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Evaluating Performance of EEG Data-Driven
Machine Learning for Traumatic Brain

Injury Classification
Nicolas Vivaldi, Michael Caiola , Krystyna Solarana, and Meijun Ye

Abstract—Objectives: Big data analytics can potentially
benefit the assessment and management of complex neu-
rological conditions by extracting information that is dif-
ficult to identify manually. In this study, we evaluated the
performance of commonly used supervised machine learn-
ing algorithms in the classification of patients with trau-
matic brain injury (TBI) history from those with stroke his-
tory and/or normal EEG. Methods: Support vector machine
(SVM) and K-nearest neighbors (KNN) models were gen-
erated with a diverse feature set from Temple EEG Cor-
pus for both two-class classification of patients with TBI
history from normal subjects and three-class classification
of TBI, stroke and normal subjects. Results: For two-class
classification, an accuracy of 0.94 was achieved in 10-fold
cross validation (CV), and 0.76 in independent validation
(IV). For three-class classification, 0.85 and 0.71 accuracy
were reached in CV and IV respectively. Overall, linear dis-
criminant analysis (LDA) feature selection and SVM models
consistently performed well in both CV and IV and for both
two-class and three-class classification. Compared to nor-
mal control, both TBI and stroke patients showed an overall
reduction in coherence and relative PSD in delta frequency,
and an increase in higher frequency (alpha, mu, beta and
gamma) power. But stroke patients showed a greater de-
gree of change and had additional global decrease in
theta power. Conclusions: Our study suggests that EEG
data-driven machine learning can be a useful tool for TBI
classification. Significance: Our study provides preliminary
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evidence that EEG ML algorithm can potentially provide
specificity to separate different neurological conditions.

Index Terms—EEG database, machine learning (ML),
traumatic brain injury (TBI), stroke.

I. INTRODUCTION

TRAUMATIC brain injury (TBI) presents a significant chal-
lenge to civilian and military medicine. According to the

Centers for Disease Control and Prevention (CDC), an estimated
2.5 million people sustain a TBI annually, contributing to a
third of all injury-related deaths in the United States. Given
the high societal and economic costs of untreated TBI, it is
recognized as a significant military and public health concern.
Currently, neurological Glasgow Coma Scale (GCS) is a clinical
index universally used to classify TBI as mild, moderate or
severe. CT scan is used to detect structural brain lesions. Though
useful in the clinical management of TBI, these methods do
not provide enough sensitivity to detect mild TBI and mon-
itor the progression of TBI at different severities. Therefore,
efforts are ongoing to seek for alternative clinical assessment
tools for TBI, including body-fluid analysis, advanced imaging
modalities (i.e., diffuse tensor imaging [DTI], positron emission
tomography [PET]) and neurophysiological signals (i.e., eye
movement and electroencephalography [EEG]).

Among all the modalities, EEG has advantages of being
non-invasive, easy-to-use, portable and cost effective. However,
when applied to TBI research, EEG yields mixed results in the
literature. Views on the clinical significance of EEG in TBI
assessment are historically controversial [1]–[4]. Studies have
shown significant differences in EEG-based power spectra data
between mild TBI and normal groups [5], [6], while other studies
report no such distinction [7]. Researchers have also evaluated
post-TBI changes in connectivity [8], [9] and entropy [10], [11].
Abnormal electrophysiological signals were observed to occur
without structural and biochemical changes following neural
disruptive interventions, or even in the lack of apparent neu-
rocognitive abnormality [10], [12], suggesting that EEG has the
potential to be a sensitive indicator of neuropathology. However,
how specific these changes are to TBI is questionable.

With the advancement of computational analytical technolo-
gies, the clinical utility of EEG signals may be propelled signif-
icantly. Health-related research has benefited from data-mining
machine learning (ML) techniques built on the increasingly
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available wealth of information provided by large scale reposi-
tories [13]. Due to the inherent complexity of TBI, including the
absence of consensus on biomarkers, underlying relationships
between data, and patient-to-patient variability, big data analyt-
ics have the potential to make determinations about population
characteristics that would otherwise be too difficult or impos-
sible to manually identify [14], [15]. While clinicians receive
extensive training to interpret EEG signals, advances in ML and
deep learning may enable data-driven computational systems to
emulate and even improve this process. Particularly, multiple
kinds of temporal and spectral analyses can be performed on
EEG recordings across multiple channels, generating feature
sets that are well suited for ML applications. In addition, due
to its long history of use in neurological conditions, multiple
EEG databases are already formed and are publicly available.
This provides a platform to evaluate the feasibility of the im-
plementation of ML to the investigation of TBI assessment.
Multivariate EEG data has previously been shown to be effective
in classifying acute TBI patients with positive CT scans [16].
However, more study is necessary for broader application among
groups with different stage and severity of TBI as well as
different demographics.

Here, we evaluated the performance of multiple commonly
used ML algorithms in the classification of patients with TBI
history from normal subjects with a diverse feature set composed
of demographic information, power spectral density, channel-
to-channel coherence, phase-amplitude coupling, and spectral
entropy, from Temple EEG Corpus. In addition, we further
assessed the accuracy of algorithms in the classification of TBI,
stroke, and normal patients to determine the specificity.

II. METHODS

A. EEG Data

Raw EEG data was obtained from the Temple University
Hospital EEG Corpus repository (v1.1.0), the world’s largest
clinical EEG database [17]. Subjects were identified through
patient records associated with each EEG file (.EDF format).
Records were parsed using Python scripts as described in paper
[18] with key words listed in Sup Fig. 1 (available at - https:
//github.com/dbp-osel/qEEG-consistency), further curated by a
custom MATLAB (MathWorks, Version 2019b, Natick, MA,
USA) script, then verified by manually inspecting the content
of each automatically selected record to assure their compliance
with inclusion and exclusion criteria listed below.

1) Inclusion Criteria: TBI group: 1) ages 1-85 and 2) med-
ical record includes a diagnosis of TBI or concussion.

Stroke group: 1) ages 1-85 and 2) medical record of a stroke
diagnosis.

Normal group: 1) ages 1-85 and 2) clinicians’ notes indi-
cated that the EEG was within normal ranges for the subject’s
demographic group.

2) Exclusion Criteria: TBI group: Documented history of
epilepsy, seizure, tremors, or other neurological conditions other
than TBI within the clinicians’ note record.

Stroke group: Documented history of epilepsy, seizure,
tremors, or other neurological conditions other than stroke
within the clinicians’ note record.

Fig. 1. Flowchart describing data processing and model training.
(ICA: independent component analysis, PSD: power spectral density,
SE: spectral entropy, PAC: phase-amplitude coupling, LDA: linear dis-
criminant analysis, PCA: principal component analysis, FSFS: for-
ward sequential feature selection, BSFS: backwards sequential feature
selection).

Normal group: Documented history of epilepsy, seizure,
tremors, or other neurological conditions within the clinicians’
note record.

All patient data in the database were de-identified. There-
fore, this study did not constitute human subjects research, and
was exempted from Food and Drug Administration institutional
review board review. A total of 13550 subjects were analyzed
and processed according to the description in Sup. Fig. 1. The
final dataset for training machine learning models included 292
subjects with 79 normal labels, 98 TBI labels, and 115 stroke
labels. A total of 26 normal labeled, 44 TBI labeled, and 50
stroke labeled subjects’ data were randomly reserved for use
as an independent validation (IV) set. There was no overlap
between any of the cohorts.

It needs to be acknowledged that in the Temple database,
information on the occurrence time of TBI/stroke was often
unavailable, nor were the severity and cause of the injury con-
sistently reported. Therefore, the composition of the patient was
heterogenous in both diseases’ groups.

B. EEG Data Preprocessing

Fig. 1 depicts the data processing, feature generation, feature
selection, model training and validation flowchart.

EEG signals from different subjects were first normalized
so that individual records conform with one another in terms
of channels used, length of time of the recording, consistent
epoching, and sampling frequency (fs). Specifically, for each
subject, 3 minutes of awake, resting-state, stimuli-free EEG
recordings were included (excluding the first minute of the
recording). EEG data were further pre-processed using MAT-
LAB and eeglab (v.2020.0) [19]. Signals (fs = 250 Hz) from
19 common channels in ten-twenty standard arrangement (FP1,

https://github.com/dbp-osel/qEEG-consistency
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FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8,
FZ, CZ, PZ) were filtered using pop_eegfiltnew() with cutoff
frequency passband 1-100 Hz. Conventionally, channels with
poor signal quality are dropped from EEG analysis. However, no
channels were rejected due to the need to keep the feature vector
for each subject consistent, thereby making the assumption that
the collective feature space across all subjects would be robust
to outliers. Filtered signals were re-referenced via pop_reref() to
remove background noise by subtracting the average amplitude
across all channels at each discrete time point from each chan-
nel’s signal individually. The resulting filtered and re-referenced
signals were referred to as raw data.

Artifact rejection was performed in order to evaluate the
performance of TBI classifiers using both raw and cleaned data.
Independent component analysis (ICA) is a proven computa-
tional technique for EEG artifact detection [20] and was applied
using the FastICA (v.2.5) package for MATLAB [21]. Input EEG
channel data are separated into each independent component
(IC) that are linearly mixed in the original signal. This occurs
through singular value decomposition of the EEG data. ICLabel
(v.1.2.6), a plugin for eeglab, was then used to classify each
channel’s ICs by their probabilistic source. ICLabel is a clas-
sification tool that was trained on thousands of known, labeled
signals including EEG, EMG, EOG, etc. Each IC was labeled
as brain, muscle, eye, heart, line noise, channel noise, or other
according to the highest probabilistic source. ICs with non-brain
function sources such as eye movements were excluded from
signal reconstruction. Artifact rejected data were referred to as
cleaned data.

C. Feature Generation

Raw and cleaned signals were processed using spectral anal-
ysis techniques in order to generate a descriptive vector of
quantitative features describing each subject’s EEG recording.
The spectral features calculated were: phase-amplitude coupling
(PAC) [22], absolute and relative power spectral density (PSD)
within frequency bands, spectral entropy (SE), and inter-channel
cross coherence (Coh) resulting in 1330 EEG features for both
raw and cleaned data. For the purpose of feature generation, the
frequency bands used were defined as 1 – 4 Hz (delta), 4 – 8 Hz
(theta), 8 – 12 Hz (alpha), 12 – 16 Hz (mu), 16 – 20 Hz (beta),
and 25 – 40 Hz (gamma).

Absolute PSD was calculated in each frequency band using
the bandpower() MATLAB function. Relative PSD was calcu-
lated by dividing absolute PSD in each frequency band by PSD
between 1 and 100 Hz. Similarly, coherence was calculated using
MATLAB’s mscohere() with 30 second non-overlapping epoch
windows. Spectral entropy (H) was calculated with custom
written MATLAB code using the equation:

H = −
N∑

m = 1

S (m)∑
i S (i)

log2

(
S (m)∑
i S (i)

)

Where S(m) is the power spectrum of the input (channel-wise)
signal and N is the total number of data points. Phase-amplitude
coupling was calculated following the method presented in [22]
which determines the modulation index (MI) between phase bins

and amplitudes via Kullback-Leibler distance (DKL):

MI =
DKL (P,U)

log (N)

Where P is the amplitude distribution among N = 18 phase
bins (-180° to 180°), and U is the uniform distribution. Pairings
of amplitude and phase were tested between bands alpha and
gamma, theta and gamma, and theta and alpha.

D. Feature Selection

Dimensionality reduction was performed via five methods:
conventional statistics, Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), Forward Sequential Fea-
ture Selection (FSFS), and Backwards Sequential Feature Se-
lection (BSFS). Apart from the statistics method, all fea-
tures were standardized to account for large variations in data
ranges.

1) Statistics: One sample Kolmogorov-Smirnov test (K-S
test) was used to determine normal distribution of the data at
the 5% significance level. None of the features were normally
distributed, therefore, Wilcoxon rank sum testing was imple-
mented to analyze differences. When used with three classes,
One-way ANOVA and post-hoc Tukey test was used instead of
the Wilcoxon rank sum test. False discovery rate was set at 0.05
and significant p-values were calculated for multiple comparison
correction [23 ]. First, all m p-values were ranked p1, . . . , pm

with p1 being the smallest. Then we denote p1, . . . , pk signif-
icant for the largest k that satisfies:

pk ≤ 0.05k

m

Only Features With P-Value With Rank 1, . . . , k Were Used to
Train Classifiers.

2) LDA: Although LDA itself can be used as a classifier
model, here it is used to identify which subset of the original
features best separate the classes. LDA was optimized by select-
ing the best delta and gamma values over a 50-step grid search.
Features with δ coefficient values below the cutoff threshold
were eliminated from the data later passed on to the models for
training. In this study, the threshold was set to the mean of the δ
values plus one standard deviation.

3) FSFS: For this analysis the criterion value was set to
the minimum mean misclassification error over 10-fold cross-
validation (CV) of linear discriminant models after 50 Monte
Carlo repetitions.

4) BSFS: For this analysis the criterion value was set to
the minimum mean misclassification error over 10-fold cross-
validation of linear discriminant models after 50 Monte Carlo
repetitions. This technique selected features backwards starting
with the previously selected LDA features instead of the original
1330 feature set.

5) PCA: PCA was selected as a dimensionality reduction
technique due to its advantage of not eliminating potentially
useful information by dropping features. PCA was applied to
both the raw and cleaned feature sets specified to account for ≥
95% of the total variation within the space.
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TABLE I
DEMOGRAPHIC INFORMATION OF NORMAL, TBI AND STROKE SUBJECTS.
P-VALUES CALCULATED WITH CHI-SQUARE (SEX) OR ONE WAY ANOVA

AND POST-HOC TUKEY TEST (AGE AND MEDICATION). NO STATISTICS
WERE DONE ON AGE RANGE.

E. Model Training

Feature vectors identified by statistics, PCA, LDA, FSFS, and
BSFS were fed into Support Vector Machine (SVM) models
using six different kernels and K-Nearest Neighbors (KNN)
classifiers using six definitions for training. SVM used three
polynomial kernels (linear, quadratic, and cubic) and three Gaus-
sian kernels. Gaussian kernel scale was determined as 4∗sqrt(N),
where N = number of features, sqrt(N), and sqrt(N)/4 for mod-
els named coarse, medium, and fine, respectively. Three KNN
models were trained based on Euclidean distance for K = 1, 10,
and 100, also denoted coarse, medium, and fine, respectively.
Two more KNN models were trained with K = 10 using cosine
and cubic distances. The last model trained was KNN with K
= 10 where neighbors were weighted by the squared inverse of
their Euclidean distance. For both raw and clean data using five
selection methods and 12 total models, 120 total models were
trained and tested. An additional 120 models were trained and
tested as above, intentionally excluding demographic features.
These model variations were trained on two-class data (normal
vs TBI) and three-class data (normal vs TBI vs stroke), for a
total of 480 models.

F. Model Validation

Performance of classifiers were validated with 10-fold cross-
validation (CV), label randomization, and IV data set (Table I).
Model accuracy, F1 score, sensitivity, and specificity were
recorded to assess the performance of each model to classify
TBI and normal data. For three-class classifiers to classify
TBI, normal, and stroke, macro and weighted variants of preci-
sion/sensitivity/F1 scores were calculated.

In order to assess a baseline metric of performance, group
labels (TBI, normal and stroke) were randomly assigned to
the feature vectors and each randomized set was trained and
tested following the same methods used for true labeled data.
Both true and randomly labeled data were trained using 10-Fold

CV partitions 1000 times in order to generate distributions of
cumulative prediction accuracies over each fold. In addition,
classifiers generated with the full training data set were further
evaluated by predicting classifications of an independent test
data set with 120 true labeled subjects, which were withheld
from the training data set (See Table I for demographic infor-
mation of each data set).

To further determine validation, a model was considered a
“success” if its validation score was at least above that of the Zero
Rule (ZeroR) benchmark. The ZeroR benchmark is calculated as
the accuracy of a model that predicts the largest class no matter
the input. For the normal vs TBI models, the ZeroR benchmarks
were at 55.37% for the CV tests and 62.86% for the IV tests.
For the three-class models, ZeroR was at 39.7% and 41.67% for
the CV and IV, respectively.

G. Statistical Analysis

Statistical analysis was performed to provide baseline mea-
sure of the differences between the TBI, stroke and normal
classes on the individual features, and to compare performance
of models. One sample Kolmogorov-Smirnov test (K-S test) was
used to determine normal distribution of the data at the 5% signif-
icance level. If data was not normal distributed, Wilcoxon rank
sum testing, or two sample K-S test, or signed rank test, were
implemented to analyze differences. When data was normally
distributed, Student t-test was used. Where it is applicable, posi-
tive false discovery rate was calculated for multiple comparison
correction. For categorical sex data, Chi square test was used.
When comparing the five feature selection methods, One Way
ANOVA and post-hoc Tukey test was used. All statistical data
are expressed as mean ± std.

III. RESULTS

A. Performance of Individual Two-Class Algorithms

All 1330 EEG features and 3 demographic features (sex, age,
and medication) of normal and TBI cohorts were put through
statistical analysis, LDA, FSFS, BSFS, and PCA for feature
selection. Sex is set as categorical data. Medication is set as
the number of unique medications prescribed to each subject.
Drug interaction was not investigated in this study.

1) Models Trained With Features Selected By Statistics:
In statistical analysis, rank sum and false discovery rate analyses
identified 98 features out of the 1333 in the raw set (∼7.35%)
and 82 in the clean set (∼6.15%) that were significantly different
between TBI and normal subjects, including sex. When compar-
ing the performance of models trained with truly labeled data
and randomly labeled data with 10-fold CV, all models trained
with truly labeled performed significantly better than randomly
labeled data with the only exception of SVM fine Gaussian at
10-10 significance level (SL) (Sup. Fig. 2) (two sample K-S test,
p<10-10, 1000 iterations). Models trained with truly labeled
data had an average accuracy of 0.68 ± 0.05 with median at
0.68. In addition to 10-fold CV, we evaluated the performance
of models with an independent data set which were withheld
from training. In general, the performance of models to predict
the classification of independent data set was better than 10-fold
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Fig. 2. Performance of models trained with features selected by linear discriminant analysis (LDA). The figure shows distribution of accuracies
for 1000 iterations of training using randomly labeled data (orange), true labeled data (blue), and independent dataset (green line) for models
based on features selected by LDA. Black and green dotted lines show ZeroR benchmarks for cross-validation (CV) and independent validation
(IV) respectively. All models trained with true labeled data performed significantly better than randomly labeled data at 10-10 confidence interval in
10-fold CV, except for SVM fine Gaussian models (two sample K-S test). (SVM: support vector machine, KNN: K-nearest neighbors).

CV (Sup. Fig. 2). The average accuracy of the 24 models was
0.70 ± 0.05 with median at 0.71.

2) Models Trained With Features Selected By LDA: With
a threshold of the mean of the δ values plus one standard
deviation, LDA selected 208 features from raw data features, and
224 from clean features, including two demographic features,
sex and age. 1000 iterations of 10-fold CV showed that 22 out of
24 models trained with truly labeled data performed significantly
better than those trained with randomly labeled data (Fig. 2) (n
= 1000, p < 10-10, two sample K-S test). Like models trained
with statistically selected features, SVM algorithm with fine
Gaussian kernel could not distinguish TBI and normal subjects
at all. When classifying the independent data set, the 24 models
showed an average accuracy of 0.76 ± 0.09 with median at 0.75
(Fig. 2), which is slightly better than the accuracy calculated
with 10-fold CV, 0.70 ± 0.04 with median at 0.70.

3) Models Trained With Features Selected By FSFS:
With the criterion described in Methods, FSFS selected sex and
an additional 8 EEG features from raw data, and 12 from clean
data. All 24 models trained with truly labeled data performed
significantly better than those trained with randomly labeled
data when evaluated with 1000 iterations of 10-fold CV at 10-10

SL with a mean accuracy of 0.71 ± 0.06 with median at 0.73
(Sup. Fig. 3) (two sample K-S test). When these models were
evaluated by the independent data set, they showed an average
accuracy of 0.67 ± 0.05 with median at 0.67 (Sup. Fig. 3).

4) Models Trained With Features Selected By BSFS:
Working backwards from the features selected by LDA, BSFS
selected sex, age, and an additional 179 EEG features from
raw data and 216 from clean data. Similar to the LDA models,
all models trained with truly labeled data, with the exception
of the SVM algorithm with fine Gaussian kernel, performed

significantly better than those trained with randomly labeled
data when evaluated with 1000 iterations of 10-fold CV at 10-10

SL. The mean accuracy of the truly labeled data set was almost
as high as LDA at 0.75 ± 0.09 with median at 0.75 (Sup.
Fig. 4) (two sample K-S test) which is not too surprising as
these features were derived from the LDA feature set. However,
when these models were evaluated by the independent data set,
they performed especially poor with an average accuracy of 0.56
± 0.06 with median 0.56 (Sup. Fig. 4).

5) Models Trained With Principal Component (PC) Fea-
tures: When putting through all 1332 non-categorical features
into PCA, 132 principal components (PCs) were necessary to
reach 95% threshold using raw or clean data. Models were
trained with the selected PC features and the categorical sex
information. The majority models trained with true labeled data
performed significantly better than randomly labeled data with p
<10-10 but the coarse and fine variants of SVM and KNN, as well
as clean KNN cubic distance model (Sup. Fig. 5) (two sample
K-S test). Additionally, 6 of the 24 models failed to have better
accuracy than the Zero Rule (ZeroR) benchmark of 0.55 (black
dotted line). When evaluated with 10-fold CV, the mean accuracy
of these 24 models was 0.58 ± 0.05 with median at 0.57. The
performance of the 24 models to classify the independent data
set also performed unsatisfactorily, with a mean of 0.48 ± 0.10,
a median at 0.43, and none of the models performing better than
the ZeroR benchmark of 0.63 (green dotted line).

We compared the performance of models with different fea-
ture selection methods (Fig. 3a and b) and found that models
trained with PC features performed the poorest in both 10-fold
CV and IV. Models trained with features selected by LDA
performed consistently well in both CV and IV. Interestingly,
models trained with features selected by statistics performed
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Fig. 3. Comparison of performance of models for classifying patients
with TBI history from normal subjects. (a) and (b) show boxplots of
accuracy of models trained with features selected by different methods.
Accuracy was evaluated with 10-fold CV and independent dataset re-
spectively. Models trained with PCA selected features performed worst
in both 10-fold CV and independent validation, while those trained with
features selected by LDA performed best. Models trained with features
selected by Statistics performed inferior to those with LDA in CV, how-
ever, their performance was comparable with LDA models when used
to classify independent dataset. (c) and (d) compare the accuracy of
models trained with input features including demographic information
and those without demographic information (Demo: demographic). The
majority models with demographic inputs appear to perform better than
their counterparts. (e) and (f) compare the performance of models
trained with features generated from artifact removed clean EEG data
versus those from raw EEG. Though variability is present, most models
trained with raw data performed slightly better than the corresponding
clean data in CV. And performance of models from raw data was com-
parable with those from clean data for predicting independent dataset.
Each line in (c) to (f) represents each algorithm. Dark lines in (c) and
(e) indicate significant difference in two sample K-S test at 10-10 signifi-
cance level. (∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, One way ANOVA
and post-hoc Tukey test in (a) and (b), Signed-rank test in (c) to (f).)
(CV: cross-validation, Stats: statistics, LDA: linear discriminant analysis,
FSFS: forward sequential feature selection, PCA: principal component
analysis, BSFS: backwards sequential feature selection.).

significantly worse than those from LDA in CV, however, they
performed as well as those from LDA when used to classify the
independent dataset. Models trained with features selected by
FSFS preformed similarly to that of the statistics group in CV
but slightly worse in IV. Models trained with BSFS, however,
performed just as well as LDA models in CV but almost as poor
as PCA models in IV.

B. Effect of Demographic Information on the
Performance of Models

To understand how demographic information affects the per-
formance of models, we re-trained the models with sex, age, and
medication information removed from input features, leaving
just 1330 features before selection. Similarly, model perfor-
mance was evaluated with 1000 iterations of 10-fold CV and an
independent dataset. In 10-fold CV, models with demographic

Fig. 4. Comparison of performance of models for 3-class classifica-
tion. (a) and (b) show boxplots of accuracy of models trained with
features selected by different methods for classifying patients with TBI
and stroke history and normal subjects. Accuracy was evaluated with
10-fold CV and independent dataset respectively. Models trained with
BSFS and LDA selected features performed best in 10-fold CV. In IV,
models trained with features selected by LDA, statistics, and FSFS
showed comparable performance. (c) and (d) compare the accuracy
of models trained with input features including demographic informa-
tion and those without demographic information (Demo: demographic).
The majority models with demographic inputs appear to perform better
than their counterparts. (e) and (f) compare the performance of models
trained with features generated from artifact removed clean EEG data
versus those from raw EEG. The majority models built upon clean data
performed significantly better than raw data. (∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001, One way ANOVA and post-hoc Tukey test in (a) and (b).)
(CV: cross-validation, Stats: statistics, LDA: linear discriminant analysis,
FSFS: forward sequential feature selection, PCA: principal component
analysis, BSFS: backwards sequential feature selection).

Fig. 5. Relationship between IV and CV accuracies for two-class (a)
and three-class (b) classification. The respective ZeroR benchmarks
for CV and IV are shown as black lines. (CV: cross-validation, IV: in-
dependent validation, LDA: linear discriminant analysis, FSFS: forward
sequential feature selection, PCA: principal component analysis, Stats:
statistics, BSFS: backwards sequential feature selection.).

inputs performed consistently better than those without (Fig. 3c).
Though variability is present in IV, the majority of models
with demographic inputs perform significantly better than their
counterparts (Fig. 3d). Including only those models that have
accuracy higher than the ZeroR benchmark, we see that the IV
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Fig. 6. Changes in clean EEG features. (a) shows the fraction of features selected by statistics, LDA, and FSFS out of total number of features
in each type of features (i.e., 171 coherence and 19 relative PSD features in each frequency band) without consideration of channels for 2-class
classification. (b) shows the fraction of selected features for 3-class classification. (c) shows the median z score for each type of features in normal,
TBI and stroke subjects respectively. (d) shows the broadband coherence change from normal to TBI. Main panel shows the median z score of
coherence coefficients of all channel pairs. Inset demonstrates the channel pairs with median z score higher than 0.5 or lower than -0.5. (e) shows
the topographic map of relative PSD based on z scores. (f) indicates the z score of stroke broadband coherence to TBI. Inset shows the channel
pairs with median z score higher than 0.5 or lower than -0.5. (g) shows the topographic map of relative PSD z score of stroke subjects to TBI. (LDA:
linear discriminant analysis, FSFS: forward sequential feature selection, Stats: statistics, PAC: phase-amplitude coupling, PSD: power spectral
density).

accuracy for demographic group remains significantly higher
(Sup. Fig. 6). Considering the significant difference in sex
between normal and TBI groups in both training and IV data
sets (Table I), this finding is not surprising.

C. Effect of EEG Artifact Removal on the Performance of
Models

In conventional quantitative EEG (qEEG) analysis, artifact
removal is an inevitable step, but it is computationally and
time demanding. Moreover, there is no perfect artifact removal

method. Therefore, we are interested in understanding whether
ML models built upon raw EEG can provide comparable perfor-
mance with those on artifact-removed clean data. When com-
paring the performance of models trained with clean and raw
EEG features, we found that the raw models performed slightly
better (Fig. 3e). Interestingly, when predicting independent data,
it appears there is no such difference in performance between
most models trained with raw EEG compared to those trained
with clean data (Fig. 3f). This remains true, when looking at just
those models that performed better than the ZeroR benchmark
(Sup. Fig. 6).
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D. Models With Best Performance in Classifying TBI

Though it appears that most ML models can distinguish TBI
from normal subjects to some extent, demonstrated as signifi-
cantly better performance than their counter models trained with
randomly labeled data, their performance varies remarkably.
Therefore, we identified models with accuracy higher than 0.9
in 10-fold CV and higher than 0.73 IV (Sup. Table I). In 10-fold
CV, 12 models showed an accuracy higher than 0.9, all of which
were SVM models based on LDA or BSFS feature selection with
linear or polynomial kernels. In IV, 18 models had higher than
0.73 accuracy, but none of these were in the 12 best performers
in 10-fold CV. These models were built upon features selected
either by LDA, FSFS or statistics, including SVM and KNN
models.

E. Performance of Three-Class Models

To determine if the models above were actually distinguishing
differences between normal and TBI EEGs instead of just normal
and abnormal EEGs, we included EEGs from a third cohort of
stroke patients. Features were reselected using the same previous
features selection techniques including clean, raw, demographic-
free and demographic variants. These newly selected features
were then used to train error-correcting output codes (ECOC)
models with a one vs one coding design and the same SVM and
KNN variants used in the two-class case as learners. Overall,
240 models were each trained. Accuracy was calculated on 1000
iterations of 10-fold CV for both truly and randomly labeled data
(Sup. Fig. 7-11) as well as an IV.

There was a large variation in the CV accuracies of these
models with some just over 0.85 (Sup. Table II). All models
had a median accuracy above 0.5 except for those trained with
features selected by PCA (Fig. 4a). For the IV: LDA, FSFS, and
conventional statistics methods performed the best with PCA
still being the least accurate (Fig. 4b).

Our results suggest that the features selected by LDA, FSFS,
or BSFS are sufficient to produce adequate accuracy classifica-
tion models between one normal group and two different disease
cohorts. Ideally, with more data, this number would increase.
Nevertheless, we believe this shows that our feature selection
and resulting models, is detecting more than just differences
between normal and abnormal EEGs. Put another way, if one
were to assume the models were only detecting a difference
between normal and abnormal EEGs then these models would
only have an accuracy as high as
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with H,T, S representing the ground truth of a subject’s cohort,
Ĥ, T̂ , Ŝ representing the model’s classification of a subject’s
cohort, and P (·) being the probability of selecting it, assuming
they are chosen at random.
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In total, 127/240 of our models have CV accuracy greater than
0.54 and 97/240 have IV accuracy greater than 0.52.

For the effect of demographic information and artifact re-
moval on the performance of models for three-class classifica-
tion, consistent with two-class models, including demographic
information can increase the accuracy of models (Fig. 4c). How-
ever, opposite to the two-class models, removing EEG artifact
significantly increased the accuracy of the three-class models
(Fig. 4d).

Taken together, our results suggest 1) LDA is the best feature
selection methods among those tested for our EEG dataset
(Fig. 5a and 5b), 2) SVM models perform better overall, 3)
raw EEG can provide comparable performance compared with
artifact-removed clean EEG in two-class classification, but sig-
nificantly inferior to clean EEG in three-class classification and
4) inclusion of demographic information can slightly increase
model performance for both two- and three-class models, but its
role is less remarkable compared to feature selection methods
and classification algorithms.

F. Differences in qEEG Features Between Normal, TBI
and Stroke Patients

As models built upon features selected by LDA, FSFS, or
statistics performed best in both two- and three-class classifi-
cation, we investigated the composition of these qEEG features
and compared them between normal, TBI, and Stroke subjects.
Fig. 6 and Sup. Fig. 12 show results obtained from clean and
raw EEG respectively. When looking at the fraction of features
selected in each qEEG category, most features selected by LDA,
FSFS and statistics were PSD and coherence for both two- and
three-class classification and both clean and raw EEG (Fig. 6a
and 6b, Sup. Fig. 12a and 12b).

To compare between normal, TBI and stroke subjects, we cal-
culated the z score to the standard deviation of normal subjects.
Fig. 6c and Sup. Fig. 12c show the median z score (with normal
baseline) for each type of feature for all three cohorts. It appears
that relative PSD, as well as coherence, had biggest difference in
median z scores between the three groups. In addition, in clean
EEG data, TBI and stroke patients had significantly reduced
entropy compared to normal control.

To further understand the change in coherence, we studied
the coherence between all channel pairs between normal and
TBI subjects in each frequency band. Though 20-40% of all
channel pairs had significant changes across each frequency
band compared to normal subjects, the change in coherence
was more channel pair dependent rather than frequency band
dependent (data not shown), which means the same channel pair
often shows the same trend of change across all frequency bands.
Therefore, we analyzed the broadband (1-40 Hz) coherence
change in TBI for each pair of channels from normal subjects,
which is plotted in Fig. 6d and Sup, Fig. 12d. We observed an
overall reduction in broadband coherence when only channel
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pairs with |z| scores higher than 0.5 were analyzed (Fig. 6d inset
and Sup. Fig. 12d inset). Reduction in inter-hemisphere coher-
ence was observed across the frontal lobe and between temporal
and occipital regions. Reduction in intra-hemisphere coherence
was detected between ipsilateral frontal and temporal regions, as
well as between frontal and occipital regions. Increase in intra-
hemisphere coherence was found between ipsilateral parietal
and occipital lobes.

To look at coherence changes in stroke patients from that
of TBI patients, we found that 56-72% of all channel pairs had
significant changes across all frequency bands (data not shown),
and then compared each channel pair as above but with median
z-scored data using TBI as a baseline (Fig. 6f and Sup. Fig. 12f).
In general, there was a global decrease in most channels with
the notable exception of increases between the occipital and
ipsilateral central regions (Fig. 6f inset and Sup. Fig. 12f inset).

In addition to coherence, we plotted the topographic maps of
relative power change in each frequency band in TBI subjects
and stroke subjects, aiming to understand the spatial pattern
(Fig. 6e and 6f and Sup. Fig. 12e and 12f). TBI patients showed
remarkable increase in relative delta power at parietal and frontal
regions, and reduction in alpha and mu power at bilateral fronto-
temporal regions compared to normal subjects (Fig. 6e and
Sup. Fig. 12e). Stroke patients, when compared to TBI patients,
showed decreases in alpha, mu, beta, and gamma frequencies,
as well as increases in theta power at fronto-temporal region
and decreases in delta power around the bilateral central regions
(Fig. 6f and Sup. Fig. 12f).

These analyses reveal complex changes in qEEG features be-
tween TBI, stroke and normal subjects, particularly in coherence
and relative PSD. In both TBI and stroke patients, coherence
showed a global reduction, and relative PSD demonstrated a
global increase in low frequency delta frequency band and
decrease in high frequency bands. In addition, fronto-temporal
and parietal regions appear to have the most remarkable changes
in both coherence and relative PSD. In stroke subjects, we saw
noticeably lower relative PSD at higher frequencies and higher
theta power.

IV. CONCLUSION

This study demonstrates that ML models built upon qEEG
features and demographic information extracted from existing
public databases could distinguish between TBI and normal
patients with up to 0.94 accuracy and 0.94 sensitivity in CV and
0.76 accuracy and 0.80 sensitivity in IV. With the addition of a
cohort of stroke patients, these models were able to outperform
a theoretical model that could only detect changes between
normal and abnormal EEGs. In fact, further investigation into
the best three-class models showed it distinguished stroke with
the highest precision. Feature selection method appears to play
the most important role in the performance of models. Our
study shows LDA feature selection method outperformed all
other methods, reflected by the observation that best performing
models in CV and IV for both two- and three-class classifica-
tion were predominantly based on features selected by LDA
(Fig. 5). In diagnosing an independent subject group, SVM
with polynomial kernels and coarse KNN performed better

than others; while in 10-fold CV, SVM linear or polynomial
kernels performed better. In general, including demographic
information in the input feature can significantly increase the
performance of models, but to a limited degree. Interestingly,
models from raw EEG data had a comparable performance with
those from clean EEG when just comparing between normal
and TBI cohorts. However, when comparing between all three
cohorts, clean EEGs performed much better. In line with prior
qEEG study on TBI patients, coherence and relative spectral
density were two major parameters changed from normal to TBI.
Coherence change varied among channel pairs with reduction
more predominant. Relative PSD demonstrated a global increase
in low frequency delta power and decrease in higher frequency
(alpha, mu, beta, and gamma) power. These results suggest EEG
ML can potentially be used in the detection or monitoring of TBI
in clinic.

V. DISCUSSION

A. Use of Temple University Hospital EEG Corpus for
TBI and Stroke Research

Temple EEG Corpus is a major, publicly available clinical
EEG database [24]. With the advancement of data analysis tools,
this database provides an excellent platform for investigators to
explore the potential of EEG signals in neurological applications
beyond seizure and sleep disorders. In this study, we extracted
patients with a record of TBI, those with record of stroke, and
those whose EEG was considered normal by clinicians. Demo-
graphic distribution (age and sex) of TBI group extracted from
the database (Table I) aligns well with that reported previously
[25], suggesting that the Temple database represents the general
TBI population.

In the Stroke group, the specific type of stroke that had
occurred was not always well documented, leaving that group
heterogenous in that nature. Though this is a limitation, we hope
a large enough sample can either average or dilute any erroneous
results.

Ideally, a more homogenous patient population can poten-
tially increase the accuracy in biomarker research. If the database
can include the time of onset, the number, severity, and cause
of injury, as well as any other available medical record, i.e.,
neurocognitive test, imaging results, etc., it would be more
helpful for the investigation of EEG signals for prognosis and
monitoring of the injury, and for the identification of correla-
tions between EEG signals and cognitive function or structural
changes. However, the caveats of heterogeneity of TBI patients
in the Temple database would not disvalue its importance in the
exploration of EEG biomarkers, particularly for incorporating
novel analysis methods, i.e., machine/deep learning. EEG sig-
nals that can be subjected to multiple quantitative temporal and
spectral analyses across multiple channels generate feature sets
that are well suited for ML applications. The large number of
qEEG features makes a large sample size necessary to develop
a reliable classifier, which is difficult to achieve through a single
clinical study. Databases like the Temple EEG Corpus become
particularly useful in storing and sharing data for integration
and re-analysis. In addition to TBI and stroke, we believe such
a database can be further used to re-examine the potential of
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EEG for distinguishing and characterizing different neurological
disorders, as the specificity of EEG for different types of neuro-
logical disorders is still questionable, which has long prevented
its widespread adoption in clinical practice. Our study provides
a preliminary evidence on that by demonstrating that ML algo-
rithm can yield high accuracy to separate TBI and stroke patients.

Repository data, while highly desirable for big data and
machine learning applications due to its sheer size, is difficult to
manage in cases where documentation and metadata formatting
is inconsistent. Management tools often require customization
on the part of the user, which cause difficulties in open source
sharing of both data and algorithms. Medical big data research
especially, which aims to uncover relationships and distinc-
tions between various populations, will greatly benefit from
the continued efforts to normalize data collection and reporting
procedures. In this study, differences in record formatting, gaps
in information recorded, and unclear diagnostic outcomes were
among the limiting factors in textual analysis, which in turn
limits the potential information pool for processing.

B. EEG Machine Learning and TBI

With the development of advanced analytical techniques and
improvement in computational capability, machine/deep learn-
ing has been under intense investigation for implementation in
multiple neurological fields, including mind decoding in brain-
computer interface [26], identification of sleep-wake stages
[27], prediction of seizures [28], and prognosis of stroke [29].
Thatcher pioneered utilizing machine learning in the TBI field
by applying discriminant analysis of multivariant qEEG features
to classify TBI patients and differentiate severe TBI patients
from the mild [30], [31]. With 20 EEG features, he achieved an
accuracy of >90% in cross-validation and IV. Thornton further
tested using 31 high-frequency EEG features to distinguish mild
TBI subjects and got an accuracy of about 87% [32]. Recent dis-
criminative index developed from a large sample size and more
homogeneous subject population was reported to have a >95%
sensitivity to predict positive CT finding in acute TBI [16], and
may perform better in monitoring functional recovery from a
TBI compared to other clinical outcomes [33]. Furthermore,
a multimodal study found that algorithms incorporating EEG
signals into symptom questionnaires can increase the accuracy
by 10% [34].

Due to the inherent flexibility and wide array of potential
algorithmic combinations, as well as the constant advances
being made in the field, it is reasonable to make the assumption
that newer, more complex models would improve classification
results. Here, we evaluated several common ML techniques with
a range of parameters in order to determine potential utility in
TBI classification tasks. In our study, we achieved an accuracy
up to 94% in CV and 76% in IV. Six of the top 12 performing
models in 10-fold CV (with the other 6 using BSFS based on
LDA features) and 6 out of 18 best performing models in IV used
LDA as the feature selection method. Since LDA can function
independently as a binary classifier and has been most often
used in prior EEG TBI reports, it is well suited for separating
the classes examined here. When used as a multiclass classifier,
a one vs one coding strategy was used, where only two classes

were looked at each iteration. The BSFS selection method was
unique in that it started with the features selected from LDA,
but removed any additional features it could, leaving us with
a smaller feature set but comparable performance in 10-fold
CV. However, the models trained with features from BSFS
preformed significantly worse in IV. This is mostly likely due to
overfitting on the original training data caused by optimization
on an already optimized dataset.

The LDA and BSFS methods selected 178-224 EEG features,
PCA selected just over 130 features, conventional statistics
selected 80-98 features, and FSFS selected 12 or fewer features.
This is surprising since the other best performing models in the
IV used features selected from the smallest number of features
selected by FSFS or those showing significant difference sta-
tistical differences. Overall, the features selected by LDA and
conventional statistics shared up to 28 raw features, while only
2-4 raw FSFS features were found in both. Though the number
of features from LDA and statistics appeared to be high relative
to the number of subjects, we implemented multiple folds of
validation to reduce the impact of overfitting, including 10-fold
CV, randomizing the labeling, and IV. In addition, SVM was
used for its good performance in handling high-dimensional
data. Indeed, 21 out of the 30 best performing models were
SVM models, with only nine trained with KNN kernels in
two-class classification. And all best performers in three-class
classification are SVM models. In future work, other methods
such as LASSO and convolutional neural network (CNN) may be
implemented to further improve the dimensional reduction and
possibly the classification results. CNN has been shown to have
superior performance in neurological applications compared to
conventional algorithms and may provide higher sensitivity and
specificity [35]–[38].

Although we had moderate success with CV accuracy, it is
troubling that there was 18 point drop in IV accuracy. In general,
a drop in performance between CV and IV is indicative of
overfitting during training. A common way this is addressed
is by increasing the sample size for training sets, which was not
feasible here based on the inclusion/exclusion criteria and the
data available in Temple EEG Corpus. A larger sample size for
model training, with consistent data labels, could address this
limitation. Alternatively, this study used randomly labeled data
to generate a baseline performance margin for each model. IV
classification consistently outperformed classification of sub-
jects randomly assigned to a cohort, showing that, while overfit
to the training set used for CV, the overall models were still
able to generalize to unseen data. Future work will focus on im-
proving IV accuracy, either through larger training sets or more
advanced algorithms (deep learning, ensemble methods, etc.).

As suspected, most models performed better than conven-
tional statistics. The exception to this was the surprisingly poor
results of the PCA results (Fig. 5). Since PCA relies on a linear
transformation, it is possible that the features are better suited
for nonlinear transformations. However, this is contradictory to
the success found with the linear LDA SVM model, so further
investigation is needed. The other high performing models (Sup.
Table I and II) consist of mostly polynomial SVMs. This is
perhaps due to their versatility to this set of heterogenous set of
data that could not be captured in the KNN models.
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It also needs to be noted that almost all models published for
TBI classification utilized supervised learning. However, one of
the challenges in the detection and monitoring of TBI is the lack
of an early and sensitive outcome measure. This restrains the
performance of classifiers within our current knowledge breadth.
McCrea et al. [33] reported that an EEG-based algorithm could
potentially be more sensitive than conventional neurocognitive
assessment in monitoring the recovery from TBI. Our own study
in mice also suggests EEG changes can be observed without
an apparent neuroinflammatory reaction [12]. Therefore, in the
future, an unsupervised approach can be explored to mitigate
this limitation.

Our study also explored the effect of demographic information
and artifact removal on the performance of models. Due to the
significant difference in the rate of TBI between males and fe-
males, including demographic information can slightly increase
the accuracy of models developed with the same algorithm.
However, its effect on the model performance is less than input
features, algorithms, and kernels. Interestingly, models devel-
oped from features calculated from raw EEG data demonstrated
comparable performance with those trained with clean EEG
features in two-class classification. However, artifact-removal
significantly increased the performance of three-class models.
We speculated that some information embedded within artifact,
i.e., eye movement, could be different between TBI and normal
subjects, explaining this discrepancy. A further investigation into
the IClabels removed in our work indeed show a significant
difference in the number of eye movement artifacts between
normal and TBI groups (Sup. Fig. 13). Moreover, a significant
difference in the number of muscle and eye movement artifacts
was revealed between TBI and stroke patients. In addition, it
appears that artifact removal noticeably changed the coherence
difference between stroke and TBI subjects. This may par-
tially explain why artifact removal did not affect the two-class
model performance but increased the performance of three-class
models.

C. QEEG Differences Between Normal, TBI and Stroke

Though identifying qEEG biomarkers was not the primary
goal of this study, understanding changes can help us compare
results from the database with prior reports, and determine the
features that can significantly contribute to a well-performing
model. LDA, statistics, and FSFS selected a remarkable fraction
of features from coherence and relative PSD for both two- and
three-class classification (Fig. 6a). Stroke and TBI differ in
the cause of brain injury (internal vs. external), whereas share
some pathological processes including the primary cranial cell
death and blood-brain-barrier disruption followed by secondary
neuroimmune responses triggered by cytokines. Due to the sim-
ilarities in pathophysiology and associated functional deficits
between these two conditions, specificity of EEG in distinguish-
ing these two conditions is always questionable. Indeed, our
study suggests similar trend of qEEG changes in coherence and
relative PSD between the two groups with changes in stroke
patients more prominent. However, ML models reasonably sep-
arated these two groups, suggesting advanced analytics can

potentially be more sensitive to identify differences compared
to conventional statistics.

In literature report, the trend of change in coherence related
to TBI and stroke varies, however, the most reported was the
reduction in global or inter-hemisphere coherence [6], [8]. Other
reports suggest the change can be pathway-specific [30], [39].
Our study seems to support both. The grouped analysis (Fig. 6d
inset) shows a symmetric pattern between two hemispheres in
TBI patients. Though this does not mean the same patient would
have symmetric changes, it suggests the same pathway in both
hemispheres are equally susceptible to the same change. When
comparing stroke to TBI, stroke patients showed a further reduc-
tion in global coherence, reflecting a more severe interruption
of inter-neuronal communication, which is consistent with prior
report [40].

Unlike diverse findings in coherence change after TBI and
stroke, reports in PSD alteration were more consistent with
an increase in lower frequency bands (delta and theta) and a
reduction in higher frequency bands (alpha, beta and gamma)
[41], [10], [6], [42]. Our study revealed the same trend of change
in relative PSD as shown in Fig. 6e and 6g, however, stroke had
additional increase in theta power.

In addition to coherence and PSD, LDA extracted several
entropy features in raw EEG, and a large number of entropy
features were found significantly different from groups in clean
data. Different metrics for entropy have been employed to iden-
tify EEG biomarkers of TBI and stroke. A decrease at the acute
phase of injury followed by a recovery was mostly reported in
both animal and human studies for TBI [12], [43], [44]. Though
TBI subjects in the Temple database were diverse, which may
include chronic injury with entropy recovered and those with
local injury [45], an overall reduction was remarkable in clean
EEG. For stroke patient, an increase in sample entropy was
reported previously [40], this is controversial to what we found in
clean EEG data that a significant reduction was revealed in stroke
group. Further studies on entropy changes in stroke and TBI
patients are needed to determine its post-stroke and post-TBI
alterations. The reason that clean data demonstrated entropy
change but not raw EEG may be because the cleaning process
utilizes features associated with entropy. Since signal noise
increases overall variance, removing artifacts through cleaning
methods reduces noise and therefore should alter extracted
entropy features. Without artifact signals (i.e., eye-movement)
buffering entropy values, changes in these features can be more
easily attributed to the classes.

While further work is necessary to develop clinically appli-
cable spectral feature biomarkers and accompanying diagnostic
models for TBI, research indicates that EEG data provides a
measure of separability between normal and TBI subjects, and
with potential to separate TBI from other neurological condi-
tions, i.e., stroke. Other non-invasive, portable modalities may
be combined with EEG to enhance the available information
within the feature set for these types of analyses. Future work
will investigate the biological basis of the relationship between
selected features and TBI pathology, as well as algorithmic
improvements to modeling neurological disorders, for classi-
fication purposes.
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