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Abstract—Objective: Brain-computer interfaces (BCI)
studies are increasingly leveraging different attributes of
multiple signal modalities simultaneously. Bimodal data ac-
quisition protocols combining the temporal resolution of
electroencephalography (EEG) with the spatial resolution
of functional near-infrared spectroscopy (fNIRS) require
novel approaches to decoding. Methods: We present an
EEG-fNIRS Hybrid BCI that employs a new bimodal deep
neural network architecture consisting of two convolutional
sub-networks (subnets) to decode overt and imagined
speech. Features from each subnet are fused before further
feature extraction and classification. Nineteen participants
performed overt and imagined speech in a novel cue-based
paradigm enabling investigation of stimulus and linguistic
effects on decoding. Results: Using the hybrid approach,
classification accuracies (46.31% and 34.29% for overt and
imagined speech, respectively (chance: 25%)) indicated a
significant improvement on EEG used independently for
imagined speech (p = 0.020) while tending towards sig-
nificance for overt speech (p = 0.098). In comparison
with fNIRS, significant improvements for both speech-types
were achieved with bimodal decoding (p<0.001). There was
a mean difference of ∼12.02% between overt and imag-
ined speech with accuracies as high as 87.18% and 53%.
Deeper subnets enhanced performance while stimulus ef-
fected overt and imagined speech in significantly different
ways. Conclusion: The bimodal approach was a significant
improvement on unimodal results for several tasks. Results
indicate the potential of multi-modal deep learning for en-
hancing neural signal decoding. Significance: This novel
architecture can be used to enhance speech decoding from
bimodal neural signals.
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I. INTRODUCTION

COMBINING electroencephalography (EEG) and func-
tional near-infrared spectroscopy (fNIRS) acquisition pro-

tocols has become a popular approach in brain-computer inter-
face (BCI) research [1]–[3]. This is due to the potential offered
by merging the temporal resolution of the brain’s electrical
signals (EEG) with the spatial resolution of the hemodynamic
response acquired from fNIRS [3]. Integration of modalities
for concurrent data acquisition can mitigate the weaknesses of
unimodal protocols [4], and the complimentary characteristics
of EEG and fNIRS, as well as their shared portability and low
cost, have made them a strong candidate for the development of
multimodal BCIs [5], [6].

Research into methods for decoding EEG-fNIRS has ad-
vanced as neural signal acquisition protocols improve [7]. Most
studies have used standard features such as band power for EEG
and oxy-hemoglobin (HbO) for fNIRS [1], [8], with common
machine learning methods such as linear discriminant analysis
(LDA) [1], [2] and support vector machines (SVM) [9], [10]. As
in other fields, deep learning (DL) offers an important avenue for
decoding neural signals [11]–[15]. However, few studies have
investigated multimodal DL with EEG-fNIRS data [3], [16],
[17]. Difficulties associated with combining multiple modalities,
for example asymmetric predictive capacity [1], [18] and varying
noise topology (muscular and eyeblink artefacts in EEG [19],
heartbeat and Mayer Waves in fNIRS [20]), partially account
for the sparsity of published research. In addition, the temporal
alignment of EEG and fNIRS presents challenges which must
be addressed [7], [9], [21]. With respect to EEG-fNIRS DL
methods, the most important studies have used artificial neural
networks (ANN) [3], recurrent neural networks (RNN) [16] and
a combined recurrent-convolutional neural network (RCNN)
[17]. Multimodal convolutional neural networks (CNN) have
been applied to EEG, electro-oculogram and electromyogram
for sleep stage classification [22] but despite being used for
mental workload classification [23] CNNs have not been widely
employed for EEG-fNIRS. Here, to the best of our knowledge,
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we present the first study using EEG-fNIRS with a bimodal CNN
method for speech decoding.

Research into BCI systems for decoding speech-related pro-
cesses from neural activity have gained prominence recently
[11], [12], [24]–[26]. Implanted electrodes are often used in
speech decoding studies which evaluate overt speech [11], [25],
[26] or response to auditory speech stimuli as the mode of
communication [12], [24]. Imagined speech decoding poses a
number of additional challenges [6], [15], [27], and results are
typically lower than overt speech, yet there is limited consensus
in the literature on the relationship between the two speech
modalities with respect to BCI development [28], [29]. Ad-
ditionally, paradigms vary widely, with studies predominantly
using audio [30], [31] or text-based [6], [27] stimuli. How-
ever, spontaneous speech [32] and question-and-answer [6],
[11] paradigms have also been researched. A related issue is
the different units of language participants are asked to speak,
ranging from phonemes [33] and syllables [30] to words [15]
and sentences [25]. Few studies have examined the impact of
linguistic properties such as semantics or syntax on decoding
words or sentences [34]. The difficulty of decoding speech
from non-invasive recordings has been demonstrated by studies
reporting no better than chance accuracy with a binary classi-
fier [35] and only 9 of 12 participants exceeding chance in a
3-class classification task [6]. However, others have indicated
the potential of non-invasive speech decoding with one study
reporting 38.5% accuracy when decoding three imagined speech
envelopes [36] and another reporting 64.1% accuracy for 3-class
classification of 15s repetitions of yes vs no vs rest [37]. Our
recent research achieved 24.90% and 30.25% for decoding 6
words and 5 vowels from a 4s task period [15].

In a previous study, we recorded EEG and fNIRS as partici-
pants undertook trials designed to examine the relative decoding
potential of overt and imagined speech from EEG [38]. Here,
we present a new deep neural network architecture for decod-
ing bimodal neural signals (EEG-fNIRS) in a single training
procedure. This network consists of two sub-networks (subnets)
which act as data-specific feature extractors before fusion [39]
is used to form a combined featureset for further processing
and classification. The experiment was designed to examine the
effects of three stimulus types, and two linguistic properties of
speech on decoding accuracy (Section II.A.) [38]. This facili-
tated six classification tasks, one for each stimulus/ word-type
combination. The bimodal network was trained and tested on
each task for both overt and imagined speech and compared
with unimodal EEG and fNIRS approaches.

The bimodal network achieved higher decoding accuracies
than both unimodal EEG and fNIRS methods for overt and
imagined speech. These results were statistically significant for
all but overt speech EEG (p = 0.098). The impact of fNIRS
due to the constrained duration of our task execution period
was identified as a limiting factor in enhancing the performance
of the bimodal approach. We also found that deeper subnets
for feature extraction were conducive to enhanced decoding
accuracy. Results confirmed previous findings that overt speech
decoding consistently outperformed imagined speech while
also indicating that stimulus significantly impacted decoding

Fig. 1. (a) Trial periods began at time 0s, with a fixation cross pre-
sented for 500ms. Stimuli were then presented on-screen for 1s, fol-
lowed by a blank screen for 1s. This 2s period (green) was considered
the trial-period for experiments. (b) Three types of stimuli were used to
present words: text, image and audio. (c) Words used for experiments,
broadly categorised as action words and combinations.

performance and that this effect differed between types of
speech. The effect of linguistic properties was not significant.
Finally, we discuss ways in which performance may be improved
by tailoring the network to different data types and extending the
time-period of fNIRS signals used.

II. METHODS

A. Experimental Paradigm

To investigate effects of stimuli used to cue imagined speech
on BCI decoding our experiments employed three modalities
to cue participants: text, image, and audio (Fig. 1(a) and (b)).
Motivation for selection of these modalities is discussed in
detail in [38], and briefly here. With text stimuli, participants
can read directly from prompts but risk bypassing initial stages
of speech production i.e., conceptual preparation and lexical
selection [40], [41], and there is thus an important difference be-
tween text-prompted speech and spontaneous speech. Through
indirect presentation of words as images in a picture-naming
task, participants are engaged in the earlier stages of speech
production [42], [43] and it has been hypothesized that increased
cognitive load with picture-naming in comparison with word
repetition can improve signal-to-noise ratio in speech decoding
tasks [44]. Auditory stimuli have potentially confounding effects
as they present participants with the words they are expected to
speak in another person’s voice. Previous studies have demon-
strated neural decoding of response to auditory stimuli [12],
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[26] but the challenge of fully disentangling speech listening
from production of speech is extremely difficult. Use of all three
modalities enabled comparison of different effects. In addition,
two categories were used to select words for the study: action
words and combinations (Fig. 1(c)). Word groups were selected
to examine whether linguistic properties of semantics and syntax
impact speech decoding. The first group was predicated on the
theory of linguistic embodiment which posits that action words
(e.g., kick, lick, pick) associated with different body parts elicit
activity in cortical regions associated with muscle groups used
to perform that action (e.g., foot, tongue, hand) [45]. Here, two
concrete examples of embodiment were used to select action
words (Fig. 1(c)). The words “squeeze” and “jump” correspond
to actions associated with bodily limbs, whereas the words “kiss”
and “smile” are associated with the face and, more specifically,
the lips. The second word group was chosen to examine effects
that presence or absence of syntactic modification has on de-
coding. These combinations were selected on the basis of an
observation that lists of words lack the critical computation to
combine them into a single concept [46]. Therefore, two phrases
and two lists were chosen (Fig. 1(c)). They were “red ball” and
“green hat” (phrases) and “red green” and “ball hat” (lists).

Several common methods were considered in designing the
experimental procedure. One requires participants to begin
speaking immediately in response to stimulus [27], [33], [47].
Another partitions the two component parts i.e., stimulus/cuing
and task execution, with stimulus directly preceding execution
[31], [48]. The final approach considered requires a defined
interlude between stimulus and task production periods, with
participants holding the target word or phrase in memory before
task execution [49], [50]. Despite each method having associated
pros and cons, we selected the first, a dual stimulus and task
execution period (Fig. 1(a) - green) to limit cognitive load
associated with working memory, decrease total time per trial
and to avoid disruption of speech production processes described
by common models of production [29].

At -500ms, each trial began with a fixation cross presented
on screen. Following this, one of the three stimulus-types were
presented at time 0s to prompt participants to produce a certain
word(s). That is, for any given trial a word would be prompted
by presenting the participant with either a text, image or au-
dio representation of that word. Text and image stimuli were
displayed on-screen for 1s, before being replaced by a blank
grey background for a further 1s (Fig. 1(a)). Images selected
to represent words are presented in supplementary Fig 1 and
all images were resized to standard dimensions of 325 × 325
pixels, except for the “ball hat” image which was resized to
488 × 325 (to enable clear visual display of both objects).
Audio began playing at 500ms with all audio clips played for
less than 1s. During audio presentation the monitor displayed
a recognisable symbol indicating that this was the stimulus
presentation period (Fig. 1(b)). The 2s period represented by
green shading (1s stimulus + 1s blank; Fig. 1(a)) was the task
execution period. This was considered the classification period
for EEG with required adjustments made for fNIRS (see section
II.D). A post-task production period, during which a fixation
cross was displayed on-screen, was randomized between 1.5

and 2.5s. All participants were provided with identical written
directions on how to produce imagined speech (supplementary
material) and, given the integrated experimental protocol, in-
structed to begin producing speech immediately upon perceiving
each word. Participants were explicitly instructed to say each
word or pair of words only once during each trial. Each possible
combination of stimulus and word were presented to participants
50 times each. Sessions were split into 6 blocks with 2 runs
each per block and 100 trials per run, therefore, 1200 trials per
session. Participants were permitted to take short breaks between
runs. Trials were randomized across blocks and runs. In total,
experiments lasted approximately 2 hours. For full details of the
experimental protocol, see [38].

B. Participants

Nineteen participants undertook experiments (10 female;
mean age 26.63± 2.13). Each participant was scheduled to com-
plete 4 sessions: 2 overt speech and 2 imagined speech. However,
due to Covid19 restrictions, not all sessions were completed.
Eight of the 19 completed all 4 planned sessions, 5 completed 3
sessions, 2 completed 2 sessions and 4 completed 1 session. All
participants completed at least one overt speech session and 15
completed at least one imagined speech session. All were native
English speakers, had normal or corrected-to-normal vision
and reported no history of neurological disorders. Participants
provided written informed consent prior to experiments. Ethical
approval was granted by Ulster University’s research ethics
committee. Participants were remunerated for involvement in
the study.

C. Data Acquisition

EEG and fNIRS data were recorded concurrently using the
g.Nautilus fNIRS-8 (g.tech medical engineering GmbH Aus-
tria), a fully integrated EEG and fNIRS recording device. The
g.Nautilus fNIRS-8 facilitates wireless digital transmission of
acquired signals at a distance of 10 meters. Synchronous signal
recording is achieved using the MATLAB-Simulink platform
with bespoke Simulink blocks for EEG and fNIRS.

A 64-channel EEG montage (Fig. 2) was configured using
g.SCARABEO active wet electrodes. Electrodes were posi-
tioned according to the unified standard montage10-5 system
to enable even distribution across scalp locations and to facili-
tate positioning of fNIRS optodes across bihemispheric motor
regions. A sampling rate of 250 Hz was used for EEG recordings.
A 0.1Hz high-pass filter was used to remove slow drifts during
recordings and a 48-52Hz notch filter used to remove 50Hz
line noise. fNIRS data were recorded at 10Hz and upsampled
to 250Hz during acquisition. Data were acquired using 8 LED
based transmitters, each of which emit light at wavelengths of
760 and 850 nm. Two receivers, each associated with 4 transmit-
ter channels, produce 2×4 fNIRS channels. Each fNIRS channel
recorded optical densities at both wavelengths, resulting in a total
of 16 channels containing optical densities for each recording.
Additionally, the g.Nautilus fNIRS-8 facilitates online conver-
sion of optical densities into concentration changes of HbO and
deoxy-hemoglobin (HbR), using the Modified Beer-Lambert
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Fig. 2. The 64-channel EEG montage was configured using the international 10-5 system and designed to provide coverage across all scalp
regions while also allowing placement of fNIRS optodes. A ground electrode was positioned at AFz and a reference electrode attached to the right
earlobe. fNIRS optodes were positioned bihemispherically over central-motor regions. Receiver optodes (orange) were positioned at C3 and C4
respectively, with each centrally located among four associated transmitter optodes (green). Transmitter optodes were precisely positioned at 30
mm from the receivers. Each transmitter optode consists of two channels which transmit light at wavelengths of 760 nm and 850 nm.

law [51], [52]:

A (t; λ) = ln
Iin (λ)

Iout (t; λ)
= α (λ)× c (λ)× d (λ) + η,

(1)
[
ΔcHbO (t)
ΔcHbR (t)

]
=

[
αHbO (λ1) αHbR (λ1)
αHbO (λ2) αHbR (λ2)

]−1

×
[
ΔA (t; λ1)
ΔA (t; λ2)

]
1

l × d (λ)
(2)

where A is the optical density, t is time in seconds, λ1 and λ2 are
the stated wavelengths, Iin is the incident intensity of light, Iout
is the detected intensity of light, α is the extinction coefficient in
µM−1cm−1, c is the absorber concentration in micromolars, l is
the distance between source and detector optodes in centimeters,
d is the differential path-length factor (6), and η is the loss of
light due to scattering (here it is cancelled out on the assumption
that it is neglible due to attenuation in continuous-wave fNIRS
[53]). The incident intensity of light is the initial intensity of
light emitted from the g.Nautilus Fnirs-8 and is a property of the
device.

Receiver optodes were positioned at C3 and C4, with each
transmitter positioned at 30 mm from the receivers. Transmitter

optodes were placed at the same scalp locations and connected
to the same channels for each session.

D. Signal Processing

EEG data were processed using EEGLAB [54] in MATLAB
2017a (Mathworks, Natick, MA, USA). Channel rejection due
to excessive noise (±500µV max.) or signal loss was applied
following visual inspection of the raw EEG. A Hamming win-
dowed finite impulse response (FIR) filter, with EEGLAB’s
built-in heuristic automatically determining filter length, was im-
plemented to bandpass raw continuous EEG between 0.5-40Hz,
with all signals rereferenced using common average referencing
[54]. Baseline removal was applied by computing the mean for
each trial in the time period -500ms – 0s (Fig. 1(b)) and subtract-
ing it from the task period. Trials containing muscular artefacts
were rejected by visual inspection. Finally, independent compo-
nents analysis (ICA) was performed on remaining preprocessed
channels using the infomax algorithm to remove artefacts [55].
ICA components were visually assessed and those with clear
frontal distribution of weights indicating ocular artefacts were
removed. Between one and three components were removed
per session data. EEG data were transformed back into channel
space for further analysis.
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Fig. 3. Bimodal network for training with EEG and fNIRS. (a) Two identical CNNs (EEG and fNIRS subnets) form a dual feature extractor. The
CNNs’ initial layers consist of combined temporal and spatial convolution. Batch normalization is then applied, followed by one of two possible
activation functions (ELU or Leaky ReLU). This is followed by dropout (p = 0.1). The final layer of the subnets is a FC layer with 500 hidden units.
(b) Parameters used to extend the depth of the CNN during HP optimization. This consists of 2d convolution, batch normalization, activation function
and dropout. (c) Fusion and classification layers. Subnet outputs are concatenated in late fusion and fed to a GRU. This is followed by activation
function, dropout, FC layer and another activation function. The final layer is a log softmax classifier used here for 4-class classification.

fNIRS data were processed in Fieldtrip [56]. Due to poor
fNIRS signal quality during setup (S5-Session 1, S6-Session
1 (Overt); S13-Session 1 (Imagined)) or signal dropout during
experiments (S2-Session 2, S3-Session 1 (Overt); S2-Session
1 (Imagined)), several sessions reported in the original EEG
study [38] were not used here. Channels with poor signal quality
due to inadequate contact were eliminated from further analysis
following visual inspection. Signals were bandpass filtered from
0.1-0.8Hz to reduce artefacts from physiological signals such as
cardiac interference (0.8Hz). Data were epoched into periods of
–500ms-3.5s (longer than EEG to account for slower fNIRS time
courses) and baseline corrected. Trial rejection due to movement
artefacts was applied through visual inspection.

The 2s task execution period (Fig. 1(a)) was used for classi-
fication. Due to differential time courses of EEG and fNIRS, a
temporal offset was applied to fNIRS for all classification tasks.
Hybrid EEG-fNIRS studies have used a variety of windows for
extracting features from fNIRS, including one 4s post-cue onset
for a 10s trial [9] and a 2-7s post-cue window for a 10s task
[7]. A recent study reported peak correlation between EEG and
fNIRS signals occurred when the fNIRS lagged the EEG signal
by approximately 1.7s during a 3.5s trial period [21]. Due to

the relatively short task execution period (2s), we applied a
1.5s offset to fNIRS data i.e., a 0-800ms classification window
corresponds to fNIRS data recorded 1.5-2.3s post cue onset.

Training a bimodal classifier requires data samples from
the different modalities to be perfectly class-aligned. As we
applied trial-rejection to EEG and fNIRS independently, we
ensured that trials for bimodal classification were aligned by
rejecting all independently rejected trials from both data types
prior to training. Finally, data were split into the six different
4-class decoding tasks facilitated by the experimental design.
These were: action-text (AT), action-image (AI), action-audio
(AA), combinations-text (CT), combinations-image (CI) and
combinations-audio (CA).

E. Bimodal DL Architecture

The bimodal architecture (Fig. 3) consists of two subnets,
each associated with a specific data type, and a wider network
architecture in which they are contained. The two subnets consist
of an initial convolutional block combining temporal and spatial
convolutions [13]. Filters in the first layer (number of filters =
40; filter size= 1×5) are convolved with the input data along the
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time dimension. The resulting weights are then spatially filtered
(number of filters = 40; filter size = N channels × 1) with
weights for all possible pairs of electrodes. Batch normaliza-
tion [57] adds regularization and an activation function adds
non-linearity (section II.F). This is followed by dropout (p =
0.1). To avoid diminishing spatial information in the data, no
pooling operations were used. During hyperparameter (HP) op-
timization, an extension of this design, with convolution, batch
normalization, activation function and dropout layers (Fig. 3(b)),
was evaluated. The output of each subnet is a FC layer with 500
hidden units. Outputs of the subnets feed into the remaining
layers of the network where they are combined in a process
described as late fusion, where features are extracted separately
and merged at later layers [39]. Here, outputs of the subnets are
concatenated and passed to a GRU layer [58] (250 hidden layer
units). This is followed by an activation function, a dropout layer
(p = 0.2), a FC layer and a final activation function. The output
layer of the bimodal network is a log softmax classifier (section
II.E).

Dimensions of data as it progressed through the basic and
extended versions of the network are reported in Supplementary
Table I, with additional text indicating how the dimensionality
of the feature maps differ as the number of layers vary. Due
to windowing, input tensor dimensions were 32×64×200 for
EEG and 32×16×200 for fNIRS (batch×channels×samples).
The output of the GRU was a 32×250 tensor which fed into the
next FC layer with an output shape of 32×4 to be applied to the
log softmax classifier. The network was built using PyTorch [59]
with the braindecode [13] software package (https://github.com/
braindecode/brainde code). The bimodal network is available at:
https://github.com/cfcooney/BiModNeuroCNN.

F. Unimodal DL Architecture

For comparison with EEG- and fNIRS-only decoding, we
used a unimodal DL network similar to the subnets. The layout
consists of an initial convolutional block combining temporal
and spatial convolutions [13], with identical filter dimensions to
the subnets. Batch normalization [57] added regularization and
an activation function added non-linearity. These layers were
followed by dropout (p = 0.1) and a log softmax classifier.

G. Network Training

Training procedures were identical for the bimodal, unimodal
EEG and unimodal fNIRS networks, respectively. Data which
previously had trials removed or were imbalanced due to in-
complete recordings, were oversampled using SMOTE [60] to
ensure that all minority classes were balanced with the majority
class. This step was applied to training data only. Xavier uniform
initialization [61] was used to initialize weights in the temporo-
spatial convolution layers. Later layers used He uniform ini-
tialization due to its utility for rectified linear units (ReLU)
based activation functions [62]. Training was optimized using
Adam [63], a popular approach to gradient-based optimization of
stochastic objective functions. The method updates exponential
moving averages of the gradient and the squared gradient with
HPs β1, β2 � [0, 1] (here 0.9 and 0.999) controlling exponential

rates of decay. Moving averages are estimates of the mean and
uncentred variance of the gradient. The maximum number of
training epochs was 50, and an early-stopping strategy was
applied to all training instances. Training was stopped when
validation accuracy stopped improving over a predefined num-
ber of epochs (patience = 20). Training resumed with parameter
values re-initialized to those that resulted in the best validation
accuracies thus far. Training was terminated when validation
loss dropped to the same value as the training loss achieved
at the end of the first training phase [13]. A batch size of 32
was used for all experiments. The initial learning-rate was 0.001
and learning-rate decay was applied using multi-step scheduling.
This method decays the learning-rate by a fixed value, gamma,
at specified intervals during training. Here, gamma was set to
0.1 and learning-rate decay applied at epochs 20 and 25 due
to the small number of training epochs. Categorical probability
distributions were obtained by transforming the output from the
final convolution layer using a log softmax function (see sup-
plementary material). A negative log-likelihood loss was used
to minimize the error between the ground truth and predictions
obtained by the log softmax function. Loss was minimised, and
network parameters updated, using the Adam optimizer with
backpropagation.

H. Hyperparameter Optimization

Rather than manually selecting all HP values, we optimized
a subset using the nested cross-validation strategy (nCV) de-
scribed in [15]. This method consists of outer- and inner- fold
protocols with data split into k = 5 folds for both, resulting
in a train/validation/test split of 128/32/40 for a 200 sample
classification task. The inner-fold selects optimal HP values,
with multiple inner validations used to train and validate a model
for all possible HP combinations. Maximal mean inner-fold
validation accuracy was used to select optimal HP values. The
outer-fold procedure evaluated model performance given tuned
HPs. As with the inner-fold, validation accuracy was the metric
used to evaluate the model during training, with the final model
evaluated on test data. Optimized HPs were categorised as
feature-extraction and network parameters. Feature-extraction
parameters relate directly to the data (frequency band, classifi-
cation window) and network parameters are used to instantiate
and train the network (number of layers, activation function). We
evaluated different frequency bands for both EEG and fNIRS.
For EEG, five bands were considered: delta (0.5-4Hz), theta
(4-8Hz), alpha (8-12Hz), beta (12-28 Hz) and gamma (28-
40Hz). Bands were iteratively filtered from EEG during nCV us-
ing a 5th order Butterworth filter. For fNIRS, four low-frequency
bands were evaluated: 0.1-0.5Hz, 0.2-0.6Hz, 0.3-0.7Hz and
0.4-0.8Hz. Bands were filtered using a 2nd order Butterworth
filter. With a task execution window of 2s, three overlapping
800ms classification windows were evaluated. That is, windows
of 0-800ms, 600-1400ms and 1200-2000ms post cue-onset (+
1.5s for fNIRS; see Signal Processing) were evaluated to deter-
mine optimal classification time-periods.

Optimized network parameters were the activation function
and depth of subnet. Two non-linear activation functions were

https://github.com/braindecode/brainde
https://github.com/braindecode/brainde
https://github.com/cfcooney/BiModNeuroCNN
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Fig. 4. Classification results across all classification tasks for both overt and imagined speech. Each data point corresponds to classification
accuracy for one of six conditions, and for a single session (participants engaged in one or two sessions each). Boxplots visualize the distribution
of results, indicating the median value (the point at which 50% of results are above and below), the interquartile range (box heights) and 1.5 times
the interquartile range (whiskers extending beyond box edges). (a) Variability in performance across subjects and sessions for each classification
task for overt speech. (b) Variability in performance across subjects and sessions for each classification task for imagined speech. ∗∗p<0.005.

TABLE I
BIMODAL COMPARISON WITH UNIMODAL FOR OVERT SPEECH

evaluated. The first of these was exponential linear units (ELU)
[64], defined as f (x) = x for x ≥ 0 and f (x) = ex − 1 for
x < 0. The second was Leaky ReLU, defined as f (x) = x for
x ≥ 0 and f (x) = αx for x < 0, where α defines the extent
to which the function “leaks” i.e., the slope of the function
for x < 0. Structural HPs were optimized by extending the
depth of the initial subnet (Fig. 3(a)) with additional layers
(Fig. 3(b)). This consisted of an additional convolution layer,
batch normalization, activation function and dropout. Optimal
network depth indicated by the validation set was then used to
obtain results during testing stages.

HPs evaluated with the nCV scheme were coupled across
the subnets. That is, for each HP value the entire network was
instantiated with that value and thus both subnets were always
paired in this manner i.e., at no point was one subnet using ELU
as its activation function when the other was using Leaky ReLU.
EEG and fNIRS frequency bands were not coupled in this way
as each data type was associated with a single subnet.

I. Evaluation Metrics and Statistics

Classification accuracy was used for evaluating the perfor-
mance of the trained models. Accuracies were obtained for each
test fold of the outer nCV procedure, and a mean and variance
calculation used for reporting results.

TABLE II
BIMODAL COMPARISON WITH UNIMODAL FOR IMAGINED SPEECH

Here, we considered p<0.05 to indicate statistical signifi-
cance. Statistical analyses were performed using all the data
collected as per section II.B. We used Analysis of Variance
(ANOVA) tests based on the assumptions that the sampling
distribution of the mean of the population is normally distributed
and that all samples are drawn independently. For all ANOVAs,
when statistical significance was indicated a post hoc analysis
was performed using a Tukey Honest Significant Difference
(HSD) multiple comparisons test [65] to evaluate pairwise dif-
ferences between results. Further details on statistical analysis
are available in the supplementary material.

III. RESULTS

A. Bimodal Network Improves on Unimodal Performance

The bimodal method achieved higher overall decoding accu-
racies than both unimodal approaches with statistically signifi-
cant improvements for all but overt speech EEG (Tables I and II).
Task specific scores for overt speech classified with the bimodal
approach were AT= 49.61%, AI= 48.72%, AA= 45.02%, CT=
49.20%, CI = 46.76% and CA = 38.52% (table I; Fig. 4). With
mean EEG decoding accuracies of AT: 46.04%, AI: 46.66%,
AA: 41.55%, CT: 46.90%, CI: 45.08%, CA: 36.72% (Table I),
bimodal decoding outperformed unimodal EEG in all overt
speech tasks. For imagined speech, the bimodal network also
outperformed unimodal EEG in all tasks with mean decoding
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Fig. 5. HbO and HbR signal time courses for the period -0.5s to 3.5s about cue onset taken from Subject 1 for the words “Squeeze” and “Red
ball” for all stimulus methods. fNIRS data is not fully utilized here as the timing constraints of the experiments meant that the complete rise and fall
of a typical HbO signal associated with task production was not possible.

accuracies of AT = 31.78%, AI = 38.37%, AA = 33.89%, CT =
32.21%, CI = 36.67% and CA = 32.80% (bimodal; Table CI:
34.56%, CA: 30.60% (EEG; Table II; Fig. 4), respectively.

On average, bimodal decoding improved on unimodal EEG
by 2.48% (overt) and 1.59% (imagined). This result hints at
potential performance improvements from combining EEG and
fNIRS. A 2-way ANOVA network × classification task indi-
cated differences between the two methods were significant for
imagined speech (F(1, 5) = 5.45, p = 0.0203) while tending
towards significance for overt speech (F(1, 5)= 2.75, p= 0.098).
Significance corresponding to enhanced imagined speech de-
coding results from the bimodal classifier being an improvement
in 16 of the 21 sessions. Despite a p-value >0.05, 21 of the
28 overt speech sessions were improved upon with bimodal
decoding. Further analysis of results indicated that the bimodal
approach suffered from a degree of negative transfer associated
with several subjects’ fNIRS data. For example, the overt speech
scores for Subject 14 - Session 2 achieved mean accuracy of
41.79% with EEG but dropped to 32.77% with hybrid decoding
(Supplementary Tables II and VI). In addition, Supplementary
Tables IV & V present instances of fNIRS data being classified
at or below chance level (25%), indicating that a small portion
of the fNIRS data was not likely to benefit bimodal decoding.
Reasons for this negative transfer are suggested by comparison
with fNIRS decoding, below.

The bimodal network was significantly better than unimodal
fNIRS for each of the six classification tasks for both overt and
imagined speech (overt: F(1, 5) = 131.13, p<0.001; imagined:

F(1, 5) = 69.11, p<0.001). Mean fNIRS decoding accuracies
for overt speech were AT: 32.46%, AI: 32.46%, AA: 33.66%,
CT: 31.73%, CI: 31.91%, CA: 33.49% (Table I). fNIRS re-
sults for imagined speech were AT: 30.62%, AI: 28.61%, AA:
29.72%, CT: 31.32%, CI: 28.95%, CA: 28.64% (Table II). A
possible cause for the fNIRS having relatively poor decoding
performance and limited impact on bimodal decoding can be
observed in Fig. 5 where the fNIRS signal does not exhibit the
typical time course associated with longer trial-periods. Instead,
the HbO signal only begins its expected rise associated with
task production approximately 2 – 2.5s post cue. As stated
in section II.D., task-related fNIRS is usually expressed over
longer periods. However, the constraints of our experiment,
i.e., the relatively short task period required to investigate the
different stimuli and word groups, means that there are potential
performance gains to be made from a longer fNIRS period.

B. Decoding Performance of the Bimodal Network

Fig. 4(a, b) are scattered boxplots visualizing accuracies ob-
tained using the bimodal network for overt and imagined speech.
The boxplots highlight two results: 1) the bimodal network
classifies overt and imagined speech with accuracy substantially
greater than chance level while exhibiting significant variance
between classification tasks. 2) there is a clear performance gap
between the two speech types, with overt speech resulting in
significantly better decoding accuracy (F(1, 5) = 3.06, p<0.05;
2-way ANOVA). Mean decoding accuracy across all tasks was
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Fig. 6. Hyperparameter optimization for overt and imagined speech tasks. (a) Inner-fold validation accuracy for delta (0-4 Hz), theta (4-8 Hz),
alpha (8-12 Hz), beta (12-28 Hz), gamma (28-40 Hz) (overt speech – top/blue; imagined speech bottom/green). (b) Optimal classification windows
for overt (left) and imagined (right) speech. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<1×10-8.

46.31% for overt speech and 34.29% for imagined speech,
resulting in a 12.02% difference. Maximum decoding perfor-
mance also illustrated differences with overt speech achieving
87.18% for AT and imagined speech achieving a best score
of 53% for AI (Supplementary Tables II and III). Statistical
analysis of differences between overt and imagined speech was
undertaken with different sample sizes for the two conditions,
with statistical power consequently limited by the smaller set
(imagined speech).

C. Effect of Stimuli and Word-type on Decoding

Results indicated some variation in decoding performance
dependent on the type of stimuli used to prompt tasks. In
addition, trends across the different classification tasks were
not common across speech types. A 2-way ANOVA stimulus
× word-type indicated that the main effects of different stimuli
were significant (F(2162) = 4.59, p<0.05) but that the effects of
different word types were not (F(1162) = 1.87, p = 0.174). Post
hoc tests attributed significance to the inferior scores obtained
from audio trials (AA, CA (p<0.05), with differences between
text and images negligible (p = 0.80).

A 2-way ANOVA stimulus × word-type indicated that the
main effects of stimuli were highly significant for imag-
ined speech (F(2120) = 12.27, p = 1.42×10-5), although
the main effect of words was not (F(1120) = 1.22, p =
0.272). Post hoc tests revealed that superior accuracies ob-
tained from trials using image stimuli were significant with
respect to both text (p = 1.44×10-5) and audio (p<0.005)
trials. Comparison of text v audio revealed no significance
(p = 0.312).

In section II.C, we reported that fNIRS optodes were placed
above bihemispheric motor regions with the expectation that this
may aid decoding of action words. However, the statistical anal-
yses clearly indicate that there was no increase in performance
for action words in relation to combinations.

D. Hyperparameter Optimization of Bimodal Network

Results from HP optimization indicated the importance of
EEG frequency band, classification window and depth of CNN
subnet (Fig. 6). A 3-way ANOVA frequency band × stimulus ×
word type revealed that the main effects of frequency bands was
highly significant for both overt (F(4878) = 17.273, p<1×10-6)
and imagined speech (F(4668) = 21.98, p<1×10-6). For overt
speech, post-hoc tests revealed that validation accuracies ob-
tained with the delta band were significant with respect to all
others (p<1×10-8) (Fig. 6(a) - top). The gamma band was sig-
nificantly poorer than all others (p<0.05). For imagined speech,
delta was significantly greater than theta (p<0.005), alpha
(p = 1×10-6) and gamma (p<1×10-5), but not beta (Fig. 6(a)
– bottom). In contrast with overt speech, beta band results
were significantly greater with respect to theta (p<0.005), alpha
(p<1×10-6) and gamma (p<1×10-5).

Main effects analysis showed that the impact of different
windows was significant for both speech types (F(2526) =
90.8, p<1×10-6; F(2400) = 7.25, p<0.001). For overt speech,
post hoc tests revealed that the greater accuracies of both the
second and third windows, compared to the highly significant
(p<1×10-6) and that the difference between the second and third
windows was significant (p<0.05). This translated to 67.8%
selection of the third classification window and only 5.7%
for the first (Fig. 6(b) –left). Similarly, for imagined speech
significance resulted from the lower accuracies obtained from
the first classification window in relation to the second (p<0.01)
and third (p<0.005) windows. This resulted in 81.2% selection
for windows two and three and only 18.8% for the first win-
dow (Fig. 6(b) – right). Greater inner-fold validation accura-
cies obtained with deeper subnets (overt: 43.60% vs 37.99%;
imagined: 41.20% vs 37.49%) were significant (F(1350) =
90.8, p<1×10-6; F(1266) = 43.45, p<1×10-6). Neither fNIRS
frequency bands nor activation functions had a significant impact
on decoding performance.
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IV. DISCUSSION

Simultaneous recording of EEG and fNIRS can increase
the volume of data and may be particularly useful for certain
BCI applications as it facilitates acquisition of electrical and
hemodynamic brain activity corresponding to a single task.
Just as methods for recording brain activity continue to evolve,
techniques for decoding multiple data streams must also be ad-
vanced. Here, we presented a bimodal deep learning architecture
consisting of subnets previously developed for neural decoding
applications [13], a fusion layer for combining features extracted
by subnets and later GRU and FC layers feeding a log softmax
classifier. Although multimodal deep learning has been applied
elsewhere to neurological data streams [3], [22] this is the first
instance of a bimodal architecture with convolutional subnets
being applied to decoding overt and imagined speech from
EEG-fNIRS data.

The bimodal approach demonstrated performance improve-
ment upon unimodal approaches, with statistically significant
improvement for all but overt speech EEG. While these results
are suggestive of future use of this bimodal network, limiting
factors such as the duration of the task execution period must
be addressed to fully harness its potential. The design of the
bimodal network includes some important conceptual differ-
ences from related methods for hybrid EEG-fNIRS decoding.
Whereas other approaches have used distinct feature extraction
algorithms for the two data types [2] or combined the data prior
to its being fed into a neural network [3], our approach processed
the data through individual subnets through which the network
could co-adaptively learn features for both EEG and fNIRS.
This approach allows the network to update parameters during
training as it learns features from both data types simultaneously.
Here, two identical subnets were used for extracting features
from EEG and fNIRS. One of the reasons for this was to
enable pairing of HPs across subnets, thus reducing the overall
search space during optimization. However, it is possible that
this is a sub-optimal solution and further research is required
to ascertain whether bespoke subnets for each data type would
yield significant performance improvement. A feature extraction
approach specifically tailored to the characteristics of fNIRS is
a potential improvement that should be investigated.

The use of subnets in the design also facilitated concatenation
of the features they extracted in a fusion process. There are
several points at which parallel data streams can be fused in
a bimodal classifier [39], [66]. They can be concatenated before
being fed into a network or fused in a penultimate layer just
prior to classification. Our network applied fusion immediately
after the two convolutional subnets were used for feature ex-
traction and then performed further feature extraction on this
combined featureset with GRU and FC layers. The rationale
for this is that there may be more information in one or other
of the extracted featuresets which further deep learning could
identify and exploit. Combining the use of subnets and fusion
enabled optimization of feature extraction and classification in a
single training procedure without the necessity of manual feature
engineering processes for each data type.

As well as enhancing decoding in comparison with unimodal
EEG and fNIRS, the bimodal network resulted in all classifica-
tion tasks achieving above-chance decoding accuracy, with overt
speech reaching as high as 87.18%. This is promising for the
future potential of bimodal decoding of non-invasively acquired
speech correlates. Peaking at 53%, imagined speech results
also indicated potential, particularly when prompted by images.
Results are significant despite not relying on word repetition
to enhance performance as in other studies [6], [27], and using
relatively few trials per class.

Although not the primary subject of the study, here we con-
sider results obtained from a unique experimental procedure
reported elsewhere [38]. Direct comparisons of results obtained
from overt and imagined speech are sparse in non-invasive BCI
literature [36], [50] as studies have focused on overt speech
[11], [25], [26]. Here, we confirmed the results of our previous
work [38], reporting a clear disparity between decoding potential
for overt and imagined speech. This is to be expected, and
results reported here even exhibit a narrowing gap of 12.02%
in comparison with similar studies [36], [50]. Nevertheless, it
is clear that imagined speech cannot currently be decoded with
accuracy equivalent to that of overt speech.

The experimental procedure also enabled investigation of
the effects of stimulus type and the semantics and syntax of
different words on decoding performance. Replicating previous
findings [38], statistical tests indicated that the effects of se-
lecting words based on semantic and syntactic criteria did not
significantly impact decoding performance. While the effects
of using different categories of words was not significant, the
impact of stimulus clearly was. Results from imagined speech
trials prompted with images show a consistent and significant
performance improvement over text and audio. Image presenta-
tion has some advantages over text and audio in that it does not
directly present the word to be spoken and thus participants must
engage in the word retrieval phase of speech production models.
On the other hand, it has been shown that images evoke higher
amplitude responses than text [67], and it is possible that this
may impact decoding. This being the case, presentation modality
must be carefully considered by researchers when designing
experiments.

Limitations of this research accrued from constraints imposed
by recording equipment, our investigation of both overt and
imagined speech, and the effects of different stimulus and word
groups. Despite our fNIRS montage consisting of a similar
number of channels to others employing hybrid EEG-fNIRS for
BCI applications [2], [3], [10], it is possible that higher-density
fNIRS may have impacted this study. For example, [68] used
fifty fNIRS channels to benefit from extensive scalp coverage
when trialing a BCI for covert intention classification. Greater
fNIRS coverage may have mitigated some of the imbalance
between EEG and fNIRS results. However, the totality of differ-
ence is not likely due to coverage alone as studies have demon-
strated the utility of few-channel fNIRS [69], [70]. Related to
this is the likely impact of fNIRS optode placement at different
functional regions across the cortex. We placed optodes over
motor regions to coordinate with the selection of action words
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in our experimental procedure. However, studies have reported
speech-related decoding from fNIRS with optodes over Broca’s
and Wernicke’s areas [71] while others have demonstrated men-
tal character writing [72] and visual stimuli [73] with optodes
placed at the prefrontal cortex. The relatively short 2s trial
period, and corresponding 800ms classification window, was
a function of limiting session recording times to 2 hours. It is
possible that the decoding performance of the bimodal approach
would be improved with an extended trial period, particularly
as the time courses presented in Fig. 5 indicate that the fNIRS
data may not have been fully utilized. The signal did not exhibit
the full characteristic curve demonstrated in studies with longer
time-periods [2], [3], but nevertheless did show the process of
increasing and decreasing HbO and HbR concentrations which
may suggest the fNIRS in this time-period was representative
of task execution. Further research is required to understand the
extent to which, if at all, the time-period limited the benefit of
using fNIRS. Clearly, there are trade-offs between the length of
fNIRS time-period and the applicability of fNIRS to real-time
speech decoding. Additionally, comparison of the effects of
different wavelengths is a potential future research question.

There are downsides to extended trial periods, as a virtue
of using EEG for communication is the high temporal reso-
lution that facilitates real-time interaction. This would be lost
in extending the trial period for fNIRS. Timing constraints also
limited the number of trials per class to 50. Previous studies have
recorded 100+ trials per class [27], [30], and it is highly probable
that additional training data would improve the generalizability
of the bimodal model and consequently overall performance.
Finally, further research is required to validate the efficacy of
this approach in online BCI experiments. The development of
methods for speech decoding must be functional in real-time
scenarios if they are to be a feasible mode of communication.

V. CONCLUSION

In this paper, we presented a bimodal deep neural network
architecture for decoding neural signals from two data streams
and showed it improved upon unimodal approaches. The design
facilitates concurrent feature extraction by instantiating two
convolutional subnets which are trained using a common loss
function. Data-specific features are then combined in a fusion
layer before further layers are used to extract features for clas-
sification. To test the network, we trained it on EEG and fNIRS
data recorded while participants performed tasks using overt
and imagined speech. These tasks also enabled an investigation
into the effects of stimulus and linguistic properties on speech
decoding.

Results demonstrated that the bimodal network significantly
improved upon unimodal decoding for all imagined speech
tasks. Most subjects’ results improved with the bimodal network,
despite subnets not being specifically tailored for different data
types and the duration of fNIRS data not being optimal. These
are areas in which future research and development is required.
Overall accuracies hinted at the potential for decoding speech
from non-invasive neural recordings despite a significant per-
formance gap between overt and imagined speech. In addition,

results indicated that deeper subnets improved performance.
Our findings also support significant differences in the effect
of stimulus on decoding performance, with image stimulus
presentation resulting in the highest classification accuracies for
imagined speech.
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