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Abstract—Objective: Long-term monitoring of epilepsy
patients outside of hospital settings is impractical due
to the complexity and costs associated with electroen-
cephalogram (EEG) systems. Alternative sensing modali-
ties that can acquire, and automatically interpret signals
through easy-to-use wearable devices, are needed to help
with at-home management of the disease. In this paper, a
novel machine learning algorithm is presented for detect-
ing epileptic seizures using acoustic physiological signals
acquired from the neck using a wearable device. Meth-
ods: Acoustic signals from an existing database, were pro-
cessed, to extract their Mel-frequency Cepstral Coefficients
(MFCCs) which were used to train RUSBoost classifiers to
identify ictal and non-ictal acoustic segments. A postpro-
cessing stage was then applied to the segment classifica-
tion results to identify seizures episodes. Results: Tested
on 667 hours of acoustic data acquired from 15 patients
with at least one seizure, the algorithm achieved a detection
sensitivity of 88.1% (95% CI: 79%–97%) from a total of 36
seizures, out of which 24 had no motor manifestations, with
a FPR of 0.83/h, and a median detection latency of −42 s.
Conclusion: The results demonstrated for the first time the
ability to identify seizures using acoustic internal body sig-
nals acquired on the neck. Significance: The results of this
paper validate the feasibility of using internal physiological
sounds for seizure detection, which could potentially be of
use for the development of novel, wearable, very simple to
use, long term monitoring, or seizure detection systems;
circumventing the practical limitations of EEG monitoring
outside hospital settings, or systems based on sensing
modalities that work on convulsive seizures only.

Index Terms—Acoustics signals, epilepsy, physiological
signals, seizure detection, machine learning, wearables,
monitoring, digital health.

I. INTRODUCTION

E PILEPSY is a chronic and noncommunicable condition
that affects the brain of those who suffer from it. More

than 50 million people worldwide suffer from epilepsy [1].

Manuscript received February 8, 2021; revised November 5, 2021;
accepted January 16, 2022. Date of publication January 21, 2022; date
of current version June 20, 2022. This work was supported in part by
the European Research Council (ERC) under Grant 724334 and in part
by the SUDEP Action. (Corresponding author: Xuen Hoong Kok.)

Xuen Hoong Kok is with the Wearable Technologies Lab, Depart-
ment of Electrical and Electronic Engineering, Imperial College London,
SW7 2BT London, U.K. (e-mail: x.kok17@imperial.ac.uk).

Syed Anas Imtiaz and Esther Rodriguez-Villegas are with the Wear-
able Technologies Lab, Department of Electrical and Electronic Engi-
neering, Imperial College London, U.K.

Digital Object Identifier 10.1109/TBME.2022.3144634

The disease is characterized by the presence of seizures [2].
These seizures, which can manifest in different ways and
occur at any time, are classified into different types. The un-
predictability of seizures, in addition to their physical and
cognitive manifestations, do have severe impacts on patients’
lives. They affect their ability to work, study or perform
daily tasks. Furthermore, stigmas associated with seizures and
epilepsy, mostly in certain parts of the world, in some cases
prevent patients from reaching out and seeking appropriate
treatment.

The standard assessment method for the detection and iden-
tification of epileptic seizures involves the analysis of brain
activity. This is routinely carried out using electroencephalogra-
phy (EEG), a method where electrical signals generated by the
brain are sensed using numerous electrodes placed at specific
locations on the scalp, and these are subsequently annotated
looking for epileptic activity biomarkers. The gold standard for
seizure detection is video-EEG (VEEG) monitoring [3], where
both the video and EEG signals are recorded. This is usually
performed at specialized clinics or hospitals, under supervision
of trained clinical staff.

Although VEEG can provide information on both, physical
symptoms of seizures as well as the brain activity, it requires
patients to be in hospital for monitoring. In addition to the
in-hospital monitoring, patients are often required to keep diaries
to log seizure episodes at their homes. While being helpful,
this can be very subjective and unreliable. Recollections of
seizure episodes by patients are based on their perception, mood,
duration, trigger, and severity among other subjective factors [4].
Additionally, under-reporting of seizures is one of the major
challenges faced by people with epilepsy, giving rise to an array
of problems in its diagnosis, management, and treatment [5].
This can be attributed to a variety of factors, such as the loss of
awareness during seizures and the forgetfulness of patients [5].
Consequently, there is a push to improve the at-home care for
epilepsy patients to help with the diagnosis and management
of their condition through the use of long-term monitoring
systems [6].

EEG-based systems for epilepsy monitoring require a large
number of electrodes, ranging from 8 to 64 [7], to be placed
on the patient scalp while the recording is taking place. The
large number of electrodes are essential, since the location of
the source of the seizure is not normally known [8]. However,
the complexity and cost of the method makes it unviable for it
to be potentially deployed as a tool to be used at home by the
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majority of patients for long-term monitoring to assist with the
long-term management of the disease.

Alternative sensing modalities have been proposed to assist
with the task of long-term seizure monitoring and detection [7],
[9]. These focus on the seizure manifestations rather than the
physiological signal generated at the source of the seizure, and
include methods based on accelerometry, surface electromyo-
graphy (sEMG), photoplethysmography (PPG), electrodermal
activity (EDA), electrocardiogram (ECG), non-contact audio
and video [7], [9]. Although these modalities on their own offer
little value in terms of clinical diagnosis, they could potentially
assist in managing the disease once this has been diagnosed.

This paper investigates, for the first time, the possibility of
using physiological sounds sensed from the suprasternal notch
to identify the presence of seizures. Similar to the other non-
EEG modalities used for detecting seizures, acoustic sensing
relies on identifying and measuring physiological changes in
the cardio-respiratory system rather than the electrical activities
of the brain. Hence, acoustic physiological signals were hypoth-
esized to be relevant for the detection of seizures, as changes in
cardio-respiratory function have been found during and around
seizures [10], [11]; and long-term acoustic sensing could be used
to quantify and characterize changes in the cardio-respiratory
system, including the evolution of such characteristics around
seizure episodes. As these autonomic changes occur in both focal
and generalized epilepsy, they could have the potential to be used
for detecting seizures and alleviate some of the issues in other
modalities that only work well on specific seizure types.

The paper describes the design of a new algorithm followed by
the evaluation of its performance for the detection of seizures.
The algorithm was tested on an existing pseudo-anonymized
database containing both, sound recordings from a small wear-
able device prototype and marked EEG signals. The paper is
organized as follows: Section II examines the background and
current non-EEG seizure detection methods. Section III de-
scribes the dataset used in this work and the proposed algorithm.
In Section IV, the results and the performance evaluation are
presented. This is followed by the discussion in Section V, and
conclusions in Section VI.

II. NON-EEG SEIZURE DETECTION METHODS

Since the gold standard for seizure detection involves using
EEG, several methods have been published in literature that
perform automatic detection of seizures by analyzing EEG
signals. These methods have shown to achieve good results, with
sensitivities in the 90% range [12]–[14]. However, as this paper
focuses on alternative and complementary seizure detection
methods, systems based on EEG are not described here.

Seizure detection systems based on accelerometers have been
developed, in which the sensors are typically placed on the arms
and/or legs in order to detect seizure characteristic movements.
Studies using accelerometry as the sensing modality have shown
a wide range of detection sensitivities, from 16% to 100%
[15]–[33]. This wide range of sensitivities is associated to: 1- The
fact that some methods have been tested with very low number
of seizures (less than 11), and although they seem to achieve

high sensitivity the confidence intervals are very wide [19],
[26]; 2- The tradeoff with specificity which leads some methods
to have higher sensitivities at the expense of a compromised
false positive rate (FPR) [15], [18], [26]; 3- The fact that
accelerometer-based systems rely on movements of the body lo-
cation where the sensor is placed during seizures. This will vary
depending, amongst others, on the type of seizure. Hence, these
systems are most suitable for generalized tonic clonic seizures
(GTCS). In terms of the FPRs achieved by accelerometry-based
works, they ranged from 0.01/h to 0.38/h [16], [20]–[22], [25],
[26], [29]–[33]. The low FPR indicates that these systems are
specific and perform well in detecting seizures which have motor
elements.

Electromyography (EMG) based systems, which work by
sensing variations in specific muscles activity caused by
seizures, have also been developed. The sensors are usually
placed in locations such as the arms or legs, depending on
which parts of the body are most active during seizures. The
drawbacks of EMG-based systems are similar to those based
on accelerometers. Since this modality for detecting seizures
is movement-based, the performance of systems based on it is
somewhat constrained by the position of the sensors in relation
to the part of the body that moves during the seizure, the number
of sensors and the type of seizures. Sensitivities ranging from
57% to 95% have been achieved [29], [34]–[38]. However, those
achieving the highest sensitivities also relied on an impractically
cumbersome sensing set up [36], or had very wide variability in
sensitivity results depending on the center that did the study [34],
[37]. The FPR reported in EMG-based studies are low, and
the maximum FPR was 0.11/h [29], [34], [36]–[38]. Similar
to accelerometers-based systems, although highly specific, they
were tested on convulsive seizures.

During or around seizure episodes, patients can experience
changes in their cardiac activity, manifesting in the form of
changes in heart rate variability [11]. This has also been explored
as a potential physiological modality for seizure detection. Stud-
ies of seizure detection algorithms using heart rates from ECG
recordings achieved sensitivities ranging from 57% to 100%
[30], [39]–[49], with FPR values as low as 0.06/h (and up to
2.11/h) [30], [40], [42], [45], [48]; but those studies reporting
higher sensitivities were tested only on patients that were a
priori known to have marked ictal autonomic changes and relied
on patient specific cut-offs [43], [46]. Photoplethysmography
(PPG) has also been used to try to detect cardiac changes. But in
this case, the sensitivity was either significantly reduced when
compared to using ECG, or it relied on signals in which sections
with movement artefacts had been manually removed [42], [50].

Another sensing modality that has been used to capture and
automatically identify seizures is based on non-contact bed
movement sensing, during sleep. A wide range of sensitivities
(2.2% to 89%) have been reported [51]–[53], even in evaluations
involving the same devices [51], [52]. These differences can
be explained by the different types of seizures occurring in the
evaluation datasets. In [52], it was reported that the number of
false positives was 21 in 3741 hours of recordings, which is an
equivalent overall FPR of 0.006/h (or 0.14/24 h).

Non-contact audio-based seizure detection methods have also
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been explored. The operation of these systems is based on
trying to detect environmental sounds associated to seizures,
such as those resulting from moving on top of a mattress [54].
The sensitivities reported were considerably lower than in other
sensing modalities, ranging from 4.3% to 62.5% [53]–[55].
The FPR could be calculated from the results reported (total
false positives and recording duration were 269 and 1528 hours
respectively), giving an overall FPR of 0.18/h [54].

Non-contact detection using video has also been ex-
plored [56]–[58], but whilst these approaches seem to offer
good performance for convulsive seizures, the latter dramat-
ically drops for other motor seizures or seizures with minor
motor manifestations. In terms of the FPR reported, these were
0.78/night [56] and 0.05/night [57]. The duration per night was
defined as 8 hours in the former, which is an equivalent of 0.10/h.

Another sensing modality that has been used for seizure
detection, albeit not on its own, is the electrodermal activity
(EDA). The nervous autonomic response during a seizure can
cause increased sweating, reducing skin resistance. This ap-
proach proved to achieve good sensitivity (92% to 95%) and
FPRs (0.03/h to 0.05/h), but were evaluated on tonic-clonic
seizures [59]–[61].

Overall, the performance of different sensing approaches can
be improved, at least for certain metrics, when combined to-
gether. For example, by combining the data from accelerometers
and EMG, a higher sensitivity was achieved in [29] (90.9% sensi-
tivity for the combined approach, versus 86% for accelerometry
alone, and 82% for EMG alone; together with a reduced FPR
of 0.45/12hr versus the individual 1.94/12 h and 0.6/12 h).
In [30], accelerometry and ECG features were combined, and a
better sensitivity was achieved (71% combined versus 56% for
accelerometry and 60% for ECG), but at the expense of higher
FPR (5.9/night versus 2.3/night and 4.3/night).

Despite the large body of work in the research community
looking into different unobtrusive methods involving sensing of
a variety of non-brain physiological signals to identify seizures,
there has never been any report investigating the possibility
of using internal physiological sounds for this purpose. The
rationale to investigate this is that physiological functions are
known to change around the ictal period, and consequently
those changes will likely manifest in variations in the sounds (if
any) generated by the organs involved. For example, changes in
respiration can occur in focal as well as generalized seizures [10].
Some of these changes include tachypnoea (increase in breathing
rate), bradypnea (decrease in breathing rate), respiratory pauses
(interrupted breathing lasting less than 15 s), apnea (interrupted
breathing lasting at least 15 s), coughing and the presence of
adventitious sounds [11]. And changes in heart rate, which
are also known to occur in and around ictal periods [11], also
manifest with different cardiac sounds. This hypothesis formed
the basis of the work described in this paper.

III. MATERIALS AND METHODS

A. Database

The signals used in this work were from an existing
anonymized research database that had been originally created

Fig. 1. Placement of the sensing device on the patient. Image shows
one of the investigators wearing the device.

as part of a study carried out at the National Hospital for
Neurology and Neurosurgery (NHNN), London, U.K. (approved
by the U.K. Health Research Authority, with REC reference
number 16/WA/0319). The inclusion criteria for the original
study were as follows: patients between the ages of 18 and
70, with focal epilepsy, undergoing pre-surgical assessment, and
having a minimum of two seizure episodes a week. Patients not
fluent in english, having special communication needs, or being
allergic to the sensor’s adhesive dressing were excluded.

In the study, internal physiological body sounds were acquired
using a custom-made wearable device whilst patients were being
monitored with video and EEG as part of the conventional hos-
pital pathway. The sensor was attached to the anterior neck with
double-sided adhesive, after the standard monitoring equipment
were set up. A receiver mobile device was placed within two
meters of the patient. The sensor used was a smaller variant
of the one previously published in [62] and was placed on the
patient as shown in Fig. 1.

The VEEG recordings were reviewed by consultants at the
hospital and were used to annotate seizures that occurred during
the monitoring period only. The annotations and timestamps of
seizure events extracted included the onset and offset of seizures,
intervention of nurses, and post-seizure interviews.

Overall, the database used in this work had anonymized sig-
nals from 33 subjects (18 male, 15 female). Fifteen out of the 33
subjects in the database had seizures during monitoring and only
these were used to develop and evaluate the algorithm presented
in this paper. The median age of these 15 patients was 32 years
(range: 20 – 53). Four of them were female and the remaining
eleven were male. The total duration of the signals in the database
was 667.3 hours. The median recording duration per patient
was 47.6 hours (range: 4.4 h – 76.6 h). A total of 36 seizure
events had been annotated in these patients. Thirty-one of these
events were focal onset seizures, two generalized onset seizure,
two focal-to-bilateral tonic-clonic seizures and one unclassified
seizure. The median duration of all seizure events was 69 s
(range: 11 s – 700 s). Focal seizures had a median duration
of 70 s (range: 11 s – 200 s), generalized seizures were 22 s and
24 s each, focal-to-bilateral tonic-clonic seizures lasted 19 s and
58 s, and the unclassified seizure was 34 s long. Table I shows the
seizures’ type, characteristics and duration in the database used.
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TABLE I
DESCRIPTION OF SEIZURE TYPES AND THEIR DURATION

Fig. 2. Definition of stages in acoustic recordings containing seizure.
tszOnset: time of seizure onset; tszOffset: time of seizure offset.

For the purpose of this study, the signals recorded were
labelled as ictal, preictal, postictal and interictal according to
Fig. 2. Ictal periods were defined as the five minutes period
before the annotated onset of the seizure and ending at the
offset annotation. The EEG onsets which were marked by the
epileptologists were used (offset = onset + duration); except for
one seizure where this information was not available and the
clinical onset and offset times were used instead.

Fig. 3. A high level overview of the proposed algorithm.

The five minutes of signal segments preceding the seizure
onset were labelled as ‘ictal’ to ensure that all seizure data were
accounted for in the analysis due to the timing discrepancies in
the acoustic and VEEG data acquisition systems.

The preictal and postictal windows were both set at 15 minutes
before the beginning and after the end of ictal period respectively.
Signal times which did not fall into any of these categories were
subsequently grouped as interictal. When defining the ictal stage
of the recordings, if a nurse attended to the patient before the
seizure offset, the ictal period used in the training was shortened
to this time, to exclude data segments from when the patient is in
presence of the nurse. This is because when attending to a patient
having seizure, the nurses would assess the patients’ state of
awareness by asking questions and requesting that they perform
certain tasks. This would introduce systematic characteristics
to the signals, which are unrelated to the physiological status.
The risk of including such data was that the classifier could be
unintentionally trained to detect these instead of physiological
changes.

B. Seizure Detection Algorithm

An overview of the proposed seizure detection algorithm
based on internal physiological body sounds is shown in Fig. 3.
It consists of the following stages: preprocessing, features ex-
traction, training and classification of seizure epochs using



KOK et al.: ASSESSING THE FEASIBILITY OF ACOUSTIC BASED SEIZURE DETECTION 2383

RUSBoost classifiers, followed by the post-processing of the
classification results. These stages are explained in the following
sections.

1) Data Preprocessing: The signals acquired by the acous-
tic sensor were sampled at 2000 Hz and filtered with an 8th order
Butterworth band-pass filter with corner frequencies of 100 Hz
and 900 Hz. This was performed to remove DC components
and higher-frequency external acoustic interference that may
have been captured by the sensor. The filtered signals were then
split into 20 s segments, with a 15 s overlap. All the extracted
segments in the ictal period defined in Fig. 2 were given a label
of “1” (seizure segments) and the rest of the segments were
labelled “0” (non-seizure segments).

To reduce the risk of the classifier learning systematic features
(e.g., patient’s speech that happen during and after seizures) over
physiological features, some data in the dataset were removed
from the classifier training. The removal of such systematic
features accounted for approximately 9 hours (or 1.3% of all
data segments). Partially overlapped segments (such as those
between the preictal and ictal stages, post-ictal and inter-ictal
stages, etc.), which accounted for approximately 45 minutes,
were also excluded from the training of the classifier. In cases
where the sensor wireless connection disconnected during data
acquisition, segments without signals were also removed. The
amount of signal segments removed for this reason was approx-
imately 11 hours (or 1.6% of all data segments). There were no
other attempts to remove noisy data or signal segments in the
training stage. However, any data that were removed from the
training stage were instead included in the testing and evaluation
stage.

The intensity and amplitude of the acquired physiological
sounds change throughout the day and could be a characteristic
at different stages of seizures. Hence, the recordings were not
range normalized because the maximum and minimum values
for the full recording were post-hoc knowledge and will not be
available in real-time monitoring systems. Similarly, data in the
20 s segments were also not normalized before features were
extracted.

2) Features Extraction: In this stage, the dimensions of the
raw acoustic data were reduced by using a set of features to
represent the original acoustic segments. Features based on the
Mel-frequency cepstrum coefficients (MFCCs) were used in this
paper. MFCCs are defined as “the real cepstrum of a windowed
short-time signal derived from the FFT (fast Fourier transform)
of that signal” [63]. These features were chosen because they
are motivated by perceptual factors. Their ability to model the
human auditory system, in terms of the non-linear perception
of loudness and frequency is advantageous [64], and are hence
widely used in domains such as automatic speech recognition
and speaker identification. Since changes in physiological func-
tions, including respiration do happen during seizures, MFCC
features were thought to be ideal for representing the acoustic
signals collected by the sensor.

The process of calculating the MFCCs involves the following
steps:

i) Windowing the signal
ii) Calculating the FFT of the windowed signal

iii) Calculating the power spectrum from the FFT
iv) Applying a Mel filter bank to the power spectrum
v) Summing and logging the energy in each frequency band

vi) Finally, applying the discrete cosine transform
(DCT) to the logged summed energy results in the
MFCCs.

In this work, MFCC features were extracted from each 20 s
sound segments using the “rastamat” library [65]. The first
13 coefficients returned by the function were retained. These
correspond to an energy coefficient and 12 cepstral coefficients.
This number of coefficients is commonly used in audio recogni-
tion and classification tasks, as it represents the lower frequency
components that are related to the timbre of the signal [66]. A
sample segment from the interictal period as well as the ictal
period are shown in Fig. 4.

3) Classification of Acoustic Seizure Segments: The
random under sampling and boosting (RUSBoost) classification
algorithm [67] was selected for the task of classifying seizure
acoustic segments from the ictal stage, and non-seizure acoustic
segments from the interictal and preictal stages. Since the data
collected were from long-term monitoring, the amount of data
samples corresponding to seizure events were much smaller
when compared to those in the non-seizure periods. To illustrate
the class imbalance in this work, data segments from ictal periods
only formed 0.5% of the entire dataset. Regular classifiers gener-
ally do not work well in datasets with such class imbalance, and
this results in strong bias towards the class with more samples.
Therefore, to effectively learn from the dataset, a classification
algorithm that is equipped to handle the class imbalance, the
RUSBoost, was used.

The training of classification models was carried out in a
workstation using the Statistics and Machine Learning Toolbox
in MATLAB 2018a. The base classifier used in MATLAB for
RUSBoost was a Classification and Regression Tree (CART).
Acoustic segments in the dataset were randomly split into train-
ing and test sets in each iteration, with 70% of all segments
making up the training set, and the remaining 30% forming the
test set. In each iteration, the RUSBoost model was trained using
only data segments from the training set. For every learning
cycle of the RUSBoost base classifier, a subset of the training
data was selected at random (the random undersampling part
of RUSBoost) until an equal number of samples per class was
obtained to train the base classifier (i.e., a minority class ratio
of 50%). The number of learning cycles used in this work was
50 to maximize the chance of different data points being used
in the training, stage while keeping the time it takes to train
the models reasonable. Fifty iterations of the RUSBoost model
training were performed, and the results of samples from the test
set were aggregated by majority voting.

4) Classification Post-Processing: A post-processing
stage is added to help reduce the dependency on individual
segment classification results to detect seizures, which may
cause isolated false positives.
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Fig. 4. Raw acoustic signals and the extracted features from one of the patients recording in the dataset. Upper left: The filtered acoustic signals
taken during the interictal period. Lower left: The features extracted for signals from the same interictal period. Upper right: The filtered acoustic
signals taken during the ictal period. Lower right: The features extracted for signals from the same ictal period.

The post-processing stage works as follow. It looks at the
classification outputs, C, for the previous M acoustic segments
and calculates the ratio according to (1).

p =
1

M

M∑
i

C(i) (1)

Then, the ratio, p, is compared to a predetermined threshold,
thr. If the ratio is greater than the threshold, the algorithm then
indicates that a seizure has occurred. Mathematically this is
represented by (2), where a 0 at the output (H) indicates that
no seizure is happening and 1 that a seizure is happening.

H =

{
0 p < thr

1 p ≥ thr
(2)

A refractory period of 1 minute was also assumed and hence
any subsequent seizure detected within this window was con-
sidered part of the same event.

5) Performance Evaluation: The entire recordings for the
patients were used in the evaluation analysis. The metrics com-
monly reported to measure the performance of seizure detection
algorithms [12], were also used in this work, these are the:

• Event sensitivity,
• False positive rate (FPR), and
• Detection latency.

The event sensitivity was defined as the ratio of detected
seizures to the total number of seizures in the database. A seizure
was considered detected if there was at least one detection
output by the algorithm around a predetermined time window
of a marked seizure onset. This time window is defined as
the true positive window in this paper. Two window lengths
were evaluated in this paper, 90 s and 5 minutes. A window
length of 5 minutes was used due to the ictal period timing

that was previously defined in Fig. 2. The event sensitivity is
mathematically defined in (3).

Event Sensitivity =
Number of seizures detected

Total number of seizures
(3)

Likewise, if any detection fell outside of this window, it would
automatically be considered as a false positive. The FPR metric
was calculated by summing the number of false positives and
normalizing it to the length of the recording in hours, as shown
in (4).

FPR =
Number of false positive

Recording duration
(4)

Detection latency was calculated as the time difference be-
tween the first detection in the true positive window of a seizure
to the onset of that seizure, shown in (5).

Detection Latency = tdetection − tseizureOnset (5)

Some of the patients in the dataset had more than one seizure
during their monitoring period, resulting in clusters forming in
the data. The corrected event sensitivity was therefore calculated
to account for the presence of such data clusters, using the
method described in [61]. The intraclass correlation for a single
proportion was first calculated [68], then the corrected event
sensitivity and its 95% confidence intervals were found using the
Wilson score modified for clustered binary data [69], utilizing
the intraclass correlation that was calculated in the previous step.

In addition to the evaluation of the seizure detection al-
gorithm’s performance, the performance of the classifiers in
identifying seizure breath segments was also evaluated. The
following metrics were used:

• Classification sensitivity
• Classification specificity
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TABLE II
SEIZURE DETECTION RESULTS FOR PATIENTS WITH SEIZURES DURING MONITORING, EVALUATED USING TRUE POSITIVE WINDOWS OF 5 MINS AND 90S

*Pat. Num.: Patient number; FPR: False positive rate; SENS: Sensitivity.

Classification Sensitivity (SENS), measured the number of
seizure acoustic segments correctly identified by the classifier,
namely:

SENS =
TP

TP + FN
(6)

Classification Specificity (SPEC), measured the number of
non-seizure acoustic segments correctly identified by the clas-
sifier, namely:

SPEC =
TN

TN + FP
(7)

In the equations above,
• TP was the number of seizure segments correctly classified
• FP was the number of misclassified non-seizure segments
• TN was the number of non-seizure segments correctly

classified
• FN was the number of misclassified seizure segments.

IV. RESULTS

The performance of the algorithm for detecting seizures was
assessed using the performance metrics defined in the previous
section. Through a majority voting process, if more than half
of the classification outputs from the trained classification mod-
els were positive, the sample would be labelled as a seizure
segment. The post-processing step was then applied to the
newly labelled segments, using M = 10 and thr = 1, which
were found as part of the algorithm development using the
data from patients with seizures corresponding to the training
dataset. The value for M represented just over one minute of
data, corresponding to the median duration of seizures in the
database. The threshold, thr of 1 was used as the classifiers
trained had achieved good performance in identifying acoustic
segments belonging to seizure and non-seizure parts of the
recordings.

Two different true positive window lengths of 90 s and
5 minutes, and the performance for each patient using the two
window lengths are shown in Table II. The detection latencies

TABLE III
DETECTION LATENCIES (IN SECONDS) FOR EACH SEIZURE, EVALUATED

USING TWO DIFFERENT TRUE POSITIVE WINDOW LENGTHS

for each seizure in the database evaluated using two window
lengths of 90 s and 5 minutes can also be found in Table III. A
true positive window length of 90 s effectively meant that all the
positive outputs (or detections) by the algorithm around 90 s of
the marked seizure onsets would be considered as true positives
and the seizure event considered as detected. Using this window
length, the algorithm detected 33 out of the 36 seizure events,
equivalent to an event sensitivity of 91.7%. The corrected event
sensitivity was 88.1% (95% CI: 79% – 97%). The FPR was found
to be 0.83/h (551 false detections in 667.3 hours of recording).
The median FPR per patient was 0.53/h (range: 0.13/h – 3.36/h)
and the median detection latency was -42 s (range: -90 s – 58 s).
Using the longer true positive window of 5 minutes, all seizure
events in the dataset were successfully detected, resulting in an
event sensitivity of 100%. After adjusting for clusters in the
data, the corrected event sensitivity was 95.1% (95% CI: 90% –
100%). The FPR was also lower, at 0.70/h (469 false detections
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TABLE IV
FALSE POSITIVE RATES (FPRS) FOR PATIENTS IN THE DATABASE THAT DID

NOT HAVE SEIZURES DURING MONITORING

*FPR: False positive rate.

TABLE V
CLASSIFICATION METRICS FOR DIFFERENT TYPES OF SEIZURES SEGMENTS

*SENS: Sensitivity; SPEC: Specificity.

in 667.3 hours of recording), and the median detection latency
was -243 s (range: -295 s – -117 s). The median FPR per patient
was 0.40/h (range: 0.05/h – 3.16/h).

Additionally, the algorithm was also tested on the set of
patients that did not have recorded seizures during their mon-
itoring or were not used in the training due to missing seizure
recordings. In these patients, the median FPR per patient was
0.27/h (range: 0.00/h – 1.13/h). The results for each patient are
shown in Table IV.

The classification stage of the seizure detection algorithm
achieved a specificity of 90.64% and a sensitivity of 87.94%
for seizures in the dataset. Table V shows the performance for
different seizure types. Patient-specific metrics of the classifica-
tion are also shown in Table VI. The median classification sensi-
tivity attained across 15 patients was 88.82% (range: 72.86% –
96.09%), and the median specificity was 91.95% (range: 76.17%
– 97.06%).

V. DISCUSSION

In this work the feasibility of using physiological body sounds
using a neck-worn wearable acoustic monitor, to automatically
identify epileptic seizures has been investigated. An algorithm
has been presented that was able to successfully detect 33 out
of 36 seizures using a 90 s true positive window around seizure
events, and a FPR of 0.83/h. When using the 5 minute window,
all seizures in the dataset were detected, with a FPR of 0.70/h. In

TABLE VI
PATIENT SPECIFIC METRICS FOR SEIZURE ACOUSTIC SEGMENTS

CLASSIFICATION

*SENS: Sensitivity; SPEC: Specificity.

recordings from patients with no seizure events, the algorithm
resulted in a FPR of 0.37/h (246 false positives in 670.6 hours)
and a median FPR per patient of 0.27/h (range: 0.00/h – 1.13/h),
showing its ability to discriminate between seizure and non-
seizure activity in acoustic signals.

The three seizures missed by the algorithm were seizures 9,
21 and 32 (in Table I), which belonged to different patients.
The seizures missed all had a focal onset, but the secondary
characteristics such as the presence of motor elements and
awareness were different. It was noted though that using the
longer true positive window, the algorithm appears to be able to
detect them, indicating that there could be features in the lead up
to the ictal periods that were detectable by the algorithm. Further
analysis of the results revealed that the false positives reported
by the algorithm were present around times when the recorded
signals of interest were of lower quality, typically close to the
noise floor of the sensor, and occasionally due to speech. Hence,
optimizing the electronic design of the system, and introducing
an artefact rejection preprocessing stage, potentially having a
night/day mode, will likely improve the algorithm performance.
While source separation techniques such as the empirical mode
decomposition (EMD) or wavelet-based methods were not used
in this preliminary work, it would be worth exploring separately
in future works the effect these might have in enhancing the
quality of the sensed signals and whether they could further
improve the performance of the algorithm itself, with respect to
just using a filter like the one used in this work. Moreover, false
positive detections in some patients were also found to occur
close to each other. Thus, increasing the duration of the refrac-
tory period, in which consecutive detections are grouped, might
be able to reduce the number of false detections of this type.
Tuning the algorithm, based on known patient specific disease
characteristics might also be a way to optimize its performance.
Long-term monitoring could help in the collection of enough
information from the same patient so that the process of person-
alizing those parameters could take place automatically and be
updated periodically. And depending on the final intended use
of any device created based on this methodology, adapting the
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post-processing stages could lead to better overall performance
within the context of its application. Aside from the introduction
of an additional step in the pre- and post-processing stages,
the performance of the algorithm might potentially be also
optimizable by using a larger database of signals for training.

Compared to other wearable systems described in Section II,
the FPR achieved in this work is indeed noticeably higher.
The range of FPR reported for studies using wearable systems
were under 0.11/h [21], [22], [32], [34], [38], [43], [46], [59].
Nevertheless, it is important to note that this comparison is
against algorithms developed and assessed on other seizure
types, namely tonic, clonic and/or tonic-clonic. On the other
hand, comparing the results of this paper with studies that were
evaluated on mostly non-convulsive seizures, only two, [43]
and [46] reported lower FPRs, at 0.9/24 h and 1/24 h respectively.
The remaining two studies reported higher FPR, at 1.9/h [45];
and in the other, [42], it was between 1.8/h and 2.1/h, depending
on the modality and system (ECG or PPG) examined. Whilst
the FPR is below one (i.e., the threshold under which a device is
considered to be usable), it is still on a higher side. There could
be the opportunity to tune the algorithm parameters so that the
FPR is reduced, but this will come at a cost, and may result
in a decrease in sensitivity. However, it is worth mentioning
that the work presented here represents the first attempt to use
acoustic physiological signals in this context and as a result, it is
reasonable to assume that more research could lead to significant
improvements.

A practical advantage to wearable sensing at the neck lies in
the vast amount of information that could be captured, using just
a single, small wearable sensor. Compared to the limited number
of physiological channels (typically two, PPG and movements)
that can be acquired from other sensing sites, the neck can give
access to airflow, photoplethysmography (PPG), movement and
cardiac sounds [70], [71]. One limitation, however, of a wearable
neck sensor is that it might only be widely acceptable for all
patients to wear during the night.

In terms of the limitations of this work, it is worth noting
that the data contained in this database was from patients with
focal epilepsy. It would be useful to also evaluate the hypothesis,
methodology, and potentially efficacy of the algorithm using
signals from other types of epilepsy patients. The decision to
include data from the five minutes preceding a seizures onset
as ‘ictal’ also had a knock-on effect, and is reflected in the
detection latency of the algorithm. For this reason, the algorithm
had negative detection latencies in most of the detected seizures,
which makes it appear to be predicting them ahead of the actual
seizure onset.

To the best of the authors’ knowledge, the algorithm presented
in this paper is the first demonstration of seizure detection using
acoustic internal body signals sensed on the neck. As a result,
there are no existing studies that could be referred to for a direct
comparison of the results. However, if these were compared
with the results obtained in studies focused on other non-EEG
based methods, the performance is found to be comparable to
the best ones reported. And although some methods reported
slightly better sensitivity, these generally either: did not report
specificity/false positive rate (FPR) [20], [25], [27], [39], [41];

and/or relied on cumbersome approaches [29], [36], [39], [41],
[47]; and/or had been tested on a very small database (less
than 15 subjects/15 subjects with seizures: [16], [19], [20],
[25], [26], [29], [32], [39], [56], less than 36 seizures: [16],
[19], [22], [26], [29], [37], [52], [59]); and/or the performance
massively degraded (or had not been tested) when seizures were
not of generalized tonic clonic nature (GTCS) and/or involved
minor motor seizures [21], [46], [47]; and/or were privacy in-
trusive [56], [57].

When used as a standalone seizure detection system, the
algorithm showed specially promising results in the detection
of non-convulsive seizures, which was the main type of seizure
in this dataset. This would be particularly useful for patients
whose primary seizure type may not be convulsive, and for
whom existing systems based on the detection of convulsive
movements would be known a priori not to work. It is worth
noting though, that the approach presented in this paper does
not invalidate the others. If used in conjunction with existing
algorithms and sensing modalities, it could provide additional
seizure detection input and might help to significantly improve
the overall seizure detection performance. These improvements
could be not only in terms of the reduction in the FPR, but also
the sensitivity towards non-convulsive seizure, for which other
conventionally used sensing modalities systems aiming to detect
the seizure movements fail to work.

VI. CONCLUSION

Having a non-intrusive and easy to use monitoring system
capable of providing a quantitative measure of seizure occur-
rence from long-term monitoring, even if the detection is not
perfect, could allow doctors to better understand the progres-
sion of epilepsy patients, potentially leading to personalized
optimizations in the management of the condition. This paper
investigated the feasibility of extracting useful seizure related
information from a physiological sensing modality that has not
been investigated before: acoustic sensing from the neck. A
novel machine learning algorithm for automatic detection of
seizures was developed, that achieved a detection sensitivity
of 88.1% (95% CI: 79% – 97%) after correcting for cluster
effect, and a FPR of 0.83/h. This demonstrates the potential of
acoustic sensing from the neck as an alternative method to EEG,
and potentially complementary to other surrogate physiological
modalities, particularly in the context of home-based long-term
monitoring and management of epilepsy.
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