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Abstract—Objective: Sleep spindle features show devel-
opmental changes during infancy and have the potential to
provide an early biomarker for abnormal brain maturation.
Manual identification of sleep spindles in the electroen-
cephalogram (EEG) is time-consuming and typically re-
quires highly-trained experts. Automated detection of sleep
spindles would greatly facilitate this analysis. Research on
the automatic detection of sleep spindles in infant EEG
has been limited to-date. Methods: We present a random
forest-based sleep spindle detection method (Spindie-Al)
to estimate the number and duration of sleep spindles in
EEG collected from 141 ex-term born infants, recorded at
4 months of age. The sighal on channel F4-C4 was split
into a training set (81 ex-term) and a validation set (30
ex-term). An additional 30 ex-term infant EEGs (channel
F4-C4 and channel F3-C3) were used as an independent test
set. Fourteen features were selected for input into a ran-
dom forest algorithm to estimate the number and duration
of spindles and the results were compared against sleep
spindles annotated by an experienced clinical physiologist.
Results: The prediction of the number of sleep spindles
in the independent test set demonstrated 93.3% to 93.9%
sensitivity, 90.7% to 91.5% specificity, and 89.2% to 90.1%
precision. The duration estimation of sleep spindle events
in the independent test set showed a percent error of 5.7%
to 7.4%. Conclusion and Significance: Spindle-Al has been
implemented as a web server that has the potential to as-
sist clinicians in the fast and accurate monitoring of sleep
spindles in infant EEGs.

Index Terms—EEG, infants, sleep spindles, Spindle-Al.
I. INTRODUCTION

LEEP spindles are an indicator of the development and
integrity of the central nervous system in infants [1]. They
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were first described by Loomis et al. [2] as rhythmic 12-14 Hz
oscillations which last 0.5 to 3 seconds with a waxing and waning
shape [3]. They have been observed clearly in EEG during stages
N2 and N3 [4] from the 4" week post-term and are present
in the EEG of all infants by nine weeks post-term [5]. Sleep
spindles have been shown to change with aging [6], [7] possibly
reflecting maturation changes such as synapses generation and
elimination, and myelination [8]. For example, when sleep spin-
dles first appear, they are of low amplitudes showing, however,
an ascendant trajectory [4]. Spindle spectral power (measured
as sigma power over central and occipital channels) increases
in early childhood from 2 to 5 years [9]. Within participants
ranging from 4 to 24 years old, a decrease of the spectral power
over the frontal and centroparietal areas was seen [10]. It is also
during adulthood that amplitudes stabilize, meaning that, for
peak-to-peak analysis of the automatically detected sleep spin-
dles, groups of 20-30 year old showed higher amplitudes than the
41-59 and the 60-73 year old participant groups, particularly in
the frontal left region; but no statistically significant differences
were seen between the latter groups in any of the areas spindles
were studied: the frontopolar, frontal, central, parietal and oc-
cipital areas [11]. This evolution is also evident in the frequency
domain, fast spindles predominate during infancy where their
density peaks in groups from 4-12 months old, and decrease after
that; while slow spindles tend to appear after the first year and
keep increasing in density across the different age groups studied
at least until the age of 25-48 months [12]. Mean frequency of
sleep spindles peak at 4 to 12 months of age decreasing after that
until at least 25 to 48 months [12]. Spindle duration decreases
across infancy and early childhood and increases again after 3
years of age [9], [13], [14]. Sleep spindle density decreases from
the second half of the 9** month up to 1 year and 8.4 months,
then shows a trend of increasing density up to 11 years [13].
Sleep spindle parameters might estimate neurodevelopment as
their variations evolve with aging [13]. The rapid development
of the infant brain, and the variability in sleep spindles makes
infant sleep spindle detection challenging.

The visual detection of sleep spindles in EEG is a laborious
and time-consuming task. Automated detection of sleep spindles
would reduce the burden associated with the analysis of large
datasets and facilitate more rapid identification of sleep abnor-
malities and an objective means to quantify spindle features.
Previous studies have used various methods to measure the du-
ration and number of sleep spindles automatically in adult sleep
EEG [15]-[21]. However, research on the automatic detection
of sleep spindles in infant EEGs to-date has been limited. To
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the best of our knowledge, there have only been two previously
published studies on the automatic estimation of the number
of sleep spindles in infant EEGs. In the first, Held et al. [22]
presented an automated method to estimate the number of sleep
spindles which was trained on three and tested on two infants.
They achieved a sensitivity of 87.7% and an 8.1% false-positive
rate. This method combined two different approaches: detection
criteria on the sigma-band filtered EEG signal, including the
application of fuzzy thresholds, and mimicking current proce-
dures for manual identification of sleep spindles in infant EEG.
However, only the number of sleep spindle events was estimated;
sleep spindle duration was not considered. The second approach
for estimating the number of sleep spindles in long EEG record-
ings, developed by Estevez et al. [23], used a Merge Neural
Gas algorithm and was trained on a single infant, and tested
on another achieving 62.9% sensitivity. In their work, the EEG
recording was divided into 0.512 s epochs, and a human expert
labelled each epoch as containing sleep spindles or not. Epochs
in which sleep spindles were contained in only part of the epoch
were labelled as a sleep spindle event. However, if a sleep spindle
was divided across different epochs, the sleep spindle was treated
as two or more sleep spindles events. Moreover, in this way,
the duration (start time and end time) of the sleep spindles can
not be accurately estimated. There thus remains a need for an
automated method of spindle detection in infant EEG that can
accurately estimate the number and duration of spindle events.

In this study we develop a random forest-based sleep spin-
dle detection method (Spindle-Al) to estimate the number and
duration of sleep spindles in the EEGs of ex-term born infants
recorded at four-month of age. The random forest algorithm is
one of the most successful modern general-purpose classifica-
tion algorithms [25] and has been widely used to identify sleep
events in sleep EEG recordings [20], [26]-[28]. Moreover, it
is generic enough to be applied to large-scale problems, easily
adaptable to a variety of special learning tasks, and returns a
measure of feature importance [25]. The approach combines
several randomized decision trees and aggregates their predic-
tions by averaging. The study builds on our previous preliminary
work to develop a method to detect sleep spindles in infant
EEGs [24]. Spindle-Al has been implemented as a web server
freely available for academic use at http://lisda.ucd.ie/Spindle-
Al /. Spindle-Al estimates the number of sleep spindles and
identifies the specific time and duration of occurrence of the
sleep spindle events, this has the potential to assist clinicians in
the monitoring of sleep spindles in EEGs of infants faster than
current methods.

[I. METHODS

The Spindle-Al method was developed and tested on EEG
data recorded from 141 infants on EEG channels F4-C4 and
F3-C3. Fourteen features were selected for input to a random
forest algorithm. Synthetic Minority Over-sampling Technique
(SMOTE) was used to balance the dataset. The model was
trained using 81 infant EEG data as inputs to the random forest
algorithm. After that, the signal was post-processed using sleep
spindle detection criteria to estimate the number and duration of
sleep spindles. An overview of Spindle-Al is presented in Fig. 1.
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Fig. 1. Overview of Spindle-Al. Infants’ sleep EEG data on channel
F4-C4 were used to develop the random forest-based method. Infants’
sleep EEG data on channel F4-C4 and channel F3-C3 were used as an
independent test set. Features were estimated after removing artefacts,
and feature selection was performed using a random forest-based wrap-
per method. SMOTE was applied to balance the dataset. The method
was then trained using 81 infant EEG data as inputs to the random forest
algorithm. The number, start time and end time of sleep spindles are
estimated by post-processing the signals according to the sleep spindles
detection criteria.

A. Participant Details

Ethical approval was granted from the Clinical Research
Ethics Committee of the Cork Teaching Hospitals, Cork, Ireland
and written consent from parents or guardians of the infants
included in the study was obtained. A cohort of healthy full-term
infants (n=181) was recruited soon after birth at Cork University
Maternity Hospital (CUMH). Inclusion criteria were gestational
age higher than 37 weeks, being healthy and singleton. EEG
data were recorded from sleeping infants at four months, with
each infant’s EEG recorded for around two hours. Three datasets
were excluded due to abnormal EEG. A further 37 datasets
were excluded due to software incompatibilities. Therefore, 141
ex-term infants (i.e. infants born after 37 weeks but before 42
weeks of gestation) EEG were included in this study.

B. Data Collection

EEG data were recorded using a 31-channel polygraph system
(Lifelines, U.K.) that included 21 EEG electrodes (FP2, FP1, F8,
F7, F4, F3, FZ, A2, Al, T4, T3, C4, C3, CZ, T8, T7, P4, P3,
PZ, 02, O1), ground and reference electrodes. Two electroocu-
logram (EOG) channels (below the outer canthus of the left eye
and above the outer canthus of the right eye) monitored rapid and
slow eye movements, chin tonicity was recorded using surface
electromyography (EMG). Separate electrodes were applied for
electrocardiogram (ECG), and a movement sensor was placed
on the abdominal region for the recording of respiration. EEG,
EMG, ECG, EOG data and movement sensor were recorded at
a sampling rate of 500 Hz. Sleep spindles of ex-term infants
were annotated on channel F4-C4 and channel F3-C3 by an
experienced clinical physiologist as the gold standard. In the
following text we refer to the sleep spindles in channel F4-C4
as “R-Spindle” and the sleep spindles in channel F3-C3 as
“L-Spindle”. The number and duration of the sleep spindles
identified by the clinical physiologist are presented in Table I.

C. Data Pre-Processing and Feature Estimation

The EEG data were processed at the original sampling fre-
quency of 500 Hz, a 50 Hz notch filter was applied to remove
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TABLE |
NUMBER AND DURATION OF SLEEP SPINDLES ANNOTATED BY AN
EXPERIENCED CLINICAL PHYSIOLOGIST

F4-C4 F3-C3
Infants number 141 141
Average number of sleep spindles per infant 167 155
Total number of sleep spindles 23,520 21,815
Total duration of sleep spindles (s) 67,997 66,320
Total duration of non-sleep spindles (s) 509,535 511,212

TABLE I
TIME AND FREQUENCY DOMAIN FEATURES ESTIMATED FROM EACH 0.5 S
EEG EPOCH OF PRE-PROCESSED EEG SIGNAL

Domain Features Reference
SD, RMS and mean absolute amplitudes [29], [30]
Max and min absolute amplitudes [29]-[31]
Max-min difference of amplitude [29]-[31]
Skewness and Kurtosis [32]
Hjorth activity, complexity, mobility [31], [32]
Fractal Dimension [33]

Time Symmetry and Anti-symmetry [22], [31]
Number of peaks [31]
Mean and standard deviation TKEO values [31]
Mean frequency [22], [29]

Integral of the full band power (0-500 Hz) [33]
Mean value of the envelope in sigma band [34]
(12.5-15 Hz) and sleep spindle band (10.5-

16 Hz)

Mean absolute amplitudes in sigma and [15], [35]
sleep spindle bands

Mean absolute amplitudes in delta (0-4 Hz), [36]
theta (4-8 Hz), alpha (8-12 Hz), beta (12-30

Hz) bands

Relative and absolute power in sigma and [31]
sleep spindle bands

Relative and absolute power in delta (0-4 [37]

Hz), theta (4-8 Hz), alpha (8-12 Hz), beta
(12-30 Hz) bands

Sigma Index, alpha band ratio and sleep
spindle band ratio

Frequency

[20], [35]

SD: standard deviation; RMS: root mean square; TKEO: Teager-Kaiser energy operator

power line interference from the EEG recordings, and the DC
offset was removed from each channel. The pre-processed EEG
signals detected on channels F4-C4 and F3-C3 were segmented
into 0.5 s epochs with 0.25 s overlap for feature estimation. The
length of 0.5 seconds was chosen as this is the minimum required
length of a sleep spindle [3]. EEG recordings from channel
F4-C4 from 81 ex-term infants were used for training and 30
ex-term infants were used for validation. An additional 30 EEG
recordings from channel F4-C4 and F3-C3 of ex-term infants
were used for independent testing of the method. A selection
of 43 time and frequency domain features previously used in
EEG event identification, including sleep stage classification
and seizure detection, were identified from the literature and
estimated for each epoch. A list of the features estimated is
provided in Table II.

In the time domain, the root mean square, the mean absolute
amplitude, skewness, and kurtosis, of the pre-processed EEG
signals were calculated for each epoch. In addition, max and min
absolute amplitudes as well as max-min difference of amplitude
(max-min difference) of the pre-processed EEG signals were
estimated. The Teager-Kaiser energy operator (TKEO) is a
nonlinear energy tracking operator capable of determining the
instantaneous energy of a non-stationary signal, which has been

applied to detect abrupt changes in biological signals [38]. The
mean and standard deviation of the TKEO value in each epoch
were also estimated.

TKEO[n] = z[n]* — 2[n — 1]z[n + 1] (1)

Where: x[n] is the n‘" sample, x[n-1] is the (n-1)*" sample and
x[n+1] is the (n+1)*" sample of the pre-processed EEG signal
in the epoch.

The signal symmetry (Sym) and anti-symmetry (Antisym)
were estimated [22], [31] along with the EEG signal complexity
which was quantified using fractal dimension (FD) [33], [39]
and Hjorth parameters (Mobility and Complexity)) [31], [32].

SN Fali]

Sym =
N (maai 5 (f41i]))?
where: £, [i] — a:[N/2+i]—;:c[N/2—i] )
N/2 , ¢
Antisym = Zi?VO/Q -l :
N(maz; Ly (f-[i]))?
where: f_[i] — z[N/2 + i ;x[N/Q—i] 3)
logh}
FD = 4
logf}) + log%/(N-’_O'M)) @
o ar(d)
Mobility = Var(2) (5)
. Mobility (4
Complexity = Nm (6)

Where: x[N/2+i] is the (N/2+i)" sample and x[N/2-i] is the
(N/2-1)t sample of the processed EEG signal in the epoch; N
is the number of samples in each epoch; and ¢ is the number of
sign changes in the signal derivative in that epoch; @ is the time
derivative of the pre-processed EEG signal x, and Var (x) is the
variance of x estimated for that epoch.

The EEG data were filtered using a 4*" order Butterworth
filters (IIR) within the frequency bands of interest: delta (0-
4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12.5-15 Hz),
sleep spindle (10.5-16 Hz) [40] and beta (12-30 Hz). The mean
absolute amplitude, signal envelope (estimated using the Hilbert
transform), relative power in each band and absolute power in
each band was estimated for each epoch. The mean frequency
of each 0.5 s epoch was also estimated [15], [31], [34]-[37].

In addition to these classical metrics, we included the sigma
index (Sigmaindex) [20], alpha band ratio and sleep spindle
band ratio which have proven successful for adult sleep spindle
detection in [20], [35].

mean(|F3(z)|)
mean(|F1(x)])) + mean(|F2(x)|)
Where F1(x), F2(x) and F3(x) represent the pre-processed
EEG signals filtered in the 4-10 Hz, 20-40 Hz and 12.5-15 Hz
bands, respectively.

The alpha band ratio is estimated as the ratio of the root mean
square (RMS) amplitude in alpha band (8-12 Hz) compared to

Sigmaindex =

)
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total RMS amplitude of pre-processed signal in each epoch. The
sleep spindle band ratio is estimated as the ratio of the RMS
amplitude in sleep spindle band (10.5-16 Hz) compared to total
RMS amplitude of pre-processed signal in each epoch.

D. Feature Selection

The feature selection algorithm was built as a wrapper method
around a random forest classifier. The mean precision loss and
standard deviation were calculated, and a ranking of features
was provided as output. In addition, Pearson’s correlation coef-
ficient [42] between all pairs of features was measured to identify
highly correlated pairs of features.

E. Dataset Balancing

The number and duration of sleep spindle events in the
dataset were substantially less than the number and duration of
non-sleep spindle events resulting in a class imbalance problem
that can make training a machine learning algorithm challeng-
ing [44]. To address this, the Synthetic Minority Oversampling
Technique (SMOTE) [45] was used to balance the data. SMOTE
is a method of oversampling, in which the minority class is
oversampled by creating ‘synthetic’ samples in the feature space.
Synthetic data points are generated by following the line of
segments connecting randomly chosen neighbours from k near-
est neighbours according to the required excessive sampling
quantity. In addition, the random state is used as a seed to
the random number generator, which ensures that the splits
generated are reproducible. In this work, we chose k = 5, and
the random state = 2.

F. Classification Algorithm of Spindle-Al

Before selecting the random forest algorithm, it was first
benchmarked against three other algorithms (Multilayer Per-
ceptron, Naive bayes and eXtreme Gradient Boosting). In pre-
liminary testing the random forest algorithm had higher perfor-
mance than the other algorithms (see Appendix Table VIII), it
has a shorter processing time than the Multilayer Perceptron,
is less likely to overfit a training dataset than the XGBoost
algorithm [46] and has the advantage that it can return the im-
portance of the features after training the model. Random forest
is an integrated technique that contains many decision trees and
classifies by voting on the weakest unbiased classifiers [41].
The decision trees are executed on different bagging instances
of the training set and the classification accuracy loss is caused
by the feature importance measure being randomly arranged as
the feature value.

The random forest classifier was implemented using the
sklearn library [47] within the Python 3 environment. The
structure of the random forest classifier is shown in Fig. 2.
Three parameters were optimized; n-estimators, which is the
number of trees in the forest; min-samples-split which is the
minimum number of samples required to split an internal node;
and min-samples-leaf which is the minimum number of samples
required to be at a leaf node. These parameters (n-estimators,
min-samples-split, and min-samples-leaf) were optimized based
on the performance of the validation set, to improve the perfor-
mance of the method for the estimation of sleep spindles in the

Feature
Selection
Featurg s
Selection
Feature
Selection

Feature
Selection

Fig.2. The structure of a random forest classifier. Random Forest is an
ensemble learning method that combines several randomized decision
trees and aggregates their predictions by averaging [25].

Training Data
Bootstrap

Classification
Output

EEG recordings. The validation set was found to achieve the
best performance for n-estimators = 100, min-samples-split =
120, and min-samples-leaf = 20.

G. Sleep Spindle Detection Criteria: Sleep Spindle
Number and Duration Estimation

EEG typically contains artefacts which may interrupt and
mask the sleep spindle trace [48]. To overcome this, consecutive
sleep spindles estimated by the random forest algorithm with an
interval less than 1 s were grouped together, and their duration
was extended from the start time of the first component to the end
time of the last component. Rodenbeck ef al. [3] proposed that
the length of 0.5 seconds is the minimum required length of a
sleep spindle [3], therefore, if the duration of a sleep spindle
identified by the random forest algorithm was less than 0.5
seconds it was relabelled as a non-sleep spindle event. After
this initial post-processing step, the number of sleep spindles
in the EEG recordings, and the start, end times and duration of
each estimated sleep spindle event were estimated.

H. Performance Evaluation

1) Sleep Spindle Number Estimation: Sleep spindle num-
ber estimation: The sensitivity (Sens), specificity (Spec) and
precision (Prec) of Spindle-Al in estimating the number of sleep
spindle events was evaluated. Matthews correlation coefficient
(MCC) was used as an additional evaluation metric due to the
imbalanced nature of the dataset. The evaluation metrics were
estimated as follows:

TP
= —x1

Sens TPIFN x 100% (8)

TN
Spec = m X 100% (9)
P = Ti x 100% (10)

rec = TP FP 0
MCOC — TP xTN —FP x FN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(11)
where:

® True Positive (TP): Annotated by experts as a sleep spindle
and predicted as a sleep spindle
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Fig. 3. Evaluation metrics used for: (a) sleep spindle number estima-
tion; and (b) sleep spindle duration estimation.

¢ True Negative (TN): Not annotated by experts as a sleep
spindle and not predict as a sleep spindle
e False Negative (FN): Annotated by experts as a sleep
spindle and not predict as a sleep spindle
e False Positive (FP): Not annotated by experts as a sleep
spindle and predicted as a sleep spindle
2) Sleep Spindle Duration Estimation: Sleep spindle du-
ration estimation: The duration of sleep spindles estimated by
Spindle-Alin the EEG recording was evaluated using the percent
error on individual infant EEG. In addition, true negative rate
(TNR), recall and Intersection over Union (IoU) were also used
to evaluate the performance of duration estimation [18], [20],
[21] as follows, Fig. 3:

|DE — DM|

Percent error = E x 100% (12)
Recall = % x 100% (13)
TNszééﬂxlm% (14)

10U = e (15)

where DE is the duration of the sleep spindles identified by expert
readers, DM is the duration of the sleep spindle estimated by
Spindle-Al T1 is the duration of the period between non-sleep
spindle events labelled as non-sleep spindle event by both the
expert reader and Spindle-Al, T2 is the duration of the period
labelled as a sleep spindle event by the expert reader but labelled
as a non-sleep spindle event by Spindle-Al, T3 is the duration of
the period between sleep spindle events labelled as sleep spindle
event by both the expert reader and Spindle-Al, T4 is the duration
of the period labelled as a non-spindle event by the expert reader
but labelled as a sleep spindle event by Spindle-Al

Ill. RESULTS
A. Feature Selection

In this study, the 25 top ranking features estimated by the ran-
dom forest feature selection algorithm were chosen. In addition,

TABLE IlI
HIGHLY CORRELATED FEATURES

Feature 1 Feature 2 Corr
Root mean square Signal envelope 0.97
Variance Max-min difference ~ 0.85
Mean absolute amplitude Symmetry 0.98
Mean frequency Mobility 0.87
Fractal dimension Number of peaks -0.98

Corr: Pearson’s correlation coefficient.

Pearson’s correlation coefficient (corr) [42] between all pairs
of features was measured to identify highly correlated pairs of
features (absolute value of corr greater than 0.80). The pairs of
features that were found to be highly correlated are presented
in Table III. Therefore, signal envelope, max-min difference,
symmetry, mobility, and number of peaks were removed. We
further reduced the remaining 20 features by removing them
individually, and reevaluating the performance of the random
forest using MCC [43] on the validation set. An additional six
features were removed (TKEO amplitude, variance, skewness,
beta power, complexity, and fractal dimension) as removing
them caused a drop in MCC < 0.0001, leaving a total of 14
features:
1) The mean absolute amplitude;
2) Root mean squared value;
3) Mean frequency;
4) Sigma index;
5) Alpha band ratio;
6) Sleep spindle band ratio;
7) Mean absolute amplitude in sigma band;
8) Mean value of the envelope in sigma band;
9) Relative power in sigma band;
10) Absolute power in sigma band;
11) Mean absolute amplitudes in sleep spindle band;
12) Mean value of the envelope in sleep spindle band;
13) Relative power in sleep spindle band;
14) Absolute power in sleep spindle band;

B. Estimation of the Number of Sleep Spindles

Table IV summarizes the performance of the Spindle-Al
method at estimating the number of R-Spindles and L-Spindles
in the ex-term dataset. For the ex-term test set in channel F4-C4,
3979 of the 4263 R-spindle annotated by experts were correctly
identified by Spindle-Al with 93.3% sensitivity, 91.5% speci-
ficity and precision of 90.1% (Table IV). We also evaluated the
performance of the method on channel F3-C3 (L-Spindle) of
the test set, which was not used for training. Experts labelled
4268 L-spindles in the 30 ex-term infants. 4491 L-spindles were
predicted by the method, 4006 of these were in agreement with
the expert annotations, giving a 93.9% sensitivity, 90.7% speci-
ficity and 89.2% precision. Additionally, the test set yielded an
MCC of 0.843 - 0.846 on the ex-term infant EEG demonstrating
that the method performs well at identifying both the negative
(non-sleep spindle) and the positive (sleep spindle) events. Ta-
ble VI presents a comparison of the sensitivity, specificity and
precision of Spindle-Al with recent studies on sleep spindle
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TABLE IV
PERFORMANCE OF SLEEP SPINDLE NUMBER ESTIMATION BY SPINDLE-AI ON THE TRAINING, VALIDATION, AND TEST SETS

Dataset Actual  Automatic TP FN FpP TN Sens (%)  Spec(%) Prec (%) MCC
Training set (n=81) 13,463 13,499 12,257 1,206 1,242 14422  91.0 92.1 90.8 0.831
R-SS  Validation set (n=30) 4,304 4,640 4,050 254 590 4,982 94.1 89.4 87.3 0.830
Test set (n=30) 4,263 4,418 3,979 284 439 4,736 93.3 91.5 90.1 0.846
L-SS  Test set (n=30) 4,268 4,491 4,006 262 485 4,726 93.9 90.7 89.2 0.843

R-SS: Channel F4-C4/R-Spindle; L-SS: Channel F3-C3/L-Spindle; Actual: The sleep spindles annotated by experts; Automatic: The sleep spindles predicted by

Spindle-Al

TABLE V
PERFORMANCE OF SLEEP SPINDLE DURATION ESTIMATION BY SPINDLE-Al ON THE TRAINING, VALIDATION, AND TEST SETS

Dataset Mean act dur (& std) (s) Mean est dur (4 std) Mean of error (& std) (s)  Percent error (& std) (%)
Traing set (N=81) 3.08 (£ 0.60) 3.20 (£ 0.60) 0.19 (& 0.13) 6.2 (£ 4.3)

R-SS  Validation set (N=30) 3.07 (£ 0.52) 3.21 (4 0.53) 0.22 (4 0.16) 7.4 (£ 5.6)
Test set (N=30) 3.16 (£ 0.57) 3.28 (£ 0.61) 0.18 (£ 0.13) 5.7 (£ 4.0)

L-SS  Ex-term (N=30) 3.04 (£ 0.59) 3.22 (4 0.64) 0.22 (£ 0.15) 74 (£ 5.2)

R-SS: Channel F4-C4/R-Spindle; L-SS: Channel F3-C3/L-Spindle; Act dur: actual sleep spindle duration annotated by experts; Est dur: estimated sleep spindle duration by

Spindle-Al.

TABLE VI
PREVIOUS WORK ON SLEEP SPINDLE NUMBER ESTIMATION

. Sens  Spec  Prec
Ref  Subjects N SS (%) (%) (%)
[16]  Adults 10 164 989 885 -
[49]  Adults 110 - 68.0 - 74.0
[19]  Adults 6 159 702 98,6 -
[15]  Adults 2 3,335 790 - -
[17]  Adults - 175 954 - -
[50]  Adults 9 725 812 812 -
[51]  Adults 6 575 784 88.6 -
[52]  Adults 12 95 - 939 -
[35]  Adults 12 6,043 700 98.6 -
[53]  Adults 12 2,140 929 - -
[54]  Adults 20 27,923 741 -
[31]  Adults 8 355 53.0 96.0 37.0
[31]  Adults 19 11,207 770 96.0 46.0
[18]  Adults 1 - 875 973 -
[55]  Adults 2 1,089 965 981 -
[56]  Adults 8 3,875 960 929 -
[48]  Children 56 40,412 882 89.7 -
[23]  Infants 1 - 629 - 89.7
[22] Infants 2 803 87.7 - 91.9
Tra  Ex-term (R-SS) 81 13,463 91.0 921 908
Val Ex-term (R-SS) 30 4,304 941 894 873
Test  Ex-term (R-SS) 30 4,263 93.3 915 901
Test  Ex-term (L-SS) 30 4,268 93.9 90.7 89.2

N: Number of subjects; SS: Number of sleep spindles; R-SS: Channel F4-C4/R-
Spindle and L-SS: Channel F3-C3/L-Spindle; Tra: Training set; Val: Validation set;
Test: Test set;

number estimation in EEG recordings. Fig. 5 presents the sleep
spindle detection criteria.

C. Estimation of Sleep Spindle Duration

Table V summarizes the performance of Spindle-Al at es-
timating the duration of sleep spindles in the training set,
validation set and test set for ex-term infant EEG recordings.
The mean duration of each sleep spindle labelled by experts
in the test set was 3.16 s (£0.57 s) on channel F4-C4 and
3.04 s (£0.59 s) on channel F3-C3. Compared with the expert
annotation, Spindle-Al estimated the mean duration of sleep
spindles as 3.28 s (£0.61 s) and 3.22 s (4-0.64 s) on channel

Random Forest Feature Importance

a N =

Feature name

0.00 0.05 0.10 0.15 020

Feature importance

Fig. 4. A random forest feature importance plot of the selected fea-
tures in the training dataset. Feature importance ranks the features by
their contribution to the prediction of the sleep spindle events.

TABLE VI
PREVIOUS WORK ON SLEEP SPINDLE DURATION ESTIMATION

Ref  Subjects N Recall(%) TNR(%) IoU
[57]  Adults 19 90.1 96.2 -
[57]  Adults 8 77.9 94.2 -
[21]  Adults 19 84.0 90.0 -
[21]  Adults 8 76.0 92.0 -
[20]  Adults 15 712 96.7 -
[18]  Adult 1 - - 0.37
Tra Ex-term (R-SS) 81 88.2 97.6 0.75
Val Ex-term (R-SS) 30 90.2 97.6 0.74
Test Ex-term (R-SS) 30 89.7 97.8 0.77
Test Ex-term (L-SS) 30 90.5 97.3 0.75

N: Number of subjects; R-SS: Channel F4-C4/R-Spindle and L-SS: Channel
F3-C3/L-Spindle; Tra: Training set; Val: Validation set; Test: Test set;

F4-C4 and F3-C3, respectively. Spindle-Al yielded a percent
error of 5.7% (channel F4-C4) and 7.4% (channel F3-C3) in the
test set. Table VII presents the results of the Spindle-Al method
compared with those of recent studies on sleep spindle duration
estimation in EEG recordings. The results for estimating the
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Sleep spindle detection criteria: (A) original EEG signal (the signal in the red window indicates the presence of a sleep spindle event);

(B) Sleep spindles annotated by experts; (C) Sleep spindles identified by the random forest algorithm (before application of the sleep spindle
detection criteria); (D) Sleep spindles estimated by Spindle-Al; (E) Spectrogram of original EEG signal (the signal in yellow and red blocks around

the frequency of 13 Hz indicate the presence of sleep spindle events).

duration of sleep spindles by Spindle-Al on the test set show high
recall (89.7%) and TNR (97.8%) in channel F4-C4 (R-spindle).
Spindle-AlI also performed well on channel F3-C3 (L-Spindle)
of the ex-term infants in the test set, which were not used in
training (90.5% recall and 97.3% TNR). The results show that
Spindle-Al can generalize to both channels of F4-C4 and F3-C3
in ex-term born infants.

D. Implementation

Spindle-Al has been implemented as a web server and is freely
available for academic use at http://lisda.ucd.ie/Spindle-Al/.
The user can choose the sample frequency of their data and
submit a CSV file that contains a single-channel EEG signal.
Spindle-Al will predict if an event is a sleep spindle events and
then return the start time and end time of each predicted sleep
spindle event. Additionally, Spindle-Al returns the total number
of sleep spindle events detected in the EEG.

V. DISCUSSION

In this study, we present a random forest-based sleep spin-
dle detection method, Spindle-Al, to estimate the number and
duration of sleep spindles in infant EEG. The random forest
algorithm can return a measure of feature importance, which is
essential to understand the decision making of the algorithm.
However, some artefacts of EEG mask the sleep spindle trace,
which may increase the FP events (not annotated by experts as
a sleep spindle, but predicted as a sleep spindle, see Fig. 5(C)).
Therefore, we combined the random forest algorithm with sleep
spindle detection criteria to develop the final Spindle-Al method
(Fig. 5(D)).

According to the performance on the validation set, we se-
lected the 14 features that gave the best performance on the vali-
dation set to develop the Spindle-Al method. As can be seen from
Fig. 5(E), sleep spindle events are characterized by an increase
in signal power in the frequency range between 10 Hz and 15 Hz,
and at frequencies around 30 Hz when compared with non-sleep
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spindle events. Consequently, the sigma index is important for
distinguishing between the sleep spindle and non-sleep spindle
waves and was identified as the highest ranking feature by the
random forest algorithm (Fig. 4).

The difference in datasets and means of evaluating perfor-
mance make a direct comparison with other published sleep
methods difficult. As discussed, sleep spindles change dramati-
cally during maturation, and although there is no study directly
comparing sleep spindles of infants at the 4 mo mark with adults,
there is vast literature exploring the maturation trajectories in
several sleep spindle features (see for example [4], [9]-[13],
[53], [58]). Due to the constant evolution of sleep spindles which
may lead to significant differences with adult sleep spindles, we
believe that there is a need for an infant-specific sleep spindle
algorithm (See Appendix B).

Previous studies on infant data [22], [23] have tested methods
on data from just 1 or 2 infants, with sensitivity of 62.9% to
87.7%. There are few published methods for estimating EEG
sleep spindle number in infants, we therefore also compared
the Spindle-Al method with sleep spindle number estimation
methods reported for adult EEG [15]-[19], [31], [35], [49]-[56]
(shown in Table VI). For the Spindle-Al method combining
successive sleep spindle events separated by less than 1 s into
a single spindle event avoided dividing spindle events across
different epochs which may occur as with previously presented
methods [16], [20], [22], [23], [49]. Moreover, these studies
defined that if only part of the epoch contained sleep spindles,
then this epoch will be labelled as a sleep spindle event. The
work of [16], [20] and [55] used larger duration epochs (38,5 s
and 5 s, respectively), if a sleep spindle and non-sleep spindle
event present in the same epoch, these approaches may take
both occurrences as one sleep spindle event. Therefore, they
estimated the number of epochs which contain sleep spindles,
rather than ‘real’ number of sleep spindles. Moreover, the dura-
tion of each sleep spindle and the specific time of occurrence of
the sleep spindle events cannot be accurately expressed by these
methods. In our study, we divided the EEG signal into small
epochs, 0.5 s with 0.25 s overlap, reduced the problem of two
sleep spindles occurring in one epoch.

A method based on the continuous wavelet transform [21]
has previously been developed to identify the duration of sleep
spindles in two adult EEG datasets: the MASS database [59]
comprising 19 healthy controls and the DREAMS sleep spindle
database [19] comprising 8 participants diagnosed with various
sleep pathologies. They obtained recall of 84.0% and TNR of
90.0% on the MASS dataset and recall and TNR at 76.0% and
92.0%, respectively, on the DREAMS dataset. A deep learning-
based method, SpindleNet, developed in [57] also estimated the
duration of sleep spindle in the Mass and DREAMS datasets.
SpindleNet yielded a recall of 90.1% and TNR of 96.2% on the
MASS dataset. For the DREAMS dataset, SpindleNet obtained
recall and TNR of 77.9% and 94.2%, respectively. Additionally,
the random forest-based method described in [20], used an
independent test data (N=12) to test the performance of the
sleep spindle duration estimation. Their method has a TNR with
96.7% and with a recall of 71.2% for sleep spindle duration
estimation in adult EEG. These methods were developed and
tested on a smaller data (EEG data for 1-19 adult individuals,

see Table VII). Moreover, these methods only estimated the
duration of sleep spindles, and the number of the sleep spindles
is not given. The Spindle-Al method estimate the number of
sleep spindles, but also give the duration of sleep spindles on
larger EEG data (N=141). The work of Ventouras et al. [18]
estimates both the number and duration of sleep spindles by
feed-forward networks in adult EEG. The number of sleep spin-
dles was estimated with sensitivity from 79.2% to 87.5%. For the
duration estimation, an inter-spindle interval (ISI) was defined
as the time difference between the onset of two consecutive sleep
spindles evaluated as (At + At.)/tV. This is the same matrix
as the IoU that we used to evaluate Spindle-Al. Ventouras et al.
obtained a mean IoU of 0.37 (£0.31). However, this method
was developed and tested using EEG data from only 1 adult.
Individual differences may lead to differences in results, and
whether this method is applicable to other EEG data is not
clear.

The Spindle-Al method was developed on single-channel
(F4-C4) EEGrecordings of 111 infants (81 for training and 30 for
validation), and tested on another 30 ex-term infants in channel
F4-C4. As different sleep studies may analyse sleep spindle
events on different channels [22], we explored if Spindle-Al
can generalise to different channels, in this case from channel
F4-C4 to channel F3-C3. Therefore, we include the signal in
channel F3-C3 as an additional independent test set. There are a
number of potential differences between R-Spindle (F4-C4) and
L-Spindle (F3-C3) including that it is normal in this age group
that R-Spindles and L-Spindles occur more independently or
asynchronously [5]. Bédizs ef al. [61] found that the duration,
amplitude and density magnitudes differ between hemispheres
(R-Spindle and L-Spindle) in a predominantly adult study. How-
ever, these differences were observed in an older age group
compared to the cohort in this study. Our results show thatin spite
of these potential differences between R-Spindle and L-Spindle,
Spindle-Al can generalize to EEG data from a channel that was
not used in training (Tables IV and V).

Using the Spindle-Al method, large volumes of data can be
quickly reviewed potentially enabling trends and patterns to be
identified in infant EEG recordings that may not be apparent
otherwise. In a clinical setting, once a range of normative values
for spindle features has been established across age groups,
automated spindle analysis has potential as an assessment tool
for brain maturation in ‘at risk’ individuals. As one element of
sleep, spindles are considered part of the ‘microstructure’ of
sleep. Sleep spindles are markers of maturation and may reflect
neurologic pathologies/non-normative maturation that share the
same neurobiological subtract [60]. Sleep spindle detection is
also essential for the precise labeling of sleep stage N2 [4].
Therefore, the study of sleep spindles provides support for
clinical interpretation and early identification of abnormal brain
maturation in infants. An automated spindle detector might also
constitute an important part of a broader automated algorithm
to characterise and differentiate the various sub-stages of sleep,
permitting analysis of the so called ‘macrostructural’ elements of
sleep for the same purpose. As spindle features have also been
shown to change in the short term following various learning
tasks, accurate automated spindle detection would also progress
research in cognitive function.
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A limitation of the current study is the range of ages of the
infants. Spindle-Al was trained on ex-term infant EEGs without
testing on infants of other ages. In future work, we would
like to apply Spindle-Al on other infant EEG data. Moreover,
as machine learning is a ‘black box’ method, clinicians may
have difficulty trusting the machine learning-based methods.
In future work, we will combine Spindle-Al with explainable
Al (XAI) [62] techniques to help users understand why certain
events are predicted as a sleep spindle, which may help gain
users’ trust in the system and assist experts in analysing infant
sleep spindles.

V. CONCLUSION

Spindle-Al has been developed for use on ex-term infant
EEGs with the aim of assisting clinicians in the estimation
of both the number and the duration of sleep spindles. We
implemented a random forest-based sleep spindle detection
method which incorporates novel post-processing and evalua-
tion techniques. The dataset used to train and test Spindle-Al
is substantially larger than datasets used in previous studies to
identify sleep spindles in infant EEGs. In addition, Spindle-Al
has been implemented as a web server and is freely available
for academic use at http://lisda.ucd.ie/Spindle-Al /. The web
server predicts the start time, end time and the total number of
sleep spindles detected in long EEG recordings, allowing for fast
and accurate analysis of infant sleep spindles in single-channel
EEGs which may act an early biomarker for abnormal brain
maturation.

APPENDIX

A. Preliminary Analysis

TABLE VIII
PRELIMINARY ANALYSIS (WITHOUT POST-PROCESSING) OF THE
PERFORMANCE OF THE RANDOM FOREST ALGORITHM FOR SLEEP SPINDLE
DURATION COMPARED TO MULTILAYER PERCEPTRON, NAIVE BAYES AND
EXTREME GRADIENT BOOSTING ON THE VALIDATION SET

Method Recall (%) TPR (%) MCC
NB 95.2 73.6 0.440
MLP 90.7 93.2 0.703
XGboost  91.2 95.5 0.770
RF 91.3 95.7 0.779

NB: Naive bayes; MLP: Multilayer Perceptron; XGboost:
eXtreme Gradient Boosting; RF: Random forest;

B. Replication of Adult Sleep Spindle Detection Method
on Infant EEGs

Due to the constant evolution of sleep spindles that may lead to
significant differences between infant and adult sleep spindles,
adult sleep spindle detection methods may not be suitable for
infant sleep spindle detection. To explore this, we applied the
adult sleep spindle detection method presented by Ventouras
et al. [18] on infant EEG data (preliminary work, results not
shown), as this work estimated both the number and duration of
sleep spindles similar to the method presented here. Ventouras
et al. used a feed-forward artificial neural network on adult EEG,
signals with a frequency range of 10.5 - 16 Hz were used as input

to the network. The number of sleep spindles was estimated with
sensitivity from 79.2% to 87.5% in adult EEG data [18]. For the
sleep spindle duration estimation on adult EEG, Ventouras et al.
obtained a mean IoU of 0.37 (£+0.31). We trained and tested
this method on the infant EEG training and testing datasets used
in the present study. When applying this method to the infant
EEG data, we obtained sensitivity of 53.8% and specificity of
47.8% on the independent test set in channel F4-C4. For duration
estimation, this method obtained IoU of 0.069. The poor perfor-
mance of the adult sleep spindle detection method on the infant
data likely reflects smaller differences between the amplitude of
infant sleep spindle and non-sleep spindle activity in the 10.5
- 16 Hz sleep spindle band when compared with adult EEG.
While a range of EEG features based upon the sleep spindle and
sigma band activity ranked highly among those selected for the
random forest algorithm, additional features including the mean
frequency, RMS and mean absolute amplitude and alpha band
activity were also included in the model (Fig. 4). The results
highlight the need for an infant-specific sleep spindle algorithm.
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