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Computationally Efficient Optimization Method
to Quantify the Required Surgical Accuracy

for a Ligament Balanced TKA
Laura Bartsoen , Matthias G.R. Faes , Mariska Wesseling, Roel Wirix-Speetjens , David Moens ,

Ilse Jonkers , and Jos Vander Sloten

Abstract—Objective: This study proposes a computa-
tionally efficient method to quantify the effect of surgical
inaccuracies on ligament strain in total knee arthroplasty
(TKA). More specifically, this study describes a framework
to determine the implant position and required surgical
accuracy that results in a ligament balanced post-operative
outcome with a probability of 90%. Methods: The response
surface method is used to translate uncertainty in the
implant position parameters to uncertainty in the ligament
strain. The designed uncertainty quantification technique
allows for an optimization with feasible computational cost
towards the planned implant position and the tolerated
surgical error for each of the twelve degrees of freedom
of the implant position. Results: It is shown that the
error does not allow for a ligament balanced TKA with a
probability of 90% using preoperative planning. Six critical
implant position parameters can be identified, namely
AP translation, PD translation, VV rotation, IE rotation for
the femoral component and PD translation, VV rotation
for the tibial component. Conclusion: We introduced an
optimization process that allows for the computation of
the required surgical accuracy for a ligament balanced
postoperative outcome using preoperative planning with
feasible computational cost. Significance: Towards the
research society, the proposed method allows for a
computationally efficient uncertainty quantification on a
complex model. Towards surgical technique developers,
six critical implant position parameters were identified,
which should be the focus when refining surgical accuracy
of TKA, leveraging better patient satisfaction.

Index Terms—Musculoskeletal model, surgical accuracy,
total knee arthroplasty, uncertainty quantification.
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I. INTRODUCTION

A FTER a total knee arthroplasty (TKA), 20–30% of patients
suffer from persisting pain, joint stiffness and/or inability

to perform activities of daily living [1]. 52% of the patients
with a TKA even indicate that they experience some degree of
impairment in functional activities [2]. An aging population and
increasing prevalence of TKA in young active patients results in
an increase of both primary and revision TKA. The failures that
result in revision are in 47.4% of the cases due to joint stiffness,
joint instability or implant loosening [3]. These failure modes are
often related to a sub-optimal patient-specific implant position.
Preoperative planning can support the surgeon in determining
the optimal patient-specific implant position. Currently, most
preoperative planning processes solely account for bone geom-
etry when determining an implant position that is consistent with
a mechanically aligned TKA. A mechanically aligned knee has
a knee center in line with the ankle and hip centers. Mechanical
alignment however does not account for strain in the ligaments,
whereas several studies [4]–[6] describe that not accounting for
balanced ligament strain when determining the ideal implant
position is the cause of different failure types and the high patient
dissatisfaction. A TKA is considered ligament balanced when
the ligaments are appropriately tensioned to provide passive
stability without inducing stiffness, limited motion or pain. This
study considers a TKA as balanced when the ligaments generate
a force both medial and lateral throughout the squat motion and
ligaments are not damaged. The studies of Provenzano et al. [7]
and Guo et al. [8] show that ligament damage starts occurring
from 6% strain. This zone will be further referred to as the
“safe zone.” As a strain larger than 6% will result in permanent
deformation of the ligament without rupture, an “extended safe
zone” with a maximal strain of 10% is also evaluated. This
bound is still below the ultimate tensile strain of a human
knee ligament [9]. However, such a ligament balance evaluation
in a preoperative planning step requires complex modeling in
order to predict the post-operative strain in the ligaments during
movement. Furthermore, it is currently not known what surgical
accuracy is needed to achieve optimal ligament balancing based
on preoperative planning, nor which of the implant position
parameters are most critical and would need to be achieved with
most accuracy. To determine the required surgical accuracy and
hence account for the associated uncertainty level, the effect
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of surgical inaccuracies on the postoperative implant position
and the associated risk of ligament imbalance and therefore
post-operative outcome has to be quantified. Hereto, a muscu-
loskeletal model (MSM) in combination with a computationally
efficient probabilistic model (PM) is required to perform an
optimization towards the maximally tolerated surgical error. The
PM can then be used to quantify the uncertainty in the ligament
strains caused by the error introduced during surgery. There
exist three PM techniques and their variants, namely Monte
Carlo simulation (MCS), response surface method (RSM) and
fast probability integration (FPI) [10]. MCS involves random
sampling of the complex model, in this study the MSM, where
the input parameters are sampled according to their joint sta-
tistical distribution to estimate for example the cumulative dis-
tribution function (CDF) of the model output parameters. MCS
is the most time consuming technique as it is simply sampling
of the generally time consuming MSM with different sets of
input parameters according to their joint statistical distribution.
Nevertheless, it remains the golden standard as convergence to
the correct uncertainty distribution is guaranteed if an infinite
amount of samples are drawn from the input distribution. The
FPI method computes a direct approximation of the CDF of the
uncertainty in each of the outputs. With RSM, a surrogate model
is trained that approximates the actual model. As the surrogate
model requires a low evaluation time, the MCS on this surrogate
model will require a low computation time compared to a direct
MCS on the MSM itself. RSM and FPI are more efficient but
result in an approximate solution. Especially FPI requires an
extensive knowledge of the system in order to be able to evaluate
applicability, as the method requires a monotonic system. If
different combinations of parameters lead to the same output,
FPI has difficulty converging.

Recently, the integration of PM in MSM workflow was
studied [11]–[17]. The studies of Strickland et al. [14] (wear
simulator), Navacchia et al. [16] (gait) and Smith et al. [15]
(gait) quantify uncertainty through MCS on the MSM directly.
This PM method is infeasible to be used in an optimization
process due to its computational inefficiency. The studies of
Strickland et al. [13] (wear simulator) and Arsene et al. [17]
(stair ascent) apply the RSM method using a 2nd-order polyno-
mial as a surrogate model. A 2nd-order polynomial model can at
most model 2nd-order behavior, whereas a complex, non-linear
MSM as used in this study, includes higher order behavior.
The studies show that a 2nd-order polynomial is sufficient for a
rough estimation of uncertainty, but if used in an optimization
process it will result in inaccurate results. All mentioned studies
solely evaluate the effect of specific model input parameters (i.e.
implant position, ligament material properties) on kinematics
and contact pressure. However none of the studies evaluated the
effect on ligament strain, whereas ligament balancing has been
shown to be important to TKA patient satisfaction. Furthermore
none of the studies used uncertainty quantification for estimation
of the implant position.

The objective of this study is to use PM in combination with
MSM to determine the required surgical accuracy for TKA in
order to achieve ligament balancing based on a preoperative sur-
gical plan, with a feasible computational cost. The aim therefore

is to achieve a ligament balanced post-operative outcome using
preoperative planning with a probability of 90%. The as such op-
timized implant position maximizes the tolerated surgical error.
To this end, we aim to achieve ligament balancing with 90%
probability comparable to the current patient satisfaction for
total hip arthroplasty which is based on literature and estimated
to be about 90% [18]–[20]. Hence, uncertainty quantification in
ligament strain needs to be introduced in our musculoskeletal
modeling workflow, to account for uncertainties in the implant
position of the femoral and tibial components due to the surgical
process. Therefore, an optimization process is defined where
each iteration applies a PM on a complex, non-linear MSM that
simulates a squatting motion. As a PM, the RSM method in
combination with MCS is used to quantify uncertainty with a
feasible computational cost.

II. MATERIALS AND METHODS

Fig. 1 gives an overview of the applied workflow. The implant
position parameters are 3 translational and 3 rotational compo-
nents for the femoral implant and 3 translational and 3 rotational
components for the tibial implant. Implant position samples are
drawn according to their statistical distribution. The sampled sets
of implant position parameters are evaluated by the surrogate
model of the PM (Section II-B) and converted in the uncer-
tainty of the ligament strains. The ligaments that are included
are the deep medial collateral ligament (deepMCL), superficial
medial collateral ligament (supMCL), lateral collateral ligament
(LCL), anterolateral ligament (ALL) and popliteofibular liga-
ment (PFL). In order to have the 90% confidence interval of the
maximal ligament strains within the safe zone, the mean and
standard deviation of the uncertainty distribution of the implant
position parameters are adapted. This iteration continues for
different means and standard deviations of the implant position
parameters until the largest set of tolerated surgical errors is
found. This optimization process (Section II-C) requires a com-
putationally efficient PM to allow an optimization with feasible
computational cost, since a multitude of biomechanical model
evaluations is required. This is achieved by using a surrogate
model to perform the MCS. The surrogate model is trained based
on multiple MSM (Section II-A) evaluations. There are thirteen
inputs, namely the flexion angle and 12 degrees of freedom
(DOFs) of the implant position, and 5 outputs, namely the max-
imal strain in the deep MCL, superficial MCL, LCL, PFL and
ALL. Different surrogate modeling techniques are evaluated,
namely 2nd order polynomial (Poly), support vector regression
(SVR), Guassian process regression (GPR) and artificial neural
networks (ANN). The results of each of the surrogate modeling
techniques is validated using a MCS in combination with a full
non-linear model of the squatting motion.

A. Musculoskeletal Model

The MSM is based on the model described in the study of
Vanheule et al. [21]. This study validates the MSM accounting
for varus/valgus changes of the tibial implant. The MSM is im-
plemented into the AnyBody modeling system 7.3.0 (AnyBody
Technology A/S, Aalborg, Denmark). The implant system is a
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Fig. 1. Overview of the designed method for optimization towards the required surgical accuracy for a ligament balanced TKA.

posterior-stabilized system (Performance, Biomet Inc., Warsaw,
IN, USA). The model simulates a squat movement from 20◦ to
120◦ of flexion. The model is made as subject specific as would
currently be possible in a clinical setting for three subjects. More
specifically, by segmenting the bone and cartilage geometry
from MR images using Mimics 17.0 (Materialise N.V., Leuven,
Belgium) as well as the ligament attachment areas. In contrast
to the original model of Vanheule et al., the ligaments are
modeled with multiple strands. The deepMCL, supMCL, LCL,
ALL, PFL, posterior capsule (PC) and patella tendon (PT) are
modeled with respectively 20, 20, 10, 10, 10, 6 and 30 strands.
The force/strain behavior in the ligaments is modeled using a
linear elastic relationship with a quadratic slack region [22]. The
force/strain behavior is given in (1), where F is the force, ε is
the strain, k is the ligament stiffness and εl is an experimentally
fitted parameter equal to 0.03. The strain ε can be computed
through (2), where Lr and εr are respectively the strand length
and strain at reference (extension) position. Further details on
model implementation can be found in the study of Vanheule
et al. [21]. The collection of the data for the study of Vanheule
et al., which is also used in this study, was approved by “Medical
ethics committee - Faculty of Medicine - KU Leuven” with
number “NH019 2015-05-01”.

F =

⎧⎨
⎩

0 if ε < 0
1
4
kε2

εl
if 0 ≤ ε ≤ 2εl

k(ε− εl) if ε > 2εl

(1)

ε =
(1 + εr)L− Lr

Lr
(2)

The reference strain (εr) varies between strands throughout
the ligament. Four values are assigned to each ligament. The
specific reference strain of a strand follows from linear inter-
polation between the four reference strain values dependent
on the attachment position of the strand on the Femur. As the
material properties (linear stiffness and reference strain) of the
ligaments are generally not available in a clinical setting, these

are defined based on an optimization procedure during which
the modeled tibio-femoral kinematics of the native knee are
fitted to the experimentally measured ones while constraining
the maximal ligament strain between 0% and 6% throughout
the squat. The maximal strain in a ligament is the strain in the
strand of the ligament that is the highest at the current degree of
flexion. The boundaries of the constraint are motivated by the
fact that literature shows that 6% is the onset of damage [7],
[8] and instability in a healthy knee is improbable. The material
properties are given in Table I for each of the three specimens.

B. Probabilistic Model

The PM converts the uncertainty in the implant position pa-
rameters (12 inputs) into the uncertainty in the maximal ligament
strains (5 outputs). For training of the surrogate models, a total of
3000 samples are gathered using Sobol sampling with a 300 extra
on the border regions of the sampling range as this is where large
maximal errors were detected. The sampling bounds are taken at
+/− 8 mm or ◦ with respect to the implant position consistent
with mechanical alignment (Kneeplanner of Materialise N.V.,
Leuven, Belgium). A 3-fold cross validation with 300 testing
samples is performed. Model accuracy and training times are
evaluated for 500, 1000, 2000 and 3000 training samples. 300
testing samples are used for each training, independent of the
amount of training samples that is used. The training and testing
samples are randomly selected out of all gathered samples for
each cross validation. MCS is applied on this surrogate model
to quantify uncertainty. Four different kinds of surrogate mod-
eling methods are investigated, namely a 2nd order polynomial
model, a Support vector regression model, a Gaussian process
regression model and an Artificial neural network. The model
inputs and outputs are normalized respectively to [−4, 4] and
[0,1] in order to simplify training of the surrogate models.

1) 2nd Order Polynomial: Each of the outputs is described
by a multivariate 2nd order polynomial (Poly) given in (3). In
this equation, N is the amount of input parameters, x represents
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TABLE I
MATERIAL PROPERTIES OF THE LIGAMENTS OF THE THREE SUBJECTS

the inputs and y an output. The parameters β0, βi, βij and βii

are found using least squares method.

y = β0 +

N∑
i=1

βixi +

N∑
i,j=1
i�=j

βijxixj +

N∑
i=1

βiix
2
i (3)

2) Support Vector Regression: A support vector regres-
sion (SVR) model is trained by maximization of regression
model flatness (first part of (4)) and prediction error (second
part of (4)). By variation of a parameter C, more or less weight
can be assigned to the prediction error. A threshold ε is used
around the estimated function, so that the samples of which
the absolute errors with respect to the regression function are
below this threshold are not included in the prediction error.
Equation (5) gives the regression function, where l is the amount
of training samples, K is a kernel function, b is a constant, x are
the inputs and y is an output. Equation (6) gives a radial basis
function (RBF) that is used as the kernel function K. A grid
search is used to select the model parameters C, ε and γ. The
parameters αi and α∗

i are optimized [23]. The SVR method is
applied using scikit-learn v0.21.0 [24], as described by Chang
and Lin [25].

min
w

1

2
||w||2 + C

l∑
i=1

ξi + ξ∗i (4)

y =
l∑

i=1

(−αi + α∗
i )K(xi, x) + b (5)

K(xi, x) = exp(−γ||xi − x||2) (6)

3) Gaussian Process Regression: A Gaussian process
(GP) is a stochastic process that generates random variables in
time or space, such that a finite subset of those variables follows
a multivariate Gaussian distribution. In Gaussian process regres-
sion (GPR), the covariance of the GP is specified using a kernel
function [26]. For the described application, a constant kernel is
multiplied with an RBF kernel. A white noise kernel is added to
explain the noise in the data originating from MSM inaccuracy.
The function description of the kernel is given in (7). During
fitting of the Gaussian Process regressor, the hyperparameters
(c and l) of the kernel are optimized by minimizing the nega-
tive log-marginal-likelihood, which is typically used for GPR.

The GPR method is implemented using scikit-learn v0.21.0 [24].

K(xi, x) = c · exp
(−1

2
||xi

l
− x

l
||2

)
+ noiselevel(xi, x)

(7)
4) Artificial Neural Networks: The artificial neural net-

work (ANN) is implemented using the open-source soft-
ware Tensorflow 2.0.1 [27]. The network has architecture
[13:1024:512:256:64:16:5] with activation function Softplus
(8). The function given in (9) is used as the loss-function with
d set to 0.1. This function computes the Huber loss and has a
behavior that is similar to the mean squared error (MSE) for
small errors and similar to the mean absolute error (MAE) for
large errors. This way it is less affected by outliers. The Adam
optimizer is used with a batch size of 32. The learning rate is
halved when the loss doesn’t decrease with more than 10−6 for
more than 50 epochs and starts at 0.001. To prevent overtraining,
l2 regularization is applied. The weighted average of the result
of six networks that are separately trained on the same data, is
used to reduce random errors (ensemble averaging).

a(x) = log(exp(x) + 1) (8)

x = ytrue − ypredicted

loss =

{
0.5x2 if |x| ≤ d
0.5d2 + d(|x| − d) if |x| > d

(9)

5) Monte Carlo Simulation: A MCS on the complex, non-
linear MSM directly is used to validate the CDF prediction
of the RSM method in combination with a MCS using the
described surrogate modeling methods. A MCS can give an
estimate on the CDF of the output parameters by randomly
drawing samples from the input parameters while respecting
the statistical distribution of their variation. In this case the input
parameters are Normally distributed with a mean of 0.0 mm or ◦

and a standard deviation of 2.0 mm or ◦ from the planned position
consistent with mechanical alignment. The inputs are considered
uncorrelated. The drawn samples are evaluated by the MSM in
order to convert the different sets of inputs to the corresponding
sets of outputs. From the set of computed outputs, the CDF
corresponding to their statistical distribution can be estimated.
In order to compare the accuracy of the surrogate models, the
relative difference of the mean and the RMSE between the CDFs
estimated with MCS and the RSM method with different surro-
gate models are computed. The relative difference is quantified
by dividing the absolute difference of the mean by the width of
the 95 % uncertainty interval.
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With a MCS it is important to check if convergence has
occurred with the amount of samples that is used. In this
study convergence is evaluated by evaluating the consistence
in predicted width of the 60% and 90% confidence intervals
for different sample sizes. Sample sizes are taken from 100 to
2900 with a difference of 100 samples between every evaluation.
The width of the 95% confidence interval is computed on the
prediction of the width of the 60% and 90% confidence intervals
by drawing 500 times randomly the considered sample size from
a pool of 3000 samples. Once the width of the 95% uncertainty
interval on the width of the 90% and 60% intervals is smaller
than 5% of the actual width of the 90% and 60% intervals, the
MCS is considered converged. The actual width of the 90% and
60% intervals is estimated from the 3000 available samples. This
evaluation is done at 20◦, 60◦, 90◦ and 120◦ of flexion. For each
of the outputs and flexion angles, the amount of samples for
convergence of the MCS is determined.

C. Surgical Accuracy

The tolerated surgical error to achieve ligament balancing
based on preoperative planning, is identified through an opti-
mization. To this end, the standard deviations of the implant
position parameters are maximized (objective) by adapting the
mean and standard deviations of the implant position parameters
provided that a ligament balanced post-op outcome is realized
with a probability of 90% (constraint). The optimized means
relate to the implant position that should be planned to achieve a
post-op ligament balanced result whereas the optimized standard
deviations relate to the maximally allowed surgical error to
reach a probability of 90%. The objective of the optimization
problem is given in the first line of(10), where σi is the standard
deviation of implant position DOF i, N is the amount of DOFs
of the implant position (=12). The natural logarithm of the
standard deviations is taken to add weight to an increase in
small standard deviations compared to the same increase in large
standard deviations. This to avoid that the standard deviations
of the critical parameters would converge to zero. A small
value (0.001) is added to the standard deviation to avoid the
occurrence of infinity when σ goes to zero. The constraint of the
optimization problem is given by the second line of (10), where
S90%
MCS is 90% of the samples from the MCS, θFE is the knee

flexion angle (20◦ − 120◦), ε is the maximal strain in a ligament,
L is the set of all ligaments (deepMCL, supMCL, LCL, ALL
and PFL), Llat is the set of all lateral ligaments (LCL, ALL and
PFL) and Lmed is the set of all medial ligaments (deepMCL
and supMCL). εmax is the upper bound on the maximal strain
in the ligaments, which is 6% for the safe zone and 10% for the
extended safe zone.

min
μ,σ

−
N∑
i=1

ln (0.001 + 2σi)

s.t. S90%
MCS : ∀θFE

{
ε ≤ εmax ∀L
ε ≥ 0 ∃(Llat ∧ Lmed)

(10)

Verification of the constraint requires an estimation of the
variation of the ligament strains due to variation in the implant

position parameters, which requires a MCS in each iteration of
the optimization. Each MCS consists out of 5000 samples for 7
flexion angles equally divided between 20◦ and 120◦. To avoid
differences between iterations due to statistical noise on the
output of the MCS, identical samples are used which are rescaled
based on the current statistical distributions of the implant po-
sition parameters. This MCS is performed using the surrogate
modeling method ANN, as the results (Section III-A2) show that
it presents the best approximation of the MSM compared to the
other evaluated surrogate modeling methods.

We opted to account in the optimization for the per-operative
decision to alter the thickness of the insert. This way the
optimized outcome is robust for this decision, allowing the
preoperative plan still feasible without the need of additional
bone cuts. To this end, each sample of the MCS that is outside
of the safe zone is reevaluated with a different insert thickness
by the surrogate model. Different inserts differ with 2 mm. If
the sample satisfies the safe zone after change of the insert it is
accepted.

The package PyMoo [28] is used to perform the constrained
optimization. The optimization algorithm NSGA-II [29] is ap-
plied as this is an evolutionary algorithm. Evolutionary algo-
rithms have the large advantage that it is unlikely to converge to
a local minimum of the objective function.

The optimized standard deviations allow the classification of
the implant position parameters into critical and non-critical
parameters. The accuracy reachable with robot assisted surgery
is used as a reference to what can be currently achieved during
surgery [30]. To evaluate the optimized standard deviations
with respect to robot surgery, they are divided into critical
and non-critical parameters, which have a standard deviation of
respectively 0−0.36 and 0.36−3.0 ◦ for rotational parameters
and respectively 0−0.49 and 0.49−3.0 mm for translation pa-
rameters. This means that the error of the parameters that prove
to be critical cannot be realized using robotic surgery or any
other surgical technique with similar accuracy.

III. RESULTS

The results of the different uncertainty quantification methods
and optimization are shown respectively in the Section III-A
and III-B.

A. Probabilistic Model

The RSM method with four different surrogate modeling tech-
niques is applied. The different surrogate models are evaluated
using MCS.

1) Surrogate Model Training: Fig. 2(a) gives the maximum
Absolute Error (AE) of 95% of the validation samples with the
smallest AE for the Poly, SVR, GPR and ANN model. The
maximum over the outputs is given. Training is performed with
500, 1000, 2000 and 3000 training samples on three specimens
with a 3-fold cross-validation each, where an error bar indicates
the variation. The figure shows that with increasing training
sample size the error decreases less when adding a similar
amount of samples. The decrease in error between a training
set of 1000 samples to 2000 samples is considerably larger
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Fig. 2. 95% AE and training time for the RSM methods. (a) 95% AE and (b) Training time.

TABLE II
ACCURACY OF POLY, SVR, GPR AND ANN

The average difference and bounds of the relative mean, and the RMSE of the CDF generated
by Poly, SVR, GPR and ANN at 20◦, 60◦, 90◦ and 120◦ of flexion compared to the MCS
analysis over the ligament strains.

compared to a training set of 2000 to 3000 samples, which
indicates convergence in the training with respect to the sample
set size. For the Poly model, the decrease in error with increasing
amount of samples is very small, as a Poly model is not capable
of explaining higher order elements (>2) in the MSM. For both
SVR and GPR, the errors keep decreasing but at 3000 samples
they are still considerably larger compared to ANN at 1000
samples. To reach the same accuracy, more training samples
would have to be used, which increases sampling and training
times considerably. The training time of the Poly model (Fig.
2(b)) is negligible compared to the training time required by
the other surrogate models. With increasing amount of training
samples, the ANN training time increases approximately linear,
whereas training times for SVR and GPR increase approxi-
mately quadratic. This would result in large training times for
SVR and GPR if the amount of training samples would be further
increased in order to reach similar accuracy to the ANN model.
Further results are based on a training sample size of 3000.

2) Validation Through MCS: The MCS is used to validate
the uncertainty quantification using the RSM technique with
different surrogate modeling techniques. The MCS always con-
verges to the correct statistical distribution if enough samples
are used. Over the outputs the required amount of samples
for convergence varies from 1600 to 2400 between different
outputs. The 60% confidence interval for the LCL strain at 60◦

of flexion requires 1600 samples, whereas the 90% confidence
intervals of the supMCL at 90◦ and 120◦ of flexion and the
ALL at 120◦ of flexion require 2400 samples. Table II shows
the relative difference of the mean, and the RMSE between the

Fig. 3. CDF predicted by the surrogate models and estimated with
MCS for the maximal strain in PFL at 20◦ of flexion.

CDFs estimated with MCS and the RSM method with different
surrogate models. The table gives the average, minimal and
maximal values of the uncertainty estimates at 20◦, 60◦, 90◦

and 120◦ of flexion. It is clear that the error of the ANN is
considerably smaller compared to the other surrogate models.
The Poly and GPR models perform equally well, whereas the
SVR model slightly outperforms them. Fig. 3 gives the CDF
estimated through a MCS on the MSM directly as well as the
CDFs estimated through a MCS on the surrogate models for
the strain in the PFL at 20◦ of flexion. The GPR, SVR and ANN
models present the prediction with the largest RMSE on the PFL
at 20◦ of flexion in comparison to other outputs at other evaluated
flexion angles. This figure also illustrates a better approach of
the CDF with the ANN model.

3) Computational Efficiency: MCS directly on the MSM,
requires more than five-fold the amount of MSM evaluations for
one set of implant position parameters in comparison with the
studied techniques. For the RSM methods, 3000 MSM evalua-
tions are required for training with another 300 for validation.
The same amount of samples are needed as with a direct MCS
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TABLE III
THE OPTIMIZED STANDARD DEVIATIONS OF THE IMPLANT POSITION

PARAMETERS FOR THE SAFE AND EXTENDED SAFE ZONE

The ranges for the critical (red) and non-critical (green) parameters have a standard deviation
that is respectively 0− 0.36 and 0.36− 3.0 ◦ for rotational parameters and respectively
0− 0.49 and 0.49− 3.0 mm for translation parameters. The critical ranges are not
reachable with robot assisted surgery.

on the MSM. At least a 2400 samples are needed for conver-
gence of the MCS for each of the studied outputs per flexion
angle. This means if 7 flexion angles throughout the squat are
evaluated, 16 800 MSM evaluations are required to perform a
direct uncertainty quantification with MCS. This is considerably
more compared to the 3300 MSM evaluations that are required
with RSM. This proves a large increase in efficiency compared
to MCS directly on the MSM.

B. Surgical Accuracy

Table III shows the optimized standard deviations of the
implant position parameters for the safe zone and the extended
safe zone. For the safe zone (0–6%), half of the DOFs of the
implant position are critical parameters. More specifically they
are Anterior/Posterior (AP) and Proximal/distal (PD) translation
and Varus/Valgus (VV) and Internal/External (IE) rotation for
the femoral component. For the tibial component the critical
parameters are PD translation and VV rotation. In contrast,
with the extended safe zone (0–10%) it can be seen that only
three of the DOFs for specimen 2 and one for specimen 3 are
just within the critical region.

IV. DISCUSSION

This study successfully developed a methodological frame-
work that allows the use of uncertainty quantification in an op-
timization process with feasible computational cost. This study
applies the technique to estimate the required surgical accuracy
for a ligament balanced TKA using preoperative planning. The
validation through MCS shows that overall a good approxima-
tion can be achieved with each of the studied surrogate modeling
methods. This is in agreement with other studies. The studies of
Arsene et al. [17] and Strickland et al. [14] used an RSM with as
surrogate model a Poly model. They also find a good agreement
between the validation using MCS and the used RSM technique.
From our study it is however clear that with the same sampling
size other (more complex) surrogate modeling techniques lead
to superior accuracy.

The results of the developed PM need to be considered in the
context of limitations. First, the fitting of a Poly model typically
uses a design of experiment method to sample the data, e.g.
Box-Behnken design or central composite design. This sampling
design might lead to a better accuracy with a smaller amount of
samples compared to the sobol sequence that is used in this study.
Second, the training of the GPR model allows a variance based
sampling in order to choose the samples based on the areas in the
sampling space with the largest variance [31], [32]. This would
lead to a smaller amount of samples that is required for the same
accuracy. The sample choice would however be dependent on
the output parameter. As this study aims to estimate a total of five
output parameters, a separate variance based sampling would be
needed for each output. This could in some cases eliminate the
gained sampling time.

The ANN, GPR and SVR methods are generally applicable.
In contrast, the Poly method will not be generally applicable.
For the Poly model to be accurate, the biomechanical model has
to behave in a quadratic manner, which will not be the case for
most complex models. With the ANN, GPR and SVR models the
estimate of the uncertainty will be accurate without the necessity
of a validation through MCS, provided that training and testing
samples are equally divided throughout the considered sampling
space and training results in a validation error low enough for
the considered application.

An extra advantage of the developed method is its potential
to estimate the uncertainty caused by every possible uncertainty
distribution of the input parameters that stays within the training
bounds without the need for new MSM evaluations, as applied
in this study to estimate the required surgical accuracy for a
ligament balanced TKA using preoperative planning. Results
show that using currently available surgical techniques it is
impossible to reach a ligament balanced post-operative outcome
using the strict safe zone with a probability of 90%. This is
confirmed in all three specimens. As the strict safe zone is not
successful with a large probability it is preferred to optimize
towards the extended safe zone. This will result in slightly too
stiff ligaments for the cases outside of the strict safe zone. This
outcome is preferred over too slack ligaments, as literature [33]
shows that postoperative stiffness can be mediated with good
rehabilitation whereas instability due to too slack ligaments can
only be corrected through revision surgery.

The optimization towards the maximal tolerated variation in
the implant position parameters results in the identification of
the critical parameters (Femur: AP translation, PD translation,
VV rotation, IE rotation; Tibia: PD translation, VV rotation). The
focus of surgical technique developers when increasing accuracy
of TKA needs to be on these six critical parameters in order to
achieve increased patient satisfaction.

The identification of the implant position variance has some
limitations. First, the safe zone was only evaluated during a squat
movement, as this type of movement addresses a large range of
flexion angles. Full extension however was not evaluated. For
future clinical application, alternative movements that include
full extension will have to be evaluated. Second, the optimiza-
tion towards the surgical accuracy was applied on a limited
set of subjects. The ligament properties obtained through opti-
mization using experimental measurement of the tibio-femoral
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kinematics show a large variance between different specimens.
The unavailability of these measurements in clinical practice
introduces a significant amount of uncertainty in pre-operative
planning. However, the results do show similar standard devia-
tions (used to determine surgical accuracies) but highly different
mean (reflecting differences in planned implant position) for
each of the specimens studied. Consequently, differences in the
ligament properties will mainly affect the optimized implant
position and not the optimized standard deviations. The differ-
ences in ligament properties observed in the different specimens
would thus not affect the conclusions of this study. Third, the
optimization of the surgical accuracy is based on the proposed
safe zone. This zone is based on the assumption that ligament
unbalance [4], [5] is at the base of the large patient dissatisfaction
in combination with studies on the relation between ligament
strain and onset of damage [7], [8]. This is however not yet
clinically proven. The study of Twiggs et al. [34] tried to identify
a safe zone based on the correlation between simulated sec-
ondary kinematics and patient-reported outcome measures. The
identified safe zone is however not sufficient as it can be seen that
a lot of satisfied patients are outside of the identified zone, which
indicates a patient-specific safe zone might be more appropriate.
Future research should focus on defining a patient-specific safe
zone, where this method can be applied using a different con-
straint to determine required surgical accuracy consistent with
the patient-specific safe zone.

V. CONCLUSION

The designed optimization process allows for the computation
of the required surgical accuracy for a ligament balanced post-
operative outcome using preoperative planning with a feasible
computational cost. Results show that, even with state of the art
surgical techniques (i.e. robot assisted surgery), the error does
not allow for a ligament balanced TKA with a probability of
90% using preoperative planning. A ligament balanced TKA
can be achieved when allowing for slightly higher strain in
the ligaments. Six critical implant position parameters can be
identified, namely AP translation, PD translation, VV rotation,
IE rotation for the femoral component and PD translation, VV
rotation for the tibial component. The focus of surgical technique
developers when increasing accuracy of TKA needs to be on
these six critical parameters in order to achieve better patient
satisfaction.
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