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Fall detection, particularly critical for 
high-risk demographics like the elder-
ly, is a key public health concern, 
where timely detection can greatly 
minimize harm. With the advance-
ments in radio frequency (RF) technol-
ogy, radar has emerged as a powerful 
tool for human fall detection. Tradi-
tional machine learning (ML) algo-
rithms, such as support vector machines 
(SVM) and k-nearest neighbors (kNN), 
have shown promising outcomes. Howev-
er, deep learning (DL) approaches, notably 
convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), have out-
performed in learning intricate features and 
managing large, unstructured datasets. This 
survey offers an in-depth analysis of radar-
based fall detection, with emphasis on micro-
Doppler, range-Doppler, and range-Doppler-angles 
techniques. We discuss the intricacies and chal-
lenges in fall detection and emphasize the necessity 
for a clear definition of falls and appropriate detec-
tion criteria, informed by diverse influencing factors. We 
present an overview of radar signal-processing principles and 
the underlying technology of radar-based fall detection, pro-
viding an accessible insight into ML and DL algorithms. 
After examining 74 research articles on radar-based fall 
detection published since 2000, we aim to bridge current 
research gaps and underscore the potential future research 
strategies, emphasizing the real-world applications possibility 
and the unexplored potential of DL in improving radar-based 
fall detection.

INTRODUCTION
The global rise in life expectancy, as reported by the World 
Health Organization [1], has led to an aging population and 
increased risk of falls among the elderly. The U.S. Centers for 
Disease Control and Prevention (CDC) [2] estimates that 
annually, one in four older adults in the United States experi-
ences a fall. These falls, as the leading cause of injury among 
older adults [3], [4], contribute significantly to unintentional 
injuries and deaths.

Three decades ago, the National Institutes of Health [5] iden-
tified fractures as the most common serious injuries from falls 
in older persons, making them more susceptible to falls. The 
fear of falling can also reduce the confidence of older adults in 
outdoor activities and their ability to live independently [6]. The 
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CDC reports the annual medical costs related to nonfatal fall 
injuries is about US$50 billion and US$754 million is spent 
related to fatal falls [7]. The growing elderly population and 
subsequent increase in falls could strain health-care systems 
due to resource scarcity. The need for efficient fall-detection 
systems is evident, as prompt detection and reporting of falls 
can significantly reduce associated risks.

Over the years, various methodologies have been devised 
to address this concern, including: 

	■ Sound-based approaches [8], [9], [10], [11], [12] that make 
use of acoustic signals or noises generated during a fall 
event. Microphones or wearable sound sensors detect 
these unique sound patterns, differentiating between regu-
lar noises and those produced by falls.

	■ Motion-based methods [13], [14], [15], [16] that primarily 
use wearable devices equipped with accelerometers or 
gyroscopes. These sensors measure changes in velocities 
and orientations, identifying patterns consistent with falls. 

	■ Vision-based systems [17], [18], [19], [20], [21] that utilize 
cameras to monitor individuals continuously. Through 
image processing and ML, these systems can discern 
between regular movements and falls.
Nonradar sensors, including sound-, motion-, and vision-

based solutions, offer innovative ways to detect falls. Sound 
sensors are ubiquitous and nonintrusive but can generate false 
alarms due to ambient noise [8] and may raise privacy con-
cerns. Motion sensors are compact and respect privacy, but 
they require frequent charging [22] and may cause discomfort 
[23]. Vision sensors are noncontact and benefit from advanced 
computer vision techniques, but they may intrude on privacy 
[24] and could fail to detect falls in case of occlusions [17]. 
Despite their advantages, each sensor type has inherent limi-
tations, often making hybrid systems or combined sensors an 
optimal choice for effective fall detection [25].

Prior surveys on fall detection have been explored. Studies 
[26], [27], [28] focused on motion-based fall detection using 
sensors. Meanwhile, authors [29], [30], [31], [32], [33] observed 
the rise of vision-based detectors and ML while noting per-
formance and privacy issues. Zhang et al. [34] discussed the 
limitations of vision-based techniques and the benefits of 
depth sensors. Xu et al. [35] identified a transition toward RF 
sensor-based methods. Recent reviews [36], [37], [38], [39] 
underscored the need for real-time detection, real fall datasets, 
and privacy preservation, noting the rising use of radar for fall 
detection. These articles provide vital insights into the state and 
challenges of current fall-detection technologies.

RF sensor-based methods for fall detection primarily 
encompass Wi-Fi and radar technologies. While Wi-Fi has 
achieved considerable milestones in this domain [40], [41], 
[42], [43], [44], [45], it falls beyond the scope of this article. 
Radar carries great potential to be one of the leading technolo-
gies in the near future [46], [47]. It is noninvasive and ensures 
privacy since radar devices don’t capture visual images [48]. 
It can detect through obstructions like walls [49], is unaffect-
ed by environmental conditions, such as lighting [48], and 
can operate efficiently in low power [50], [51]. Additionally, 

it provides broad coverage while ensuring continuous moni-
toring [52], [53].

Despite significant advancements in radar sensor technol-
ogy, no prior surveys specifically delve into the evolution and 
potential of radar-based fall detection. While the develop-
ments in radar-based fall detection over the past two decades 
are vast, there remains a void in consolidating this information 
into a comprehensive survey. This article aims to fill that gap. 
To provide a clearer understanding, Figure 1 depicts a concep-
tual representation of a radar-based fall-detection robotic sys-
tem, showcasing how changes in a person’s movements, such 
as falls, can be detected and processed using radar technology.

When selecting articles for our review, we established spe-
cific criteria to ensure the relevance and quality of the studies 
chosen. 1) Our primary focus was on articles that directly tack-
led themes related to “radar fall” in conjunction with terms, 
such as detection and detector. 2) We concentrated on publica-
tions from the past two decades. 3) Emphasis was placed on 
studies that showcased clear methodologies and thorough data 
analyses. We excluded articles that primarily delved into hard-
ware or antenna design. 4) Furthermore, to recognize influen-
tial work, we filtered out articles with fewer than 10 citations 
before 2010 and those with under five citations prior to 2015.

To the best of our knowledge, this is the first survey article 
specifically focused on the two-decade evolution of radar-
based fall detection. The rest of the article is organized as 
follows: The “Understanding Falls” section provides an under-
standing of falls. The “Radar Fall-Detection Fundamentals” 
section discusses radar detection system fundamentals with 
associated techniques. The “Review of Radar-Based Fall 
Detection” section reviews radar-based fall detection in micro-
Doppler, range-Doppler, and range-Doppler-angle approaches. 
The “Discussion” section discusses existing limitations and 
suggests directions for future research. The last section con-
cludes the article.

FIGURE 1. A radar-based fall-detection robotic system. The radar 
device emits waves that interact with the environment. As a 
person moves or falls, the returning wave patterns change. These 
changes are captured and processed by the radar device and 
sent to a computer or screen. The computer processes and 
visualizes the signal data, highlighting the point of a detected fall, 
and triggers an alarm.
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UNDERSTANDING FALLS

THE CHALLENGES OF FALL DETECTION
Detecting a fall precisely is challenging due to its unpredict-
able and sudden nature. A fall can be defined as unintentional-
ly coming to the ground or a lower level without a violent 
blow, loss of consciousness, or sudden paralysis [26], [54], [55].

FACTORS AND VARIABLES RELATED TO FALLS
Extensive research has been conducted into the factors and 
variables causing falls, revealing numerous demographic, psy-
chological, functional, medical, and physical characteristics 
associated with falls. Intrinsic risk factors relate to an individ-
ual’s functional and health status, including muscle strength, 
balance, motion, and sleep disorders [56], [57], [58], [59]. 
Extrinsic risk factors include environ-
mental hazards, such as slippery floors, 
poor lighting, improper use of assistive 
devices, and inappropriate footwear [60]. 
Most researchers conclude that falls and 
recurrent falls result from a combination 
of intrinsic and extrinsic factors. The 
interrelation of these variables and the 
diversity of causes pose significant chal-
lenges to addressing the problem of falls.

CHALLENGES OF PUBLIC DATASETS
Capturing the moment of a fall is diffi-
cult due to the nonperiodic nature of 
falls, leading to a scarcity of public data-
sets for fall incidents, especially real-life 
datasets. A few studies ventured into collecting and analyz-
ing real fall events [61], [62], [63], while others choose to sim-
ulate the behavior of an elderly person [64], [65], [66]. 
Notable datasets in the radar domain—such as studies by Su 
et al. [67], Li et al. [68], Yao et al. [69], and Wang et al. 
[70]—revealed temporal and scene diversity in falls, which 
complicates the process of data collection and annotation.

FALL CATEGORIES AND SCENARIOS
Falls can occur in various settings, including living spaces, 
sleeping quarters, hallways, bathrooms, etc. Activities pre-
ceding a fall can range from transitioning on/off the bed, 
sofa, or wheelchair, walking, bending, dressing, bathing, to 
sitting and standing. Capturing genuine fall incidents is a 
lengthy process that’s both time-consuming and labor-inten-
sive. Given the unpredictable nature of falls, especially 
among the elderly, gathering a sufficient amount of authentic 
fall data for research requires extended periods of observa-
tion. This prolonged data collection process not only 
demands significant time but also incurs high human 
resource costs. Moreover, the ethical implications surround-
ing the collection of real fall data from vulnerable individu-
als, particularly the elderly, further complicates the process. 
It is this combination of ethical concerns and the logistical 
challenges of long-term data collection that underscores the 

reliance on simulated fall data in most existing research. 
Hence, most of the existing radar-based fall-detection 
research relies on simulated actions with data collection 
based on the researchers’ definitions. Upon reviewing estab-
lished radar-based fall-detection research, a recurring issue 
becomes evident: the absence of a standardized measure.

With the inherent challenges in designing and covering all 
potential real-life scenarios due to the limited range of activi-
ties, there’s a pressing call for researchers to aim for realism 
in the collected data, ensuring it accurately mirrors actual fall 
scenarios. A possible approach includes setting up lab environ-
ments that closely mimic real-life settings with similar room 
sizes, furniture, and other elements. We recommend including 
diverse scenarios—dining room, living room, bedroom, and 
restroom—with specific activities defined within each. Partic-

ipants should be encouraged to perform 
their daily movements naturally, and the 
age distribution of participants should be 
broad and not limited to younger individ-
uals. Finally, including individuals who 
require assistive devices like canes, walk-
ers, or wheelchairs can enhance the real-
ism and applicability of the study.

QUALITY METRICS FOR  
FALL DETECTION
To develop a fall-detection system appli-
cable to real-life scenarios, it is crucial to 
minimize the false alarm. Evaluation 
metrics for this system can be derived 
from the realm of binary classification 

statistics, which include accuracy, precision, recall, and the 
F1 score. In this context, “items of interest” correspond to 
falls, with “positive” indicating fall events and “negative” 
indicating nonfall events. A correct prediction is labeled 
“true,” whereas an incorrect prediction is “false.”

To simplify, we can define:
1)	 True positive (TP): A fall event is correctly identified as a 

fall by the device.
2)	 False positive (FP): A nonfall event is incorrectly identi-

fied as a fall by the device.
3)	 True negative (TN): A nonfall event is correctly identified 

as nonfall by the device.
4)	 False negative (FN): A fall event is incorrectly identified as 

nonfall by the device.
Thus, items predicted correctly include TP and TN; items 

of interest predicted encompass TP and FP; and items of inter-
est comprise TP and FN.

Given the likely imbalance between activities of daily liv-
ing and fall samples in fall-detection tasks, accuracy (Acc)  
( ( / ( )) )TP TN TP FP TN FNAcc = + + + +  may not be the  
most suitable performance measure. Precision (Prec) (Prec =  

/ ( ))TP TP FP+  and recall (Rec) ( / ( ),)TP TP FNRec = +  how-
ever, offer more meaningful evaluation metrics.

Precision quantifies the proportion of identified falls that are 
actual falls, emphasizing the reduction of false alarms. A score 

“
THERE’S A PRESSING 

CALL FOR RESEARCHERS 
TO AIM FOR REALISM IN 

THE COLLECTED DATA, 
ENSURING IT ACCURATELY 

MIRRORS ACTUAL FALL 
SCENARIOS.
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of 100% in precision signifies that all system alerts correspond 
to actual fall events. Recall, on the other hand, measures the 
detection rate of all fall events; a score of 100% in recall implies 
perfect detection. It is worth noting that in the ML community, 
recall is more commonly used, while in medical testing and some 
other fields, sensitivity might be the preferred term to describe 
the same concept. For the sake of clarity and consistency, we 
will use the term recall throughout the remainder of this article.

Specificity (Spec) is another important measure and stands 
for the proportion of actual negatives that are correctly identi-
fied. It is defined as / ( ) .TN TN FPSpec = +  While sensitivity/
recall focuses on the correct identification of positive cases 
(falls in this context), specificity ensures the correct identifica-
tion of negative cases (nonfall activities).

The F1 score,  def ined as (( )F1 2 Prec Rec /# #=

( )),Prec Rec+  represents the harmonic mean of precision and 
recall. A perfect F1 score of 1 denotes perfect precision and 
recall. This score drops to 0 if either precision or recall is zero.

RADAR FALL-DETECTION FUNDAMENTALS

RADAR SIGNAL PROCESSING
In this section, we aim to provide a succinct overview of the 
fundamentals of radar signal processing. Our intention is to 
offer nonspecialists in the radar domain a foundational under-
standing, even if it might be cursory in nature. For readers inter-
ested in a more comprehensive and in-depth exploration of radar 
signal processing, we recommend consulting the seminal book 
of Mark Richards, Fundamentals of Radar Signal Processing 
[71]. Radar, originally an acronym for “radio detection and 
ranging,” has become a commonly used noun. Its applications 
can be broadly classified into detection, tracking, and imaging.

PULSED RADAR
In a pulsed radar system, a transmitter dispatches a pulse that is 
then reflected back to the receiver by an object. If the target is at 
distance R, the pulse traverses a total distance of 2R. The 
required propagation time delay is denoted as ,t0  and the dis-
tance to the target can thus be expressed as / .R ct 20=  Here, c 
is the speed of electromagnetic wave propagation in free space. 
The maximum detectable distance by the radar, termed as the 
maximum unambiguous range ,Rmax  corresponds to the furthest 
distance that a pulse can travel back and forth within the contin-
uous transmission pulse interval T, also known as the pulse rep-
etition interval (PRI). The pulse repetition frequency (PRF) is 
the reciprocal of T. Consequently, the maximum unambiguous 
range can be represented as / .( ) / ( )R c c2 2PRI PRFmax $ $= =

Pulsed radars offer several advantages, including long-
range applications and the capacity to measure both range and 
velocity with ease. However, a significant downside is their 
requirement for high peak powers to ensure a satisfactory 
average power.

CONTINUOUS WAVE RADAR
Unlike pulsed radar, continuous wave (CW) radar transmits 
signals uninterruptedly, equating average power with peak 

power. CW radar listens for signal reflections from a target 
while transmitting, necessitating separate antennas for trans-
mission and reception. A fixed-frequency signal is transmit-
ted, and the reflections from objects are received and mixed 
with the transmitted carrier. Like pulsed radar, CW radar 
detects the radial velocity of a moving object, which changes 
the frequency of the reflected signal. If the waveform is 
reflected from a target at distance ,R0  moving at a constant 
velocity v with a radial angle ,i  an arbitrarily time-varying 
range ( )R t  can be defined as ( ) ( ) .cosR t R v t0 i= +  The sec-
ond component introduces a Doppler frequency shift in the 
radar return, which might consist of only a few hertz shifts on 
top of a multigigahertz carrier signal. In addition to overall 
movement, different parts of the target may also exhibit addi-
tional microscale movements, causing further Doppler shifts. 
These are known as micro-Doppler effects and can provide 
valuable information for identifying target characteristics. 
For instance, in Figure 2(a) the natural arm swing of a walk-
ing person generates a distinctive micro-Doppler effect. The 
stronger reflection from the human body, compared to the 
limbs, coupled with time-frequency representation of micro-
Doppler effects, offers a wealth of information.

FREQUENCY MODULATED CW RADAR
While unmodulated CW radar can gauge velocity, it cannot 
measure target distance. To overcome this, frequency modu-
lated CW (FMCW) radar transmits a frequency-modulated 
sinusoidal signal continuously to measure both range and 
velocity. In this case, the frequency increases linearly with 
time, generating a signal also known as a chirp. Figure 3 pro-
vides an example of a transmitted chirp signal and the reflec-
tion from a single detected object.

Similar to CW radar, FMCW radar requires a “mixer” that 
combines the signals from the transmitter and receiver to pro-
duce an intermediate frequency (IF) signal. This frequency 
difference, ,fIF  is known as the “beat frequency.” Its maximum 
value, the IF bandwidth, is dependent on the chip hardware 
performance. For example, the AWR2243 radar device from 
Texas Instruments offers a 20-MHz bandwidth. Assuming the 
chirp’s slope is / ,S 20 MHz sn=  the ideal maximum range is: 

( ) / / / .R c c f S2 2 150PRI mIFmax $ $= = =  Given a target at dis-
tance d from the radar, the IF signal will be a sinusoidal wave 

( ) ( ).sinx t A f t2 0 0r z= +

The IF signal is valid from the moment the receiver (RX) 
chirp arrives, so its initial phase 0z  is .f2 c0z r x=  Where x  is 
the time difference between when the transmitter (TX) chirp 
is transmitted and the RX chirp arrives, and f S0 x= . From 

/d c2x =  and / ,c fcm =  we can further deduce:

	 ( ) .sinx t A
c

S d t d2 2 4
r

m
r= +` j � (1)

Once the frequency /f S d c20 =  of the sine wave at the 
moment of RX reception is known, we can calculate the dis-
tance d to the target. This is applicable for a single target. 
For multiple targets, there will be multiple IF signals, which 
can be distinguished using the fast Fourier transform (FFT), 
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referred to as range-FFT. However, FFT theory suggests that 
the smallest frequency component resolvable within an obser-
vation window Tc  is / .T1 c  Given the bandwidth of FMCW 
radar is ,B f f STcstop start= - =  we can determine the mini-

mum resolvable distance between two targets, or range resolu-
tion / .cR B2res =

In (1), the second component /d40z r m=  shows the change 
in phase. We can discover the velocity information of the tar-
get by sending two chirp signals with time interval .Tc  The tar-
get moves a distance of d vTc=  within Tc  time, and the phase 
change is / .vT4 cTz r m=  Once we know the phase informa-
tion, we can calculate the velocity of the target / .v T4 cTm z r=  
But since the measurement of velocity is based on the phase 
difference, the maximum unambiguous phase difference is ,r  
so our maximum unambiguous velocity is / .v T4max cm=

To differentiate multiple targets moving at the same dis-
tance simultaneously, we need to execute another FFT across 
multiple consecutive chirps, known as velocity-FFT. We define 
the spatial frequency / .vT4 cT~ z r m= =  The term spatial 
frequency refers to the phase-shift across consecutive chirps. 
Suppose we have two targets and the velocity difference is 

.vT  The difference in the spatial frequency corresponding to 
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these two objects is ( / ) .T v4 cT T~ r m=  The theory of discrete 
Fourier transforms tells us that within N consecutive chirp 
cycles, the smallest spatial frequency component that can be 
resolved is / .N2r  We can get the minimum velocity resolution 

/ .v NT2res cm=  N consecutive chirps is called a frame; if we 
define frame time ,T NTf c=  then / .v T2res fm=

In order to get the angle of the target relative to the radar, 
which is also called the angle of arrival (AoA), we need at least 
two RX antennas. We define the distance between two adjacent 
RX antennas as d, and the incident signal reflected from the target 
reaches each antenna with a distance difference of .sind i  We 
can do an angle-FFT along the antenna dimension { , , , },N1 2 f  
and the differential distance result in a phase change in the FFT 
peak. The phase change from the target to the RX antenna 
can be expressed as ( / ) ( / ) / .f t c dd c2 2 2cz r r m r m= = =  The 
phase difference due to sind dT i=  is / .sind2Tz r i m=  We 
can get (( / )).sin d21 Ti m z r= -  Similarly, 
the maximum unambiguous phase differ-
ence is ,r  so our maximum unambiguous 
angle is ( / ).sin d2max

1i m= -  We usually 
choose /d 2m=  when designing antennas, 
because then we can get the largest field-
of-view ( , ).90 90° °max !i -

The angle resolution resi  depends on 
the number of receiver antennas available. 
The larger the number of antennas, the bet-
ter the resolution. Again, we let the spa-
tial frequency be / .sind2T~ z r i m= =  
The term spatial frequency here refers 
to the phase shift across consecu-
tive antennas in the RX array. Suppose 
we have two targets and the AoA dif-
ference is .Ti  The difference in the 
spatial frequency corresponding to 
these two objects is ( / ) ( ( ) )sin sind2T T .~ r m i i i= + -   

( / ) ( ).cosd2 Tr m i i  Similarly, we need /N2T $~ r  and can  
get the minimum angle resolution / / ,cos NdN 2resi m i= =  
when / .d 2m=

ML FOR FALL DETECTION
In recent years, ML has gained prominence as an instru-
mental technique in health care, especially in fall detection 
and prediction among the elderly population [33]. While 
traditional fall-detection mechanisms predominantly utilize 
threshold-based strategies, they exhibit constraints concern-
ing adaptability and precision [74]. In contrast, the data-
driven nature of ML models makes them adapt better to 
various scenarios and individual fall patterns. DL, outside 
of ML, is another subset of artificial intelligence and forms 
the computational foundation for fall detection. ML 
empowers computers to acquire knowledge and execute 
tasks without being explicitly programmed [75], [76]. DL, a 
more specialized category within ML, builds on this by 
leveraging layered architectures that emulate neural struc-
tures in the human brain, enabling nonlinear data transfor-
mations [77], [78].

CONVENTIONAL MACHINE LEARNING
Traditional ML techniques, such as naive Bayes (NB) classi-
fier [79], SVM [80], decision trees [81], K-means and kNN 
[82], and principal component analysis (PCA) [83], have 
served as foundational methodologies in fall-detection 
research. These algorithms, widely recognized for their inter-
pretability and efficiency, have provided reliable results when 
applied to structured datasets. Additionally, they often 
require manual feature extraction, where domain knowledge 
plays a crucial role in achieving optimal performance. The 
choice of a specific ML technique often stems from the 
nature of the data at hand, the desired feature representation, 
and the underlying problem’s complexity. Furthermore, the 
ease of implementation and interpretability of traditional ML 
techniques have made them popular in scenarios where 
understanding the decision-making process is pivotal.

DEEP LEARNING
Emerging as the vanguard of modern 
computational approaches, DL architec-
tures, such as CNNs [84], RNNs [85], 
variational autoencoders (VAEs) [86], 
generative adversarial networks (GANs) 
[87], and adversarial autoencoders 
(AAEs) [88], have marked a transforma-
tive shift in fall detection. Their unique 
ability to automatically learn hierarchi-
cal features from raw data, coupled with 
their proficiency in handling large vol-
umes of unstructured data, make them 
particularly suited for complex tasks 
like analyzing radar signals. These deep 
architectures have been pivotal in 
bypassing manual feature engineering, 

often a cumbersome step in traditional ML. As such, they 
present a more holistic approach, learning both low-level 
and high-level features that are essential for tasks. The 
choice of a specific DL architecture is primarily influenced 
by the dataset’s complexity, the nature of the task, and the 
available computational power. Their adaptability, scalabili-
ty, and proficiency in capturing intricate patterns are instru-
mental in pushing the boundaries of what’s achievable in 
fall detection. Figure 4 shows us the difference between ML 
and DL.

CNNs exploit local data dependencies to minimize learn-
able weights, facilitating the construction of deeper networks 
that recognize intricate features. One-dimensional CNNs 
are suitable for time-series data, with kernels sliding along 
1D, treating different time-series as distinct filter channels. 
Two-dimensional CNNs, on the other hand, are optimal for 
data with multiple features like image, making them apt for 
processing radar-derived data, such as micro-Doppler and 
range-Doppler maps. Finally, 3D CNNs are best suited for 
multidimensional data like radar point clouds, where features 
such as Doppler and/or signal-to-noise ratio serve as unique 
filter channels.

“
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Human activities are performed continuously over time, 
making the temporal dimension crucial for understanding 
behavior. While RNNs excel at processing sequential data, 
they suffer from short-term memory limitations. Advanced 
variants like long–short-term memory (LSTM) and gated 
recurrent units (GRU) address this by learning long-term 
dependencies through additional gates. While RNNs han-
dle hierarchical tree structures, the sequence-to-sequence 
(Seq2Seq) model, using encoders and decoders, struggles with 
longer sequences. The attention mechanism addresses this by 
weighting input significance, and transformers eschew RNNs 
altogether, focusing on multihead attention. Moreover, com-
bining RNNs with CNNs facilitates spatiotemporal process-
ing of data.

Autoencoders, including VAEs, compress data into a 
latent space to uncover underlying features, and can recon-
struct or even generate new data samples. VAEs particularly 
use Bayesian statistics to learn data distributions. On the 
other hand, GANs employ a generator and discriminator to 
produce data samples without assuming a specific distribu-
tion, improving through iterative training until the gener-
ated samples are indistinguishable from real ones. AAEs 
merge VAE and GAN concepts, leveraging adversarial loss 
for flexible distribution choices in the latent space, thus 
comprising an encoder-generator, decoder, and discrimina-
tor setup. For fall-detection applications, especially when 
labeling data is time-consuming, one can consider employ-
ing unsupervised/semisupervised methods using VAEs, 
GANs, or AAEs.

REVIEW OF RADAR-BASED FALL DETECTION
This section presents a comprehensive review of 74 studies 
focused on radar-based fall detection, which utilizes differ-
ent radar data formats, such as micro-Doppler, range-Dop-

pler, and range-Doppler-angles, exemplified in Figure 2. The 
reviewed research are systematically classified into three 
distinct groups based on their unique characteristics. Table 1 
offers a clear categorization of these studies, organizing 
them according to the specific classifiers employed within 
each category. It is important to note that for studies that uti-
lized multiple classifiers or algorithms, only the one that 
reported the best performance is showcased, unless the 
authors explicitly indicate a combination of methods, e.g., 
[46], [89], and [90].

Early studies in fall detection primarily leveraged micro-
Doppler data. However, with the introduction of FMCW 
radar technology, research incorporating range information 
began emerging around 2016. While micro-Doppler remains 
a leading method in fall detection, advancements in printed 
circuit board (PCB) onboard antennas and the evolution of 
multiple-input multiple-output (MIMO) technology have 
steered a rising number of studies toward using range-Dop-
pler-angles data since 2018. The progression of radar data 
types employed in fall detection over the years can be visual-
ized in Figure 5.

While there is extensive research on radar-based human- 
related applications, such as human activity classifica-
tion [52], [53], [151] and pose estimation [48], [152], this 
review does not encompass those studies. Our focus is 
specifically on research that addresses fall detection as 
the primary problem; hence, the reviewed articles must 
either contain the keyword “fall” or primarily tackle the 
issue of fall detection.

FALL DETECTION WITH MICRO-DOPPLER
Micro-Doppler–based fall detection has seen significant 
advancements over the years, all centered around the correla-
tion between Doppler frequency and motion velocity.

FIGURE 4. Distinguishing ML and DL.
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Liu et al. laid the groundwork, using Mel-frequency ceps-
tral coefficients to represent Doppler signatures of human 
activities, employing SVM and kNN classifiers for fall 
detection [92], [106], [107]. Karsmakers et al. [93] improved 
accuracy with a CW Doppler radar and the global alignment 
kernel. Hong et al. [94] addressed nonline-of-sight effects, 
while Liu et  al. [104] developed practical applications for 
senior apartments.

Later studies focused on feature extraction techniques 
and classifiers. Gadde et al. [132] used time-scale–based sig-
nal analysis and the Mahalanobis distance (MD) classifier, 
while Su et al. [67], [108] combined wavelet transform and a 
nearest-neighbor classifier for improved results.

DL entered the scene with Jokanović et al. [112], [128] 
employing PCA and stacked autoencoders. Amin et  al. 
[46], [47] advocated for elderly-specific radar monitor-
ing algorithms and a larger fall data repository. The use of 
CNNs gained traction with Zhou et al. [113] and Yoshino 
et al. [118] achieving high accuracies. Seyfioğlu et al. [129] 
implemented a deep convolutional autoencoder (CAE) for 
classifying micro-Doppler signatures. Sadreazami et  al. 
[110], [114], [115], [116], [117], [122], [125] experimented 
with various network architectures, while Anishchen-
ko et  al. [119] improved reliability with two radars at a 
90° angle.

Recent work by Lu et al. [131] and Chen et al. [111] explored 
three-stage fall-detection approaches, reducing power con-
sumption and improving detection. Studies by Wang et al. 
[70], [123] focused on signal processing and soft-fall detection. 

Shah et al. [130] achieved an accuracy of 88% using an autoen-
coder. The latest research by Saho et al. [124] used two Dop-
pler radars installed in a restroom, highlighting the continuous 
evolution of micro-Doppler–based fall detection, moving from 
foundational exploration toward practical, real-world applica-
tions with improved accuracy.

Micro-Doppler–based fall detection has progressed from 
using basic classifiers to advanced DL models, enhancing 
accuracy and practicality. The work began with SVM and 

CATEGORY THRESHOLD SVM BAYES KNN LDA SVDD PCA BPNN CNN* RNN** AE*** GAN OTHER

Micro-Doppler [91] [92] 
[93] 
[94] 
[95] 
[96] 
[97] 
[46] 
[98] 
[99] 
[100] 
[101] 
[102] 
[103] 
[104] 

[105] [106] 
[107] 
[67] 
[46] 
[108] 
[109] 
[110] 

[111] [112] [113] 
[114] 
[115] 
[116] 
[117] 
[118] 
[119] 
[68] 
[120] 
[121] 
[122] 
[123] 
[70] 
[124] 

[125] 
[126] 
[127] 
[121] 

[128] 
[129] 
[130] 

[131] [132] 
[133] 
[111] 

Range-Doppler [172] 
[134] 
[135] 
[89] 
[136] 

[89] 
[137] 
[138] 
[139] 

[90] [90] [140] 
[90] 

[131] 
[142] 
[143] 
[144] 

[145] 
[143] 

[146] 

Range-Doppler-angles [147] [148] [73] 
[69] 

[149] [150] 

Bayes: Naive Bayes or sparse Bayesian classifier; BPNN: back propagation neural network, shallow neural networks; LDA: linear discriminant analysis; 
SVDD: support vector data description. “Other” refers to quadratic discriminant analysis, adaptive boosting, decision tree, logistic regression, and/or 
Mahalanobis distance classifier. 
*Deep CNNs, and variants including ResNet, AlexNet, VGG, inception, DenseNet, etc. 
**Deep RNNs, and variants including LSTM, GRU, Seq2Seq, attention, transformer, etc. 
***Including AE, VAE, and AAE.

TABLE 1. Categorization of reviewed publications based on radar data formats and the classifiers.

FIGURE 5. Temporal evolution of radar data types utilized in  
fall-detection research.
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kNN classifiers, and has evolved to include the use of CNNs 
and GANs. Sensor configurations and fusion techniques 
have improved system performance, with multiple radars and 
sensor types reducing false alarms. Emphasizing real-world 
applications, like systems for senior apartments, demonstrates 
the system’s maturity and readiness for deployment. Despite 
challenges, like nonline-of-sight effects and data distortion, 
the advancements in this field are promising for creating 
robust, efficient fall-detection systems. Future research should 
focus on these issues while exploring new DL techniques and 
sensor configurations. Table 2 is a summary for fall detection 
with micro-Doppler.

Please note that, in our discussion in the “Quality Met-
rics for Fall Detection” subsection, we emphasize the impor-
tance of precision, recall, and the F1 score as performance 
metrics for fall-detection systems. However, the metrics 
reported in the reviewed articles varied. To make the per-
formance metrics consistent: 1) for articles with a provided 
confusion matrix, we computed the precision, recall, and F1 
score directly. 2) In cases where sensitivity was mentioned, 
we treated it synonymously with recall while opting to over-
look the specificity. 3) When precision and false-alarm rate 
were present, we deduced the recall and subsequently cal-
culated the F1 score. 4) For instances where only accuracy 
(most frequently in classification tasks where a fall is one 
among multiple classes) or the area under the receiver oper-
ating characteristics curve was reported, we maintained the 
results as presented in the original studies. Even though we 
make these efforts, inconsistencies in Tables 2–4 are still 
inevitable. We believe that with the broader adoption of stan-
dardized metrics in the field, such inconsistencies will be 
reduced in future research.

FALL DETECTION WITH RANGE-DOPPLER
Radar signals in the time-frequency domain reveal velocities, 
accelerations, and Doppler terms of human body parts in 
motion [154]. These signals, combined with range informa-
tion, allow for accurate positioning and movement tracking.

Stepped-frequency CW (SFCW) radar, fixed both on the 
wall and on the ceiling, measures position and speed and 
has been deemed suitable for fall detection and vital signs 
detection [154]. Studies have found characteristic signal 
changes when falls occur, distinct from regular walking [72],  
[154], [155].

The integration of textural-based feature extraction 
methods, wideband radars, and SVM have been shown to 
optimize false-alarm problems in radar fall-detection sys-
tems, achieving 95% accuracy [72]. Utilizing range-Doppler 
radars and DL, researchers have achieved a success rate of 
97.1% in minimizing false alarms [146]. Notably, this is the 
first article to use radar cross-section information for fall 
detection [155].

Researchers have shown that data fusion of two ultra-
wideband (UWB) radars using different fusion architectures 
improves performance and reduces false alarms, with multi-
sensor feature-level fusion yielding the best results [89]. Other 

methods include using a terahertz FMCW radar to extract fea-
tures and analyze with different classifiers [140], and using 
deformable deep CNN with a one-class contrastive loss func-
tion achieving an accuracy of 99.5% [141]. Finally, the use of 
RadarNet, a structure of CNN followed by inception modules, 
has shown an accuracy rate of 98% in target classification for 
people or dogs [144].

In conclusion, the application of range-Doppler in fall 
detection has made significant progress, utilizing diverse 
radar technologies and advanced ML techniques. Integration 
of ML methods has improved accuracy and reliability, while 
innovative approaches like radar cross-section information 
and sensor data fusion have reduced false alarms. Continued 
efforts are needed to enhance system robustness and adapt-
ability. Please refer to Table 3 for a summary of fall-detection 
methods with range-Doppler.

FALL DETECTION WITH RANGE-DOPPLER-ANGLES
FMCW radio’s use of dual antenna arrays permits spatial 
separability, enabling differentiation of reflections at var-
ied elevations.

RANGE-ANGLES HEATMAPS
Aryokee, proposed by Tian et al. [73], combines FMCW 
radar and spatiotemporal CNNs to distinguish fall and stand-
up actions, delivering a recall of 94% and a precision of 92%. 
Sun et al. [149] achieved superior performance using LSTM 
over 3D CNN for processing range-angle heatmaps.

Ding et al. [147] used millimeter wave FMCW radar and 
kNN for fall classification in a 3D coordinate system. Su et 
al.[157] employed a hybrid radar and AoA estimation to calcu-
late biometrics and detect falls, regardless of the fall direction.

Yao et al. [69] utilized three neural networks for feature 
extraction from FMCW radar-generated maps, achieving 
a recall of 98.3% and precision of 97.5%. These approaches 
highlight the utility of range-angle data in radar-based fall 
detection. Refer to Table 4 for a summary.

THREE-DIMENSIONAL POINT CLOUD
Jin et al. [150] introduced an unsupervised fall-detection 
method, mmFall, that uses a variational RNN autoencoder 
(VRAE) for point-cloud analysis, achieving a 98% fall-detec-
tion rate. Liang et al. [148] leveraged radar point clouds for 
human pose identification and 4G technology for data visual-
ization on a cloud platform. These works underscore the 
potential of radar point clouds in accurate fall detection. 
Refer to Table 5 for a summary.

FMCW radar, combined with ML techniques, has shown 
significant potential for accurate fall detection. Key methods 
include range-angle heatmaps and 3D point-cloud data, which 
effectively discern falls. Performance is further improved 
through algorithms like spatiotemporal CNNs. Additionally, 
hybrid technologies and unsupervised learning methods pres-
ent innovative opportunities for this field. As research contin-
ues, these techniques are expected to advance, leading to more 
reliable fall-detection solutions.
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ARTICLE RADAR CLASSIFIER SUBJECTS MOTIONS PERFORMANCE 

Liu et al. [106] Doppler kNN 3 109 falls, 341 nonfalls AUC = .974

Liu et al. [107] Doppler kNN 3 109 falls, 341 nonfalls AUC = .979

Liu et al. [92] Doppler SVM 2 216 falls, 1,158 nonfalls AUC = .996

Karsmakers et al. [93] Doppler SVM 2 Four activities, 60 examples Acc = 95%

Hong et al. [94] Doppler SVM — Four activities, 80 examples AUC = .964

Wu et al. [95] Doppler SVM — Three activities, 30 examples Acc = 100%

Liu et al. [104] Doppler SVM 1 72 falls, 98 nonfalls AUC = .98

Gadde et al. [132] Doppler MD 2 10 falls, 10 nonfalls Prec = 100%, Rec = 100%,  
F1 = 100%

Rivera et al. [133] Doppler MD 2 Eight activities, 80 examples Prec = 100%, Rec = 97.5%, 
F1 = 98.7%

Garripoli et al. [96] Doppler SVM 16 Four activities, 65 falls Prec = 100%, Rec = 100%,  
F1 = 100%

Su et al. [67] Doppler kNN 2 105 falls, 990 nonfalls AUC = .96, Rec = 97.1%

Wu et al. [105] Doppler Bayes 2 Eight activities, 80 examples —

Jokanović et al. [97] Doppler SVM 2 Five activities, 32 falls, and 32 nonfalls AUC = .938

Amin et al. [153] Doppler - — 20,000 samples —

Amin et al. [91] Doppler Threshold 5 20,000 samples Rec = 87.5%

Jokanović et al. [112] Doppler PCA — Four activities, 60 examples Acc = 90%

Jokanović et al. [128] Doppler AE — Four activities, 120 examples Acc = 87%

Amin et al. [46] Doppler SVM, kNN 1 19 types of falls, 14 types of nonfalls Prec = 100%, Rec = 82%

Liu et al. [98] Doppler SVM 6 Real-life senior resident activities 2/week false alarms,  
Rec = 100%

Shrestha et al. [99] FMCW SVM 6 Seven activities Acc = 94%

Li et al. [100] FMCW SVM 16 10 activities Acc = 91.3%

Su et al. [108] Doppler kNN 1 Real-life senior resident activities 8.6/day false alarms,  
Rec = 100%

Seyfioğlu et al. [129] Doppler CAE 11 12 activities Acc = 94.2%

Sadreazami et al. [125] UWB LSTM 5 121 falls, 85 nonfalls Prec = 95%, Rec = 88.5%,  
F1 = 91.6%

Erol et al. [109] Doppler PCA 14 Six activities Rec = 97%

Zhou et al. [113] Doppler CNN 3 Four activities Acc = 99.85%

Sadreazami et al. [114] UWB CNN 5 121 falls, 85 nonfalls Prec = 94.2%, Rec = 93.4%, 
F1 = 93.8%

Sadreazami et al. [115] UWB CNN 5 121 falls, 85 nonfalls Prec = 96.1%, Rec = 96.7%, 
F1 = 96.4%

Sadreazami et al. [116] UWB CNN 10 187 falls, 149 nonfalls Prec = 96.2%, Rec = 90.9%, 
F1 = 93.5%

Sadreazami et al. [117] UWB CNN 10 1,870 falls, 1,490 nonfalls Prec = 93.6%, Rec = 90.4%, 
F1 = 92%

Yoshino et al. [118] Doppler CNN 10 Two types of falls, two types of nonfalls Prec = 95%

Li et al. [101] FMCW SVM 16 Six activities Acc = 87.3%

Anishchenko et al. [119] Doppler CNN 5 175 falls, 175 nonfalls Prec = 100%, Rec = 98.6%, 
F1 = 99.3%

Alnaeb et al. [102] Doppler SVM 5 50 falls, 50 nonfalls Acc = 100%

Li et al. [126] FMCW LSTM 16 Six activities Acc = 96%

Li et al. [68] FMCW CNN 14 12 activities Acc = 84%

TABLE 2. Fall detection with Micro-Doppler.

(Continued)
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DISCUSSION
Micro-Doppler methodologies have become prominent in 
fall-detection research, largely because they easily extract 
signatures from radar analog-to-digital conversion raw data, 
present this data as images suitable for image processing 
techniques, and benefit from the early development of Dop-
pler radar technology. Moreover, radar’s most significant 
strength is the measurement of velocity. The integration of 
range information in 2016 was a pivotal development, facili-
tating superior target distinction and noise reduction capa-
bilities. This breakthrough revitalized interest in the field 
and prompted further research efforts. Afterward, the 
MIMO technology and the advent of PCB-integrated anten-
nas have significantly enhanced radar’s capabilities, partic-
ularly in achieving 3D spatial resolution. This has led to an 
upsurge in interest in range-Doppler-angles radar since 
2018. Researchers are exploiting range-angle data, either 
through preserving original information via range-angle 
maps or using advanced 3D point-cloud data for efficient 
real-time detection.

While radar-based methods for fall detection offer prom-
ising outcomes, it is crucial to acknowledge their challenges 
and limitations: 

	■ Environmental factors: Radar sensors can be affected by 
environmental factors, such as interference from other 
electronic devices, and metal materials. 

	■ Calibration and setup: Proper calibration is crucial for the 
effectiveness of the radar system. Changes in room layout 

or the introduction of new large objects can affect the sys-
tem’s performance. 

	■ Hardware limitations: The resolution of radar sensors 
can be affected by the hardware’s quality and capability, 
and is relatively low. Higher-resolution systems often 
come at a higher cost, posing challenges in large-scale 
implementations. 

	■ Real-world applications: Despite experimental successes, 
transitioning these advancements to reliable real-world 
applications is an ongoing challenge. The variance 
observed between laboratory and real-world outcomes 
accentuates the need for bridging this gap.
Potential strategies for enhancing the efficacy of fall-

detection systems involve a multifaceted approach tailored 
to specific application scenarios. It is crucial to select radar 
sensors that best match the desired performance criteria, such 
as optimal working distance, frame rate, and field-of-view. 
Depending on the room’s layout and purpose, strategically 
placing sensors in locations that can easily capture fall events 
is essential. Defining the detection range and learning from 
known interference sources to apply area masking can further 
optimize detection. Moreover, customizing user parameters 
and establishing methods for device recalibration are valu-
able steps toward precision. Exploring techniques like life-
long/continual learning can help the system adapt over time, 
refining its performance based on continuous data ingestion. 
Periodically updating the system based on user feedback 
ensures that it remains responsive to real-world challenges 

ARTICLE RADAR CLASSIFIER SUBJECTS MOTIONS PERFORMANCE 

Sadreazami et al. [110] UWB kNN 5 Six activities Prec = 94.3%, Rec = 100%, 
F1 = 97.1%

Chuma et al. [120] Doppler CNN 6 Five activities Acc = 99.9%

Maitre et al. [121] UWB CNN-LSTM 10 60 falls, 600 nonfalls Acc = 90%

Lu et al. [131] Doppler GAN 3 14 activities Prec = 91.8%, Rec = 93.3%, 
F1 = 92.6%

Sadreazami et al. [122] UWB CNN 10 187 falls, 149 nonfalls Prec = 98.4%, Rec = 94.4%, 
F1 = 96.28%

Hanifi et al. [103] Doppler SVM 10 543 falls and 675 nonfalls Prec = 88%, Rec = 87%,  
F1 = 88%

Chen et al. [111] UWB SVDD, MD 11 Nine activities Prec = 99.6%, Rec = 97.6%, 
F1 = 98.6%

Wang et al. [123] UWB CNN 9 Three activities Prec = 91.7%, Rec = 95.7%, 
F1 = 91.9%

Shah et al. [130] FMCW AE 99 Six activities Acc = 88%

Wang et al. [70] FMCW CNN 12 29 activities Rec = 95.8%

Imamura et al. [127] Doppler LSTM 2 Six activities Prec = 95.2%, Rec = 96.6%, 
F1 = 95.9%

Saho et al. [124] Doppler CNN 21 Eight activities Acc = 95.6%

Acc (accuracy): Represents the proportion of samples that are correctly predicted out of all of the samples. AUC: Represents the area under the 
receiver operating characteristics curve. Prec (precision or positive predictive value): Of the samples predicted as positive, the proportion that are 
actually positive. Rec (recall or sensitivity or true positive rate): The proportion of actual positive samples that are correctly predicted as positive by 
the model. 

TABLE 2. (Continued.) Fall detection with Micro-Doppler.
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and maintains user trust. Additionally, the fusion of data from 
multiple sensors offers a broader perspective, enhancing the 
system’s accuracy and robustness in diverse conditions.

While implementing these strategies promises a more reli-
able and efficient fall-detection system, the foundation of such 
advancements lies in robust research methodologies. This 

ARTICLE RADAR CLASSIFIER SUBJECTS MOTIONS PERFORMANCE 

Mercuri et al. [154] SFCW — 1 Three activities —

Erol et al. [72] UWB SVM 4 Four activities,  
106 samples

Prec = 97.7%, Rec = 94.7%, 
F1 = 96.2%

Peng et al. [155] FMCW — 1 Three activities —

Erol et al. [134] UWB SVM 4 Four activities,  
106 samples

Prec = 99.6%, Rec = 99.6%, 
F1 = 100%

Wang et al. [156] SFCW — 1 Two activities —

Erol et al. [135] UWB SVM 4 25 falls, 47 nonfalls Prec = 100%, Rec = 95%,  
F1 = 97.5%

Erol et al. [89] UWB kNN, SVM 3 Four activities Prec = 97%, Rec = 95%,  
F1 = 95.9%

Jokanović et al. [146] FMCW AE 3 Four activities, 117 falls,  
and 291 nonfalls

Prec = 88.2%, Rec = 78.9%, 
F1 = 83.4%

Erol et al. [137] UWB kNN 6 Four activities Prec = 99.1%, Rec = 96.6%, 
F1 = 97.9%

Ding et al. [138] FMCW kNN 3 Six activities Acc = 95.5%

Ding et al. [139] FMCW kNN 8 Six activities Acc = 91.9%

He et al. [140] FMCW BPNN 10 300 falls, 300 nonfalls Prec = 84.3%, AUC = .932

Erol et al. [90] FMCW PCA, LDA, BPNN 14 Five activities Acc = 97.2%

Shankar et al. [141] FMCW CNN 8 302 falls, 942 nonfalls Acc = 99.5%

Bhattacharya et al. [144] FMCW CNN 2 Three activities —

Wang et al. [142] FMCW CNN 11 Four types of falls,  
three types of nonfalls

Rec = 99.6%, Acc = 98.7%

Ma et al. [143] UWB CNN-LSTM 5 Six activities Rec = 98%, Acc = 95.8%

Liang et al. [145] FMCW LSTM — 100 falls, 300 nonfalls Prec = 98.9%, Rec = 99%,  
F1 = 99%

Ding et al. [136] FMCW SVM 3 Six activities Acc = 95%

TABLE 3. Fall detection with range-Doppler.

ARTICLE RADAR CLASSIFIER SUBJECTS MOTIONS PERFORMANCE 

Tian et al. [73] FMCW CNN 140 40 activities Prec = 91.9%, Rec = 93.8%, F1 = 92.9%

Sun et al. [149] FMCW LSTM 1 Seven activities Prec = 100%, Rec = 93.6%, F1 = 96.7%

Ding et al. [147] FMCW kNN 5 150 falls, 150 nonfalls Acc = 91.2%

Su et al. [157] CW — 1 Three activities —

Yao et al. [69] FMCW CNN 21 12 types of falls, 52 types  
of nonfalls

Prec = 97.5%, Rec = 98.3%, F1 = 97.7%

TABLE 4. Fall detection with range-angle heatmaps.

ARTICLE RADAR CLASSIFIER SUBJECTS MOTIONS PERFORMANCE 

Jin et al. [150] FMCW VAE 2 50 falls, 200 nonfalls Prec = 96.1%, Rec = 98%, F1 = 97%

Liang et al. [148] FMCW BPNN — Two activities Prec = 96%, Rec = 94.1%, F1 = 95.2%

TABLE 5. Fall detection with 3D point cloud.
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involves rigorous data-collection protocols, consistent statisti-
cal analyses, and emphasizing results reproducibility. Equally 
important is the disclosure of specific radar parameters, 
including frequency range, power levels, and antenna speci-
fications, which can greatly impact results. Promoting the 
sharing of datasets not only enables peer verification but also 
facilitates cumulative scientific understanding. Adherence 
to standardized assessment benchmarks, such as precision, 
recall, and F1 score, provides a common ground for evalu-
ating the effectiveness of different approaches. Ideally, data 
collection should mirror real-world scenarios closely thereby 
bolstering the real-life applicability of research insights. A 
public large-scale radar fall-detection dataset could serve as a 
cornerstone for the field, potentially attracting scholars from 
interdisciplinary backgrounds to contribute their expertise.

CONCLUSION
In this survey, we navigated the multifaceted domain of fall 
detection, initiating our exploration with an understanding of 
falls and progressing toward an analysis of technologies in 
the field. These form the foundation of today’s radar-based 
fall-detection methods, as evidenced by our extensive review 
of 74 pivotal studies that showcase the technological evolu-
tion, categorized into micro-Doppler, range-Doppler, and 
range-Doppler-angles detection techniques. We hope that this 
review offers a sense of the history, development, and poten-
tial future of radar for fall detection.
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