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Predicting Multiple Sclerosis From Gait
Dynamics Using an Instrumented Treadmill:

A Machine Learning Approach
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and Richard Sowers , Member, IEEE

Abstract—Objective: Multiple Sclerosis (MS) is a neuro-
logical condition which widely affects people 50-60 years
of age. While clinical presentations of MS are highly het-
erogeneous, mobility limitations are one of the most fre-
quent symptoms. This study examines a machine learn-
ing (ML) framework for identifying MS through spatiotem-
poral and kinetic gait features. Methods: In this study,
gait data during self-paced walking on an instrumented
treadmill from 20 persons with MS and 20 age, weight,
height, and gender-matched healthy older adults (HOA)
were obtained. We explored two strategies to normalize
data and minimize dependence on subject demographics;
size-normalization (standard body size-based normaliza-
tion) and regress-normalization (regression-based normal-
ization using scaling factors derived by regressing gait
features on multiple subject demographics); and proposed
an ML based methodology to classify individual strides of
older persons with MS (PwMS) from healthy controls. We
generalized both across different walking tasks and sub-
jects. Results: We observed that regress-normalization im-
proved the accuracy of identifying pathological gait using
ML when compared to size-normalization. When general-
izing from comfortable walking to walking while talking,
gradient boosting machine achieved the optimal subject
classification accuracy and AUC of 94.3 and 1.0, respec-
tively and for subject generalization, a multilayer percep-
tron resulted in the best accuracy and AUC of 80% and 0.86,
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respectively, both with regression-normalized data. Conclu-
sion: The integration of gait data and ML may provide a vi-
able patient-centric approach to aid clinicians in monitoring
MS. Significance: The results of this study have future im-
plications for the way regression normalized gait features
may be clinically used to design ML-based disease predic-
tion strategies and monitor disease progression in PwMS.

Index Terms—Multiple sclerosis, gait, machine learning,
conditional entropy, progression space.

I. INTRODUCTION

MULTIPLE Sclerosis (MS) is a chronic demyelinating
and neurodegenerative disorder that impairs the central

nervous system. It can affect a range of cognitive, physical,
and psychiatric processes [1], [2]. Severe symptoms include
impairment of vision and sensory abilities, muscle paralysis,
and depression [3], with mobility impairments being one of the
most frequent signs [4]. MS affects approximately 1 million
people in the United States (US) and more than 2 million
globally [5]. Peak prevalence is in adults 50-60 years of age [6].
Direct medical treatment expenses and indirect costs in terms of
lost productivity, additional need for caretakers and amenities
for persons with MS (PwMS) are estimated to be $24 billion
annually in the US [7].

Walking and balance difficulties are one of the most common
indicators in PwMS; nearly 85% of PwMS describe gait disor-
ders as a major complication [8] and roughly 50% patients need
walking assistance within 15 years of MS onset [9]. Secondary
effects often include fear of falling, significantly impacting the
quality of life of PwMS [10]. In contrast to the monitoring of
most underlying manifestations of MS, which require neurolog-
ical examinations by a trained practitioner, gait can be quickly
and remotely monitored. Thus, objective gait monitoring, which
expands upon typical clinical tests [11], may be important for de-
signing disease prediction and progression strategies in PwMS.
Past research on MS assessment with gait-related dynamics has
typically relied upon statistical inferences that may not be able to
gauge the heterogeneity present in the disease [12]–[16]. Given
that subtle and heterogeneous patterns of gait changes may arise
in PwMS over time, a machine learning (ML) approach will be
valuable for monitoring MS-related changes in older adults.

This study aims to examine MS and disability related changes
in spatiotemporal and kinetic gait features after normalization;
and evaluate the effectiveness of a gait data-based machine
learning (ML) framework for MS prediction (GML4MS), an
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Fig. 1. Top: Task generalization model, Bottom: Subject generalization
design. Healthy older adults (HOA) and PwMS are depicted in shades
of green and red, respectively. The indices (1, 2, 3, . . .) along with HOA
and PwMS are used as a reference for dummy subject identifies.

ML-based methodology to classify strides of older PwMS from
healthy controls, so as to generalize across different walk-
ing tasks and subjects after gait normalization. Building upon
prior work examining MS-related variations in gait charac-
teristics [17], we categorized PwMS using the following two
classification designs (see Fig. 1):

a) Task generalization establishing the generality over dif-
ferent tasks. In these tasks, we train binary (healthy vs. MS)
classifiers on walking (W) trials and apply them to walking
while talking (WT) trials. Task generalization results will hope-
fully reflect how classifiers trained in supervised lab conditions
might work in real-world gait tasks with challenges of divided
attention. To monitor disease progression and relapses, task
generality is vital as normative data collected in a clinic or
lab could be used as a basis to assess gait data collected using
wearable sensors in a home-based setting.

b) Subject generalization demonstrating the generality over
different subjects. In these tasks, we train binary (healthy vs.
MS) classifiers (with a balanced collection of W and WT tasks)
on some test subjects and apply them to the withheld separate set
of test subjects. These results may have implications in detection
of MS in new patients.

II. RELATED RESULTS AND CONTEXT

Several studies have identified gait performance declines
in PwMS, particularly as disability increases [12], [18], [19].
Most gait-based methods for identifying MS have relied upon
traditional statistical techniques to examine differences in spa-
tiotemporal features and correlations with disability [12]–[16].
Supervised ML methodologies such as random forest and ar-
tificial neural networks have already been used in human gait
analysis across other neurological populations [20], [21]. A
few prior works have explored ML to classify MS using gait
data [22], [23]. However, to the best of our knowledge, there
is no study utilizing ML on spatiotemporal and kinetic gait
characteristics for MS prediction. Despite model-based statisti-
cal practices presenting transparency and explainability regard-
ing the contribution of independent features, ML approaches
may improve performance by addressing high-dimensional and
non-linear feature interactions in a model-free way. Further,
transforming statistical inference to prediction classes requires
defining sensitive classification thresholds.

Distinctive physical characteristics across subjects inherently
enhance the variability in raw gait parameters and thus limit
the efficiency of learning true reliable trends in a feature dif-
ferentiating healthy and pathological gait [24]. Referring to
the performance improvements in previous studies examining
neurological diagnosis [21], [25], two normalization strategies,
namely size-N (standard body size-based normalization) and
regress-N (regression-based normalization using scaling factors
derived by regressing gait features on multiple subject demo-
graphics) were explored to minimize the dependency of gait
features on the subject demographics.

The proposed application of ML classifiers to recognize gait
patterns of PwMS across tasks and over new subjects is a step
forward towards the identification of a tipping point for older
people with MS, and worsening of symptoms in the near term.
Moreover, we discuss the importance of spatiotemporal and ki-
netic features, encompassing valuable domain knowledge, in the
classification performance. Attributing to prior evidence of gait
changes with MS impairment [12], [26], [27], we construct an
MS progression space by unsupervised clustering of reduced gait
feature space in PwMS to examine the relative correspondence
of the defined subgroups to disease severity. This analysis may
facilitate strategies to monitor disease progression and evaluate
the effectiveness of disease modifying interventions. The pro-
posed methodology is an advancement towards developing an
assessment marker for medical professionals to predict older
PwMS who are likely to have a worsening of symptoms in the
near term. Our ultimate objective is a system to automatically
identify inflection points in the disease progression of older
PwMS.

III. EXPERIMENTAL DESIGN: SETUP AND SUBJECTS

A. Experimental Paradigm

An instrumented treadmill (C-Mill, Motekforce Link, Culem-
borg, The Netherlands) in self-paced mode was utilized to
allow subjects to walk at their preferred speed. To allow for
unbiased force recordings, subjects were instructed to restrain
from holding the handrails while walking on the treadmill.
For safety purposes, all subjects wore a ceiling-mounted har-
ness and had access to an emergency stop button during all
the walking trials. Supplementary figure S1 illustrates the gait
data acquisition setup. All subjects walked one trial under two
different task conditions, namely single-task condition, W and
dual-task paradigm, WT. For the WT task, subjects were asked
to walk while reciting alternate letters of the alphabet (i.e.
a, c, e, . . .), coordinating equal attention between mobility and
the cognitive interference exercise to depreciate the influence
of task prioritization. The divided attention dual-task walking
in a laboratory environment has been demonstrated to be more
analogous (as compared to usual walking) to every-day walking
in the older adults and hence provides a competent framework
to generalize adequacy towards daily-living gait for 24/7 moni-
toring scenarios [28]. Further, the attention demanding WT task
has been examined by researchers for practical implications in
designing mobility risk assessment procedures and predicting
the risk of falls and fall-related injuries in older adults and
individuals with other cognitive or movement disorders [29].
For each trial, subjects were instructed to walk at a comfortable
pace for up to 75 seconds (s), after being provided with a brief
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training session. CueFors 2 software [30] was used to collect gait
event data (i.e., left and right heel strike, mid-stance, and toe-off
position coordinates and time stamps) and raw data (i.e., vertical
ground reaction forces, treadmill speed and center of pressure
(CoP) position coordinates at a 500 Hz frequency) during each
walking trial. To facilitate the online identification of gait events,
an online pattern recognition algorithm detects maxima and
minima in the butterfly patterns (see Section IV-B4) of the CoP
profiles, that are collected in real time via an embedded force
plate in the treadmill [31]. Supplementary table S2 describes the
collected raw features.

B. Study Participants

Twenty individuals from each cohort, MS patients (age:
61.05± 6.87 years [49− 75 years], weight: 74.89± 24.52 kg
[21.6− 135 kg], height: 1.68± 0.09 m [1.6− 1.93 m],
male/female: 5/15) and healthy older adults (HOA) (age:
61.2± 5.87 years [48− 68 years], weight: 76.17± 19.24 kg
[52.1− 121 kg], height: 1.70± 0.07 m [1.56− 1.90 m],
male/female: 5/15) were recruited from the local community.
All subjects were medically stable, right-side dominant, had
no lower limb injury in the past six months and had normal
or corrected to normal vision. MS subjects had mild to
moderate disability (4.3± 1.62 [1.0− 6.0] as evaluated by
the Kurtzke’s Expanded Disability Status Scale (EDSS) [32]),
were relapse-free for at least a month prior to experimental
trials and had no other cognitive dysfunction or neurological
disorders. EDSS, monitoring sensory, motor, brain stem, visual,
cerebellar, bowel and bladder, pyramidal and other functions,
is an accepted method to quantify disability in PwMS. For this
work, we divided PwMS into three sub groups based on their
EDSS score: mild (1.0–2.5), mild-to-moderate (3.0–4.5) and
moderate (5.0–6.0). No significant differences (at significance
level α = 0.05) in age, weight, height, gender and education
levels were observed between the two cohorts. Two HOA and
three PwMS were excluded from the analysis for holding the
handrails (biasing the raw force data).

IV. EXPERIMENTAL DESIGN: DATA ANALYSIS

A. Gait Terminology and Mathematical Notation

A typical walking gait comprises of recurrent gait cycles (GC).
A gait cycle or stride is measured from a foot’s heel strike to the
subsequent heel strike of the same foot. For our analysis, a stride
was characterized by the following gait events: HSR: heel strike
right, TOL: toe-off left, MidSSR: midstance right, HSL: heel
strike left, TOR: toe-off right, MidSSL: midstance left, with
the next HSR starting a new stride. A stride is a consolidation
of two steps (i.e. HSR-HSL and HSL-HSR), where a step is
marked from a foot’s heel strike to the following heel strike
of the opposite foot. Supplementary figure S3 demonstrates the
longitudinal plane view of a GC. The following are frequently
used mathematical notations:

� LetNs be the total number of valid strides recorded during
a subject’s complete walking trial on the treadmill

� Let (S̃, ≤s) where S̃
def
= {sk, k = 1, 2, . . . , Ns} be an

ordered set of valid strides during the complete walk
where sm ≤s sn essentially means that stride sm appeared
prior in the subject’s walk to stride sn. Since the strides

derived from a trial are ordered in time, sm ≤s sn if m ≤
n defines a natural order on S̃. Clearly, cardinality | S̃ |=
Ns.

� Let (E, �) be an ordered set of six gait events observed
during a stride

E
def
= {HSR, TOL,MidSSR,HSL, TOR,MidSSL}

where the order � is defined as follows:

HSR�TOL�MidSSR�HSL�TOR�MidSSL

� Let Traw
def
=
{
δt, t = 0, 1, 2, . . . , Twalk

0.002

}
be the times (in

s) corresponding to raw force and CoP recordings
where δ = 0.002, Twalk = 75 since the raw data is col-
lected every 0.002 s and each trial lasted for 75 s. For
each time stamp t ∈ Traw, define:

– S(t) as the treadmill speed (in m/s)
– FZ(t) as the ground reaction force (in Newton (N))
– (CoPX(t), CoPY (t)) as the CoP positions in x and

y-directions (in m)
� Define the Cartesian product (E × S̃, ≺)whereE × S̃ =
{(e, sk) : e ∈ E and sk ∈ S̃} as the set of ordered pairs
(e, sk) corresponding to event e of stride sk for every
e ∈ E and sk ∈ S̃ where eq. (1) defines the ordering on
E × S̃.

(e, sm) ≺ (f, sn) if

{
sm <s sn for m �= n

e � f for m = n
(1)

For each gait event and stride (e, sk) ∈ E × S̃, define:
– T

(sk)
e as the elapsed time (in s) from the start of data

recording to (e, sk);
–
(
X

(sk)
e , Y

(sk)
e

)
as the x and y-coordinates (relative to

origin of the treadmill) for the detected (e, sk);

– T̃
(sk)
e

def
= min{t : t > T

(sk)
e and t ∈ Traw} as the closest

time in Traw (corresponding to the recorded raw forces
and CoP positions) to the marked time T

(sk)
e ;

– F
(e,sk)
Z

def
= FZ(T̃

(sk)
e ) as the reaction force at (e, sk);

– ̂CoP
(sk), (sm)

e, f as the CoP trajectory between

(e, sk), (f, sm) ∈ E × S̃ (events e and f of strides
sk and sm, respectively) where (e, sk) ≺ (f, sm) eq. (1)

̂CoP
(sk), (sm)

e, f
def
= {(CoPX(t), CoPY (t)) :

T̃ (sk)
e ≤ t ≤ T̃

(sm)
f

}
B. Gait Feature Extraction for MS Characterization

To examine cohort related variations in the gait patterns,
characteristic kinematic and kinetic features were extracted
across strides from the raw gait data using Python 3.6 (see
supplementary figure S4 for our workflow pipeline). The derived
features can be categorized as follows:

1) Temporal Features: 7 temporal gait features, namely
stride time, stance time, swing time, supporting (right single,
initial double and terminal double) times (in s) and cadence (in
steps/min) were computed for each stride.
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� Stride time is the time between two successive heel strikes
of the same foot i.e. HSR-HSR. ST (2) denotes the set of
stride times for a complete trial.

ST = {ST (sk) : sk ∈ S̃} where ST (sk)

= T
(sk+1)
HSR − T

(sk)
HSR (2)

� Stance time (StT
(sk) = T

(sk)
TOR − T

(sk)
HSR) is the time be-

tween heel strike and toe-off (from stride sk ∈ S̃) of the
same foot i.e. HSR-TOR.

� Swing time (SwT
(sk) = T

(sk+1)
HSR − T

(sk)
TOR) is measured

between the toe-off (TOR, sk) and heel strike (HSR, sk+1)
of the same foot.

� Support can be categorized as single or double depending
on whether only one or both of the subject’s feet are
in contact with the treadmill’s belt, respectively. Single
support can further be classified as left/right depending on
which one foot supports the subject’s body.

– Left single supporting time (SS
(sk)
L = T

(sk+1)
HSR −

T
(sk)
TOR) is the time between toe-off (TOR, sk) and heel

strike (HSR, sk+1) of the right foot for stride sk ∈ S̃.
This is identical to swing time.

– Right single supporting time (SS
(sk)
R = T

(sk)
HSL −

T
(sk)
TOL) is the time between toe-off (TOL, sk) and heel

strike (HSL, sk) of the left foot for stride sk ∈ S̃.
Double support can be identified as initial/terminal based
on it’s onset in the stance phase.

– Initial double supporting time (DS
(sk)
I = T

(sk)
TOL −

T
(sk)
HSR) is the time amid heel strike of supporting foot

and toe-off of other foot i.e. HSR-TOL from stride
sk ∈ S̃.

– Terminal double supporting time (DS
(sk)
T ) is calcu-

lated between heel strike of the other foot and toe-off
of the supporting foot i.e. HSL-TOR from stride sk.

DST = {DS
(sk)
T : sk ∈ S̃} where DS

(sk)
T

= T
(sk)
TOR − T

(sk)
HSL

� Cadence (C(sk) = 60× 2
/
(T

(sk+1)
HSR − T

(sk)
HSR)) is the

walking rate or number of steps taken in a minute (min)
i.e. twice the inverse of stride time (in min) for stride
sk ∈ S̃.

2) Spatial Features: The stride-wise extracted 4 spatial
(distance dimension) gait attributes included stride length, stride
width (in m) and the dimensionless left and right foot progres-
sion angles. Since the foot comes back to its initial position after
each stride while walking on a treadmill belt, the y-coordinate of
position for the current and next stride event, HSR for instance,
will be approximately the same each time. Therefore, to report
accurate spatial measures, y-position coordinates were corrected
to account for the relative treadmill belt travel (BT). Mathemati-

cally, BT ((e, sm), (f, sn)) =
∫ t2=T̃

(sn)
f

t1=T̃
(sm)
e

S(t)dt is computed as

the area under the speed-time curve bounded by the closest times
(corresponding to recorded speeds) to the marked times of gait
events (e, sm) and (f, sn) ∈ E × S̃ where (e, sm) ≺ (f, sn)

and dt = 0.002. The above integral is numerically approximated
via the trapezoidal rule. Hence, the relative y-coordinate for
(f, sn) w.r.t (e, sm) is given by (3).

Ŷ
(sn)
f = Y

(sn)
f +BT ((e, sm), (f, sn)) (3)

Now, let’s define the derived spatial gait markers.
� Stride length (SL(sk)) is the horizontal distance in the

walking plane between two subsequent heel strikes of the
same foot i.e. between (HSR, sk) and (HSR, sk+1).

SL = {SL(sk) : sk ∈ S̃} where SL(sk)

= Ŷ
(sk+1)
HSR − Y

(sk)
HSR

where Ŷ are adjusted for belt travel relative to (HSR, sk).
� Stride width (SW (sk)) is the medio-lateral distance be-

tween the two feet i.e. perpendicular distance between the
line connecting two consecutive heel strikes of the same
foot i.e. (HSR, sk) and (HSR, sk+1) and the heel strike of
the contralateral foot i.e. (HSL, sk).

SW (sk)=
1

D(sk)

∣∣(X(sk+1)
HSR −X

(sk)
HSR

)(
Y

(sk)
HSR − Ŷ

(sk)
HSL

)
−
(
X

(sk)
HSR −X

(sk)
HSL

)(
Ŷ

(sk+1)
HSR − Y

(sk)
HSR

) ∣∣
where

D(sk) =

√
(X

(sk+1)
HSR −X

(sk)
HSR)

2 + (Ŷ
(sk+1)
HSR − Y

(sk)
HSR)

2

and Ŷ are adjusted for belt travel relative to (HSR, sk).
� Foot progression angle (FPA) for the right/left
(θ

(sk)
R /θ

(sk)
L ) foot is defined as the angle between

the progression vector (PR/PL) (joining two consecutive
heel strikes of the right/left foot) and the foot vector
(FR/FL) (drawn between the right/left foot’s heel strike
and toe-off) for stride sk [33]. Since staggered walking
in PwMS might show significant fluctuations in FPAs,
we elected it as a potential feature correlating to MS gait.
Mathematically, we have:

θ∗ =
{
θ
(sk)∗ = (−1)x tan−1

(
Y

(sk)
P∗

X
(sk)
P∗

)
+ · · ·

(−1)y tan−1

(
Y

(sk)
F∗

X
(sk)
F∗

)
: sk ∈ S̃

}
(X

(sk)
F∗ , Y

(sk)
F∗ )=(X

(sk1
)

TO∗ −X
(sk)
HS∗, Ŷ

(sk1
)

TO∗ − Y
(sk)
HS∗ )

(X
(sk)
P∗ , Y

(sk)
P∗ ) = (X

(sk)
HS∗ −X

(sk−1)
HS∗ , Ŷ

(sk)
HS∗ − Y

(sk−1)
HS∗ )

where Ŷ are adjusted y-coordinates relative to the belt
travel (3), ∗ indicates left (L) or right (R) and sk1

denotes
sk+1 and sk for L and R, respectively. Exponents x, y are
defined as 1, 2 respectively for L and 2, 1 respectively for
R. Supplementary figure S5 summarizes these definitions
on an overground view of the GCs.

3) Spatiotemporal Features: Derived from the above de-
fined temporal and spatial features, 2 additional spatiotempo-
ral markers, namely stride speed (in m/s) and walk ratio (in
m/strides/min) were defined for each GC.
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Fig. 2. Butterfly diagram. Left: HOA, Right: PwMS with EDSS = 5.5,
Top: Trial W, Bottom: Trial WT. The curves illustrate the BD during the
entire 75 s walk where the thicker black line and yellow circle depicts the
mean trajectory and mean IP, respectively. Here, x and y axis represent
the CoP position coordinates. The variability (red dashed lines) and
asymmetry in the AP (σAP /ηAP ) and lateral (σL/ηL) directions are
reported in mm.

� Stride speed (SS(sk) = SL(sk)/ST (sk)) is defined as the
ratio of stride length and stride time for strides sk ∈ S̃.

� Walk ratio (W (sk) = 2× SL(sk)/C(sk)) is computed as
the ratio of stride length to the number of strides walked
per minute (i.e. half the cadence) for GCs sk ∈ S̃.

4) Kinetic Features: 8 kinetic gait parameters, namely the
six forces, one at each gait event (in N) and two butterfly
diagram-based features (in m) were identified for each GC.

� Forces (F (e,sk)
Z ) at each of the six gait events (e ∈ E)were

recorded for every stride sk. Thus, for a trial, we have

F e
Z =

{
F

(e,sk)
Z : (e, sk) ∈ {e} × S̃

}
∀ e ∈ E

� Butterfly diagram (BD) reflects the repeated CoP tra-
jectory for multiple continuous strides during a sub-
ject’s walk. The BD derived features, especially in
the anterior-posterior (AP) and lateral directions, have
been associated with important neurological functions in
PwMS [34] (Fig. 2). First, the intersection point (IP)
of the CoP trajectory for stride sk ∈ S̃ is calculated:
CoPX

(sk)
ip , CoPY

(sk)
ip . Then, the lateral and AP shift in

the IP for a trial are given by:

βL = {β(sk)
L : sk ∈ S̃}, βAP = {β(sk)

AP : sk ∈ S̃}

Define (CoPXip, CoPYip) = (
∑Ns

k=1 CoPX
(sk)

ip

Ns
,

∑Ns
k=1 CoPY

(sk)

ip

Ns
) as the mean IP. The set of lateral

and AP squared deviation from the mean IP for a trial are
given by:

αL = {α(sk)
L = (CoPX

(sk)
ip − CoPXip)

2 : sk ∈ S̃}
αAP = {α(sk)

AP = (CoPY
(sk)
ip − CoPYip)

2 : sk ∈ S̃}
The lateral (ηL) and AP (ηAP ) asymmetry can then be
defined as the mean lateral and AP shift in the IPs, respec-
tively. Similarly, the lateral (σL) and AP (σAP ) variability
are defined as the lateral and AP standard deviation (SD)

TABLE I
SIZE-N NORMALIZATION FOR THE EXTRACTED GAIT FEATURES

in the IPs, respectively. We selected βL and αL as the two
characteristic features of ML variability for our analysis.

Note that all features except the FPAs are always non-
negative. Before deriving the stride-wise features, GCs with
missing or invalid gait events were eliminated. Since several fea-
tures, namely stride, swing times, stride length, width and angles
will generate erroneous estimates for nonconsecutive strides,
such values were dropped during data processing. Overall, 1654
(HOA: 905, PwMS: 749) and 1576 (HOA: 878, PwMS: 698)
strides were retrieved from W and WT trials, respectively, across
35 subjects (HOA: 18, PwMS: 17).

C. Data Normalization Techniques

The demographic differences between subjects may intrinsi-
cally influence the dynamics of gait variability and hence bias the
MS gait differentiation efficiency. Thus, prior to classification,
we normalized the subject’s derived gait characteristics using
the following two approaches:

1) Body Size-Based Dimensionless Normalization (Size-
N): The extracted gait variables were normalized to non-
dimensional forms by dividing via their corresponding
dimension-matched body size-based scaling factors (proposed
in [35]) in order to adjust for the inherent inter-subject phys-
ical differences. For instance, the acquired lengths, namely
stride length and width were scaled by the subject’s re-
spective height. FPAs are dimensionless and thus require
no scaling. Let w, h, Ssize and g denote the body weight
(in kg), height (m), shoe size (m) and acceleration of
gravity (9.81m/s2), respectively, then Table I summarizes
scaled dimensionless quantities with regards to features ob-
tained for both cohorts and trials where L ∈ {SL, SW},
T ∈ {SSR, DSR, DSL, ST, StT, SwT}, F e

z ∀ e ∈ E, θ ∈
{θL, θR} and P ∈ {βL, αL}.

2) Multiple Regression-Based Normalization (Regress-
N): Gait variables from both walking trials of the 35 subjects
(in Section III-B) were normalized by regressing the baseline
gait features of normative walking data from 30 additional
healthy older adults on multiple demographic characteristics.
These additional healthy older adults (age: 67.6± 10.34 years
[50− 87 years], weight: 71.61± 14.52 kg [52.97− 103 kg],
height: 1.68± 0.17m [1.01− 1.96m], male/female: 9/21) were
recruited from the local community. All controls walked for
200 s on the treadmill and yielded 21 gait features from a total
of 3923 valid strides. A regression model was fitted to each
gait feature with subject-wise averaged gait parameter values
as a dependent variable and their corresponding demographics
(weight, height, gender and age) as independent variables. All
independent variables were assessed while fitting the regression
since the variance inflation factor for each was lower than 5,
hence ignoring the concern of multicollinearity. Further, the
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Spearman’s rank correlation coefficients among the independent
variables presented no strong associations. For each gait feature,
backward elimination was used to determine M statistically
significant predictors (p < 0.1) and an optimal combination of
predictors with the minimum corrected Akaike information cri-
terion was selected out of 2M possibilities. Subsequently, robust
regression models minimizing the Tukey’s biweight loss of the
standard Gaussian residual errors were fit (see supplementary
table S6 for the regression coefficients and the corresponding
root mean squared errors). Gait features from both trials of the
35 study subjects (in Section III-B) were then normalized to
dimensionless quantities with their predicted values obtained
via their corresponding fit and subject demographics. Scaling
relative to the regression predictors and coefficients computed
from normative walking data of other healthy older adults aids in
minimizing data spread among the gait features for the controls
and association with individual demographic characteristics,
and thus improve detection of MS vs. subject-related changes
in gait.

D. Statistical Analysis

To examine cohort-related differences and the corresponding
effect of normalization strategies on gait feature characteristics
(i.e. mean, SD and range), a two tailed t-test and F -test was
used to identify significant MS-related differences at α = 0.05.
The statistical assumptions of independence (since all subject
observations were independent), normality (via the Shapiro Wilk
test) and homoscedasticity (via Levene’s test) were verified
for the t-test. Mann-Whitney U-test and Welch’s t-test were
used, respectively, if normality or homoscedasticity, respectively
failed. Similarly for the F -test, independence and normality
were examined, and Levene’s test was implemented if normal-
ity failed. Spearman’s correlation (r) between the mean gait
parameters and physical characteristics (weight, age, height and
gender) of subjects in both trials were compared for raw (rraw),
body size (rs), and regression (rreg) normalized data to study
the dependence of gait features (and thus the performance of
ML models) on subject demographics. Further, among PwMS
we explored the association and directionality of raw and nor-
malized gait variables with disease severity using Spearman’s
correlations (redss) to motivate the applications of gait in learn-
ing MS progression with time.

E. Classification Models and Evaluation

MS prediction was studied across two classification designs,
namely task and subject generalization (Fig. 1). In both task
and subject generalization, binary supervised learning classifiers
were trained to differentiate strides corresponding to HOA and
PwMS. ML models were trained on 1654 strides across all 35
subjects in W trials and tested to categorize 1576 strides of
the same subjects in WT trials for task generalization. Since
our data set was limited to 35 subjects, we used a 7-fold
cross-validation (CV) for subject generalization. In each sce-
nario, all models were examined with both size-N and regress-N
normalized features. Z-score normalization was applied to all
features to eliminate the influence of variable feature ranges.
For both classification architectures, the performance of nine
notable supervised classifiers, i.e. decision tree (DT), random

forest (RF), support vector machine with linear (LSVM) and
radial basis function (RBF SVM) kernels, gradient boosting ma-
chine (GBM), adaptive boosting (AdaBoost), eXtreme gradient
boosting (XGBoost), multilayer perceptron (MLP) and logistic
regression (LR) were compared (see supplementary section S7
for details on these algorithms). Prediction efficiency for the
task and subject generalization classifiers were weighed via the
test set and mean CV precision, recall, accuracy, F1 score and
area under receiver operating characteristic (ROC) curve (AUC)
metrics, respectively. Both setups were evaluated at stride and
subject level categorizations, where majority voting was used
to classify subjects into HOA vs. PwMS. Thus, a correctly
classified subject’s walk had more than 50% of strides accurately
detected as of the appropriate cohort. Precisely, we annotate the
stride and subject-level classification metrics with str (i.e. Pstr,
Rstr, Astr, F1str, AUCstr) and sub (i.e. Psub, Rsub, Asub, F1sub,
AUCsub) in the subscript, respectively.

F. MS Progression Space

We attempt to describe the progression stage in PwMS by
clustering their strides in distinct and multifaceted progression
subgroups. Dimensionality reduction via rank-2 non-negative
matrix factorization (NMF) was implemented on 21 regress-N
features with 749 and 698 available strides of PwMS in trials
W and WT, respectively to define a progression space for MS
summarizing the influence of gait features in 2 dimensions (2D)
across multiple stages. To impose non-negativity, all regress-N
features were normalized between 0 and 1. Across both trials,
NMF deconstructed the data into two matrices, namely pro-
gression vectors and the progression indicators. Progression
vectors were used to construct the 2D MS progression space
(2D-MSPS). The 21 gait features were correlated to the two
axes of the progression space using the magnitude of coeffi-
cients observed in the progression indicator vectors. Next, by
applying unsupervised Gaussian mixture model (GMM) on the
2D-MSPS, we algorithmically parsed the progression space into
three hidden subtypes within PwMS, representing the disease
rate progressors. For each identified cluster, we study the number
of strides and their share percentage in three severity subgroups
(defined in Section III-B) based on the EDSS of MS subjects.
Further, we look at the weights of the features to define a
projection mapping for gait variables to the new 2D MSPS axes
and thus find latent features describing the reduced progression
space.

V. EXPERIMENTAL RESULTS

Overall, PwMS reported longer and more dispersed stride,
stance and double support times but a shortened single support
on average in both the trials. Further, PwMS walked with a
reduced stride length, cadence, self-controlled speed and a wider
lateral distance between the two feet. PwMS reported higher
median and spread in the BD extracted lateral shift (βL) and
squared deviation (αL). In general, no individual or combination
of features exhibit clear non-overlapping patterns characterizing
MS. Any statistical model for MS prediction would thus be very
high dimensional and prone to substantial scale and validation
concerns. Therefore, ML-based investigation is an appropriate
approach for the MS identification task.
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Fig. 3. Correlation with demographics. Absolute correlation of raw
(red), size-N (blue) and regress-N (green) features with physical char-
acteristics in trial W.

A. Statistical Analysis

1) Statistical Significance: Subject-wise averaged raw and
normalized features were compared between HOA and PwMS
for significance of difference in means and variances. Consider-
ing trial W, statistically significant difference between means
were observed in raw left FPA (6.4 times higher (6.4×) on
average in HOA), lateral shift (1.7× in PwMS) and squared
deviation (1.9× in PwMS). After the body size-based normal-
ization, terminal double support (1.4× in PwMS), force on TOL
(1.1× in PwMS), left FPA (6.4× in HOA), lateral shift (1.6× in
PwMS) and squared deviation (1.9× in PwMS) demonstrated
significance. When normalized using the regression technique,
significant differences were noted in terminal double support
(1.4× in PwMS), lateral shift (1.6× in PwMS) and squared
deviation (1.8× in PwMS). With respect to trial WT, only raw
terminal double support (1.5× in PwMS) and lateral shift (1.6×
in PwMS) were significant and using the size-N data, terminal
double support (1.5× in PwMS), lateral shift (1.6× in PwMS)
and squared deviation (2.7× in PwMS) exhibited statistical sig-
nificance. Similar to size-N, regress-N terminal double support
(1.5× in PwMS), lateral shift (1.6× in PwMS) and squared
deviation (2.6× in PwMS) showed significance in trial WT. 8
raw, 10 size-N and 12 regress-N features in trial W and 11 raw, 14
size-N and 14 regress-N features in trial WT indicated significant
differences between variances (see supplementary table S8 for
the list). In essence, both the normalization increased the number
of parameters that exhibit significant difference between means
and variances of the two cohorts.

2) Correlation With Physical Features: To explore the de-
pendency of gait features on demographics, correlation (r) of
physical properties with raw (rraw), size-N (rs) and regress-
N (rreg) parameters were compared. Across both trials, the
range of correlations with raw data (W: −0.41 ≤ rWraw ≤ 0.91,
WT: −0.46 ≤ rWT

raw ≤ 0.89) lowered with size-N (−0.46 ≤
rWs ≤ 0.56, −0.49 ≤ rWT

s ≤ 0.53) and further declined with
regress-N features (−0.41 ≤ rWreg ≤ 0.41, −0.44 ≤ rWT

reg ≤
0.51). Fig. 3 plots some of these absolute correlations for trial
W. For instance, size-N toe-off forces demonstrated significantly
weaker correlations (0.13 ≤ |rs| ≤ 0.22) with subject’s height
than their raw counterparts (0.4 ≤ |rraw| ≤ 0.43). A similar
trend was observed for the heel strike forces as well along with a
further decrease for regress-N forces. High correlations between
raw forces and subject’s weight (0.81 ≤ |rraw| ≤ 0.91) and gen-
der (0.42 ≤ |rraw| ≤ 0.62) weakened considerably with size-
N to 0.03 ≤ |rs| ≤ 0.46 and 0.12 ≤ |rs| ≤ 0.19, respectively
and with regress-N forces to 0.01 ≤ |rreg| ≤ 0.51 and 0.01 ≤

Fig. 4. EDSS Correlation. Bar plot illustrating the correlation of raw
(red), size-N (blue) and regress-N (green) features with EDSS in trial
W. Statistically significant correlations are marked with diamonds of
respective colors.

|rreg| ≤ 0.41, respectively. Interestingly, interaction between
single support and gender heightened from 0.1 ≤ |rraw| ≤ 0.3
to 0.24 ≤ |rs| ≤ 0.41 with size-based normalization. Regress-
N weakened (|rreg| ≤ 0.25) most associations with very in-
frequently realizing moderate values (0.25 < |rreg| ≤ 0.51)
over both trials. Specifically, prominent correlations between
weight and stride width (|rWraw| = 0.61, |rWT

raw | = 0.62), left
FPA (|rWT

raw | = 0.46) and right FPA (|rWraw| = 0.24, |rWT
raw | =

0.52) distinctly lowered to 0.02 ≤ |rreg| ≤ 0.32. Size-N could
not assist in diminishing these high associations between stride
width, left/right FPA and weight. All high correlations (|r| ≥
0.7) reduced to moderate (0.5 ≤ |r| ≤ 0.7) or low (|r| ≤ 0.5)
values with normalization. Thus, normalization reduced the
inherent subject specific differences associated with physical
characteristics in the gait features, potentially enabling the ML
models to focus on learning to differentiate only disease-specific
characteristics present in the gait parameters and consecutively
increase their test set generalizability.

3) Correlation With Disease Severity: To explore the as-
sociation of gait parameters with severity among PwMS, cor-
relation (redss) of EDSS with raw and normalized features
was studied. Fig. 4 plots the correlations for trial W. The di-
rectionality of redss matched our instinct with speed, length
and cadence inversely correlating; and stride, stance, double
support times and lateral shift positively interacting with dis-
ability. With respect to all three data streams, EDSS showed the
strongest negative correlations (redss ≤ −0.7) with stride length
and speed in both the trials, additionally with walk ratio in trial
W and cadence in trial WT. The strongest positive correlations
(redss ≥ 0.7) were illustrated with double support and stance
times in both trials and also with stride time in trial WT. Cadence
in trial W and walk ratio in trial WT exhibited moderate negative
associations (−0.7 < redss ≤ −0.5). Moderate positive interac-
tions (0.5 ≤ redss < 0.7) were shown by lateral shift and only
normalized forces at MidSSR in both trials as well as stride
time in trial W and lateral deviation, force at MidSSL in trial
WT. The computed correlations were statistically significant for
nine raw and normalized parameters (SL, SS, C, W , ST , StT ,
DSI , DST and αL) in both trials and two additional variables
(FMidSSL and βL) in trial WT. The correlation of forces at
MidSSR demonstrated significance only after normalization.
Significant correlations between gait characteristics and EDSS
motivate the applications of gait in learning the progression
space and clinical stages of MS.
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TABLE II
TASK GENERALIZATION: STRIDE- AND SUBJECT-WISE TEST SET PERFORMANCE FOR TOP-5 ALGORITHMS

B. Prediction Models

Nine classifiers were compared with size-N and regress-N
data to categorize strides and subjects between HOA and MS
cohorts for task (Section V-B1) and subject (Section V-B2)
generalization.

1) Task Generalization: To examine the differences of sin-
gle and dual-task walking on individual gait characteristics in
older adults with and without MS, we used a linear mixed
effects model. Overall, all individuals demonstrated a significant
increase in stance time, initial and terminal double supports and
forces at MidSSR and TOR, and a significant decrease in stride
length and speed when going from W to WT trials. A significant
two-way interaction between cohort and task indicates greater
increases in stride, stance, swing and right single support times,
stride length, speed and walk ratio for PwMS during WT trials
compared to HOA during W trials. A significant decrease in
stride width, cadence and forces at HSR, TOL, MidSSR and
HSL was observed for PwMS in WT compared to HOA under
W trials.

Table II summarizes the stride- and subject-wise evaluation
metrics for top-5 task generalization classifiers on categorizing
the test set strides of trial WT (see supplementary table S9 for
hyperparameter exploration). Clearly, aggregated performance
of all the subject’s strides via majority voting improved upon
the accuracy of individual stride-wise predictions, for instance
from 74.3% to 82.9% and 79.2% to 94.3% on RF with size-N and
regress-N data, respectively. The classification performances of
all algorithms were higher across all metrics with the regress-N
data except only for GBM with equal subject-wise metrics when
using the size-N and regress-N data. LR, DT, linear SVM and
AdaBoost are absent from Table II of top-5 classifiers. RF, RBF
SVM and GBM achieved a subject classification accuracy (Asub)
of 94.3% with the regress-N data while Asub for XGBoost and
MLP were 91.4% and 88.6%, respectively with the regression
normalized data. RF, RBF SVM, XGBoost and MLP resulted in
an Asub of less than 90% with the size-N data except GBM that
matched the 94.3% accuracy of regress-N. The maximum stride
classification AUC (AUCstr) was 0.91 followed by 0.90 using
the regress-N data on GBM and XGBoost, respectively whereas
the optimal AUCstr with the size-N data was 0.87 on GBM
and XGBoost. RF, RBF SVM and MLP had an AUCstr of less
that 0.85 when using the size-N data. Considering all evaluation
metrics in Table II, GBM with regress-N data performed the
best with an accuracy, F1 and AUC of 82.4%, 0.79 and 0.91,
respectively at stride-level and 94.3%, 0.94 and 1.0, respectively

at subject-level classification, followed by RF and RBF SVM
on regress-N with a matching subject-level accuracy. Boosting
algorithms sequentially optimized the current DT by adapting
to the errors on the data of prior weak learners as compared to
RF training DTs in parallel on bootstrap samples, thus GBM
significantly improved the performance of learners with low
variance but high bias. Gradient boosters iteratively regress over
negative gradients of any generic differentiable loss function to
boost the weak learning DTs whereas AdaBoost reweighing the
previously mistaken data points higher specifically optimizes an
exponential loss. MLPs are efficient to form disconnected deci-
sion regions and learn any arbitrary complicated boundary, as
suggested by the universal approximation theorem. The optimal
task generalization algorithm was GBM trained on regress-N
data with 150 boosting stages, depth of 7, learning rate of
0.15 and considered 5 features for checking the best split (see
supplementary figure S10 for its confusion matrix). Only two
PwMS were miss-classified as HOA.

2) Subject Generalization: Table III summarizes the mean
and SD of 7-fold CV performance metrics for the top-5 subject
generalization classifiers (see S9 for optimal hyperparameters).
All algorithms except AdaBoost with regression normalization
surpassed the diagnostic performance when using the standard
size-based normalization. LR, linear/RBF SVM and XGBoost
did not make it to top-5. The best mean Asub was 80% (95%
confidence interval (CI): [75, 85]) using the regress-N data with
MLP while RF and MLP had the maximum Asub of 57.1%
with the size-N data. Overall in Table III, MLP with regress-N
data performed the best with a mean accuracy, F1 and AUC
of 62.1%, 0.57 and 0.68, respectively at stride-level and 80%,
0.78 (95% CI: [0.72, 0.83]) and 0.86 (95% CI: [0.78, 0.93]),
respectively at subject-level classification. Tree-based models
handle highly correlated variables to avoid overfitting better than
kernel SVM. Unlike traditional ML algorithms relying wholly
on hand-crafted features, MLPs are capable of incrementally
learning latent characteristics of the data and discover novel
inherent feature hierarchies with increasing complexity of the
design. Our optimal MLP architecture with 7 fully connected
layers and ReLU non-linearity was trained for 200 epochs us-
ing the adaptive moment estimation (Adam) optimizer with an
adaptive learning rate initially set to 0.001 and the cross entropy
loss (see S10 for its confusion matrix). Four PwMS and three
HOA got incorrectly classified. Thus, GBM achieved the best
Asub (94.3%) for task generalization, whereas MLP performed
the best (80%) for subject generalization.
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TABLE III
SUBJECT GENERALIZATION: STRIDE- AND SUBJECT-WISE MEAN CV PERFORMANCE FOR TOP-5 ALGORITHMS

TABLE IV
ABLATION STUDY: TASK AND SUBJECT GENERALIZATION MODELS

C. Post Hoc Analysis

Note that for further analysis, we adhered to only using
regress-N data for it demonstrated superior performance across
both task and subject generalization model designs.

1) Ablation Study: We compared the task and subject gen-
eralization performance on several subsets of regress-N features,
namely 4 spatial (S), 7 temporal (T), 8 kinetic (K), 13 spatiotem-
poral (ST), 12 spatial-kinetic (S+K) and 15 temporal-kinetic
(T+K) parameters, to that of using all 21 variables for MS
prediction. All ML models were tuned from scratch on these data
streams for comparison. Table IV illustrates the subject-wise
metrics for the best performing algorithm on each subset across
both the task and subject generalization schemes. Across both
model designs, LR, DT and linear SVM were never the top per-
formers. Overall, GBM and MLP followed by AdaBoost are the
most prominent algorithms in Table IV for task and subject gen-
eralization, respectively. Task generalization revealed the best
performance when using all 21 features with GBM (Asub: 0.94,
AUCsub: 1.0) followed by spatiotemporal also with GBM (Asub:
0.94, AUCsub: 0.98) and temporal-kinetic parameters with MLP
(Asub: 0.91, AUCsub: 0.98). For subject generalization, MLP
with all features had the best mean results (Asub: 0.80, AUCsub:
0.86) followed by temporal-kinetic with AdaBoost (Asub: 0.71,
AUCsub: 0.80) and spatial-kinetic also with AdaBoost (Asub:
0.71, AUCsub: 0.71). In both model designs, ML algorithms
had a better performance using all features, thus these ablation
results indeed support our decision to use all the extracted gait
features for prediction.

2) Analysis of Feature Importance: We first investigated
the importance of features via conditional entropy (CE).
The CE of labels Y , taking binary values, with respect
to the discretized feature X , taking values in a finite set

Fig. 5. The entropy present in the labels given regress-N gait features
in trials W (left) and WT (right). Temporal, spatial, spatiotemporal and
kinetic features are grouped in blue, green, plum and red colors, respec-
tively.

X , was defined as:
∑

(x,y)∈X×{0,1} pX,Y (x, y) ln
1

pX,Y (x,y) −∑
x∈X pX(x) ln 1

pX(x) , where pX,Y is the joint probability mass
function of (X,Y ) and pX is the probability mass function ofX .
Features with a low entropy reflect less randomness and hence
are more predictive of labels. Fig. 5 depicts the CE of all features
in trials W and WT. The most informative features with the least
CE were (in order) SL > SS > C > FTOL > SwT in trial W
and SS > FTOR > FTOL > SL > W in trial WT. Cadence
followed by swing time in trial W and terminal double support
followed by stance time in WT showed the most reduction in
entropy among temporal features. Stride length followed by
width from spatial, stride speed out of spatiotemporal and toe-off
forces from kinetic features delivered the most predictive power
in both trials. Overall, stride speed, length and forces at the
toe-off were found to be the most valuable features across both
trials. FPAs and lateral deviation with a high CE in both trials
were least predictive of the labels. Given that our best ML
algorithms, GBM and MLP for task and subject generalization,
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Fig. 6. Feature importance. AUCsub for task and subject generaliza-
tion models with different data domains are represented in blue and red,
respectively.

Fig. 7. Constructed 2D-MSPS. Left: Trial W, Right: Trial WT. Three
clusters (shown in green, blue and red) are identified in strides of PwMS
and distribution of HOA strides is depicted in black outlines.

respectively, used all 21 features, we also investigated feature
importance by studying the decrease in performance of opti-
mally tuned GBM and MLP models when only including fea-
tures from specific subsets. Apart from subsets S, T, K, ST, S+K
and T+K considered in Section V-C1, we defined another group
as features obtainable from wearable sensors for this analysis.
All defined gait features except the BD-based parameters could
be derived from wearable foot switches or inertial sensors [36].
Fig. 6 depicts the AUCsub for optimal task (GBM) and subject
(MLP) generalization models with features from several data
domains. For both models, using all features yielded the best
AUCsub, followed by wearable-derivable measures (0.998) and
spatiotemporal (0.977) features for task generalization and by
spatiotemporal (0.738) and wearable-derivable/kinetic (0.726)
parameters for subject generalization. In both frameworks, no
one set of features outperformed or matched the performance
of using all features collectively. Especially for subject gen-
eralization, all features together are essential to diagnose the
heterogeneity present in new subjects.

D. MS Progression Space

Promising correlations between gait features and EDSS (Sec-
tion V-A3) motivated exploring gait-based characteristics to
describe the MS progression space. To define hidden clinical
subtypes within PwMS, unsupervised GMM was used to parti-
tion the NMF reduced 2D-MSPS. In both trials, three optimum
number of underlying clusters for GMM were attained using
the Bayesian information criterion (BIC). Fig. 7 depicts the
three identified clusters in strides of PwMS with distribution
in strides of controls superimposed for visualization in both
trials. For each identified cluster, Table V summarizes the

TABLE V
COUNT AND RATIO OF STRIDES RELATIVE TO EDSS IN EACH CLUSTER.

CLUSTERS 1, 2 AND 3 ARE ABBREVIATED AS C1, C2 AND C3, RESP

number of strides and their share percentage in three severity
subgroups based on the EDSS of MS subjects. Cluster 1 (green)
is dominated by strides of mild and mild-to-moderate severity
patients. Cluster 2 (blue) is majority of moderate PwMS strides
covering around 84% in trial W and 87% in WT of cluster
observations and cluster 3 (red) has no mild or mild-to-moderate
strides and contains only strides of moderate PwMS. The share
of mild and mild-to-moderate strides is decreasing with an
increase in the progression rate. Visually, distribution of control
strides most overlaps with cluster 1 dominated by strides from
mild and mild-to-moderate subgroups. Further, we looked at the
weights of the 21 features to define a projection mapping for
gait variables to the new 2D MSPS axes (see supplementary
figure S11). For both trials, the horizontal axis was dominated
by stride speed and its related components and vertical axis
corresponded to force related features. Interestingly, gait speed
and force measures were the top predictive power features too
(as found in Section V-C2).

VI. DISCUSSION

This study examined MS and disability related changes in
spatiotemporal and kinetic gait features after normalization; and
evaluated the effectiveness of GML4MS to classify strides of
PwMS from healthy controls, and generalize across different
walking tasks and subjects after gait normalization. A few other
works have explored ML to classify MS based on gait data.
Gait features extracted from 3D ground reaction force data
were adopted to discriminate healthy, cerebral palsy and MS
subjects using two ML methods, namely nearest neighbours and
MLP [22]. However, a very modest dataset with only four PwMS
was employed for this study and thus limits the generalization
of the classification results. Further, the study is limited in
examining only force data and not exploring any tree-based ML
algorithms. A recent study used smartphone and smartwatch
sensors data and ML to distinguish among healthy controls,
mildly (PwMSmild) and moderately (PwMSmod) disabled PwMS
during a two-minute walk test [23]. Although this work investi-
gates three well-known algorithms, namely, LR, SVM and RF to
achieve the best accuracy of 82% differentiating PwMSmod from
HOA and from PwMSmild and 66% identifying PwMSmild from
HOA; the analysis on boosting algorithms, which have known
to outperform RF in most applications, is missing. Moreover,
our study utilizes up to 75 s of data for analysis, as compared
to the longer data sample of two-minute walk in [23]. Another
recent work analyzed a long short-term memory approach to
classify fall risk in PwMS using accelerometers [37]. To the
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best of our knowledge, this is the first study utilizing data
driven ML for classification of individual strides of older PwMS
using both spatiotemporal and kinetic features while walking.
Our stride-based feature extraction approach derived multiple
samples from a single subject, thus augmenting and introducing
significant variations to our dataset to improve the generality of
ML classifiers, which may allow for frequent and even real-time
inferences.

The instrumented treadmill adopted for this study allowed for
continuous gait monitoring of longer durations and distances
within a compact footprint, relative to overground walking, and
the capture of deviations from several successive strides [38].
While PwMS in this study were able to walk independently,
the ceiling mounted harness, rails, and emergency stop provide
essential tools for safety in PwMS with balance and fatigue con-
cerns. Further, the integration of a built-in force plate supported
kinetic data acquisition and allowed for online detection of gait
events [31]. While walking on a treadmill can affect gait perfor-
mance [39], these differences are generally within the normal
variability of gait parameters and may be further diminished after
an appropriate accommodation period to treadmill walking [40].
Our treadmill training before actual data collection and adaptive
speed control helped subjects to more closely resemble natural
walking.

Our work examined the benefits of regression normalized gait
features on the accuracy of MS prediction using stride-based ML
classification algorithms. Both the size- and regression-based
normalization schemes increased the number of parameters
demonstrating statistical significance between HOA and PwMS.
The ability of regress-N normalization to reduce the association
between gait features and personal demographics is crucial
towards boosting the performance and generalizability of ML
classifiers aimed at MS prediction. We have used statistical in-
sights from admittedly a small number of test subjects. However,
through the extraction of regress-N gait features, our approach
mitigates some of the concerns related to small sample sizes
since we are reducing the bias in the data by increasing indepen-
dence (see Section V-A2). Compared to past studies on regres-
sion normalization in ML for other neurological disorders [21],
[25] using the same controls in their classification set to extract
regression coefficients, we used a normative dataset separate
from our 35 study subjects to derive regression models for the
gait features, hence prohibiting any divulgence of information
from validation to training set.

Our proposed task generality framework demonstrates the
feasibility of training on data collected in a lab-based walking
task, and prediction on a walking while talking task, which paves
the way for further inquiry into prediction using data collected
in naturalistic and ecologically valid scenarios. We conclude
that regress-N data with GBM and MLP were the optimal ML
frameworks for task and subject generalization, respectively. An
ablation study on the set of features supported using all the
extracted gait features for better predictability in both model
designs. From a clinical perspective, stride level classification
allows for the use of a single stride, or brief duration walking
trial, to serve as the basis for disease progression monitoring,
which may be well suited for clinical settings with limited space
and time. Further, as an effort towards the explainability of our
ML-based study, we explored conditional entropy and decreases

in performance of optimal GBM and MLP models. When only
including a subset of features to examine the most relevant
features driving the ML performance, we found that stride
speed, length and forces at the toe-off were the most valuable
features across both trials. Furthermore, we find that the use
of wearable-derivable features is closely behind all features in
terms of classification performance, which provides preliminary
evidence of the feasibility of using wearable sensor data col-
lected at home or local community in future telemedicine or rural
health applications. Our study also examined how well normal-
ized gait features could predict disability in PwMS. Significant
correlations between gait characteristics and disability in PwMS
(see Section V-A3) motivated the application of regress-N gait
features in learning the progression space of MS (see Section
V-D). Of particular significance, the two reduced dimensions
arising after NMF were dominated by stride speed and force,
which were also the most predictive features of MS-related
changes.

The current work designs a domain knowledge-based MS
screening model but the small cohort size recruited for this study
limits making generalized interpretations for the heterogeneous
MS community. Although, the features selected for predictive
models in this study, namely, spatiotemporal characteristics
(see [12]–[16]), FPAs [33], BD-based variables [12], [34] and
forces [17], have been clinically shown and commonly adopted
in the past to quantify gait impairments in PwMS, yet, by
pre-selecting a specific set of domain knowledge-based features,
we might be at a risk of introducing certain investigator bias
in our ML models. Future work should focus on carefully
characterizing the potentially missed information represented by
the non-selected variables. ML explainability analysis in Section
V-C serves as an initial estimate to demonstrate the influence
of our feature selection on the model prediction performance.
For an ideal understanding of dynamics from the inherently
continuous gait data stream [41], we would need further ex-
ploration on non-linear dynamical features characterizing the
human movement. Future research should examine associations
of gait parameters with additional demographic and clinical
factors to design improved normalization techniques. Further
evaluation of GML4MS on a separate MS dataset with additional
concurrent tasks, or while walking at home or in the community
would be essential to establish robustness and improve sensi-
tivity. Exploring hidden Markov and recurrent neural network
predictive models by using tensors of independent strides will be
vital to gauge the temporal component present in the continuous
gait data. Future work is needed to identify prospective fall risk
in MS subjects and assess the performance of our approach
with remotely acquired gait data [23] and wearable sensors [37].
Further, observed correlations of gait parameters with disability
may help identify older PwMS advancing into sudden worsen-
ing, which may provide improved personalized care, and merits
future investigation.

VII. CONCLUSION

We present GML4MS, a novel ML pipeline for classification
of PwMS using gait dynamics. The expression of MS over time
and aging is heterogeneous, making the identification of sudden
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changes in PwMS, particularly difficult. In this work, we ex-
tracted normalized spatiotemporal and kinetic gait features and
demonstrated the benefits of regress-N to differentiate MS and
disability related changes. Further, we evaluated the effective-
ness of GML4MS to generalize across different walking tasks
and subjects. With a larger data set, generalization of subjects in
one test environment to new subjects in a different environment
would need to be validated. The current study on prediction and
progression space in MS may aid neurologists to understand
advancing disease with aging and identify meaningful ML-based
strategies for identifying PwMS. Given that we have more older
adults with MS than younger adults, and the expected continual
shift of the peak prevalence of MS into older age groups, the
prediction of a tipping point for older PwMS advancing into
sudden worsening may provide improved personalized care.
Early detection of these inflection points in older PwMS may
lead to concise and effective detection strategies and in turn
benefit both patients as well as clinicians to curtail MS therapy
expenses.
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