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Abstract—Objective: Persons with normal arm function
can perform complex wrist and hand movements over a
wide range of limb positions. However, for those with tran-
sradial amputation who use myoelectric prostheses, con-
trol across multiple limb positions can be challenging, frus-
trating, and can increase the likelihood of device abandon-
ment. In response, the goal of this research was to investi-
gate convolutional neural network (RCNN)-based position-
aware myoelectric prosthesis control strategies. Methods:
Surface electromyographic (EMG) and inertial measure-
ment unit (IMU) signals, obtained from 16 non-disabled
participants wearing two Myo armbands, served as inputs
to RCNN classification and regression models. Such mod-
els predicted movements (wrist flexion/extension and fore-
arm pronation/supination), based on a multi-limb-position
training routine. RCNN classifiers and RCNN regressors
were compared to linear discriminant analysis (LDA) clas-
sifiers and support vector regression (SVR) regressors, re-
spectively. Outcomes were examined to determine whether
RCNN-based control strategies could yield accurate move-
ment predictions, while using the fewest number of avail-
able Myo armband data streams. Results: An RCNN classi-
fier (trained with forearm EMG data, and forearm and upper
arm IMU data) predicted movements with 99.00% accuracy
(versus the LDA’s 97.67%). An RCNN regressor (trained
with forearm EMG and IMU data) predicted movements with
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R2 values of 84.93% for wrist flexion/extension and 84.97%
for forearm pronation/supination (versus the SVR’s 77.26%
and 60.73%, respectively). The control strategies that em-
ployed these models required fewer than all available data
streams. Conclusion: RCNN-based control strategies offer
novel means of mitigating limb position challenges. Signifi-
cance: This research furthers the development of improved
position-aware myoelectric prosthesis control.

Index Terms—Recurrent convolutional neural networks,
electromyography, inertial measurement units, limb posi-
tion effect, myoelectric, pattern recognition, prosthesis,
prosthesis control.

I. INTRODUCTION

MYOELECTRIC prostheses are designed to restore lost
upper limb motor function for individuals with amputa-

tion. Recreating the coordinated movements of a natural human
wrist and hand, however, remains a challenge for those with tran-
sradial amputations. In response, researchers have developed
control strategies that use pattern recognition models to predict
and execute a user’s movement intent [1]. Electromyography
(EMG) is currently the most commonly used input source for
prosthesis control [2], whereby EMG signals generated by mus-
cle contractions in a user’s residual limb are captured by elec-
trodes embedded in a device socket. Despite yielding reliable
device movements in research environments, precise decoding
of movement intent from EMG signals can be unreliable when
a wide range of limb positions are introduced by users during
daily activities [3].

This significant challenge to myoelectric prosthesis control is
known as the “limb position effect” [4]. Often, detected surface
EMG control signals are altered when a user’s limb is in a
position different from that in which the prosthesis controller
was trained (usually a comfortable, low position) [4]. Resulting
EMG signal variations can cause prosthesis control to degrade
and unexpected prosthetic wrist and hand movements to occur.
Researchers have investigated various methods of mitigating
this problem, including the use of intramuscular electrodes [5],
[6], high-density surface electrode arrays [7], [8], and wearable
limb position sensors [9]–[14]. However, a reliable and practical
position-aware control solution has yet to be found. As such,
continued research is required.
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Various pattern recognition approaches have been explored
to address the limb position effect on end effector control [9]–
[13], [15]–[23]. Broadly, pattern recognition approaches have
included Statistical Models and Neural Networks (including
deep learning), each of which can use either classification or
regression techniques [3], [22]. Typically, classification mod-
els (classifiers) and regression models (regressors) map EMG
signal features, which are extracted from raw EMG data, to
predict intended end effector movements [24], [25]. Classifiers
map signal features to one of a discrete set of known classes
(categories) of degrees of freedom (DOFs), offer control over
multiple DOFs, but do not provide proportional control over
device movement velocity or simultaneous control over multiple
DOFs [2]. Conversely, regressors can map signal features to
continuous velocity values for each DOF (proportional to input
signal strength), offer simultaneous control of separate DOFs
[2], but tend to be less robust than classifiers due to the increased
complexity of their predictions [24]. Whether classification or
regression is used for control, all models require a device training
routine to be undertaken by the user, to inform pattern learning
[26]. Although more training data generally yields stronger
models, long training routines are cumbersome for the user [2],
[27]. Overall, not only does the chosen pattern recognition model
influence the resulting device control, the duration of its required
training routine, the time needed to train the model and make
predictions, and the complexity of the model algorithm are also
considerations.

Statistical models apply probability theory to learn patterns in
data and are currently more often employed in position-aware
prosthesis control research than deep learning neural network
alternatives [3]. Some researchers have collected EMG data
across multiple limb positions to inform statistical classifiers
[9], [12], [13], [19], [20], while others have added positional
information (quaternions or accelerometer data) to take limb
orientation into account [9]–[13]. Statistical regressors have not
been as extensively explored as classifiers in device control
literature [24]. Nevertheless, both statistical classifiers and re-
gressors offer the benefits of being straightforward to implement
and having low computational costs [25]. Each such model
requires representative feature extraction from EMG signals.
This means that assumptions must be made regarding which
features best inform movement prediction [25], [28], [29]. To
avoid possibly making ill-informed or erroneous assumptions,
researchers have also begun to explore the benefits of neural
network methods for EMG-based control [17], [30].

Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) may yield improved prosthetic movement pre-
diction accuracies over statistical approaches, given the advan-
tages that they offer. The first such advantage is that CNNs can
predict intended movements from raw EMG signals (rather than
from extracted features) [31]–[33]. This means that, given suf-
ficient data, new features can be automatically learned, thereby
avoiding the need for feature engineering. Another advantage is
that CNNs offer the ability to combine a high volume of data
from multiple sensors [30], [34]. This suggests that CNNs may
prove to be effective towards learning the complex features of
combined EMG and inertial measurement unit (IMU) signals

across multiple limb positions. Furthermore, as time-domain
features are commonly used for prosthesis control [25], recurrent
neural networks (RNNs), which leverage the temporal behaviour
of signals [35], might also be beneficial towards solving the
limb position effect. Given that recurrent convolutional neural
networks (RCNNs) can harness the collective advantages pre-
sented by CNNs and RNNs, they too offer a promising research
direction for improving device control.

Compared to statistical approaches, few studies have explored
using RCNN or CNN-based models for prosthesis control. Xia
et al. examined the use of RCNNs, with raw EMG data, for
the prediction of shoulder position (irrespective of end effector
function) [35]. Their proposed model yielded higher predictive
accuracy than an alternative statistical regressor (support vector
regression, SVR). Amongst other things, this research demon-
strated that an RCNN can indeed learn features from raw EMG
data to inform limb position. Ameri et al. confirmed that a CNN
can be used with raw EMG data to predict wrist movement, and
yielded offline and real-time performances better than those of
an SVR [31]. More recently, Bao et al. used an RCNN to extract
EMG features for the prediction of wrist motion [36]. This
solution outperformed CNN-only approaches during complex
wrist movements, and further supports the predictive potential
of RCNN models. In 2018, Phinyomark and Scheme reviewed
the potential for developing more advanced applications of
EMG pattern recognition using deep learning approaches [30].
Collectively, the abovementioned studies recommended the con-
tinued pursuit of deep learning, including combining CNNs with
RNNs, further optimizing model architectures, conducting more
online testing of such models, or testing with larger datasets [31],
[35], [36].

The goal of this study was to investigate the novel use
of position-aware RCNN-based myoelectric prosthesis control
strategies, towards solving the “limb position effect” problem.
To this end, this study examined device control strategies that:
(1) combined EMG and IMU input data streams to inform
prosthesis movements and limb positions, respectively; and
(2) used RCNN models to make movement predictions from
these data. For each RCNN model under investigation, resulting
movement predictions were compared to those of commonly
used statistical models, so that potential improvements could
be ascertained. The criteria by which position-aware control
strategies were evaluated included their movement prediction
accuracy, along with the number of EMG and/or IMU data
streams that they required. Based on these criteria, this study
identified two promising RCNN-based myoelectric prosthesis
control strategies that were found to be consistently accurate
across multiple limb positions.

II. METHODS

A. Participants

A total of 19 participants with no upper-body pathology or
recent neurological or musculoskeletal injuries were recruited.
The data from 3 participants were incomplete and as such
not used for this study. Of the remaining 16 participants, 3
had previous experience with EMG control, all had normal
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Fig. 1. (a) The placement of each Myo armband, along with limb posi-
tions used in data collection, and (b) movements used in data collection.

or corrected to normal vision, 15 were right-handed, 8 were
male, and the mean age was 26.4 ± 8.7 years (± 1 standard
deviation). Each participant provided written informed consent,
as approved by the University of Alberta Health Research Ethics
Board (Pro00086557).

B. Experimental Setup

Two Myo gesture control armbands (Thalmic Labs, Kitch-
ener, Canada) were used to collect EMG and IMU data. Each
armband contained 8 surface electrodes and an IMU. Each
surface electrode collected 1 EMG data stream (sampled at
200 Hz). Each IMU collected 10 limb position data streams
(3 accelerometer, 3 gyroscope, and 4 quaternion, all sampled at
50 Hz). Using Myo Connect software, the EMG and IMU data
were streamed into Matlab. Hardware and software limitations
required that each Myo armband be connected to a separate lap-
top, so two Lenovo ThinkPad laptops were employed. A custom
Matlab script, running on one laptop, captured streamed data
from one Myo armband and simultaneously displayed onscreen
instructions for a participant to follow. At the same time, another
custom script ran on the second laptop to record data from the
second Myo armband.

C. Data Collection

Each participant donned two Myo armbands on their self-
identified dominant arm, as shown in Fig. 1(A). One was worn
on their forearm, with a mean distance of 6.0 ± 1.9 cm distal
to the olecranon, and electrode 1 on the lateral side of their
forearm. The second armband was worn on their upper arm,
with a mean distance of 12.0± 2.4 cm proximal to the olecranon,
and electrode 9 on the anterior side of their upper arm, over the
biceps muscle.

Participants followed onscreen instructions, performing vari-
ous movements in 4 limb positions, as described below.

� Movements included: rest (relaxed), wrist flexion, wrist
extension, forearm pronation, and forearm supination, as

shown in Fig. 1(B). These movements are functionally
important for individuals with transradial amputation [37].
Notably, the hand open and close movements were not in-
cluded in this study, given that wrist flexion and extension
can instead be used to control the opening and closing
of a prosthetic hand [31], [38]–[41]. Similarly, forearm
pronation and supination can be used to control prosthetic
wrist rotation.

� Limb positions included: arm at side, elbow bent at 90°,
arm out in front at 90°, and arm up at 45° from vertical, as
shown in Fig. 1(A).

Data collection consisted of 6 trials: 3 static trials and 3
dynamic trials. Rest time was provided between each trial.

� Trials 1–3 (static) required participants to perform various
movements (shown in Fig. 1(B)) using sustained isotonic
muscle contractions. All movements were held for 5 sec-
onds, separated by 5 seconds of rest. The movements
were repeated in each of the 4 limb positions (shown in
Fig. 1(A)). Participants were instructed to perform each
muscle contraction at a moderate effort that could be
sustained for 5 seconds.

� Trials 4–6 (dynamic) required participants to perform
movements that oscillated either between wrist flexion
and extension or forearm pronation and supination. The
timing of these oscillations was demonstrated onscreen
(5 cycles with a period of 4 seconds). These oscillations
were repeated in each of the 4 limb positions (shown in
Fig. 1(A)).

D. Data Pre-Processing

The EMG data from each Myo armband were filtered using a
high pass filter at 20 Hz (to remove movement artifacts), as
well as a notch filter at 60 Hz (to remove electrical noise).
Then, the IMU data streams were resampled to 200 Hz using
linear interpolation to align them with the corresponding EMG
data. The resulting data from the two Myo armbands were
synchronized.

The static trials were segmented into movements (rest, wrist
flexion, wrist extension, forearm pronation, and forearm supina-
tion). For the dynamic trials, target sinusoids were generated
to represent movement oscillations. Given that an offset was
evident between participants’ movements and onscreen oscilla-
tions, their sinusoids were corrected as follows: forearm EMG
signal peaks were identified and used to fit a sine wave to
represent wrist flexion/extension oscillations, whereas forearm
IMU signal peaks and valleys (specifically from the accelerom-
eter) were used to fit a sine wave to represent forearm prona-
tion/supination oscillations. The resulting target sinusoids were
then used to segment the dynamic trials into movements in each
DOF (wrist flexion/extension, forearm pronation/supination).

Next, for the purposes of the RCNN models under inves-
tigation and their comparative statistical models, data were
segmented further into windows (160-millisecond with a 40-
millisecond offset). For the statistical models, time-domain fea-
tures were then calculated for each EMG or IMU channel, in
each window. These included 4 commonly-used EMG features
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Fig. 2. RCNN architecture: sequence input layer (Input); sequence folding layer (Folding); 4 blocks of convolution, batch normalization (Normal-
ization), rectified linear unit (ReLU), and maximum pooling (Pooling); 1 block of convolution, batch normalization, and ReLU; sequence unfolding
layer (Unfolding); flatten layer; long short-term memory (LSTM) layer; fully connected layer; and finally either (1) softmax and classification layers,
or (2) a regression layer. Figure made using NN-SVG [43].

(mean absolute value, waveform length, Willison amplitude, and
zero crossings [42]) and 1 IMU feature (mean value). For the
RCNN models, time-domain features were not calculated and
instead, filtered signal data remained in each window.

E. RCNN and Comparative Statistical Models

1) RCNN Models – Architecture: Matlab software was
used to implement the RCNN models. Bayesian optimization
automatically determined the number of convolution layers,
number of filters, filter size, pooling size, and patience required
in this study. Optimization was performed in two steps: first, the
number of layers along with each hyperparameter being opti-
mized were determined using a broad range of values; thereafter,
values were refined using a narrower range (centered at earlier
optimized values).

Our resulting RCNN models had architectures that consisted
of 27 (classification) or 26 (regression) layers, as shown in Fig. 2
[43]. In these models, a sequence input layer first received and
normalized the training data. Then, a sequence folding layer
was used, allowing convolution operations to be performed
independently on each window. This was followed by a block
of 4 layers: a convolution, a batch normalization, a rectified
linear unit (ReLU), and a maximum pooling layer. This block
was repeated 3 more times. Each of the 4 maximum pooling
layers had a pooling size of 1x2. A block of 3 layers followed:
a convolution, a batch normalization, and a ReLU layer.

� For limb position classification: the optimal number of
filters in the convolution layers were determined to be
32, 32, 32, 64, and 64, respectively, and each had a filter
windows size of 1x3.

� For movement classification and regression: the optimal
number of filters in the convolution layers were determined
to be 64, 32, 64, 32, and 16, respectively, and each had a
filter window size of 1x5.

Subsequent layers included a sequence unfolding layer (to
restore the sequence structure), a flatten layer, a long short-term
memory (LSTM) layer, and a fully connected layer. Finally,

either (1) a softmax layer and classification layer were used, or
(2) simply a regression layer was used. To prevent overfitting, a
patience parameter was set that triggered early stopping.

2) Comparative Statistical Models: Given that linear dis-
criminant analysis (LDA) is commonly used in prosthesis con-
trol research [9]–[11], this study opted to use LDA classifiers for
comparisons to both RCNN limb position classifiers and RCNN
movement classifiers. The chosen LDA discriminant type was
pseudo-linear, since columns of zeros were occasionally present
in rest classes for some features (including Willison amplitude
and zero crossings).

SVR regressors were used for comparisons to RCNN move-
ment regressors, as per earlier research [31], [35]. The SVR
regressors used a linear kernel for input data mapping, given that
it yielded the most accurate movement predictions in earlier pilot
work (compared to radial basis function and polynomial kernel
alternatives). This pilot work was based on EMG and IMU data
from multiple limb positions. The kernel scale parameter was
automatically optimized by Matlab software and no kernel offset
was used.

F. Classification and Regression

This study explored models that predicted limb positions and
movements. Three model specifications (S1–S3) were investi-
gated, in addition to a comparative baseline model. All model
specifications were substantiated by earlier research:
S1 – Model trained with EMG data from all limb positions [9],

[12], [13], [19], [20]
S2 – Model trained with EMG and IMU data from all limb

positions [9]–[11], [13]
S3 – Models trained with EMG data at each limb position, with

subsequent predictions occurring in a 2-staged sequence:
1st, a limb position was classified using IMU data; 2nd,
a corresponding model (trained at that specified limb
position) predicted a wrist movement using EMG data
[9]–[12]

Baseline – Model trained with EMG data from arm at side
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Note that S1 and the Baseline require only EMG data, whereas
S2 and S3 require both EMG and IMU data. Specifications S1–
S3 and the Baseline were each implemented using an RCNN
classifier, an RCNN regressor, an LDA classifier, and an SVR
regressor (16 models total). The training and testing of each
model were performed in Matlab using an Intel Core i9-9900K
CPU (3.60 GHz).

1) Limb Position Classification: RCNN limb position
classifiers were compared to LDA limb position classifiers in
this study. The RCNN classifier inputs were signals from each
window and the LDA classifier inputs were time-domain fea-
tures from each window. Both classifiers outputted a predicted
limb position class (shown in Fig. 1(A)) for each window. Limb
position classifiers were trained with Trials 1–2 (static) data from
a participant and subsequently tested using Trial 3 (static) data
from that same participant. This approach was motivated by
current myoelectric prosthesis use, wherein the user must train
their device controller before it can predict movement intent.

Prosthesis control research has shown that the use of numer-
ous data streams (EMG and/or IMU) can result in longer ma-
chine learning processing times and/or increased hardware costs
[10]. Taking these drawbacks into consideration, the specific
data stream types that would most accurately inform limb posi-
tion were initially investigated. Data from both Myo armbands
were used in this investigation, with the RCNN and LDA limb
position classifiers trained and tested using the following data
stream combinations:

� All EMG and IMU data streams from both Myo armbands
� All EMG data streams from both Myo armbands
� All IMU data streams (quaternions, gyroscope, and ac-

celerometer) from both Myo armbands
� Only accelerometer data streams [9], [12], [23] from both

Myo armbands
Note that gyroscope and quaternion data streams were not

investigated independently. Earlier pilot work revealed that ac-
celerometer data better informed limb position in comparison to
gyroscope and/or quaternion data.

2) Movement Classification: RCNN movement classifiers
were compared to LDA movement classifiers. As with limb
position classification, the RCNN movement classifier inputs
were signals from each window and the LDA classifier inputs
were time-domain features from each window. Both the RCNN
and LDA movement classifiers outputted a predicted movement
class (shown in Fig. 1(B)) for each window. Movement classi-
fiers were trained with Trials 1–2 data from a participant, and
subsequently tested using Trial 3 data from that same participant.

Movement classifiers were trained, tested, and compared un-
der model specifications S1–S3. The predictive accuracies of
these classifiers were compared to those of a baseline classifier
(BC), trained with only EMG data collected with each partic-
ipant’s arm at their side (as per standard prosthesis training).
Additionally, to minimize the number of data streams necessary
for movement classification, each classifier was trained with the
following combinations:

� Data (EMG and, when applicable, IMU) from only the
forearm Myo armband

� Data from both Myo armbands

� EMG data from the forearm and IMU data from both Myo
armbands (when applicable)

3) Movement Regression: RCNN movement regressors
were compared to SVR movement regressors. The RCNN and
SVR movement regressors used the same inputs as did the
RCNN and LDA movement classifiers, respectively. However,
the RCNN and SVR regressors outputted continuous movement
predictions, denoting muscle activation intensity for each DOF
(flexion/extension and pronation/supination) in each window.
DOF range endpoints included:

� full flexion = -1, full extension = 1
� full pronation = -1, full supination = 1

Within each DOF range, 0 indicated rest. Notably, a single
RCNN regressor was capable of yielding movement predic-
tion values for both DOFs simultaneously. In comparison, two
SVR regressors were required to yield the same movement
predictions, given that a single SVR regressor can only predict
movements for one DOF.

RCNN and SVR movement predictions were then post-
processed: (1) they were smoothed using the prediction from
the previous window via a moving average filter [44]; (2) pre-
dictions between -0.2 and 0.2 were suppressed to 0 [45]; and (3)
predictions greater than 1 or less than -1 were clipped to 1 or -1,
respectively.

Movement regressors were trained with Trials 4–5 (dynamic)
data from a participant and subsequently tested using Trial 6
(dynamic) data from that same participant. Movement regres-
sors were trained, tested, and compared under model specifica-
tions S1–S3. The predictive accuracies of these regressors were
compared to those of a baseline regressor (BR), trained with
only EMG data collected with each participant’s arm at their
side (as per standard prosthesis training). For S3, when RCNN
movement regression was investigated, RCNN limb position
classification was used (that is, S3’s models were all RCNN).
Conversely, when SVR movement regression was investigated,
LDA limb position classification was used (that is, S3’s models
were all statistical). As detailed in the previous Movement
Classification section, each movement regressor under S1–S3
and the Baseline was trained with the same three combinations
of data streams.

G. Outcome Measures and Statistical Analysis

1) Prediction Accuracy Calculations: Limb Position Clas-
sifiers: The predicted limb positions performed by the par-
ticipants were compared to actual limb position classes, with
resulting Trial 3 accuracies presented in the Results section as
percentages (averaged across participants).

Movement Classifiers: The predicted movements performed
by the participants were compared to actual movement classes,
with resulting Trial 3 accuracies presented in the Results section
as percentages (averaged across participants).

Movement Regressors: Unlike movement classifiers, which
were trained with static data (discrete values), movement re-
gressors were trained and tested with data from dynamic tri-
als (continuous values). As such, the prediction accuracy of
movement regressors was determined using R2 (coefficient of
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Fig. 3. Active and inactive periods for each degree of freedom (DOF).
An active period is when movements are observed in a given DOF, and
an inactive period is when that DOF is in rest while movements are
observed in the other DOF.

determination) calculations. Recall that the dynamic data con-
sisted of movements that oscillated between either wrist flexion
and extension or forearm pronation and supination – that is,
in only one DOF at a time. Given this, two kinds of move-
ment periods (or states) occurred for each DOF: active periods,
wherein movements were observed in that DOF, and inactive
periods, wherein rest occurred in that DOF while movements
were observed in the other DOF, as shown in Fig. 3.

� For active periods, R2 values were calculated by compar-
ing movement predictions to the target sinusoids. Result-
ing Trial 6 values are presented in the Results section as
percentages (averaged across participants).

� For inactive periods, however, R2 values could not be
calculated. This is because the actual movements in those
periods form a horizontal line at 0 (see Fig. 3), with R2

becoming an invalid measure of fit. As such, standard
deviations of the movement predictions were calculated
instead [45], to reveal the amount of predictive variation.
A low standard deviation indicated a high prediction ac-
curacy (that is, one with minimal unwanted movement
predictions). Resulting Trial 6 values are presented in the
Results section (averaged across participants).

The Kolmogorov-Smirnov test was conducted and revealed
that all prediction accuracies did not follow a normal distri-
bution. Therefore, the non-parametric Friedman’s Analysis of
Variance and post-hoc Wilcoxon signed-rank tests were used
to identify significant prediction accuracy differences across
combinations of data streams (for a given classifier or regressor).

2) Confusion Matrices: Of the movement classifiers and
regressors under investigation, the best-performing were further
analyzed using confusion matrices. When creating confusion
matrices for regressors, predictions and target sinusoid values
were categorized into rest, flexion, extension, pronation, and
supination using the following rules: (1) values between -0.2
and 0.2 in both DOFs were categorized as rest (in accordance
with the chosen post-processing threshold); and (2) for all
non-rest values, flexion/extension predictions were compared to

Fig. 4. Mean limb position classification accuracy (across partici-
pants) using RCNN and LDA classification for each combination of data
streams: all EMG and IMU data streams from both Myo armbands (red);
all EMG data streams from both Myo armbands (blue); all IMU data
streams from both Myo armbands (black); and only accelerometer data
streams from both Myo armbands (green). One standard deviation of
each classification accuracy is shown with error bars, and significant
prediction accuracy differences across combinations of data streams are
indicated with asterisks (∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001).

pronation/supination predictions, whereby the greater absolute
values between them were used to identify movement categories.
When creating confusion matrices for the classifiers under fur-
ther investigation, such categorization was unnecessary.

3) Overall Comparisons: Finally, to facilitate direct com-
parisons between all movement classifiers and regressors under
investigation, their root mean square errors (RMSEs) were cal-
culated. RMSE provided a measure of the deviation between
predicted and target values. Other studies have used similar
measures to compare the performance of classifiers and regres-
sors [46]–[48]. To calculate RMSE, movement classification
predictions and actual movement classes were converted to
values of -1, 0, or 1 in each DOF.

III. RESULTS

A. Limb Position Classification

The mean limb position classification accuracies (across par-
ticipants) of the RCNN and LDA classifiers, using four combi-
nations of data streams from both Myo armbands, are shown in
Fig. 4 and in Appendix A. Notably, both the RCNN and LDA
classifiers predicted limb positions most accurately when the
IMU’s accelerometer data alone were used (99.01% for RCNN,
98.66% for LDA; a 0.35% difference between these).

The mean training and prediction times of the RCNN and LDA
classifiers, using the same four combinations of data streams
from both Myo armbands, are shown in Appendix B. In addition
to yielding the highest prediction accuracies, both the RCNN
and LDA classifiers resulted in decreased training times when
only accelerometer data were used (RCNN: 1.68 minutes, LDA:
38.48 milliseconds) versus when all data streams were used
(RCNN: 2.52 minutes, LDA: 89.19 milliseconds). Of note, all
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TABLE I
REGRESSION STANDARD DEVIATIONS IN INACTIVE PERIODS

Mean standard deviations (across participants) using the RCNN flexion/extension
regression, SVR flexion/extension regression, RCNN pronation/supination regression,
and SVR pronation/supination regression, under each specification: the baseline regres-
sor (BR), specification 1 (S1), specification 2 (S2), and specification 3 (S3). Standard
deviations are provided for each combination of data streams: data from only the forearm
Myo armband; data from both Myo armbands; and EMG data from the forearm and
accelerometer (Accel) data from both Myo armbands (when applicable).

TABLE II
MOVEMENT PREDICTION ACCURACY SUMMARY

Root mean square error across participants for each movement prediction method
(classification or regression), specification (BC, BR, S1, S2, and S3), type of model
(RCNN, LDA, and SVR), and combination of data streams (data from only the forearm
Myo armband; data from both Myo armbands; and EMG data from the forearm and
accelerometer (Accel) data from both Myo armbands, when applicable). Root mean
square errors less than 0.22 are highlighted in green.

Fig. 5. Mean movement classification accuracy (across participants)
using (a) RCNN classification and (b) LDA classification, under each
classification specification: the baseline classifier (BC), specification
1 (S1), specification 2 (S2), and specification 3 (S3). Accuracies are
provided for each combination of data streams: data from only the
forearm Myo armband (red); data from both Myo armbands (blue);
and EMG data from the forearm and accelerometer (Accel) data from
both Myo armbands (when applicable, black). One standard deviation
of each classification accuracy is shown with error bars, and significant
prediction accuracy differences across combinations of data streams are
indicated with asterisks (∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001).

classifiers took less than 1 millisecond per prediction, which is
well below the 100-millisecond threshold for optimal controller
delay [49] (although, admittedly, the computer used in this study
was much faster than an embedded processor in a myoelectric
prosthesis).

Given these results, for subsequent movement classification
and regression investigations, the quaternion and gyroscope
data streams from the IMU were eliminated. Furthermore, the
limb position classifier in model specification S3 used only
accelerometer data streams.

B. Position-Aware Movement Classification: S1–S3

The mean movement classification accuracies (across partic-
ipants) of the RCNN and LDA classifiers, under each specifi-
cation and using three combinations of data streams, are shown
in Fig. 5 and in Appendix A. As expected, the baseline RCNN
classifier and baseline LDA classifier yielded the least accurate
movement predictions (approximately 85% for each, when using
only forearm Myo armband data streams). Overall, the RCNN
classifier under S2, trained with EMG data from the forearm
Myo armband and accelerometer data from both Myo armbands,
yielded the most accurate movement predictions (99.00%). The
LDA classifier under S2 using the same training data predicted
movements with a slightly lower accuracy (97.67%). So, in com-
parison, this RCNN classifier was 1.33% more accurate than the
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Fig. 6. RCNN movement classification confusion matrices, across participants for (a) arm at side, (b) elbow at 90°, (c) arm out at 90°, and (d) arm
up at 45° under S2 using EMG data from the forearm Myo armband and accelerometer data from both Myo armbands. Movement classes are rest,
flexion (flex), extension (ext), pronation (pro), and supination (sup).

corresponding LDA classifier. Generally, most of the position-
aware RCNN and LDA classifiers yielded movement prediction
accuracies over 95%, especially those under S2 and S3.

The mean training and prediction times of the RCNN and LDA
classifiers, under each specification and using three combina-
tions of data streams, are shown in Appendix B. On average, the
RCNN classifiers under S1 and S2 took approximately 2 minutes
to train, whereas RCNN classifiers under S3 took 9 minutes to
train. The LDA classifiers under S1 and S2 took approximately
26 milliseconds to train, whereas LDA classifiers under S3 took
84 milliseconds to train. When comparing training times across
specifications, RCNN and LDA classifiers under S3 required
more time than classifiers under other specifications. Of note, all
classifiers took less than 6 milliseconds per prediction, which is
well below the 100-millisecond threshold for optimal controller
delay [49].

Given that the RCNN classifier under S2, trained with EMG
data from the forearm Myo armband and accelerometer data
from both Myo armbands, predicted movements most accu-
rately, its predictions were further investigated using confusion
matrices for each limb position, as shown in Fig. 6. The RCNN
classifier under S2’s movement prediction accuracy was found
to be consistent across all limb positions, with a roughly equal
proportion of errors across classes.

C. Position-Aware Movement Regression: S1–S3

Recall that this study used two outcome measures to assess
movement regression predictive accuracy: R2 values during
active periods and standard deviations during inactive periods.
The mean R2 values (across participants) of the RCNN and
SVR movement regressors, under each specification and using
three combinations of data streams, are shown in Fig. 7 and
in Appendix A. The corresponding mean standard deviations
are presented in Table I. For both flexion/extension and prona-
tion/supination DOFs, the RCNN regressor under S2 yielded the
highest R2 values during active periods and the lowest standard
deviations during inactive periods (compared to standard devi-
ations of predictions made with the other RCNN regressors).
Overall, the RCNN regressor under S2, trained with EMG and
accelerometer data from the forearm Myo armband, yielded high
R2 values for both DOFs (84.93% for flexion/extension and

84.97% for pronation/supination), while reducing the required
number of data streams. Conversely, the SVR regressor under
S2, also using EMG and accelerometer data from the forearm
Myo armband, yielded much lower R2 values (77.26% for
flexion/extension and 60.73% for pronation/supination). The
RCNN regressor had R2 values that were 7.67% greater in
flexion/extension and 24.24% greater in pronation/supination
than those of the corresponding SVR regressor.

When comparing standard deviations, the RCNN regressor
under S2 had a flexion/extension standard deviation of 4.20%
and a pronation/supination standard deviation of 5.11%. Con-
versely, the corresponding SVR regressor had standard devi-
ations of 3.19% and 8.10%, for these same movements. The
RCNN regressor had a flexion/extension standard deviation
1.01% higher than that of the SVR regressor, and a prona-
tion/supination standard deviation 2.99% lower than that of the
SVR regressor.

The mean training and prediction times of the RCNN and SVR
regressors under each specification, using three combinations
of data streams, are shown in Appendix B. On average, the
RCNN regressors under S1 and S2 took approximately 1 minute
to train, whereas RCNN under S3 took 3 minutes to train. The
SVR regressors under S1 and S2 took approximately 21 seconds
to train, whereas SVR regressors under S3 took 8 seconds to
train. Of note, all regressors took less than 6 milliseconds per
prediction, which is well below the 100-millisecond threshold
for optimal controller delay [49].

Given that the RCNN regressor under S2, trained with EMG
and accelerometer data from the forearm Myo armband, pre-
dicted movements most accurately, its predictions were further
investigated. These predictions were categorized into movement
classes (rest, flexion, extension, pronation, and supination), and
the resulting confusion matrices for each limb position were
generated, as shown in Fig. 8. The RCNN regressor under S2’s
movement prediction accuracy was found to be consistent across
all limb positions, but most errors were related to rest.

D. Results Summary

A comparative summary of the classifiers and regressors
that were investigated in this study is presented in Table II,
wherein the RMSE was calculated for all movement predictions.
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Fig. 7. Mean movement regression R2 values (across participants) using (a) RCNN flexion/extension regression, (b) SVR flexion/extension
regression, (c) RCNN pronation/supination regression, and (d) SVR pronation/supination regression, under each specification: the baseline
regressor (BR), specification 1 (S1), specification 2 (S2), and specification 3 (S3). R2 values are provided for each combination of data streams:
data from only the forearm Myo armband (red); data from both Myo armbands (blue); and EMG data from the forearm and accelerometer (Accel)
data from both Myo armbands (when applicable, black). One standard deviation of each R2 value is shown with error bars, and significant prediction
accuracy differences across combinations of data streams are indicated with asterisks (∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001).

Fig. 8. RCNN movement regression confusion matrices, across participants for (a) arm at side, (b) elbow at 90°, (c) arm out at 90°, and (d) arm up
at 45° under S2 using data from the forearm Myo armband. Movement classes are rest, flexion (flex), extension (ext), pronation(pro), and supination
(sup).

Table II identifies the position-aware control strategies that most
accurately predicted movements — those with an RMSE less
than 0.22 (this threshold was chosen as it represents the 70th

percentile of accuracy).
Overall, the best classifier was determined to be the RCNN

classifier under S2, and the best regressor was the RCNN re-
gressor under S2 – both yielded the most accurate movement
predictions, while using fewer than all available data streams.

IV. DISCUSSION

The goal of this study was to investigate RCNN-based
position-aware myoelectric prosthesis control strategies, using

combined EMG and IMU input data streams. EMG signals
primarily informed intended movements, whereas IMU signals
primarily provided context about limb position. Classifiers and
regressors used these signals to make position-aware move-
ment predictions. Recall that three model specifications were
explored:
S1 – Model (classifier or regressor) trained with EMG data from

all limb positions
S2 – Model trained with EMG and IMU data from all limb

positions
S3 – Models trained with EMG data at each limb position, with

subsequent predictions occurring in a 2-staged sequence:
1st, a limb position was classified using IMU data; 2nd,
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a corresponding model (trained at that specified limb
position) predicted a wrist movement using EMG data

For this study, a favourable position-aware myoelectric pros-
thesis control strategy was considered to be one where a classifier
or regressor yielded accurate movement predictions, using the
fewest possible data streams.

A. Position-Aware Classification

This study corroborates and extends the findings of earlier
prosthesis control strategy research that likewise used classifiers
under model specifications S1–S3. Such research yielded im-
proved movement predictions compared to a baseline classifier
[9]– [11]. Fougner et al. found that LDA classification under S2
yielded the most accurate movement predictions [9], whereas
Geng et al. concluded that LDA classification under S3 proved
to be the most accurate [10], [11].

Of the position-aware classifiers under S1–S3 that were in-
vestigated in this study, the most promising was the RCNN
classifier under S2 (with EMG data from the forearm Myo
armband and accelerometer data from both Myo arm-
bands). It yielded the highest movement prediction accuracy
(99.00%, versus the LDA’s at 97.67%) while requiring a reduced
number of data streams. The success of this classifier under S2
is consistent with Fougner et al.’s observations [9]. Notably,
classifiers under S1 performed less accurately compared to those
under S2 because accelerometer data (and consequently limb
position information) was not included under S1. Additionally,
classifiers under S3 performed less accurately than those under
S2, likely because the classification sequence of S3 (with two
stages) introduced the potential to compound errors.

This study’s RCNN classifier under S2 yielded more accurate
movement predictions than did classifiers in earlier research. As
such, this work offers encouraging results towards solving the
limb position effect.

B. Position-Aware Regression

To our knowledge, only one other study has implemented
a regression-based device control strategy in the context of
addressing the limb position effect. Park et al. employed a posi-
tion decoder to accomplish position-independent regression, and
tested their resulting predictive device control outcomes through
real-time experimentation [22]. They predicted movements with
smaller R2 values than those of this study, but caution should be
taken when comparing their real-time results to those of this
offline work.

Of the position-aware regressors under S1–S3 that were in-
vestigated in this study, the most promising was the RCNN
regressor under S2 (with EMG and accelerometer data from
the forearm Myo armband). It yielded the highest move-
ment prediction accuracy (with R2 values of 84.93% for wrist
flexion/extension and 84.97% for forearm pronation/supination,
versus the SVR’s at 77.26% and 60.73%, respectively). It also
required a reduced number of data streams. However, this RCNN
regressor predicted movements with lower accuracies than the
investigated classifiers. This is in keeping with previous research
that found regression to be less accurate than classification, due

to the increased complexity of regression predictions (continu-
ous values for each DOF) [24]. Despite being lower in predictive
accuracy than classification, regression may offer increased
functionality, through both simultaneous and proportional con-
trol, and as such might outperform classification in real-time
experimentation [48].

Of the errors that contributed to the decreased accuracy of
the RCNN regressor under S2, the majority occurred around
the rest periods, as evidenced in Fig. 8. These errors can be
categorized as either false negatives (falsely predicting rest) or
false positives (falsely predicting a movement instead of rest).
False negatives occurred more frequently. Notably, false nega-
tives can be considered acceptable in prosthesis control; that is,
simply perceived as device responsiveness latency by users [51].
The detected false negatives may have resulted from prediction
suppression, whereby prediction values between -0.2 and 0.2
were set to 0. Note that in future work, this suppression threshold
can be adjusted. Finally, both false negatives and false positives
may have been caused by offsets between the participants’ move-
ments and the sinusoids chosen to represent these movements.
Undoubtedly, without a perfect match between sinusoids and
movements, slight inaccuracies can be expected.

To mitigate the occurrence of such inaccuracies, participants’
movements must closely track training sinusoids. It is a com-
mon research practice to have participants follow an onscreen
training target (such as a moving cursor or virtual hand) [45],
[52]–[54]. But this practice can result in the introduction of
participant movement delays. This study corrected the delay be-
tween onscreen movement instructions and participants’ actual
movements by using generated sinusoids for both wrist flex-
ion/extension and forearm pronation/supination. To accomplish
this, peak muscle contractions were extracted from the EMG sig-
nal data and used to produce wrist flexion/extension sinusoids,
whereas accelerometer signals were used to generate forearm
pronation/supination sinusoids. Despite making the necessary
movement corrections in this study through the use of sinusoids,
offsets may have still been present (although presumably smaller
than without such corrections.

To further reduce the occurrence of movement offsets, mod-
ifications could be made to the data collection methods for the
regression training routine. For example, if a participant were to
follow an onscreen sinusoid overlayed with their real-time EMG
signals [55] (that is, afforded visual feedback), more accurate
instruction adherence would likely result. That same sinusoid
could then be used as a precise training target (as opposed to
extracting muscle and position signals’ peaks for sinusoids).
Additionally, if participants were required to complete a practice
dynamic trial before data collection, the precision with which
they follow the target sinusoid would likely improve.

C. Promising RCNN Outcomes

As expected, the RCNN-based control strategies investi-
gated in this study predicted movements more accurately
than statistical-based alternatives (which was especially evident
when comparing RCNN and SVR regressors). This may be
because RCNNs offer the advantage of learning new features
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from complex input data. Other studies have investigated the
use of engineered feature sets to address the limb position
problem, and as such did not harness this advantage [17],
[21], [23]. Despite yielding position-aware movement predic-
tions using engineered features, their models did not perform
quite as well as this study’s RCNN classifier under S2. Al-
though these studies examined more extensive limb position
ranges and movements, their lower predictive accuracies may
suggest that for position-aware myoelectric control, learning
new features with RCNNs may be favourable over using engi-
neered features. Naturally, further research is required to confirm
this.

D. Limitations

Limitations in this study included: the requirement for training
routines with long durations; the number of limb positions and
wrist movements used for training and testing models was not
exhaustive; models were only tested on the 3rd or 6th trials;
more training data may be required for accurate results in other
limb positions; and only static limb positions were employed in
this study (training with continuous limb positions may improve
predictive accuracy [13], [19]).

Notably, regressors were tested using data from oscillations
in one DOF at a time. This testing method does not demonstrate
model performance during simultaneous muscle contractions in
two DOFs and consequently cannot translate directly to activities
of daily living. Furthermore, data from only isotonic muscle
contractions were recorded, rather than data resulting from
isometric contractions (which are used to control a prosthesis).
The performance of the models presented in this study may differ
when isometric contractions are used.

Finally, the feasibility of implementing RCNN-based pros-
thesis control strategies using existing hardware was not inves-
tigated in this study. However, as the capabilities of onboard
prosthetic device processors continue to improve, it is expected
that implementation might well be possible in the near future.

E. Future Work

Future work will focus on real-time testing of the promising
RCNN-based control strategies (RCNN classifier and regres-
sor under S2) presented in this study. Upcoming research will
include real-time testing of these control strategies with both
non-disabled participants (using a simulated prosthesis) and
myoelectric prosthesis users. Testing using a simulated or actual
prosthesis will require participants to use isometric contractions
for device control. Participants will carry out functional tasks
that simulate activities of daily living. These tasks will also
allow for the assessment of regression control for simultaneous
movements.

Although the movement prediction accuracy of myoelectric
control strategies may not always correlate with their real-time
performance [11], [18], a reduction in the limb position effect
can be expected in real-time experimentation (given that par-
ticipants will have visual feedback and will be able to adjust
their muscle contractions accordingly [44]). Improvements to
the regression training routine that were gleaned from this study

will be implemented in future work. Additionally, as RCNN clas-
sifiers under S2 required training routines with long durations
(relative to the baseline classifiers), a generalized RCNN classi-
fier will be investigated, with the goal of eliminating the training
routine (and consequently model training time) altogether.

V. CONCLUSION

This study has identified two promising position-aware my-
oelectric prosthesis control strategies towards solving the “limb
position effect” problem:

1) An RCNN classifier trained with EMG and accelerometer
(IMU) data (captured from participants across multiple
limb positions) predicted movements best, while requir-
ing a reduced number of data streams; and

2) An RCNN regressor trained with EMG and accelerometer
data (captured from participants across multiple limb
positions) performed much better than an SVR regressor,
although not as accurately as the aforementioned RCNN
classifier. It also required fewer than all available data
streams.

It is expected that both of these RCNN-based control strate-
gies will likewise yield accurate, position-aware movement pre-
dictions in real-time experimentation. As such, results of this
research are anticipated to improve the usability of myoelectric
devices for individuals with amputation, particularly when faced
with the challenges of the “limb position effect”.

APPENDIX

Appendix A (see supplementary material) contains tables
with the results shown in Figs. 4, 5, and 7. Appendix B (see
supplementary material) contains tables with the time required
to train and test all classifiers and regressors.

Appendix A Prediction Accuracies

This appendix contains the mean limb position classification
accuracies, mean movement classification accuracies, and
mean movement regression R2 values resulting from this study.

Appendix B Training and Prediction Times

This appendix contains the mean limb position classification
training and prediction times, movement classification training
and prediction times, and movement regression training and
prediction times resulting from this study.
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