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Dormant pruning is an important orchard 
activity for maintaining tree health and pro-
ducing high-quality fruit. Due to decreasing 
worker availability, pruning is a prime candi-
date for robotics. However, pruning also repre-
sents a uniquely difficult problem, requiring 
robust systems for perception, pruning point 
determination, and manipulation that must 
operate under variable lighting conditions and 
in complex, highly unstructured environments. 
In this article, we introduce a system for prun-
ing modern planar orchard architectures with 
simple pruning rules that combines various 
subsystems from our previous work on percep-
tion and manipulation. The integrated system 
demonstrates the ability to autonomously 
detect and cut pruning targets with minimal 
control of the environment, laying the ground-
work for a fully autonomous system in the 
future. We validate the performance of our 
system through field  trials in a sweet cherry 
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orchard, ultimately  achieving a cutting success rate of 58% 
across 10 trees. Though not fully robust and requiring 
improvements in throughput, our system is the first to oper-
ate on fruit trees and represents a useful base platform to be 
improved in the future.

INTRODUCTION
The production of high-value tree fruit crops, such as fresh 
market apples, pears, and cherries, requires a large seasonal 
workforce. After harvesting, the most labor-intensive 
orchard activity is dormant season pruning (i.e., after leaf 
drop) [1]. Pruning is a critical perennial operation required 
to maintain tree health and produce high yields of quality 
fruit. Pruning rejuvenates the tree, replacing unproductive 
wood with new fruiting sites. However, pruning is also a 
repetitive, strenuous, and sometimes dangerous task involv-
ing workers standing on ladders on uneven terrain with 
sharp cutting tools during the winter. Furthermore, although 
not as time constrained as harvesting, pruning involves more 
complex decision making and requires experienced, skilled 
workers who are increasingly difficult to find given the 
increased uncertainty in the general availability of agricul-
tural labor [2]. As a result of these factors—plus rising pro-
duction costs—the tree fruit industry is highly motivated to 
transition to robotic pruning.

For the past several years, Oregon State University and 
Washington State University have been developing the algo-
rithms, methods, etc. required for robotic pruning, including 
foreground tree segmentation [3], semantic skeletonization 
of the tree geometry [4], and learning-
based control for accurate cuts [5]. In 
this article, we present an integrated 
system (Figure 1) that advances the 
state of the art in sensing capabilities 
for pruning. Our system, once driven 
in front of a target tree, is capable of 
autonomously detecting pruning tar-
gets, moving toward them, and then 
executing precision cuts. This system 
represents our most complete end-
to-end system to date and is the first 
such system to be tested on fruit trees. 
We validated our system by testing it 
in a commercial sweet cherry tree 
orchard in Prosser, WA, USA. In the 
remainder of this article, we describe 
the integrated system, summarize key 
findings from field trials, and discuss 
areas where significant performance 
improvements are needed to move 
this technology closer to commercial 
readiness.

BACKGROUND
Recent advances in deep learning, 
computer vision, and robotics have 

led to a proliferation of work on using robots to physically 
manipulate/interact with specialty crops (e.g., harvesting, 
thinning, pollinating, etc.). One active area of research 
closely related to robotic pruning is robotic harvesting, i.e., 
using manipulators and computer vision systems to autono-
mously detect and harvest fruits and vegetables. A recent 
review article [6] discusses 50 different robotic harvesting 
systems developed up to 2014, covering a wide variety of 
fresh market fruits and vegetables, such as apples, oranges, 
and tomatoes. For both harvesting and pruning, the main 
challenges lie in perception and manipulation. Outdoor 
agricultural environments are some of the most difficult 
places for robots to operate in; common factors that nega-
tively affect performance include variable lighting condi-
tions, unstructured environments, and suboptimal terrain 
that hinders mobility.

Compared to harvesting, the prior work on robotic pruning 
remains relatively sparse. Recently, however, there has been an 
increase in interest in the area, covering aspects such as tree 
modeling for pruning point detection [7], [8], pruning manip-
ulator design [9], [10], path planning [11], and manipulator 
control [12]. Some examples of research prototype end-to-end 
systems for fruit-related pruning include [13], Vision Robotics 
[14], and the Bumblebee system [15], all of which focus on 
grapevines. There has also been work on automated pruning 
for landscapes/gardens, such as the Trimbot2020 system [16], 
which performs rose pruning and bush trimming. However, 
there are currently no commercially available robotic pruning 
systems for trees.
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FIGURE 1. (a) A diagram of an upright fruiting offshoot cherry tree structure, including the 
side branches to be pruned from the vertical leaders. (b) and (c) Our pruning robot uses 
a manipulator mounted on a mobile base with an eye-in-hand red, green, blue plus depth 
sensor and electric bypass shears. (d) Segmented image taken during the approach to the 
pruning point. [Figure 1(b) courtesy of Kate Prengaman/Good Fruit Grower.] 
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SYSTEM DESIGN
In this work, our focus is on the dormant pruning of sweet 
cherry trees trained in an upright fruiting offshoot (UFO) 
[17] configuration (Figure 1). UFO trees are characterized by 
the presence of multiple long leader branches 
that grow vertically from a horizontal support 
branch. The trees in our test orchard are 
trained in a V-shaped trellis configuration, 
where each wall is tilted approximately 40°. 
UFO cherry trees typically produce the most 
fruit on new spurs and near the base of one-
year-old shoots, and so the recommended 
pruning rule for UFO trees is simply to cut off 
sufficiently long side branches extending from 
the leaders with either thinning or stub cuts 
[18]. For our work, we assume the goal is to 
execute a stub cut with a stub length of 3 cm.

Our hardware setup is shown in Figure 2. 
The robot consists of a six-degrees-of-freedom 
(6-DoF) Universal Robots (Odense, Denmark) 
UR5e manipulator mounted on an actuated 
prismatic axis (for a total of 7 DoF). The pris-
matic axis has a travel range of 1 m and con-
sists of a heavy duty linear slide actuated by 
a Nema 23 stepper motor with a lead screw 
transmission. Control of the prismatic axis is 
via a microcontroller and serial communica-
tion. For field trials, the robot is installed on the back of a util-
ity vehicle and powered with a portable generator.

The eye-in-hand pruning end effector integrates battery-
operated electric bypass pruners, controllable via serial com-
munication, with an Intel (Santa Clara, CA, USA) RealSense 
D435 red, green, blue plus depth (RGB-D) camera. The cam-
era is located above the cutters and pitched downward at an 
angle of 10° so that the top blade is visible when the prun-
ers are open. The shears are rated for cutting branches up to  

3.2 cm in diameter (https://salemmaster.com/). Our choice 
to use a single commercially available camera as the entire 
vision system is intended to ease system deployment and dem-
onstrate that pruning is possible even without more complex 

and expensive computer vision setups.
Robot control uses the Universal Robot’s 

Robotic Operating System (ROS) driver run-
ning on Ubuntu 18.04. The computer vision 
algorithms were executed on a separate Dell 
XPS-15 laptop equipped with an NVIDIA 
GeForce GTX 1050 Ti graphics card running 
Windows 10. These algorithms represent the 
main bottleneck for system execution speed. 
Vision-based controller commands were com-
puted on the Windows computer and sent via 
serial communication to the ROS computer, 
which, in turn, relayed the commands to the 
robot arm.

PRUNING PROCEDURE
In this section, we discuss the operation of 
our pruning system and the various essential 
subcomponents/algorithms. Our approach is 
motivated by the fact that, due to the manipu-
lator’s limited reach and the narrow UFO 
orchard rows, trees are significantly wider 
and taller than the field of view for a single 

camera positioned on the vehicle, making the acquisition of 
a full 3D scan of the tree impractical. These constraints 
necessitate a stop-and-go pruning approach in which the 
vehicle is driven in front of multiple locations in front of a 
tree to discover prunable branches. At each location, the sys-
tem executes a “pan-and-scan” routine through a set of 28 
fixed waypoints in a zigzag shape [Figure 3(b)] to identify 
potential pruning points. The lawnmower pattern is 
designed to avoid large joint movements between way-
points that could lead to collisions with the trellis wall, 
with the waypoints being spaced to cover the view of the 
planar tree architecture with minorly overlapping images. 
Planning between joint waypoints is done using the RRT-
Connect algorithm [19], implemented via the Open Motion 
Planning Library [20] in ROS.

Figure 3 shows the execution flowchart for pruning. At 
each waypoint, the robot acquires a set of two RGB images 
that are used to detect potential pruning points in the envi-
ronment. This pipeline is shown in Figure 4. Once pruning 
points are identified and converted to 3D position estimates, 
the robot plans an approach pose in front of the target. Once 
there, the robot executes a hybrid controller that uses feed-
back from the RGB camera and the robot’s force–torque 
sensor to guide the cutters to enclose the target branch, at 
which point the system executes the cut. We include human 
intervention at this step to prevent unintended cuts to the tree 
or trellis.

In the following sections, we describe the details for each 
of the system components. We assume that the vehicle has 

RealSense D435
RGB-D Camera

Electric Bypass
Pruners

Linear Slider

UR5e
Robot Arm

FIGURE 2. Our pruning setup, consisting of a Universal Robots 
UR5e robot mounted on a linear axis. The end effector consists of 
a set of electric bypass pruners along with a RealSense D435 red, 
green, blue plus depth (RGB-D) camera. 

THOUGH NOT 
FULLY ROBUST 

AND REQUIRING 
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IN THROUGHPUT, 

OUR SYSTEM IS THE 
FIRST TO OPERATE 
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AND REPRESENTS 
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THE FUTURE.
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already been driven to a suitable 
location for pruning.

BRANCH SEGMENTATION
Fundamentally, all pruning sys-
tems must be capable of differ-
entiating branches near the 
camera from branches beyond 
the camera and other back-
ground elements, i.e., per-
forming foreground branch 
segmentation. This task is made 
very difficult by the highly 
unstructured and repetitive 
nature of orchard environments; 
other trees and structural ele-
ments will be visible from be -
hind the target tree of interest, 
making it difficult to differenti-
ate foreground trees from back-
ground trees with just a single 
image. Past systems have used 
various methods, such as trailers 
towed by tractors that comp -
letely encompass the plant of 
in terest [13], [14], [21] and 
sophisticated lighting systems 
for controlling the exposure of 
the images [22]. However, it is 
clear that using such setups sig-
nificantly increases the com-
plexity and unwieldiness of the 
systems. Other studies have also 
used depth information from 
RGB-D cameras, but depth data 
on these cameras is far from 
perfect, and networks trained 
using RGB-D data typically 
require large amounts of manu-
ally labeled data for training.

Our foreground branch seg-
mentation framework, which 
is the crux of our entire prun-
ing framework, uses a genera-
tive adversarial network (GAN) 
[23] to take in RGB images and 
output masks corresponding to 
two scene elements: branches 
in the foreground and the cut-
ters. Notably, we train this GAN 
using synthetic data, using a 
simulated orchard along with 
heavy texture randomization 
to allow the GAN to general-
ize to real trees. Furthermore, 
the GAN augments the input 
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image with colorized optical flow data, i.e., the measured pixel  
movement between two RGB images. Optical flow is a use-
ful proxy for depth since, due to parallax, translational cam-
era movement will result in more pixel movement for objects 
closer to the foreground. This optical flow image is computed 
by taking two adjacent RGB images and feeding them through 
the FlowNet2 deep neural network [24]. More 
details can be found in [3].

Our motivation for training our segmenta-
tion network this way was to completely avoid 
the use of manually labeled data as well as to 
not require a specialized system beyond an off-
the-shelf consumer-grade camera. Optical flow 
is naturally obtained as a camera mounted on 
an end effector moves around, and FlowNet2 
is able to produce optical flow estimates that 
work on both simulated and real images, allow-
ing for the sim-to-real transfer.

PRUNING POINT ESTIMATION
Once the environment is perceived, the next 
step in the pruning process is to detect prunable branches 
and obtain 3D estimates of their positions. Until now, most 
research on automated pruning point detection has focused 
on grapevines, using stereo vision systems and skeletoniza-
tion algorithms to form a 3D model and using the model to 
make decisions on which branches to cut and where. Silwal 
et al. [15] utilize a spur pruning method that counts the buds 
on each cane and leaves a fixed number of buds on each 
cane, while Botterill et al. [13] implement a cane pruning 
algorithm that considers feature vectors of the detected 
canes to decide which ones to prune. In our previous work, 
we developed a skeletonization algorithm [4] that used heu-
ristic knowledge about the UFO tree architecture to recon-
struct a global model of the tree from a dense 3D point cloud 

and identify side branches. However, for our particular appli-
cation, global knowledge of the tree structure is not neces-
sary, as prunable side branches are detectable from a 
close-up view of portions of the tree. Therefore, in this work, 
we make the assumption that pruning points can be identi-
fied locally as the robot operates.

The pruning point detection process (Figure 4) 
first begins with a one-channel foreground 
branch mask (see the “Branch Segmentation” 
section). The branch mask is then fed through 
the Mask R-CNN [25] instance segmentation 
network, provided through the Detectron2 
library [26]. Mask R-CNN takes in an image 
and outputs a set of bounding boxes and binary 
masks for each individually detected item in 
the scene. Using the foreground branch mask 
as the input to Mask R-CNN rather than the 
RGB image enables generalization across mul-
tiple environments.

Ideally, the training of Mask R-CNN would 
be done with simulated data, but we did not 

have sufficiently accurate digital models of the trees at the 
time. As such, to train Mask R-CNN, we manually labeled 371 
images, which were split 80%/10%/10% among training/vali-
dation/testing. We labeled five classes of foreground objects: 
leaders, side branches, spurs, an “other” branch category used 
for tree branches that either extended off the side of the image 
or did not belong in any of the aforementioned categories, and 
nonbranch objects (primarily wires, wooden posts, and rib-
bons). An example of a labeled image is shown in Figure 5.

Once the instance segmentation on the mask is complete, 
the next step is to find all pixels corresponding to prunable 
locations where the side branches meet the leaders. To do this, 
the system disregards all detections except those correspond-
ing to leaders and side branches. The goal is to match each 

RGB (Secondary View)

RGB (Main View) RGB (Main View) Instance Segmentation

Semantic Masks
(Branch and Cutter)

Output Pruning Points
Optical Flow

FIGURE 4. The pipeline for the segmentation system used to detect pruning points. First, the system obtains semantic masks of the scene 
(the branches are red, and the cutter is cyan) by utilizing optical flow data computed from two RGB images. It then feeds the branch 
mask into a Mask R-CNN network to identify visible branches. Each instance is then processed to obtain pixel estimates for pruning 
points (shown as points 0 and 1, with 1 being a false positive). 
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ROBOT OPERATES.
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side branch detection to a leader (if possible) and determine 
the location of intersection. The method is illustrated in Fig-
ure 6. First, all of the detected masks are decomposed using 
principal component analysis to yield a primary orientation 
and center. Each leader branch is assigned a width w equal to 
the average number of pixels in the horizontal direction along 
the mask. Each side branch–leader pair is checked to see if 
their point of intersection p*  lies inside of the leader and if 
any part of the side branch mask is sufficiently close to the 
leader boundary (at width w). If so, letting bv  represent the unit 
vector for the side branch (facing away from the trunk), the 
pixel pruning point is computed as ,p w m b

2
* + + v` j  where 

m 90=  is a manually specified pixel offset from the join 
point between the leader and the side branch. This process is 
repeated for every side branch–leader pair.

Finally, each 2D pixel estimate must be converted into a 3D 
location to move the robot. To convert the pixel estimate into 
a 3D location, we make an assumption that the pixel is located 
on a plane 30 cm away from the camera’s optical frame in the 
z-direction. The system uses the intrinsics of the camera to 
yield a 3D estimate of the point in the camera’s optical frame, 
which is then transformed using the kinematic model of the 
arm to obtain a world frame estimate for the pruning point. 
This estimate of the pruning point in the world is not particu-
larly precise since the 30-cm planar estimates for the pruning 
points will not always be true, and the 90-pixel offset is chosen 
arbitrarily. However, the “Closed-Loop Approach (Waypoint 
to Cutpoint)” section discusses the approach phase controller 
that corrects for this error.

Once the system identifies the pruning points, it must 
choose an order in which to cut them. We have explored task 
sequencing for pruning in our previous work [27]. However, 
for this pruning setup, the close-up view of the scene means 
there are rarely more than two eligible targets to prune. There-
fore, we choose to sequence the points arbitrarily.

CLOSED-LOOP APPROACH (WAYPOINT TO CUTPOINT)
Once a pruning point is detected and its position deter-
mined, the final step of the pruning process is to move the 
pruning implement to the target point and execute a cut. If 
this pruning point estimate is perfectly accurate, then the 
system simply needs to plan a path that does not collide 
with any obstacles to move the cutters and cut. This open-
loop method of planning, in which the system does not use 
sensor feedback as it moves the manipulator toward the 
goal, has been the dominant approach for previous pruning 
systems. However, many external factors (e.g., vehicle slip-
page, sensor noise, and wind) can affect the accuracy of the 
original estimates. Furthermore, such open-loop approach-
es have no way of regulating the dynamic interaction of the 
manipulator with the environment, which can lead to dam-
age to the environment or to the robot. These issues moti-
vated the development of a hybrid controller for the 
approach phase that uses both visual and force feedback for 
accurate cutting, the first of its kind to be used in an end-
to-end pruning system.

The details of the hybrid controller are explained in our 
previous work [5]. The visual controller is a deep neural 
network that takes in the segmented version of the scene, 
as described in the “Branch Segmentation” section, i.e., a 
two-channel image corresponding to masks for the fore-
ground branches and the cutter as well as the colorized 
optical flow image to yield a five-channel input. It outputs 
a control action ( , ) [ , ] [ , ] .v v 1 1 1 1x y #! - -  Given a for-
ward velocity of . ,s 0 03=  the end effector is commanded 
to move at a Cartesian velocity of [ , , ]sv sv sx y  in the end 
effector’s frame. We chose to run the visual controller at 
one frame per second to obtain reasonable optical flow 

Leader
Side Branch
Spur
Other Branch
Nonbranch

FIGURE 5. An example of a labeled image, showing five labeled 
classes of foreground objects: leaders, side branches, small 
spurs, “other” branches (usually offscreen branches that do not 
definitively fit in one of the former categories), and nonbranch 
objects. 

Leader Detection

Side Branch Detection

Pruning Point
Join Point Width Side Branch

Attachment
Margin

FIGURE 6. The process of matching a detected side branch with 
a leader. Each detection is represented as a line segment. If a 
side branch intersects the leader line segment and the mask is 
sufficiently close to the leader, the pruning point is computed a 
fixed offset away from the estimated join point between the side 
branch and leader. 
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estimates in between successive frames before updating 
the control velocity.

This controller was trained in a simulated PyBullet [28] 
environment by formulating a pruning episode as a Markov 
decision process and training it using the proximal policy 
optimization reinforcement learning (RL) algorithm [29]. In 
each pruning episode, the agent was presented with a view 
of a prunable branch and allowed to steer the cutter toward 
the target. The agent would receive a large reward for suc-
cessfully enclosing the branch in the cutter mouth and a 
large penalty otherwise. In the intermediate time steps, the 
agent was also rewarded for keeping the target cutpoint in 
view of the camera. This was done by defining a “hit point” 
on the blade and computing its image-based distance to the 
episode target, as shown in Figure 7. So long as the robot can 
keep the cutter hit point aligned with the target, the branch 
should contact the blade of the cutter, ultimately leading to 
an episode success. By utilizing the segmentation network 
as a means of normalizing synthetic and real images, the 
controller is able to transfer to a real robot with no adjust-
ments necessary.

Once a force exceeding 1.5 N is detected by the force–
torque sensor on the robot’s wrist, the system switches 
over to an admittance controller that regulates the con-
trol velocities to guide the branch inside the cutters while 
minimizing forces on the environment. Once the admit-
tance controller terminates, we execute the cut using the 
electric cutters.

SYSTEM EVALUATION
We evaluated our system at a Washington State University 
UFO sweet cherry research orchard in Prosser, WA, USA, on 
an overcast day on 17 March 2022. To conduct our experi-
ments, we identified 10 locations in the orchard that had a 

suitable number of eligible branches for pruning; i.e., there 
had to be at least two leaders located within the scanning 
range of the linear axis, each with at least one candidate 
branch for pruning. To avoid collisions, we manually pre-
pruned any branches sticking out from the trellis wall. At 
each location, a human operator reset the linear axis to the 
zero position and positioned the vehicle so that the end effec-
tor was placed at an appropriate distance from the trellis wall 
(about 20–30 cm), and the first leader was centered in the 
view of the camera. Once the vehicle was positioned, we exe-
cuted our 28-waypoint scanning procedure. We evaluated the 
system by assessing its accuracy in detecting and successfully 
cutting detected branches as well as examining the length of 
the stubs remaining after the cuts and the overall runtime of 
the system.

Ideally, the system would operate fully autonomously, as 
described in Figure 3. However, for this field trial, we chose to 
manually intervene during several steps:

 ■ For safety, we retained manual control over executing the 
final cut to avoid cutting trellis wires. We also manually 
drove the vehicle to each cutting location to avoid colli-
sions between the arm and orchard.

 ■ Various components were made semiautonomous because 
of the difficulties associated with testing the system only 
in the lab prior to conducting the field trials. First, we 
manually filtered out false positive pruning point detec-
tions before executing the cutting process to avoid pruning 
fruiting spurs or nonexistent targets. (No corrections were 
made for false negative detections.) Second, instead of 
using the cutter mask that comes out of the segmentation 
framework, we manually created a mask of the pruners for 
the approach phase since the view of the cutter in the 
image never changes. Finally, we monitored the approach 
phase manually and terminated the process if the cutters 
missed the target branch, rewinding the robot back to the 
start of the approach. For each pruning target, we allowed 
three attempts to successfully cut the target before moving 
on to the next target.

RESULTS AND DISCUSSION

DETECTION AND CUTTING ACCURACY
In total, the system detected 38 branches that were long 
enough to cut. Out of these 38 branches, the robot was ulti-
mately able to cut 22 of them, representing a 58% cutting suc-
cess rate. The breakdown of the causes of failure is as 
follows:

 ■ Six failures were due to a motion planning failure to the 
approach position. Motion plans with a total joint displace-
ment above a given threshold (in our case, r  radians) were 
also counted as failures, as they likely indicated poor- 
quality motion plans.

 ■ Of the remaining 32 branches, 10 of the attempts failed 
due to exhausting the three-attempt limit to reach the tar-
get, representing a 69% success rate in ultimately reaching 
the branch.

Episode
Target

Cutter
Hit Point

FIGURE 7. An example of an image from the simulated training 
environment. The agent receives an intermediate reward for 
bringing a predefined point on the cutter close to the episode 
target in the image space. (These points are not known to the 
agent during training.) If the agent loses sight of the episode 
target, the episode counts as a failure.
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 ■ Of the remaining 22 branches, the average number of 
attempts it took to reach the target was 1.4.
For the 22 successfully cut branches, the length of the 

remaining stub had a mean of 3.8 cm, with a standard  deviation 
of 1.7 cm and ranging between 1 cm and 7 cm. Our target stub 
length was 3 cm, demonstrating that our use of 
visual feedback led to accurate cuts. However, 
we recognize that the precision of the control-
ler can still be improved. Given that the inter-
nodal distance on sweet cherry trees is roughly 
2.5 cm, we would like to target a precision of 
1 cm in the future.

Various factors accounted for the robot 
missing the target. In some situations, the ini-
tial estimate obtained using an assumption of 
a distance of 30 cm was sufficiently inaccurate 
that the cutting target would be barely visible 
or out of sight from the approach position. 
Other than that, most misses were caused by 
the end effector passing underneath the target 
branch; we observed that our RL-trained con-
troller sometimes failed to move the end effec-
tor up at critical moments.

Regarding the accuracy of the branch 
detection, as previously noted, there were 38 
true positive detections of pruning points. By 
far, the biggest issue with the system was the 
presence of false positives. In total, the system 
made 115 false positive detections; 96 of these were simply 
spurs being detected as side branches. We attribute this to our 
views in the training data being farther away from the trellis 
wall than during our trials; since the camera was closer up dur-
ing the trials, the spurs appeared to be of sufficient length in the 
images to be classified as side branches. In practice, this issue 
could be addressed by using depth data to measure the length 
of each detection and using a length-
based cutoff to filter out detected spurs. 
Ten of the false positives were due to 
horizontal trellis wires being detected 
as side branches, indicating a need to 
more robustly model the environment. 
The remaining nine false positives were 
mainly due to false detections of non-
existent leaders leading to a spurious 
intersection.

There were also 27 instances of 
false negatives in which an intersection 
of a side branch and a leader was not 
detected. Two of them were due to a 
leader not being detected. For all other 
25 instances, though, both the leader 
and the side branch were properly 
detected, and so the lack of intersection 
was due to implementation issues in our 
intersection algorithm, which we will 
address for subsequent trials.

RUNTIMES
Figure 8 shows the breakdown of the system’s cycle time. 
Since the number of cuts executed is variable across experi-
ments, we choose to analyze the runtimes of the scanning 
process and of a single cutting attempt separately.

Overall, an entire scan of a region span-
ning 0.6 m horizontally and 0.6 m vertically 
took 284 s. The majority of the time (115 s) 
was actually spent moving the camera at each 
waypoint (to obtain alternate views). This was 
because we had to move the robot arm slowly 
to prevent the arm from vibrating when the 
arm reached its goal. (Vibration often led to 
poor optical flow estimates.) However, there 
was also some redundant movement because 
the robot would first move to the scan way-
point, then to the offset view, and then back 
to the scan waypoint (rather than continuing 
to the next scan waypoint). Eliminating this 
redundancy could cut down on the time spent 
moving the camera by half.

The other notably slow part of the scan-
ning procedure was moving the linear axis, 
which took about 23 s to move 20 cm, result-
ing in an additional 69 s to the scanning 
procedure. The slow movement speed was 
chosen partially due to safety concerns, but 
the speed is also limited somewhat by the 

screw-based design of the system. Future iterations of our 
work will focus on increasing the design’s travel speed. 
The remaining sources of time are from moving the arm 
between waypoints (50 s) and running the detection algo-
rithms (49 s), which are not notably inefficient, though the 
speed of FlowNet2 and Mask R-CNN could be improved by 
using a more modern graphics card.

Scanning Runtime (284 s) Cutting Runtime (35.1 s)

Linear Slider
24% (23 s × 3)

Camera Movement
40% (21 s × 56)

Waypoint
Movement

17% (1.8 s × 28)

Computation
19% (2 s × 28)

Execute Approach
71%, (24.8 s)

To Approach
5%, (1.7 s)

Retract
21%, (7.6 s)

Cut
3%, (1 s)

(a) (b)

FIGURE 8. (a) The average time spent in the different stages of the scanning procedure, 
not including operations on detected pruning points since the number of cuts and cutting 
attempts varied per tree (an average total of 284 s). (b) The average time spent at each 
stage for a single cutting attempt assuming the approach succeeds on the first try (an 
average total of 35.1 s). 

IN ADDITION TO 
IMPROVING THE 

PERFORMANCE OF 
THE INDIVIDUAL 

SUBCOMPONENTS 
OF OUR SYSTEM, 
ONE MAJOR SYS-
TEM ASPECT WE 
WOULD LIKE TO 
INVESTIGATE IN 

THE FUTURE IS THE 
DESIGN OF THE 
MANIPULATOR.
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For the cutting process, assuming success on the first try, 
an average cut took 35.1 s, consisting of 1.7 s to move the 
arm to the approach position, 24.8 s to execute the approach, 
1 s to execute the cut, and 7.6 s to retract the arm back to the 
starting position. The main constraint to the approach was the 
3-cm/s limit on the forward velocity of the end  effector, which 
we imposed for safety and monitoring purposes. One main 
 contributor to the approach time was waiting 
for the admittance controller to terminate, 
as, in some instances, the desired balance of 
forces never occurred, leading us to wait for 
the 15-s timeout on that part of the controller. 
Increasing the velocity of the approach would 
also be possible. However, moving the arm 
faster can lead to noisy force–torque estimates 
that may accidentally trigger the transition to 
the admittance controller, which we occasion-
ally observed even with the 3-cm/s cutoff. 
Additional work is required for developing a 
more robust criterion for switching to and ter-
minating the admittance controller.

DISCUSSION
Overall, though the system was not fully 
autonomous, and the current performance is 
short of commercial readiness, we demon-
strated that the system is capable of detecting 
and executing cuts in a manner that can be 
made fully autonomous through improve-
ments to the individual subcomponents. In 
this section, we briefly discuss the improve-
ments necessary to achieve fully automated 
pruning (excluding autonomous mobility of the vehicle):

 ■ Reducing false positives: As noted, one notable shortcom-
ing of the system was the high rate of false positives when 
detecting prunable branches, especially with spurs being 
detected as branches. We believe that a major reason for 
this was because the Mask R-CNN network was trained 
using image data that was farther away from the tree than 
during the pruning trials. Since spurs appeared larger in 
the image for our trials, this led to them being misidenti-
fied as side branches. While more robust training of Mask 
R-CNN would certainly help, we should also aim to inte-
grate phenotype measurements into the detection system, 
i.e., estimating the length of each detected branch using 
depth data. This would allow us to set thresholds for cut-
ting viability grounded in horticultural knowledge of the 
system.

 ■ Failure detection: Proper failure detection is also anoth-
er critical component for our system to be fully autono-
mous. While improved accuracy of the closed-loop 
controller is desirable, we cannot expect any system to 
ever attain 100% accuracy. In particular, our system 
needs to be able to check if the branch is inside of the 
cutters after detecting an impact, which could be done 
via a sensor or by executing a wiggling motion. The sys-

tem should also be able to quickly detect situations in 
which it has missed the target branch entirely, such as 
when the target branch has fallen out of sight of the 
camera. This could be done through initializing an esti-
mate of the target in the image and tracking it as the 
camera moves. Finally, the system must strictly avoid 
the possibility of cutting a trellis wire, which is a diffi-

cult task given how thin the wires are in the 
image. A conservative approach would be to 
model the wires in the environment using 
our semantic segmentation network and 
reject any pruning candidates whose bases 
come within a certain threshold of a wire.

 ■ Increasing the action space: To simplify 
the training of the approach controller, we 
assumed that a planar view of the orchard 
would be sufficient for maneuvering the 
manipulator, limiting the controller to 2 
DoF. However, in reality, this is not suffi-
cient due to the presence of branches that 
grow outward from the orchard wall that 
our system is currently unable to cut. We 
are working on an updated RL-based prun-
ing controller that will utilize all 6 DoF of 
the manipulator to be able to cut branches 
extending from the planar canopy wall.

CONCLUSIONS
In this article, we present an end-to-end sys-
tem that can semiautonomously prune sweet 
cherry trees in a modern planar architecture. 
First, we use a novel segmentation method to 

reliably extract the foreground branches of the scene, avoid-
ing the need to control the lighting of the environment. 
Using the foreground masks, we then use a Mask R-CNN 
network to detect pruning points. Finally, after projecting 
the detected pixel locations into 3D space and moving the 
robot to an approach position in front of the target, we utilize 
a closed-loop hybrid vision/interaction controller to accu-
rately guide the cutters to the branch, allowing us to com-
pensate for many sources of error in the original point 
estimate while regulating interaction with the environment. 
Though the accuracy and cycle time of the system can still 
be improved, our field trials in a realistic outdoor environ-
ment demonstrate that our pipeline is a viable one for use in 
a real orchard.

In addition to improving the performance of the individ-
ual subcomponents of our system, one major system aspect 
we would like to investigate in the future is the design of the 
manipulator. We observed that the UR5e’s revolute joints were 
not suitable for use in a compact orchard space. If the robot 
was too close to the trellis wall, it had a difficult time avoid-
ing collisions with the wall, while, if it was too far away, the 
arm would fail to reach the target points. Our goal will be to 
explore other manipulator designs with kinematics that are 
better posed for modern orchard systems.

THOUGH THE  
ACCURACY AND 
CYCLE TIME OF 

THE SYSTEM CAN 
STILL BE IMPROVED, 
OUR FIELD TRIALS 

IN A REALISTIC 
OUTDOOR ENVI-
RONMENT DEM-
ONSTRATE THAT 

OUR PIPELINE IS A 
VIABLE ONE FOR 

USE IN A REAL 
 ORCHARD.
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