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Ultrasound Shear Wave Elasticity Imaging With
Spatio-Temporal Deep Learning

Maximilian Neidhardt , Marcel Bengs, Sarah Latus , Stefan Gerlach , Christian J. Cyron,
Johanna Sprenger , and Alexander Schlaefer

Abstract—Ultrasound shear wave elasticity imaging is
a valuable tool for quantifying the elastic properties of
tissue. Typically, the shear wave velocity is derived and
mapped to an elasticity value, which neglects information
such as the shape of the propagating shear wave or push
sequence characteristics. We present 3D spatio-temporal
CNNs for fast local elasticity estimation from ultrasound
data. This approach is based on retrieving elastic prop-
erties from shear wave propagation within small local re-
gions. A large training data set is acquired with a robot from
homogeneous gelatin phantoms ranging from 17.42 kPa to
126.05 kPa with various push locations. The results show
that our approach can estimate elastic properties on a pix-
elwise basis with a mean absolute error of 5.01(437) kPa.
Furthermore, we estimate local elasticity independent of
the push location and can even perform accurate estimates
inside the push region. For phantoms with embedded in-
clusions, we report a 53.93% lower MAE (7.50 kPa) and
on the background of 85.24% (1.64 kPa) compared to a
conventional shear wave method. Overall, our method of-
fers fast local estimations of elastic properties with small
spatio-temporal window sizes.

Index Terms—Elasticity imaging, 3D deep learning,
high-speed ultrasound imaging, spatio-temporal data, soft
tissue.

I. INTRODUCTION

QUANTIFYING mechanical properties of soft tissue has
many clinical applications ranging from diagnoses [1] to

modeling soft tissue response for surgical planning [2]. Ultra-
sound shear wave elasticity imaging (US-SWEI) is widely used
to image the elastic properties of tissue and its clinical appli-
cations has been widely demonstrated, e.g., in disease staging
of breast lesions [3], thyroid nodules [4] or liver fibrosis [5].
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In US-SWEI, an initial high energy acoustic radiation force im-
pulse displaces the tissue. The propagation of the resulting shear
wave is then captured with high frequency ultrasound imaging.

Shear wave velocity is commonly used as a surrogate for tissue
elasticity, which can be estimated from a sequence of images,
considering either the time-domain or the frequency domain.
The first approach tracks the peak of the propagating shear wave,
often referred to as time-of-flight (ToF). This can be achieved
either by applying an autocorrelation of two time-varying signals
with a known distance between each other ([6]–[9]) or by per-
forming a linear regression of the wave peaks in a 2D space-time
image ([10], [11]). Commonly, ToF-methods assume that shear
waves propagate in a fixed direction. To estimate wave velocity
independently of the propagating direction, 2D-autocorrelation
methods were proposed ([7], [9]). In general, ToF-methods have
been evaluated in the clinical setting [12]. However, estimates
are dependent on imaging depth [13] and performance has
been reported to be limited for stiffer materials [14], which
are characterized by faster shear waves. The second approach
for US-SWEI estimates the phase velocity of the dominant
local wavenumbers in the frequency domain [15]. Similar to
a 2D-autocorrelation, this approach is independent of the wave
direction but requires intensive tuning of the imaging and filter
parameters [16].

Recently, deep learning methods have gained popularity in
strain elastography ([17]–[20]) and SWE-imaging ([21]–[23]).
These methods allow estimates without intensive preprocessing
of the data, manual tuning and do not rely on feature extraction,
e.g., the shear wave velocity for elasticity estimation. Previous
works have demonstrated that deep learning can be used to esti-
mate distinct tissue parameters from SWEI data. Jin et al. [21]
predict the shear wave velocity from space-time images in-
cluding an uncertainty estimate and Vasconcelos et al. [22]
have shown that the viscoelastic model parameters can be esti-
mated from simulated shear wave motion data. Further, Ahmed
et al. [23] demonstrated that elasticity maps and segmentation
masks can be generated with deep learning from simulated SWEI
data. However, the authors also note that the use of simulated
data does not seem to be sufficient to represent the noise in real
data.

In this study, we present spatio-temporal convolutional neural
networks (CNNs) for reconstructing elasticity maps from real
ultrasound SWEI data. Our approach is based on the concept
of retrieving local elastic properties from shear wave propa-
gation in small regions of several millimeters, which we call
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Fig. 1. Our approach for elasticity imaging with spatio-temporal deep
learning. A global elasticity map is generated by estimating local elastic
properties Ep at each pixel location p = [pi, pj ] with a spatio-temporal
CNN considering a spatio-temporal window̃ x.

spatio-temporal windows (Fig. 1). By performing this local
elasticy estimation, the network learns the direct relationship be-
tween localized shear wave propagation and local elasticity. Our
localized approach enables the generation of detailed elasticity
maps of inhomogeneities and simplifies the required training
data. In particular, this allows us to acquire training data from
simple homogeneous phantoms with defined elasticities. Using
real ultrasound training data, probe and ultrasound artifacts are
directly included in our approach. In this context, we system-
atically study whether deep learning is able to extract relevant
information from these limited areas and whether this approach
generalizes to different push locations and elasticities. We eval-
uate our approach using tissue mimicking gelatin phantoms
with Young’s moduli ranging from 17.42 kPa to 126.05 kPa.
Furthermore, we compare our spatio-temporal CNN approach
to ToF shear wave estimation.

In summary, our 3D spatio-temporal CNN approach can
estimate local elastic properties from spatio-temporal windows
using real ultrasound shear wave data, while being independent
of the push location and wave propagation direction. Further-
more, our approach can generate local elasticity maps of non-
homogeneous mediums in real-time.

II. METHODS

A. Deep Learning Model

We estimate the elasticity locally by applying spatio-temporal
CNNs to a small spatio-temporal window as illustrated in Fig. 1.
Hence, we perform pixelwise predictions using the neighbor-
hood as context. Formally, given a sequence of images x ∈
Rh×w×t which represent shear wave propagation over time with
h and w for the spatial dimensions of the FOV and t for the
temporal dimension, the elasticity is estimated locally using
a spatio-temporal window x̃ ∈ Rhs×ws×t, x̃ ⊂ x centered at
pixel location p = [pi, pj ]. The spatial dimensions of the spatio-
temporal window are described by ws and hs. Hence, we design
and evaluate an approach for learning f : Rhs×ws×t → R. By
using our spatio-temporal CNN to estimate elasticity for each
pixel, an entire global elasticity map for x can be estimated, as
shown in Fig. 1. The advantage of local elasticity estimation
is that the network is trained to learn the relationship between
elasticity and shear-wave propagation only for a small spatial

patch. In this way, the network can be trained with data from
simple homogeneous phantoms, while also being applicable to
inhomogeneous data subsequently.

Spatio-temporal CNNs [24] have demonstrated promising
results for imaging elastic properties using optical coherence
elastography ([25], [26]). The concept is to apply convolutions
jointly over space and time, which enables spatio-temporal
feature learning from data [24]. In this way, local spatio-temporal
dependencies, which are present for the spatio-temporal win-
dows x̃, are learned and extracted. As a baseline, we consider
the concept of Densely Connected Convolutional Networks
(DenseNet) [27] due to its parameter and computational ef-
ficiency and develop our own custom DenseNet architecture
([25], [26]). Our architecture details are shown in Fig. 2. Our
3D architecture consists of three initial convolutional layers,
followed by three DenseNet blocks with four convolutional
layers each. Between the DenseNet blocks, we apply average
pooling layers for downsampling of the input dimensions. More-
over, we use batch normalization [28] and the rectified linear
activation function for our convolutional layers. Using this 3D
CNN architecture, we consider spatio-temporal windows x̃ with
a size of 65× 65× t, 33× 33× t, 17× 17× t, 9× 9× t and
5× 5× t with t = 35 frames. We set the spatial stride of our
architecture in Fig. 2 to one for spatio-temporal window sizes
of 9× 9× 35 and 5× 5× 35.

B. Conventional Shear Wave Velocity Estimation

To compare our spatio-temporal CNN we consider a ToF
approach. To reduce speckle noise, we apply a 3D mean filter
with a kernel size of 5px along all axis. Furthermore, we process
our data with a directional filter in the frequency domain to
reduce waves that propagate along the lateral off-axis and to
limit high-frequency imaging noise [9]. For a distinct pixel, we
estimate the ToF by performing an auto-correlation between the
time varying signals measured at an equivalent distance to the
distinct pixel along the lateral axis. Using a distance of 65 pixel,
we apply a Tukey window on the two time signals, interpolate
them by a factor of 10 and subsequently estimate the time
delay by auto-correlation. We assign the estimated shear wave
velocity to the pixel located at the center between two measure-
ment points. We reject estimates which are not in the range of
0.1 ms−1–10ms−1. Our data processing is similar to Song
et al. [9]. Please note that we perform data acquisition with a
single push sequence and subsequent high frequency plane wave
imaging with a single steering angle of 0◦. Following [29], the
shear wave velocity cs is mapped to the Young’s modulus with
the relation

EToF = α · ρ · 2(1 + ν) · c2s (1)

with the density ρ = 1000 kgm−3 and the Possion’s ratio ν =
0.5. For a fair comparison to our deep learning approach, we
introduce a scaling factor α, to account for constant errors
between our estimates and our ground truth Young’s modulus
labels estimated from indentation experiments. We estimate
α = 0.75 by minimizing the offset between the mean of all
Young’s moduli estimates from a single gelatin concentration
and the corresponding indentation experiment. For inclusion
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Fig. 2. Spatio-temporal CNN architecture. We predict the Young’s modulus from a 3D spatio-temporal window as input. Our network consists of
initial convolutional layers, followed by DenseNet blocks. Between the DenseNet blocks we apply average pooling layers for downsampling of the
input dimensions.

Fig. 3. Experimental setup to estimate the Young’s modulus. Left: A
hexapod robot (PI H-820, Physik Instrumente, Germany) drives a plate
into a cylindrical gelatin phantom. Right: A high resolution force sensor
(Nano17, ATI, USA) is mounted between the robot and the white plate.

map experiments, we apply a gaussian filter with a kernel size
of 2 × 2 mm to account for outliers and close holes with
no predicted values due to noise. Also, we increase the FOV
and average estimates by combining nine push and imaging
sequences distributed evenly across the probe length.

C. Phantom Preparation and Annotation

We use gelatin phantoms as tissue surrogates and prepare
batches of gelatin with a weight ratio of gelatin to water ranging
from 5% to 17.5% in increments of 2.5%. For precise and re-
producible manufacturing, we thoroughly follow this procedure:
mix ballistic gelatin (250 Bloom Type A Ordenance Gelatin,
Gelita) and water, let the mixture mature for 2 hours, heat
the mixture automatically controlled to 50 °C and add 1 g of
graphite per 800 g weight for ultrasound speckle. Experiments
are performed after approximately 24 hours of cooling. Three
types of phantoms are manufactured in-house: (1) for ground
truth annotation we prepare eight cylindrical phantoms of each
concentration with a radius r = 10mm and a height l0 = 40mm
as shown in Fig. 3, right, (2) for training and testing of our
network we prepare block phantoms (∼100 × 100 × 100 mm)
of each concentration and (3) inclusion phantoms with a gelatin
concentration of 7.5% for the background and a gelatin concen-
tration of 15% for embedded circular inclusions with a radius of
approximately 5 mm and 10 mm, as well as embedded chicken
heart tissue. To avoid gelatine layers, the casted cylindrical
inclusions were fixed on both ends to the phantom wall before
gelatin was added.

We estimate the ground truth elasticity using the cylindrical
phantoms. We perform unconfined compression tests to estimate
the Young’s modulus as the ratio of stress to strain ([37], [38]).
The experimental setup is shown in Fig. 3. During indentation,
the sensor records forces F with a frequency of 200 Hz and

Fig. 4. Stress-strain curve of indentation experiments.

a resolution of 3.1 mN. We restrict the applied forces to a
maximum of 2 N, drive the plate with a constant velocity of
0.01 mms−1 and apply lubricant between contact surfaces to
reduce bulking of the phantom. Viscous effects are reduced due
to our slow indentation speed. To estimate the elasticity of our
gelatin phantoms, we perform a single indentation experiment
per phantom, to avoid material defects due to indentation. We
perform 8 indentation experiments per gelatin concentration and
consider the Young’s modulus as

E =
σ

ε
=

F

πr2
l0
Δl

(2)

with the stress σ and strain ε. We estimate E with a linear
regression applied to all indentation experiments performed on
a gelatin concentration. The strain range is limited between 2%
and 7% ([37]–[39]). Results for the stress-strain curves and
the corresponding Young’s moduli are shown in Fig. 4. For
comparison, elasticities of real tissue reported in the literature
are presented in Table I.

D. Data Acquisition

Our experimental setup for US-SWEI data acquisition is
shown in Fig. 5. For pushing and imaging, we use a linear
array probe (128 elements, 0.29 mm pitch, center frequency
7.5 MHz) and a 128-channel ultrasound system (Cicada, Cepha-
sonics Inc, USA). The ultrasound probe is positioned by a serial
robot (UR3, Universal Robots, Denmark) for automatic data
acquisition. A force sensor (Nano43, ATI, USA) is mounted
to the end-effector of the robot to ensure a repeatable con-
tact pressure of 0.2 N between phantom and probe. Ultra-
sound gel is applied to the surface to reduce imaging artifacts.
Once the transducer is positioned, an unfocused push sequence
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TABLE I
REPORTED YOUNG’S MODULI OF SOFT TISSUES IN THE LITERATURE,
ESTIMATED EITHER BY INDENTATION [I] OR SHEAR WAVE ELASTICITY

IMAGING [SWEI]

Fig. 5. Our setup for ultrasound shear wave data acquisition. (Left) A
linear ultrasound probe is positioned by the robot on the black gelatin
block. (Right) The different push locations relative to the ROI.

(120 V, 2000 push cycles, 10 mm depth) excites a shear wave
inside the phantom. A continuous segment of 11 elements with
the center element defined as the push location was used to
transmit the unfocused push. Subsequently, we perform plane
wave imaging with an imaging frequency of 7000 Hz and a
FOV of 20 × 33 mm along the depth and lateral image axis. We
record 35 subsequent images after each push sequence with a
resolution of 250 × 600 pixels along the depth and lateral axis,
respectively, after beamforming. Image recording is engaged
0.13 ms after the push sequence to reduce imaging artifacts.
Loupas’s algorithm [40] is applied on the IQ demodulated data to
estimate axial displacement relative to a reference frame prior to
excitation. We use the resulting displacement data as input to our
network. In total, the robot positions the ultrasound transducer
randomly at 80 positions on the surface of each gelatin block
for data variation. At each position, we perform seven push
and imaging sequences with individual pushes applied at the
locations depicted in Fig. 5, right. Using a robot allows us to
efficiently acquire real ultrasound training data that includes
probe and system characteristics.

E. Training and Evaluation

We train our approach with spatio-temporal windows x̃ spa-
tially located within a defined ROI with a size of 121× 181
pixel (10× 12 mm), see Fig. 5. To study the flexibility of
our method with respect to push locations, we consider seven

different push positions relative to the ROI. We train our net-
works using homogeneous phantoms with defined ground truth
elasticity Egt, determined by indentation experiments. Hence,
we assign the corresponding ground truth elasticity Egt to a
spatio-temporal window x̃ and the learning task is to perform a
regression of x̃ to the corresponding elasticity Egt. Therefore, a
network is trained to learn the relationship between elasticity and
shear-wave propagation for a small local region. For training, we
minimize the mean squared error (MSE) loss function between
the defined target ground truth elasticity Egt and our predicted
elasticity Ep defined as

L(Egt, Ep

)
=

1

N

N∑
k=1

∥∥∥E{k}
gt − E{k}

p

∥∥∥2 (3)

with N for the number of samples. During one training epoch,
we take one spatio-temporal window x̃ with random location
within the ROI from every image sequence x in our training
data set. Each network is trained for 250 epochs with a batch
size of 250 using Adam for optimization with a learning rate of
lr = 1e−4. After 150 epochs, we divide the learning rate by a
factor of two every 50 epochs. We normalize the pixel intensities
of each input x̃ to have a zero mean and standard deviation of
one. To augment our training data, we randomly apply horizontal
and vertical flipping, multiple 90◦ rotations, Gaussian blur and
randomized input erasing of the input data during training.

We evaluate the performance of our method with all elas-
ticities present during training and perform four-fold cross-
validation on the 80 different positions of each concentration.
For each fold we use 60 positions of each concentration for train-
ing, and 10 positions each for validation and testing. Second, we
evaluate the regression performance of our method on unseen
elasticities and perform a cross-validation approach, where we
leave out the entire data of one gelatin concentration. We do
not perform cross-validation on boundary elasticities, e.g., 5%
and 17.5% as this leads to out of distribution predictions for the
regression task. Hence, we perform four-fold cross-validation
using the gelatin concentrations starting from 7.5% up to 15%.
In each fold, we randomly split the data into 50% of the fold’s
data for testing and 50% for validation. Moreover, for all our
trainings we remove push one and seven completely from our
training data, to evaluate unseen push locations further away
from the ROI. For elasticity estimation on inclusion phantoms,
we refine the network trained on homogenoues phantoms, by
fine-tuning the network for additional 10 epochs with inho-
mogeneous phantom data. Thereby, the network learns wave
reflections at boundaries which are not present in homogenous
phantoms.

III. RESULTS

A. Homogeneous Phantoms

We study our spatio-temporal CNN approach qualitatively
to ToF in Fig. 6 and evaluate the prediction maps of both
approaches with respect to varying push locations and phan-
tom elasticities. For this and the following evaluations, if not
indicated otherwise, we consider the more challenging case for
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Fig. 6. Prediction of gelatin elasticity. Predictions of the Young’s modulus with a spatio-temporal CNN (left) and with the conventional ToF method
(right) for different push locations and gelatin concentrations. The push location is indicated by the black dashed line for push 2 (top row), 4 (middle
row) and 6 (bottom row). For each pixel we show the mean Young’s modulus from 40 individual push and imaging sequences. Failed estimates, i.e,
estimates which are not in the range of 0.024 kPa–237 kPa are indicated in gray; the black square indicates the ROI. We use a spatio-temporal
window size of 65× 65× 35.

Fig. 7. Elasticity estimation performance. Left: Concentration / phan-
tom stiffness vs. MAE considering the results of all push locations. Right:
Push location vs. MAE across all elasticities. (Red) Spatio-temporal
CNN where evaluated elasticity is left out during training; (Blue) Spatio-
temporal CNN where evaluated elasticity is also present during training;
(Grey) Time-of-Flight method, note that we exclude failed predictions.

our deep learning approach where we left out entire elastic-
ities during training. Our findings in Fig. 6 demonstrate that
our spatio-temporal CNN approach leads to more consistent
estimations for all experiments. Notably, our results show that
our spatio-temporal CNN provides estimations inside the push
location in contrast to ToF that fails in general closer to the push
region. Moreover, our results in Fig. 7 confirm quantitatively that
the performance of the spatio-temporal CNN is independent of
the push location considering all phantom elasticities. Further,
we study the performance of spatio-temporal CNNs and the
ToF approach and evaluate the performance quantitatively with
respect to phantom elasticity, see Fig. 7. Our results show
that the pixelwise mean absolute error (MAE) increases with
increasing elasticity for both ToF and spatio-temporal CNN.
Our spatio-temporal CNN approach leads to an overall MAE of
5.01(437) kPa when all elasticities are present during training,
compared to an overall MAE of 9.99(749) kPa where evaluated
elasticities are left out during training. The ToF approach leads
to an overall MAE of 11.61(876) kPa. Second, performance with
respect to the spatio-temporal window size is given in Table II.
Our results demonstrate that larger spatial input sizes work better
at the expense of reduced model throughput, e.g., using the
largest spatial input sizes of 65 × 65 pixels (∼4 × 5 mm)
improves performance by 30% while reducing the throughput

TABLE II
MAE AND PEARSON CORRELATION COEFFICIENT (PCC) FOR DIFFERENT
WINDOW SIZES. THROUGHPUT REFERS TO THE NUMBER OF POSITIONS
FOR WHICH ELASTICITY CAN BE ESTIMATED WITHIN ONE SECOND. WE
MEASURE THE THROUGHPUT OF OUR METHODS ON A NVIDIA TESLA

V100-SXM2-32GB USING A BATCH SIZE OF 500

by a factor of 31 compared to the smallest input size of 5 ×
5 pixels (∼0.32 × 0.4 mm).

Third, we further study the robustness of our methods and
show the standard deviation of predictions at each pixel for
the complete FOV for the spatio-temporal CNN and the ToF
approach using push one, four and seven, see Fig. 8. Note
that push one and seven are completely removed from the
training data and that we only consider the ROI during training.
Our results demonstrate that the spatio-temporal CNN provides
consistent estimates with a low standard deviation also at the
previously unseen push locations and at a larger FOV than the
ROI. Moreover, Fig. 8 demonstrates that for lower phantom
elasticity (37.55 kPa) the predictions of the spatio-temporal
CNN show a high standard deviation far away from the push
location, similar to ToF.

B. Inclusion Phantoms

Results for estimates using our spatio-temporal CNNs on
phantoms with embedded cylindrical inclusions are shown in
Fig. 9 for spatio-temporal window sizes of 17 × 17, 33 × 33 and
65 × 65 pixels. Depicted is the mean of nine push and imaging
sequences. We report the MAE for the phantoms backgrounds
and inclusions separately by calculating the pixel-wise errors
between the prediction of the network and the corresponding
ground truth elasticity. The results for a spatio-temporal window
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Fig. 8. Full image elasticity predictions. Shown are the standard deviations of the pixelwise estimated Young’s moduli of 40 push and image
sequences. Results for ground truth elasticity 37.55 kPa and 72.64kPa are shown in the top and bottom row, respectively. The black square
indicates the ROI used for training, the push location is indicated by the black dashed line. We use a spatio-temporal window size of 65× 65× 35.

Fig. 9. Elasticity maps of five inclusion shapes. Column 1 shows the target Young’s modulus, column 2-4 spatio-temporal CNN predictions with
spatio-temporal window sizes of 17 × 17 pixels, 33 × 33 pixels and 65 × 65 pixels. Time-of-flight estimates are depicted in column 5.

size of 65 × 65 pixels are given in Table III. The combined
MAE across all phantoms with deep learning is 7.5(1287) kPa
for all inclusions and 1.64(0432) kPa for the background. The
combined MAE with ToF is 16.28(1005) kPa for all inclusions
and 11.11(1008) kPa for the background. The threshold for
the Dice coefficient is set to 67.38 kPa and is estimated by
the mean target Young’s modulus of inclusion and background.
The mean Dice coefficient for the inclusion shapes depicted in
Fig. 9 is 0.93 for our deep learning approach and 0.86 for ToF.
Table IV shows that the Dice coefficient and the MAE decrease
for smaller spatio-temporal windows sizes. This is consistent
for all binarization thresholds as shown in Fig. 10. The elasticity
map of chicken heart tissue, B-Mode ultrasoundx image and
cross-section of the phantom is given in Fig. 11.

IV. DISCUSSION

We present a deep learning approach for local elasticity
estimation from real 3D ultrasound data. This task has been

Fig. 10. Mean Dice coefficients vs. binarization threshold for all inclu-
sion shapes. Given are all analyzed spatio-temporal window sizes and
time-of-flight.

addressed with conventional methods by extracting the shear
wave velocity as an explicit feature ([10], [41]). In contrast,
deep learning methods allow estimates without explicit feature
extraction, intensive pre-processing and manual tuning. We
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TABLE III
MAE FOR INCLUSION (IN) AND BACKGROUND (BG) AND THE DICE

COEFFICIENT WITH THE CORRESPONDING MEAN µ FOR ALL FIVE INCLUSION
SHAPES. METRICS FOR THE SPATIO-TEMPORAL CNN ARE DERIVED WITH

SPATIO-TEMPORAL WINDOWS WITH A SIZE OF 65 × 65 PIXELS. THE
INCLUSION SHAPES ARE DISPLAYED IN FIG. 9 WITH, E.G.,

ROW ONE REFERRING TO PHANTOM #1

TABLE IV
MEAN MAE AND DICE SCORE FOR ALL INCLUSION SHAPES. GIVEN IS THE

INCLUSION (IN) AND BACKGROUND (BG) WITH ALL STUDIED
SPATIO-TEMPORAL WINDOW SIZES. THE BINARIZATION

THRESHOLD IS SET TO 67.38kPa

Fig. 11. Elasticity estimation in soft tissue. Top Left: Phantom cross-
section with chicken heart tissue (A) embedded in gelatin and posi-
tioned ultrasound transducer (B). Top Right: B-Mode image of inclusion.
Bottom: Elasticity maps estimated with our spatio-temporal CNN and
time-of-flight approach.

present a local elasticity estimation approach with real ultra-
sound data, where a 3D spatio-temporal CNN is trained to
predict tissue elasticity from spatio-temporal windows.

Elasticity estimation: We study the performance of our meth-
ods on homogeneous phantoms considering various push lo-
cations and elasticities. We demonstrate that predictions can
be performed for an elasticity range of 38 kPa–98 kPa which
reflects reported tissue elasticities in the literature as shown in
Table I. Our findings highlight that elasticity estimation on stiffer
tissue with spatio-temporal CNNs is also consistent, while in
the literature typically estimated gelatin elasticities in the range

of up to 10% are reported ([8], [11], [15]). Naturally, faster
shear waves reduce the amount of shear wave information which
leads to an increased error for conventional methods. In contrast,
stiffer elasticities only lead to slightly reduced performance for
our deep learning approach, see Fig. 7. Hence, our findings
show that our spatio-temporal CNN approach leads to robust
and consistent results across a wide range of elasticities. In
general, the performance could be further enhanced by the use
of image compounding during data acquisition. The state-of-art
is using three angled plane waves for image acquisition which
increases the SNR for more robust estimates with ToF [9].
However, in this case the image acquisition frequency decreases
by a factor of three, which results in fewer images containing
shear wave information which makes it difficult to estimate shear
wave velocity for stiff elasticities. Note that we already observe
that performance decreases for stiffer elasticities. Hence, we
consider the maximum available imaging frame rate without
image compounding.

In this work, we estimate the Young’s modulus as a surrogate
for tissue elasticity with ground truth annotation performed by
indentation experiments. In general, our approach only requires
selected material parameters as training targets and subsequently
we are able to generalize to unseen data. It is noticeable that
predicting known elasticities improves the performance of our
spatio-temporal CNN approach. This could be considered as a
relevant scenario as further elasticities can be included in the
training data. Also, we demonstrate that even in the challenging
case of predicting elasticities that are not present during training
our spatio-temporal CNN approach leads to competitive perfor-
mance compared to our ToF method. This demonstrates that our
spatio-temporal CNN approach generalizes well between dif-
ferent elasticities even with few ground truth elasticities. Fig. 7
suggests a better MAE for ToF for elasticities under 72 kPa,
when evaluated elasticities are left out during training. However,
ToF-results do not include failed estimates, i.e., we exclude all
outlier ToF estimations which are not in the range of 0.1–10 m/s.
This leads to several missing ToF estimates as shown in Fig. 6 in
gray. Notably, previous work on estimating the elasticity from
SWEI data build on simulated data ([22], [23]). However, this
only solves the inverse problem of the model underlying the
simulation. In addition, performance is limited on real data as,
e.g., noise and image artifacts are not sufficient represented in
simulated data [23]. In contrast, our approach is trained with
real data, which includes, e.g., imaging noise or probe artifacts.
Also, our local approach can be adapted to real tissue samples,
e.g., obtained from tumor resections, by using pathological
tumor properties as training targets. Subsequently, pathological
properties of soft tissue can be predicted and imaged with our
local estimation approach.

Push dependency: Second, we study the robustness of our
approach concerning the spatio-temporal window position rel-
ative to the push location. Our results, depicted in Fig. 6 and
Fig. 7, show qualitatively and quantitatively that our deep learn-
ing approach provides more consistent estimates than ToF and
provides accurate estimations independent of the push location
relative to the ROI. In the case that all elasticities are present
during training our deep learning approach outperforms ToF.
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We studied similar result in soft tissue phantoms with consistent
predictions for the individual push locations. This is in contrast to
other work in the field that require, e.g., two fine-tuned pushes to
the left and right of the ROI [15]. Furthermore, it stands out that
with a spatio-temporal CNN we can perform predictions within
the push location, where shear wave propagation is complex and
diffuse and the imaging is dominated by relaxation dynamics.
Predictions can even be performed inside the push region for
small spatial window sizes of 5 × 5 pixels. It can be assumed
that the network learns the relaxation dynamics of the gelatin
which changes for different elasticities. This has not yet been
shown in any previous work that uses deep learning methods
in combination with simulated data ([22], [23]) or conventional
methods [9]. Still, further investigation on the push depth as
well as the material viscosity are necessary. We also study our
approach on the complete FOV, while only training with image
crops from the ROI. In this way, we evaluate our approach
for completely unseen locations relative to the push location
and are able to study the performance far away from the push
location. For push locations (push one and seven) not included
in the training data, we can still perform accurate estimates, see
Fig. 8. This demonstrates that our approach also leads to robust
results for unknown push locations. Moreover, our results in
Fig. 8 further confirm that our spatio-temporal CNN approach
outperforms ToF and provides accurate estimates for a much
larger FOV than the ROI. Similar to ToF, it stands out that
our spatio-temporal CNN approach does not provide consistent
estimates far away from the push location. This shows that our
approach does not over-fit on specific phantom features such as
speckle characteristics and fails when no wave information is
present in the data.

Inference and Performance: Third, we study the performance
of our network concerning inference time and spatio-temporal
window sizes, see Table II. Increasing the spatial window size
leads to more accurate results compared to using smaller spatial
window sizes. This is most likely related to the fact that larger
window sizes cover a larger spatial area, hence providing more
information about wave propagation. However, using smaller
window sizes allows for notably increased model throughput,
which is important to provide real-time estimates for larger
FOVs and higher resolution. Considering our results in Table II,
using a smaller spatial window size, e.g., 33 × 33 pixels might
be a good starting point for further work as there is similar
performance compared to 65 × 65 pixels, while the throughput
is increased by a factor of 3.32. In general, pixelwise processing
is more computationally expensive than an encoder-decoder
architecture applied to the entire image at once. However, CNNs
are inherently efficient for this task, because computations can be
shared across overlapping regions during testing [42]. Similar,
a whole image fully convolutional training [43] could be used
to further speed up the training time. We perform patchwise
training, which results in higher batch variance and allows to
use different augmentation on image crops from the same ROI.
Also, a direct advantage of our approach is that sparse estimates
can be performed during inference, e.g., only predicting every
nth pixel. This allows to scale our approach effectively to larger
FOVs while maintaining similar inference times. Overall, our

results demonstrate that global elasticity maps can be estimated
in real-time using our deep learning approach. In particular, the
use of more powerful hardware will improve the inference time
of our method. Although a comparison due to different hardware
is difficult, our spatio-temporal CNN approach is more time
efficient than conventional methods and can perform predictions
on a smaller window size, e.g., Kijanka et al. [16] report an
inference time of 0.22 ms per estimate for a spatial window size
of 4.5 × 4.5 mm while our spatio-temporal CNN achieves a
inference time of 0.07 ms for a spatial window size of 0.32 ×
0.4 mm.

Inclusion Shapes: Finally, we evaluate our methods on gelatin
phantoms with circular stiff inclusions. Our results in Fig. 9
demonstrate that our spatio-temporal CNN approach provides
consistent estimates with larger spatio-temporal window sizes
for the inclusion and the background similar to our results on
homogeneous phantoms. Considering the MAE, performance of
estimates inside the inclusion increases by a factor of ∼ 2 and
on the background by a factor of ∼ 6 with our spatio-temporal
CNN in comparison to ToF. While we perform local estimations,
this raises the question how our approach performs on elasticity
boundaries with respect to the spatio-temporal window size. Our
results in Fig. 9 demonstrate that errors can be seen at elasticity
boundaries and the shape of the inclusion is still well defined.
While smaller window sizes consider a smaller spatial area,
this could lead to more distinct boundaries and less blurring.
In general, our results show that larger window sizes lead to
more consistent estimates, as seen for background predictions
in Fig. 9. However, we find that the general performance drop for
smaller window sizes outweighs the potential benefit of reduced
blurring. Hence, for larger window sizes the boundary is more
distinct visible and the Dice score is higher. Nevertheless, it is
noticeable that inclusion boundaries can also be retrieved from
small windows sizes, e.g., ∼1 × 1 mm (17 × 17 pixels). In
direct comparison with ToF, the Dice coefficient is similar for a
window size of 17 × 17 pixels (Fig. 10). Hence, spatio-temporal
window sizes smaller than 17 ×17 pixel (∼1 × 1 mm) are
not favorable. Our results in Fig. 11 demonstrate that elasticity
estimation in chicken heart tissue is also feasible with our
deep learning approach. The investigation of other soft tissue
samples in an interesting next step for future work. Overall, our
spatio-temporal CNN approach shows promising results in the
estimation of elasticity in inhomogeneous mediums.

V. CONCLUSION

We present 3D spatio-temporal CNNs for local elasticity esti-
mation from real ultrasound shear wave data, which demonstrate
increased performance compared to conventional approaches.
Our findings show that spatio-temporal CNNs can retrieve local
elastic properties from small spatio-temporal windows while be-
ing independent of the push location, and demonstrating consis-
tent performance across various elasticities and inhomogenities.
Further work will include in vitro and in vivo experiments of real
soft tissues.
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