there are only two main 
differences when it comes to the benchmarking procedure. 
First, the Panda setup cannot visually assess the position 

of the end effector with the in-hand camera, requiring an 
additional setup-mounted camera (further explained in the 
“Reachability Score S0” and “Camera-Calibration Score 
S1” sections). Second, the Franka Hand has to be inte-
grated in the Simox [13] GraspStudio library to analyze 
the Grasp Wrench Space (GWS) [14] of each grasp. The 
collision engine employed internally by Simox can detect 
only one contact point for each mesh pair, and a hard fin-
ger (point contact with friction) contact model is assumed. 
Given this, and the Franka Hand model comprising three 
meshes, parallel-jaw grasps produce at most two (almost) 
collinear contact normals in simulation. Given the con-
tact model, no torque can be applied by the grasp around 

FIGURE 3. (a) The YCB object subset used in GRASPA and (b)–(d) GRASPA layouts. Each layout can be reproduced by printing the 
marker board, including a set of object footprints (relative to each specific layout). For instance, (e) can be printed to reproduce (b).

(a)

(b) (c) (d) (e)

SCORE SCORE NOMENCLATURE BRIEF DESCRIPTION 

[ , ]S0 0 1k
L !  Reachability score Accounts for whether the object is located in a region characterized by a good reach-

ability of the robot

[ , ]S1 0 1k
L !  Camera calibration score Accounts for whether the object is located in a region characterized by a good calibra-

tion of the vision system 

{ , }S2 0 1k
L !  Graspability score Accounts for whether the object can be physically grasped and lifted by the robot, 

considering its shape and weight 

[ , ]S3 0 1k
L
!  Grasp quality score Accounts for how contacts are distributed on the object by simulating grasp closure in 

simulation and computing the grasp wrench space

[ , ]S4 0 1k
L
! Binary success score Accounts for whether the robot actually managed to grasp the object in real tests

[ , ]S5 0 1k
L
! Grasp stability score Evaluates the stability of the grasp during the execution of a fixed trajectory

[ , ]S6 0 1k
L
!  Obstacle avoidance score (Only in cluttered mode) Accounts for how many objects the robot has hit while exe-

cuting the grasp

[ , ]S 0 2k
L !r  Compound per object score Combines all the scores to evaluate the grasping pipeline performance, taking into 

account any limitation of the robotic platform used in real-world tests

[ , ]S 0 2L !r  Compound per layout score Combines scores for each graspable object in layout L 

TABLE 1. A description of the GRASPA benchmark metrics as defined in [8]. Footer k refers to the kth object in layout L.
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such normals and one dimension of the GWS collapses,  
causing null grasp quality. To address this issue without 
changing the inner workings of Simox, we force multiple 
contacts on each fingertip by splitting the collision mesh 
[Figure 4(b)] to approximate a soft finger contact model. 
This is further discussed in the “Grasp Quality S3” section.

REPRODUCIBILITY
Every part of the benchmarking platform proposed in this 
work has been designed with ease of reproducibility in 
mind. The robot arm, end effector, and cameras have been 
selected for their availability in the current market and 
their large diffusion in the robotics research community. 
YCB objects were chosen in GRASPA due to the set being 
already widespread in the manipulation research communi-
ty. The rest of the physical setup (i.e., marker boards and 
3D printer parts) was designed to be easily manufacturable 
with consumer-grade equipment. All the software for actu-
ating the robot, replicating experiments, and computing 
results is hosted on GitHub and packaged in freely avail-
able and easily deployable Docker containers to minimize 
installation effort by the user. Detailed setup and operative 

instructions can be found in the supplementary download-
able mater ia l available at ht tps://doi.org/10.1109/
MRA.2023.3256272.

GRASP PLANNERS
Given the recent rise in popularity and performance of data-
driven grasp planning approaches, especially when dealing with 
partial views of unknown objects, we focus on benchmarking 
three visual-based planners drawn from the state of the art of 
such a field [15], [16]. We selected Dex-Net [10], GPD [11], and 
6-DoF Graspnet [12] for their impact on the community, state of 
the published code, and adaptability to our framework. Each 
uses visual data to produce an ordered list of grasp candidates, 
ordered using a quality metric specific to the approach. We here-
by provide a brief description of the three planners, highlighting 
their differences (see also Table 2). Unless otherwise stated, we 
use the implementation of each approach provided by the origi-
nal authors.

DEX-NET
Dex-Net consumes visual data in the form of depth maps 
and was originally intended to perform bin-picking tasks in 

cluttered scenes. It requires a setup 
where the camera is mounted on the 
top of the scene, with the image plane 
parallel to the surface, and produces 
4 -DoF plana r g rasps (i .e.,  the 
approach axis is orthogonal to the 
horizontal scene plane) that are 
parameterized with 3D position and 
angle around the approach axis. Dex-
Net has seen different revisions and 
the addition of features in recent years 
(e.g., suction cup instead of a parallel 
jaw gripper structure, or a mix of the 
two with different policies), but at its 
core it is an end-to-end grasping pipe-
line trained on a synthetic grasp data-
base that uses convolutional neural 
networks (CNNs) to extract features 
from depth maps. An example of a 
Dex-Net-generated grasp can be seen 
in Figure 5(a).

FIGURE 4. Grasp quality index values (GWS) for an increasing number of collision 
volumes. To understand the trend, a batch of grasps was evaluated using the S3 GRASPA 
metric while varying the number of contacts on each fingertip. (a) S3 was evaluated for 
each number of contacts on a single grasp (blue line) or on average (red line) of S3 of 
the same grasp pose with random perturbations. (b) The collision volumes (7 × 7 matrix) 
used to model the gripper fingertip. The Tool Center Point reference frame is highlighted 
(approach axis in blue).
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GRASP PLANNER USES DEEP LEARNING INPUT OUTPUT 

Dex-Net Candidate generation, candidate ranking Scene depth map Planar grasps (4-DoF) 

GPD Candidate ranking Scene point cloud (optionally seg-
mented) 

6-DoF grasps 

6-DoF GraspNet Candidate generation, candidate ranking, candi-
date refinement 

Segmented scene point cloud 6-DoF grasps 

TABLE 2. A brief overview of the grasp candidate generators benchmarked in this article. These methods have been 
selected from the state of the art according to their popularity within the research community, code availability and 
usability, and adaptability to the platform considered in this work.
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GPD
This approach detects 6-DoF grasps assuming a parallel jaw 
gripper by consuming visual data in the form of point 
clouds. It works by uniformly sampling the point cloud (that 
can be either partial or complete) and creating a candidate 
in each sampled location by setting the approach direction 
to the surface normal. The grasp candidates are filtered out 
using a list of geometric criteria such as approach direction, 
gripper size, maximum aperture, and desired workspace. 
The quality of each candidate is estimated by considering 
the cloud points that fall into the grasped volume of the 
gripper and projecting them in different ways to obtain a 
tensor that is fed into a simple CNN. The output of the 
CNN is the grasp quality, and it is trained on a number of 
synthetic grasps. An example of a GPD-generated grasp can 
be found in Figure 5(b).

6-DoF GRASPNET
6-DoF Graspnet consumes partial object point clouds to pro-
duce 6-DoF grasps, assuming a parallel jaw gripper. This 
approach exploits a variational auto encoder (VAE) to encode 
the input point cloud in a latent space that is then sampled to 
obtain diverse sets of possible grasps for the target. An evalu-
ator network is used on the samples to obtain a measure of 
grasp quality, which is iteratively improved by performing a 
number of back-propagation passes to align the grasp pose to 
the observed point cloud. The VAE and evaluator networks 
are trained in simulation but are shown to perform very well 
on real-world examples without further fine-tuning. An 
example of the grasp detected by 6-DoF Graspnet is shown in 
Figure 5(c).

6-DoF GRASPNET CANDIDATE FILTERING
The 6-DoF Graspnet implementation provided by the original 
authors generates candidates regardless of scene constraints 
(e.g., table surface and robot workspace). Hence, this is the 
only approach out of the three that often produces unfeasible 
grasps. As GPD and Dex-Net already have built-in mecha-
nisms to avoid this, we add a simple candidate rejection filter 
to 6-DoF Graspnet for the sake of usability and fairness. By 
enclosing the Franka Hand CAD model in a bounding box 

[Figure 5(d)], grasps that would result in a collision with the 
table surface can be detected by checking whether any of the 
box corners are below the marker board height.

EXPERIMENTAL DATA COLLECTION
This section documents the experimental procedure carried 
out to set up the benchmarking platform and collect experi-
mental data from it, following the GRASPA protocol. For 
the sake of clarity, we describe the process for each metric. 
Further details on how the metrics are computed from the 
experimental data can be found in the published GRASPA 
article [8].

REACHABILITY SCORE S0
This score evaluates the precision with which the robot 
attains a set of predefined configurations in the workspace. 
The robot setup was placed in front of the GRASPA board, as 
shown in Figure 6(a), positioning the end effector so that the 
gripper-mounted camera could detect the board pose 

( )T 3SEr b !  with respect to the robot’s reference frame. At 
that point, the robot can move its end effector toward the 
reachability targets and record the reached 6D poses using 
only the direct kinematics.

CAMERA-CALIBRATION SCORE S1
This metric assesses the precision attainable by the robot in 
reaching a given configuration, measured with visual feed-
back. To compute S1, the robot’s Tool Center Point [(TCP) a 
reference point on the hand] must be brought in a fixed array 
of poses over the GRASPA marker board, and the reached 
poses must be assessed visually. On the proposed robotic 
platform, this involves using a second RealSense camera 
(denoted as c2 in this section) because the in-hand camera 
(denoted as c1) is fixed with respect to the TCP. We rig-
idly mount a fiducial marker on the Franka Hand to enable 
detection of the TCP with the tripod-mounted camera c2 (see 
Figure 6). This setup allows the estimation of ,Tb h  i.e., the 
TCP pose in the board reference frame

 ( )T T T T 3   SEb b b
h c

c
h h2

2 !=  (1)

FIGURE 5. (a) The grasp pose examples collected by Dex-Net, (b) GPD, and (c) 6-DoF Graspnet. The check points [in red in (d)] used to 
filter 6-DoF Graspnet candidates.

(a) (b) (c) (d)
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which is the input for computation of S1. It is worth noting 
that, although camera c2 is used to estimate the input for S1, 
the hand-mounted c1 is used to acquire visual data for the 
grasp planning phase, and a miscalibration of the c1 extrin-
sics may lead to inaccurate grasp executions. To show that S1 
is actually evaluating errors in Tc

h
1  i.e., the extrinsic parame-

ters of c1, we can express Tb h  through c1

 ( )T T T T T 3SEb
h

h
b

h
c

c
b

b
h

1
1

1 != =-  (2)

as c1 is used to estimate the GRASPA board pose with 
respect to the TCP ( ) .r 3SEb

T !^ h  Hence, if errors introduced 
by the marker estimation are negligible, Th

c1  is the only 
source of error that can be estimated in this stage.

It is worth noting that because both metrics S0 and S1 require 
guiding the robot’s end effector through the same pose targets, 
data collection for both can be performed at the same time.

GRASPABILITY S2
For a parallel jaw gripper, object graspability is mainly limited 
by the maximum finger aperture, i.e., 0.08 mm for the Franka 
Hand. Any object that does not fit in the fully open hand with 
some orientation is deemed ungraspable by the Panda Hand.

GRASP QUALITY S3
The GRASPA protocol requires that five grasps are comput-
ed by each approach, for each object in each layout. As every 
grasp used to compute GRASPA metrics has to be executed, 
our pipeline queries the grasp plannner for a large number of 
candidates and executes the first kinematically feasible one. 
This ensures that candidates contributing to S3 also contrib-
ute to S4 and S5. It is worth remarking that S3 is computed in 
simulation, and it is not the same metric used by each algo-
rithm to rank the proposed candidates.

As previously discussed in the “GRASPA on the Panda Plat-
form” section, assuming a parallel jaw gripper kinematic and a 
hard finger contact model implies that the GWS volume is lim-
ited by the maximum distance between contact normals. This, 
coupled with the aforementioned limitations of the collison 
engine, causes a need to model the fingertip surface with a large 

number of different collision volumes. At one extreme, using 
a single contact for each fingertip causes the GWS to collapse 
along one dimension. At the other extreme, a large number (e.g., 
100) of contacts for each fingertip exponentially increases the 
time needed for computing collisions and computing the GWS. 
As a tradeoff between the two extremes, we chose to model 
each fingertip with 49 contact volumes (7 × 7 grid), covering the 
whole fingertip pad surface. As shown in Figure 4(a), using 49 
contacts instead of 100 leads to a 5% loss in grasp quality, which 
is an acceptable approximation for this use case.

BINARY SUCCESS AND STABILITY  
SCORES: S4 AND S5
Grasps are planned and executed for objects in isolation (no 
clutter). Grasp stability is assessed by lifting the object and 
moving it through the protocol stability trajectories. During the 
whole process, the force exerted by the gripper fingers is limit-
ed to 10 N to avoid damaging the objects while simultaneously 
applying enough normal force to cause surface friction.

GRASP SYNTHESIS WITH DIFFERENT CAMERA 
VIEWPOINTS
To investigate the effect of the camera pose on the perfor-
mance of vision-based methods, we collect grasp candidates 
from the 6-DoF Graspnet pipeline using four different end-
effector configurations, changing the height and the angle of 
the camera with respect to the GRASPA marker board. Such 
configurations are shown in Figure 7.

FIGURE 6. The Panda arm setup for the computation of metrics 
S0 and S1. (a) An additional camera was mounted in front of the 
robot to visually estimate (b) the end-effector pose.

(a) (b) FIGURE 7. The robot configurations used to investigate the effect 
of camera pose on the performance of the 6-DoF Graspnet 
pipeline. Quantitative results are discussed in the “Results and 
Discussion” section and Table 4. (a) Camera pose 1, (b) camera 
pose 2, (c) camera pose 3, and (d) camera pose 4.

(a) (b)

(c) (d)
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RESULTS AND DISCUSSION
All the experimental data gathered according to the “Experi-
mental Data Collection” section have been processed to obtain 
GRASPA performance metrics, as listed in Table 3. We here-
by discuss these results, using GRASPA indexes to break 
down the overall performance scores of the benchmarked 
approaches. As highlighted by the reachability metric 

[ , ],(S0 0 1k
L !  the higher the better), the robot can easily reach 

the objects over the GRASPA board with a variety of orienta-
tions (Figure 8). Values of the camera calibration metric 
( [ , ],S1 0 1k

L !  the higher the better) confirm that camera cali-
bration is also very reliable. The graspability index S2k

L  shows 
that only one object (i.e., “Master Chef Can”) was left out for 
being too large for the Franka Hand to grasp. Scores S0, S1, 
and S2 are strictly related to the hardware platform and are 
only reported once as all experiments were performed on the 
same setup. Thanks to multiple contacts modeling (the “Grasp 
Quality S3 section”), the grasp quality metric [ , ]S3 0 1k

L !r^ h is 
consistent in range over all objects and never collapses to zero 
as long as force closure conditions are present.

In terms of raw grasp success performance, synthesized 
in S4k

L  and S5k
L  ( [ , ], [ , ]S S4 0 1 5 0 1k

L
k
L! ! , the higher the 

better), all the algorithms seem to be good performers. GPD 
shows the best overall performance, i.e., the underlined val-
ues of [ , ]S 0 2L !r  in Table 3, followed by 6-DoF Graspnet and 
Dex-Net. The gap between Dex-Net and the others is also 
confirmed by analyzing the results on the single objects and 
layouts, i.e., [ , ].S 0 2k

L !r  A possible explanation for this lies 
in the design of the approaches themselves. Dex-Net is a top-
down planner providing 4-DoF candidates whose approach 
axis is always normal to the tabletop surface, while GPD and 

6-DoF Graspnet detect full 6D grasp poses. This is especially 
advantageous for objects that are challenging to grasp from 
the top but are easily graspable from the side. This is particu-
larly evident in the case of the “Mustard Bottle” (cyan cells 
in Table 3), whose cap is thin and slippery. Examples of this 
behavior can be seen in Figure 9. Nevertheless, although GPD 
performs very well in layout 0 and 2, 6-DoF Graspnet shows 
a significant edge over the others in layout 1, as suggested 
by its higher SLr  value. An interesting case to discuss is the 
handling of “Chips Can.” Despite the diameter of the can fit-
ting in the Franka Hand (hence, it is deemed graspable), only 
6-DoF Graspnet can generate good grasp candidates for it in 
any layout (highlighted in green in Table 3). To the best of 
our knowledge, there is no clear explanation for this behavior 
and it suggests further investigation is needed on the matter. 
Possibly, configuration parameters for each algorithm might 
be tweaked to compensate for this shortcoming in ways that  
are not evident in the existing documentation. Interestingly, 
Dex-Net and 6-DoF Graspnet generate the best grasps for 
some of the most challenging objects in terms of size or shape 

FIGURE 8. (a) and (b) Target poses and (c) and (d) the poses 
reached by the Panda arm during reachability tests. The blue 
axis corresponds to the end-effector approach axis (i.e., the axis 
perpendicular to the finger closure direction, passing through the 
center of the end effector), as highlighted in Figure 5(b). Except 
for one pose in (c) and one in (d), both are surrounded by a red 
circle, and the reached poses are close to the targets, showing 
good reachability. (a) Target pose set 0, (b) target pose set 2, (c) 
reached poses for set 0, and (d) reached poses for set 2.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

(e) (f)

FIGURE 9. An example of the grasp candidates used to grasp the 
same objects. (a) and (b) A failed grasp from a Dex-Net candidate 
and (c) and (d) and (e) and (f) two examples of successful grasps 
obtained from GPD and 6-DoF Graspnet, respectively. 
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(highlighted in yellow in Table 3). None of the tested algo-
rithms could, however, generate good candidates for “Ham-
mer” (highlighted in magenta). The small values of S3 (that 
evaluate the GWS) suggest this is caused by the peculiar densi-
ty distribution of the object, corroborated by the fact that none 
of the three grasp planners explicitly evaluates global object 
properties such as center of mass.

We also observed that orientation of the objects has a rel-
evant impact on performance. For instance, GPD obtained 
consistent Sk

Lr  values for “Potted Meat Can” and “Mustard 
Bottle” over the three layouts, while the same cannot be said 
for 6-DoF Graspnet. As all areas of the GRASPA workspace 
can be reached with good accuracy (as demonstrated by the 
metrics S0 and S1), this effect is solely due to variability in 
the relative pose between the object and the camera. In fact, 
for vision-based grasp planners working with a single scene 
view, a variation in object pose is equivalent to a change in 
the camera’s viewpoint as different object parts might pro-
vide different grasps with different quality. To investigate 
this, we considered the difference in GRASPA indicators for 
6-DoF Graspnet candidates generated from a number of dif-
ferent camera poses (Figure 7). Such results are collected in 
Table 4. Considering the overall ,  { , , }S L 0 1 2L L !R r  for each 
of the four tested poses, the performance for poses 2–4 is 
quite similar, while pose 1 proves to be the worst in the set 
by a substantial margin. Nevertheless, the algorithm still per-
forms better in pose 1 in a few cases (highlighted in orange 
in Table 4). Interestingly, despite our results, demonstration 
videos for 6-DoF Graspnet show a low-elevation camera 
pose (similar to pose 1) being used in real-world testing. It 
is worth noting that similar SLr  scores do not necessarily 
guarantee similar Sk

L  scores for all the objects in the layouts 
(highlighted in green). These results confirm the intuitive 
insight that camera point of view affects the performance of 
vision-based grasp planners.

CONCLUSIONS
In this work, we presented an easily deployable framework 
aimed at benchmarking grasp planning algorithms in a repro-
ducible way on a real robotic setup, using the GRASPA 
benchmark. We showed how the framework contributes to 
addressing common difficulties when benchmarking grasp 
planners by reducing the effort required for the integration of 
additional algorithms in the environment, and to providing a 
fully reproducible software and hardware platform. We 
proved the usability of the proposed framework by bench-
marking a selection of state-of-the-art vision-based grasp 
planning approaches (Dex-Net, GPD, and 6-DoF Graspnet), 
and by investigating the effect of a varying camera pose on 
6-DoF Graspnet. Our results demonstrate that GPD is the 
best performer according to the GRASPA indices. We also 
provide experimental evidence that demonstrates that the 
choice of camera pose affects performance in a nonnegligible 
way. It is also important to point out that these results were 
obtained by using the original  implementations of the meth-
ods to be as faithful as possible to the published results. 

Parameters were kept as out of the box as much as possible, 
and every necessary change was made to the best of our 
understanding, given the available documentation. 

In an attempt to target a large portion of the community, 
the robot setup used in this article is compliant with the 
GRASPA benchmark, and it is based on hardware that is 
currently widespread in the field of robotic manipulation. 
All the code used for this article is open source and has 
been packaged in a way that is straightforward to deploy 
and used to reproduce the experiments. The experimen-
tal setup and methodology in this work are meant to be a 
pilot example for the research community, and they can 
be replicated and followed by others to benchmark other 
planning algorithms. Future work involves further devel-
opment of the framework in terms of supported platforms. 
A more advanced contact modeling and grasp simula-
tion can improve quality metrics that are currently a part 
of GRASPA. Finally, GRASPA itself could be used as a 
starting point to create a range of benchmarking scenarios 
and protocols for specific applications and trending topics 
in research (e.g., garbage sorting, bin picking, household 
tasks, and nuclear decommissioning).
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