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Abstract—Objective: A common problem in magnetoen-
cephalographic (MEG) and electroencephalographic (EEG)
experimental paradigms relying on the estimation of brain
evoked responses is the lengthy time of the experiment,
which stems from the need to acquire a large number of
repeated recordings. Using a bootstrap approach, we aim
at reliably reducing the number of these repeated trials.
Methods: To this end, we assessed five variants of non-
parametric bootstrapping based on the classical signal-
plus-noise model constituting the foundation of signal aver-
aging in MEG/EEG. We explain which of these approaches
should and which should not be used for the aforemen-
tioned purpose, and why. Results: We present results for
two advocated bootstrap variants applied to auditory MEG
data. The ensuing trial-averaged magnetic fields served as
input to the estimation of cortical source generators, with
spatio-temporal matching pursuit as an example of an in-
verse solution technique. We propose, for a wide range
of trial numbers, a general framework to evaluate the sta-
tistical properties of the parameter estimates for source
locations and related time courses. Conclusion: The pro-
posed bootstrap framework offers a systematic approach to
reduce the number of trials required to estimate the evoked
response. The general validity of our findings is neither
bound to any particular type of MEG/EEG data nor to any
specific source localization method. Significance: Practical
implications of this work relate to the optimization of acqui-
sition time of MEG/EEG experiments, thus reducing stress
for the subjects (especially for patients) and minimizing
related artifacts.
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I. INTRODUCTION

MAGNETOENCEPHALOGRAPHY (MEG) [1]–[3] and
electroencephalography (EEG) [3], [4] are non-invasive

techniques for studying the activity of the human brain with
high temporal resolution of the order of milliseconds. They
measure magnetic (MEG) or electric (EEG) fields stemming
from neuronal activity of the brain which can be described
in terms of electric currents flowing in the cortex and deeper
regions. In MEG/EEG studies of event-related brain activity, the
subjects are exposed to some sort of stimulus such as acoustic,
visual, or somatosensory. Due to the minute amplitude of the
brain response evoked by a single stimulus, however, the signal-
to-noise ratio (SNR) of a single-trial MEG or EEG recording is
poor compared to the background activity, which encompasses
all other processes not time or phase locked to the external
stimulus. To increase the SNR, the conventional approach is
to use a large number of stimulus repetitions, of the order of 100
or so, in a typical experiment. In the conventional analysis of
stimulus-evoked brain activities, the single-trial responses are
then arithmetically averaged time-locked to stimulus onset.

The classical approach underlying signal averaging, com-
monly referred to as the signal-plus-noise (SPN) model and
introduced in the seminal work of Dawson [5] in 1954, considers
the evoked response to a series of stimulus repetitions as a
deterministic phenomenon, whereas the background activity is
treated as a zero-mean stochastic process referred to as noise.
For a discrete-time measured signal s of length N in trial t and
channel c, this can be expressed as

st,c,n = mc,n + εt,c,n, (1)

where m denotes the trial-independent evoked response, ε is the
noise, and n ∈ {0, 1, . . . , N − 1} is a discrete time moment.
Note that m in Eq. (1) is not indexed by trials t because of its
assumed deterministic nature. This trial-independent character
of m is, of course, a simplification (see, e.g., [6], [7] and
references therein), yet a useful one, as it makes the estimation
of m easier.

Following Eq. (1), for a Gaussian distribution of ε across
trials, arithmetic averaging of single-trial signals s will make
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Fig. 1. Estimates of the auditory M100 wave derived by arithmetic
averaging of single-trial recordings from the two posterior MEG channels
with the largest absolute M100-peak magnitude over the left (a) and
the right (b) hemisphere. The noisy single-trial time courses are shown
in light gray; for clarity, only every 10th of the 190 artifact-free trials
is shown. The colored lines are waveforms averaged across different
numbers of trials, as indicated in the figure legend. For all averaged
waveforms, the M100-peak magnitude is larger in the right hemisphere
than in the left. Interestingly, the 190-trials waveform has the smallest
M100-peak magnitude. Note that the magnetic fields recorded with pos-
terior channels above the left and right hemisphere, respectively, have
opposite polarity. To facilitate the comparison between the waveforms
of the two channels, the time series of the channel above the right
hemisphere have been amplitude reversed.

ε vanish proportionally to the square root of the number T of
averaged trials and thus provide an estimator m̂ of m. This is
visualized in Fig. 1 for an illustrative MEG data set from an
auditory MEG experiment (see Section II-F). Data are shown
for the two channels with the largest absolute magnetic field
value above the left (a) and the right (b) hemisphere, respectively.
The thin gray lines represent single-trial recordings, whereas the
five thicker traces depict arithmetic means of different numbers
of single trials, viz. for 10, 20, 50, 100, and 190 trials. The
averaged waveforms have a morphology typical for an audi-
tory MEG/EEG response using pure-tone stimulation, with a
dominant large-amplitude deflection, the so-called M100/N100
response, occurring approximately 100 ms after stimulus onset
[7]–[11]. Note, however, that averaging across different numbers
of trials results in waveforms with different shapes and M100-
peak amplitudes, and that even averaging only 10 single trials

leads to a prominent M100-peak amplitude, as it suppresses the
background noise, and so increases SNR.

The motivation for this work goes back to the circumstance
that MEG/EEG researchers oftentimes do not have the comfort
of recording a large number of trials, especially when the ex-
perimental paradigm is complex. This is, for example, the case
when the scientific question to be investigated requires that one
or more stimulation parameters are altered in the course of an
experimental session. It may then be necessary to substantially
reduce the number of trials for each given set of parameters.
Otherwise, the total examination time would be too long for
the subject or patient, who might then introduce undesirable
confounds, which, in turn, may deteriorate the quality of ac-
quired data. Examples of those confounds include muscular
tension, eye blinks, pronounced alpha rhythm due to sleepiness,
involuntary head movements, etc. To avoid artifacts stemming
from these disturbances, the total examination time should be
kept reasonably short, which means that the number of trials
for a given set of stimulus parameters cannot be large. Thus,
in the majority of MEG/EEG studies, the experimenter has to
trade off a large number of trials to obtain a high SNR against a
smaller, suboptimal number of trials to minimize the burden for
the subject.

Another important aspect to consider is the so-called habit-
uation effect, which manifests itself in a diminishing evoked-
response peak amplitude, and possibly also in altering the related
peak latency, with consecutive stimuli. This may, paradoxically,
result in a smaller SNR of the trial-averaged response for a large
set of trials compared to a smaller set. Such a scenario is possibly
present in Fig. 1, which shows—for the two hemispheres—
larger peak amplitudes with decreasing number of trials used
for averaging from 190 to 20. It is, of course, difficult to judge
whether the blue trace, reflecting the mean from the first 20 trials,
is indeed the optimal estimate of the response. The somewhat
rough morphology of the large deflection of the two blue traces
at about 90 ms reflecting the auditory M100 wave possibly indi-
cates contributions from noise rather than the signal of interest.
Therefore, estimating an optimal (in some sense) number of
trials for signal averaging is not trivial. It is not necessarily the
case that the more trials the better. In consequence, it is difficult
to propose a pseudo-ground-truth estimate which could further
be used for assessing the bias or strictly speaking—given the
lack of a true ground truth—the difference between estimates
derived from different numbers of trials and those obtained for
such a pseudo-reference. Interestingly, although the literature
provides some recommendations for the number of trials needed
in particular types of MEG/EEG experiments (see, e.g., [1]–[4],
[12]–[14] and references therein), to the best of our knowledge
there is a gap in the literature when it comes to evaluating that
number systematically.

A classical probabilistic approach in search of an optimum
number of trials in an MEG/EEG experiment would be to
repeat the examination many times and derive measures of
dispersion for the parameters in question from those numer-
ous examinations. For trial-averaged signals, where, for each
examination, the mean signal would be derived from trial sets of
different sample sizes, the dispersion for a given number of trials
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could be assessed on the basis of the multiple repetitions of an
examination. However, such an approach would be extremely
costly both in terms of time and money, because performing a
measurement, say, 1000 times would go well beyond available
resources. To overcome the immense impracticality of such a
theoretical framework, we propose to employ non-parametric
bootstrap techniques to simulate multiple examinations. This
allows estimating the dispersion of the studied parameters such
as source locations [15]–[17] and characteristics of related time
courses.

All these aspects create a complex trade-off scenario, putting
the experimenter into a quandary. In consequence, the aim of
this work is to provide a framework for reducing the number
of trials needed for reliable estimates of key waveform param-
eters such as peak amplitudes and latencies [14], [18], [19].
In studies of evoked activity these parameters are usually not
limited to signals observed on the sensor level; rather, they
often concern the spatial location of current sources in the brain
and their corresponding time courses. To infer the locations
of intracranial current sources from the magnetic/electric field
recorded extracranially with MEG/EEG, one must solve the
so-called inverse problem (see, e.g., [3], [4], [20] and ref-
erences therein). Source localization strategies differ in their
performance with respect to, for example, the noise level of the
recorded magnetic/electric fields and the number of underlying
current sources, and, consequently, their outcomes depend on the
number of trials contributing to the averaged magnetic/electric
field. Since the focus of this work was on reducing the num-
ber of trials used for averaging, we abstained from evaluating
the impact of different source localization methods on the re-
sults, and have confined ourselves to using the spatio-temporal
matching pursuit (STMP) [21] as a suitable example of the
numerous source-localization approaches instead. Further, we
do not provide an absolute answer regarding the number of
trials, but propose a framework for the statistical evaluation
aimed at obtaining a reliable and cost-effective solution. This
framework can be applied to any signal processing pipeline
using different source-localization strategies, in the same vein
as sample size estimation methods can be used in a variety of
statistical inference problems.

II. METHODS

This section comprises five different bootstrap approaches,
four already existing ones and a novel one. We briefly introduce
the approaches and provide recommendations as to their applica-
bility to reduce the number of trials needed for the estimation of
brain evoked responses by means of arithmetic signal averaging
in MEG/EEG based on the classical SPN model.

Bootstrap is a technique of random sampling from available
data [22]–[24], even though different kinds of random sam-
pling used in the literature are referred to as bootstrap. Various
authors use the term to name either random sampling with
replacement [24] (non-parametric bootstrap), random sampling
without replacement [25] (for example, jackknife), or even
sampling from a given distribution [26] (parametric bootstrap).

However, strictly speaking, bootstrap denotes drawing with re-
placement [23], and this is the way we use it in this work.

Multiple samplings with bootstrap are meant to strengthen the
evaluation power. This is so because small sample sizes (here,
the sizes of sets of trials) raise concerns about the potentially
poor quality of the estimates of the parameters of interest (here,
source locations and corresponding waveform parameters), even
if the available sample is representative for the true distribution.
In particular, for a small sample size, these estimates cannot
be derived with meaningful confidence intervals unless asymp-
totically derived assumptions regarding the distribution of the
estimator, such as the invocation of the Central Limit Theorem,
are made. Bootstrap techniques are known to be a solution to
this problem in that they enable assessing an approximation of
the true distribution with sufficient resolution.

In Section II-A to II-D, we review several existing types of
bootstrapping and discuss which of them are applicable in the
given framework and which of them should not be used. Next, in
Section II-E, we introduce a new and alternative bootstrapping
approach that can be used for MEG/EEG time series.

A. Bootstrapping in Time Domain

The classical and most commonly applied bootstrapping tech-
nique relies on the assumption that consecutive samples of a
signal in time are independent and identically distributed (IID).
However, since consecutive discrete-time samples st,c,n of s
from Eq. (1) are not IID in any trial t or channel c, one might
hope to obtain an IID residuum r by subtracting the estimated
model m̂—the arithmetic average over trials—of m from s:

rt,c,n = st,c,n − m̂c,n. (2)

Then, r would be resampled with replacement along its third
dimension in order to create a new residual r∗ and a new
realization s∗ by adding r∗ to the model m̂ [23]:

s∗t,c,n = m̂c,n + r∗t,c,n = m̂c,n + rt,c,n∗ . (3)

However, in applications such as estimating stimulus-evoked
responses in MEG/EEG, this approach is problematic because
time-domain residuals—computed by subtracting a model of an
evoked magnetic/electric field from the measured raw data—are
not IID, as they contain rhythmic background activity. This is
because the evoked response in the classical view expressed
by Eq. (1) is independent of the rhythmic background activity.
Hence, when the model solely addresses the evoked response—
which is justified when one aims at modeling the response—the
residuals will naturally contain the rhythmic background ac-
tivity. This rhythmic activity takes form of the so-called delta
(0.5–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), mu (7.5–12.5 Hz),
sensorimotor (12.5–15.5 Hz), beta (16–31 Hz), and gamma (32–
100 Hz) waves. Each of the spontaneous oscillations is a quasi-
periodic process with a non-zero autocorrelation in time and,
hence, it cannot be considered an IID process. Resampling these
spontaneous rhythms would spoil their intrinsic autocorrelation.
In consequence, newly created bootstrap realizations would not
be realistic. Therefore, we do not recommend bootstrapping
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time samples within trials in studies of evoked activity with
MEG/EEG.

B. Bootstrapping in Frequency Domain

To overcome this problem, one might be tempted to bootstrap
in the frequency domain [27] rather than in the time domain.
Here, the idea is to bootstrap the complex coefficients of the
frequency spectrum obtained from the discrete Fourier transform
of r. A new realization s∗ is then created by adding the new
residuum r∗, computed with the inverse Fourier transform of
the bootstrapped frequency spectrum of r, to the model m̂.
However, this approach, too, would destroy autocorrelation in
time because ε in Eq. (1) or r in Eq. (2) obey approximately a
1/f distribution [28]. Moreover, given this 1/f characteristic
of the background activity, it is implausible to assume that all
frequencies are IID. Thus, this way of bootstrapping for analyses
of evoked activity acquired with MEG/EEG is not recommended
either.

C. Bootstrapping in Phase Spectrum

With the above problems in mind, one might advocate boot-
strapping in the domain of the phase spectrum [29], [30]. To
adhere to the fundamental assumption of bootstrap, in this
approach one would first need to investigate the residuals for
being IID in the domain of the phase spectrum. To do so, one
could subtract the mean across trials—which would serve as the
model—from each trial and examine the resulting residuals for
their potential of being considered IID in the domain of phase
spectrum.

The algorithm for bootstrapping the phase spectrum of a
single-trial, single-channel residual rt,c,: from Eq. (2) starts
with calculating its spectrum Rt,c,: using the discrete Fourier
transform1

Rt,c,k =

N−1∑
n=0

rt,c,n e
−2πjkn

N , k ∈ {0, 1, . . . , N−1}, (4)

with its amplitude spectrum coefficients At,c,k = |Rt,c,k| and
the related phases

Φt,c,k = ∠(Rt,c,k) ∈ {Φt,c,0,Φt,c,1, . . . ,Φt,c,N−1}, (5)

where k denotes consecutive discrete frequencies.
The scheme considers bootstrappingΦt,c,k to obtainΦt,c,k∗ in

a manner that preserves the antisymmetry of the phase spectrum.
For this, the first element of the phase spectrum, Φt,c,0, is
retained, whereas the elements Φt,c,1,Φt,c,2, . . . ,Φt,c,�N−1

2 �+δ

are resampled with replacement using a pseudorandom number
generator, resulting in a set of bootstrapped phase spectrum
estimates of the form

Φt,c,k∗ ∈ {Φt,c,0,Φt,c,1∗ ,Φt,c,2∗ , . . . ,Φt,c,(�N−1
2 �+δ)∗ ,

− Φt,c,(�N−1
2 �)∗ , . . . ,−Φt,c,2∗ ,−Φt,c,1∗}, (6)

1The subscript : in rt,c,: denotes all discrete-time instants, hence rt,c,: is
the cth row in the spatio-temporal C ×N matrix for a trial t with C being the
number of MEG/EEG channels and N the number of discrete-time instants,
whereas in Rt,c,: it denotes all discrete frequencies obtained from the Fourier
transform.

where

δ =

{
0 for N odd,
1 for N even.

(7)

The commonly used bootstrap asterisk notation in the subscripts
indicates here that bootstrapping is performed in the third di-
mension of frequency samples. The bootstrapped phase spectral
estimates Φt,c,k∗ are then combined with the amplitude counter-
parts At,c,k to form the complex bootstrap spectral estimates of
the form

Rt,c,k∗ = At,c,k ejΦt,c,k∗ . (8)

Finally, the discrete inverse Fourier transform is used to obtain
the bootstrapped residual, i.e.,

r∗t,c,n =
1

N

N−1∑
k=0

Rt,c,k∗ e
2πjkn

N , n ∈ {0, 1, . . . , N−1}. (9)

To form a new bootstrapped realization of the signal s, the
bootstrapped residual is added to the earlier estimated model m̂,
i.e., s∗ = m̂+ r∗.

The procedure is repeated B times, to facilitate estimating the
characteristics of the signal model such as its mean, variance,
and confidence intervals, without the need for repeating the
experiment and collecting multiple realizations of the signal s.

Since an established statistical test for assessing if the process
in question is IID is lacking, we propose to check whether the
process—here, the series of phases—is:

1) independent, using, for example, the Wald–Wolfowitz
runs test for independence,

2) stationary in mean, using, for example, the Kwiatkowski–
Phillips–Schmidt–Shin test for trend-stationarity,

3) stationary in variance, using, for example, the White test
for homoscedasticity.

When there are no reasons to reject any of the null hypotheses
H0 of the aforementioned tests, one could assume that the
residual for a given trial is an IID process in the domain of phase
spectrum. When applying this routine to single-sensor MEG
data from the auditory experiment considered in this paper (see
Section II-F), where we used the trial-averaged waveform as the
model, H0s were not rejected for the residuals in the domain of
phase spectrum in the vast majority of cases. With this approach,
the 1/f frequency characteristics of the residuals is preserved.
The exact pattern of autocorrelation will change, as the phase
relations between various frequencies will be altered, but such a
variability in autocorrelation of the residuals is expected anyway,
whenever multiple realizations of the signal are acquired.

So far, we only considered bootstrapping either phases or
complex amplitudes within a trial for a single MEG/EEG
channel. The application of this approach to more than one
MEG/EEG channel, but independently for each channel, would
destroy the spatial covariance pattern of the residuals, i.e., the
noise, across channels. One could therefore bootstrap a residual
in all channels identically by keeping the phase of a given
frequency constant across all channels. This would mean that, at
least for simple periodic activity, there are either several gener-
ators of that frequency that are perfectly synchronized in phase
or there is only one frequency-specific generator. However, both
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scenarios are rather unlikely to occur in the real brain. Thus, in
order to address the spatial characteristics of noise correlation
in MEG/EEG, we advocate the two approaches presented in the
following two subsections, where we consider all MEG/EEG
channels simultaneously.

D. Bootstrapping Trial Labels (BTL)

When dealing with estimating current source locations in
MEG/EEG, information from multiple channels needs to be
taken into account. Instead of bootstrapping a multi-channel
residual r within a single trial one can bootstrap single-trial
MEG/EEG data across trials, without changing the internal
structure of the single-trial recordings. This technique is some-
times referred to as the block bootstrap [24]. In such an approach,
one only draws the numeric labels of trials. Using the notation
from the left-hand side of Eq. (1), this can be formalized as

s∗t,c,n = st∗,c,n. (10)

This means that for each channel c and time n in the bootstrap
trial, we choose sc,n by sampling from {s1,c,n, . . . , sT,c,n},
where T denotes the number of all trials.

Noise realizations from different trials can safely be con-
sidered IID because such realizations are well separated from
each other in time, which justifies the assumption that they are
mutually independent. Hence, as long as one adheres to the SPN
model of Eq. (1), there is no need to search for a bootstrap
model m̂c,n according to Eq. (2) because subtracting a process
supposed to be deterministic across trials is redundant. This is
because bootstrapping entire trials is equivalent to bootstrapping
residuals created by subtracting a trial-independent representa-
tion of the evoked response before bootstrapping and adding
it later to each trial after bootstrapping. This is an important
advantage that frees one from seeking a suitable model for
bootstrapping. Given these qualities, this is certainly a recom-
mendable approach, and it has been used by Darvas et al. [16]
to assess the accuracy of source localization in MEG. However,
they did not investigate how many trials are needed to obtain a
stable localization.

E. Bootstrapping Complex Amplitudes (BCA)
Across Trials

Here, we propose a new type of bootstrapping applicable
across trials rather than within a trial. In this approach, the
complex amplitudes, which encode the modulus and phase,
of Fourier transformed single-trial recordings are bootstrapped
across trials such that the exchanging (sampling with replace-
ment) is done independently for each given frequency. Yet, the
exchange for a given frequency is realized identically in all
MEG/EEG channels, that is, trial labels are not bootstrapped
across channels.

Since bootstrapping in this approach provides a different
trial-to-trial variation profile of complex amplitudes for each fre-
quency, it is very unlikely that a trial recomposed via the inverse
Fourier transform will be the same as any of the original trials.
Details on this likelihood are given in Sect. I of Supplementary
Material (SM). In consequence, BCA is practically completely

unaffected by the likelihood of repeating a single trial, which,
however, may be different in the BTL approach presented in
Section II-D. This helps avoiding a diminished SNR, which
may happen in BTL when a particular trial label is randomly
selected a couple of times before computing the recomposed
mean signal, because averaging a few instances of the same trial
does not reduce noise in the mean signal. Since the bootstrapping
in BCA is realized for each frequency independently, each
frequency component is given a new and individual profile of
complex-amplitude variation across trials. As a result, the new
complete (that is, recomposed of all the frequency components)
mean signal should generally have better SNR, compared to that
of the mean signal obtained from BTL.

In analogy to Eq. (8) and Eq. (9), this method can be formal-
ized as

s∗t,c,n =
1

N

N−1∑
k=0

S∗
t,c,k e

2πjkn
N , n ∈ {0, 1, . . . , N−1}, (11)

where

S∗
t,c,k = At∗,c,k ejΦt∗,c,k , (12)

with the original St,c,: being the spectrum of st,c,: from Eq. (1)
obtained with the discrete Fourier transform, and each t∗ being
identical in At∗,c,k and the related Φt∗,c,k.

Importantly, this approach preserves the true nature of the
spatial distribution of the phase range of a given frequency
component. Note that in real multichannel MEG/EEG signals
the spatial signature of a low-frequency component is charac-
terized by a limited range of phases across channels, whereas
a high-frequency component can vary in its phase more freely
across space. In the BCA approach, what is changed for a given
frequency component is its trial-to-trial variation profile of com-
plex amplitudes. The complex amplitude does, of course, contain
information on the phase, but since each frequency component is
bootstrapped across trials, not across channels, the phase range
of a given frequency phasor is preserved across space. In other
words, when one considers the unit circle in a complex plane as
the model of phase presentation, a low frequency in a given trial
would occupy only a limited range of angles across MEG/EEG
channels, whereas a high frequency would cover a fairly wide
range of angles.

A natural outcome of this approach is that if the original
trials carried some cross-frequency phase-amplitude coupling
(see, e.g., [31], [32], and references therein), it would likely be
dismantled due to bootstrapping the complex amplitudes inde-
pendently for each frequency. This is because the original pattern
of coupling between, say, the theta and the gamma rhythm would
be altered, since after BCA each of the frequencies contributing
to these rhythms would have a new arrangement of complex
amplitudes across trials. However, as long as one adheres to the
SPN model in search for the deterministic estimate of an evoked
response, this outcome is irrelevant.

Insomuch as in the approach from Section II-D, one needs no
model to be subtracted from the single-trial recordings before
bootstrapping, which, here, stems from the linearity of the
Fourier transform and of its inverse transform.
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F. Illustrative MEG Dataset

We implemented the algorithms2 described in Sections II-D
and II-E in MATLAB (MathWorks, Natick, MA, USA) and
applied them to an MEG dataset taken from an auditory ex-
periment where a healthy male subject was exposed to simple
acoustic stimuli. This dataset is well characterized and was used
in different contexts in previous works [7], [10], [21], [33].
Details of the dataset are provided in Sect. II of SM. The study
was approved by the Ethics Committee of the Otto von Guericke
University Magdeburg.

For the current analysis, we first extracted [−25; 226]-ms time
windows from each trial, where 0 ms corresponds to stimulus
onset. Next, this time window was downsampled by a factor of
2 resulting in 128 samples, with the time resolution of about
2 ms. This time window covered the most prominent feature of
the evoked response in simple auditory MEG experiments, the
M100 response (see Section I).

The five lines with different colors in Fig. 1 represent M100
waveforms obtained from averaging across five different num-
bers of single trials, for the two selected channels. The figure
indicates that averaging across different numbers of trials leads
to substantially different waveforms and M100 peak amplitudes
of the averaged signal, and, thus, raises the question which of
the mean waveforms is the “optimal” one. The averaged M100
waveforms are essentially characterized by two parameters: the
peak amplitude and the corresponding peak latency. Averag-
ing across the entire set of 190 trials (black trace) yielded an
amplitude of 322 fT for the left (Fig. 1(a)) and 432 fT for
the right hemisphere (Fig. 1(b)); the respective peak latency
was 95 ms for both the left and the right hemisphere. This
hemispheric asymmetry is a well-known effect in auditory MEG
research (see, for example, [34], [35]). Shaw et al. [36] attributed
this rightward bias of the auditory MEG signal to asymmetries
in the underlying anatomy, i.e., to the local geometry of the
highly convoluted cortex which results in an uneven MEG signal
cancellation in the two hemispheres. In the subsequent analyses
we will concentrate on the peak amplitude and latency for the
estimated time courses of the current sources rather than for
time courses of the magnetic fields recorded with a single MEG
sensor. Note that source localization techniques take into account
signals from essentially all MEG channels as input.

G. Illustrative Source Localization Approach:
Spatio-Temporal Matching Pursuit

The application of bootstrap proposed for reducing the num-
ber of trials in MEG/EEG signal averaging is independent of
a particular source localization approach. For this reason, we
focus on one illustrative strategy, the spatio-temporal matching
pursuit (STMP) [21]. Since we address both spatial and temporal
aspects of the evoked response in this work, STMP seemed a
natural choice because of its simultaneous rather than sequential
approach to space and time [21]. In STMP, cortical locations
of the current sources generating the measured magnetic fields
and the corresponding time courses are found by maximizing

2The code is available at https://github.com/CezarySieluzycki/TBME2021.

the dot product of the recorded multi-channel MEG data with a
spatio-temporal dictionary composed of a spatial and a temporal
part.

The spatial part consists of a large set of leadfield matri-
ces (605 746 in the current implementation) and links source
and channel locations using quasistatic approximations of the
Maxwell equations, one for each possible location in the cortex.
Source locations considered are defined by the vertices of the
tessellated cortical surface [37]. Each of these vertices corre-
sponds to a leadfield that geometrically links the spatial location
of the vertex with the spatial locations of the MEG sensors. The
forward solutions were computed using a realistic head model
with the spherical-harmonics approximation [38] of the subject’s
magnetic-resonance (MR) scan, as implemented in the FieldTrip
toolbox [39].

The temporal part comprises a large set of complex-valued
chirplets (chirp functions modulated in amplitude by Gaussian
envelopes of different scales). These are meant to parametrize
the time courses of active cortical sources. Due to the linearity of
the quasi-static approximation, the morphology of each temporal
atom is identical for the sensor and the source space. The
temporal dictionary encompassed 31 409 chirplets.

Both spatial and temporal atoms are normalized in the re-
spective dictionaries such that their �2 norms are equal to 1.
This gives all atoms equal chances in the process of estimating
the spatio-temporal activity of the brain.

STMP is an iterative procedure, in which every iteration pro-
vides a solution for the location of an individual cortical source,
along with the time course of that source. The source locations
are returned as elements of the spatial dictionary, from which
one can easily derive their respective x, y, and z coordinates
in space. The related time courses are returned as elements of
the temporal dictionary, that is, the underlying chirplet functions
used to estimate the time traces of the source activities. Details of
the implementation of the STMP algorithm can be found in [21].

We modeled the neural sources underlying the magnetic field
distribution of the M100 waveform by two equivalent current
dipoles (ECDs), one in each hemisphere. Spatial locations of
the two ECDs and their respective time courses were obtained in
two STMP iterations. Thus, in one iteration, STMP resulted in a
single [x, y, z] location in space and the related time course. The
latter we further examined in terms of its M100-peak amplitude
and latency.

III. RESULTS

A. Source Localization Results

The first and second column of Fig. 2 show [x, y, z] source
locations obtained with the BTL bootstrapping strategy (Sec-
tion II-D), whereas the third and fourth column of this figure
show [x, y, z] source locations based on the BCA approach
(Section II-E). Further, the results are pairwise broken down
into rows, one for the right (RH) and one for the left (LH)
hemisphere; this order—first RH, then LH—reflects the fact that
STMP addresses the stronger response first (which here occurred
in the right hemisphere; see Fig. 1), as it is driven by an energetic
criterion [21]. Moreover, Fig. 2 shows source locations for three

https://github.com/CezarySieluzycki/TBME2021


SIELUŻYCKI et al.: REDUCING THE NUMBER OF MEG/EEG TRIALS NEEDED FOR THE ESTIMATION OF BRAIN EVOKED RESPONSES 2307

Fig. 2. Source locations (red dots) found for 1000 realizations of BTL (columns 1, 2) and for 1000 realizations of BCA (columns 3, 4). In the
panels of the first two rows, all 190 trials were used for signal averaging; in the panels of the two middle rows only the first 20, and in the two
bottom rows only the first 10 trials were taken into account. LH and RH denote left hemisphere and right hemisphere, respectively. Semitransparent
inflated brains, with sagittal views of the left and right hemisphere (columns 1, 3), are shown for a better display of all source locations, along with
an additional coronal view from the back of the brain (columns 2, 4). For each hemisphere, green crosses represent the mean locations across the
red-dot locations of the individual solutions. Blue crosses mark, again for each hemisphere, the source locations obtained from the original set of
190 trials, i.e., without bootstrapping. Uncompressed images are available in the supplemental material (Fig. S8).

different mean signals, that is, for 190 (two top rows), 20 (two
rows in the middle), and 10 trials (two bottom rows) averaged. In
each individual panel, 1000 source locations are depicted as red
dots, representing 1000 bootstrap solutions. The mean location
of these 1000 solutions is indicated by the green cross, and the
blue cross represents the inverse solution calculated from the
original set of 190 trials, i.e., without bootstrapping.

Since the SNR of the MEG signal averaged across the original
190 trials is large, we observed that, for each of the two hemi-
spheres and the two bootstrapping approaches, the individual
source locations of the 1000 bootstrapping estimates were nearly

identical to each other, i.e., their spatial dispersion was very
small (see panels in the two upper rows of Fig. 2). Further, in both
the BTL and the BCA approach, the spatial distance between the
green and the blue cross was marginal, i.e., the reproducibility
of the bootstrapped source locations almost reached the quality
of the solution with the original 190 trials. However, this picture
changed when we moved to average signals derived from much
smaller numbers of trials. Averaging across the first 10 trials
resulted in a wide spread of source locations, as shown in the
two bottom rows of Fig. 2. Hence, for both the BTL and the
BCA approach, 10 trials were not sufficient to provide robust and
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reliable estimates of source locations. Increasing the number of
trials used for signal averaging from 10 to 20 (two middle rows
of Fig. 2) already provides a very different picture, similarly for
both BTL and BCA. Here, the spread of the individual solutions
is clearly smaller than in the 10-trials case. Note also that the
source locations for the average signals derived from 10 and 20
bootstrapped trials have a noticeably smaller spatial spread in
the right hemisphere than those in the left hemisphere, for which
the recorded MEG signal is weaker (see Fig. 1).

B. Systematic Analyses

To assess the dependence of the source locations and wave-
form parameters on the number of trials used for signal averaging
systematically, we ran analyses for 19 different sizes of trial sets,
starting from the first 10 trials, through the first 20, 30, and so on,
up to all 190 trials. The statistics of the [x, y, z] coordinates as
well as of the 3D Euclidean distance d of the individual estimates
of the [x, y, z] source locations from the mean source locations
are shown as box plots in Figs. S1–S4 of SM. The findings for
the absolute M100-peak amplitudes of the source waveforms
are displayed in Fig. S5 of SM, and those for the corresponding
M100-peak latencies in Fig. S6 of SM. These six figures show
results for the two sources and for all 19 sets of trials obtained
with BTL (the two panels in the left columns of the figures) and
BCA (the two panels in the right columns). Detailed description
is given in SM.

It is evident from Figs. S1–S6 in SM, and in particular from the
box plots of the absolute peak amplitude in Fig. S5, that with
increasing numbers of trials taken for computing the average
signal the parameter estimates tend to have smaller dispersion.

To provide more insight into the behavior of the estimated
distributions of the parameters, we show in Fig. S7 of SM—using
a Gaussian kernel of a standard width—the estimated probability
density functions of the absolute peak amplitude of the source
waveform for the two sources and for each set of trials obtained
using BTL and BCA. We observed that the estimated mean and
variance of the absolute M100 peak amplitude of the source in
the right hemisphere decrease with increasing number of trials,
for both BTL and BCA. This behavior is less pronounced for the
source in the left hemisphere, where some bimodal character of
estimated PDFs is visible. This observation most likely stems
from a poorer SNR for this source, compared to the source
in the right hemisphere. Note that knowledge about such a
behavior of MEG parameter estimates is inaccessible without
performing bootstrapping or extensively repeated experiments
(Monte Carlo).

C. Dispersion of Source Location and Source
Waveform Parameters

We already argued in Section I that any selection of “ground-
truth” references for assessing the bias of these results would
be somewhat arbitrary. Hence, we purposely abstained from
evaluating such pseudo-biases and restricted ourselves to ex-
amining dispersions. Fig. 3 summarizes estimated dispersions
of the various parameters of source-level measures. This figure
shows the dependence of the standard deviation (SD) on the

number of trials used for signal averaging. Throughout the six
panels, red symbols refer to the source in the right hemisphere,
and blue symbols to the source in the left hemisphere. Circles
reflect the BTL, and crosses the BCA approach. In addition,
power law functions were fitted to the data.

Figs. 3(a)–(c) show SDs of source locations split into their
[x, y, z] components, respectively, and Fig. 3(d) shows SDs of
3D distances of the 1000 3D source locations from the mean 3D
locations in the Euclidean space. We found for these two focal
and spatially distinct sources that—as to their cortical location—
already 60 trials were sufficient to achieve a solution with a
small dispersion in space that lies well below the limits of the
spatial resolution of MEG of the order of a few millimeters [40]–
[44]. Notably, this threshold, which is indicated in Figs. 3(a)–
(d) by the green vertical dash-dotted line, holds for all three
directions of the coordinate system. For even smaller numbers
of trials (below 50), SD strongly increased for the source in the
left hemisphere, whereas for the source in the right hemisphere
it remained constant even down to 20 trials, and only increased
when 10 trials were used for signal averaging.

A more complex picture emerges from the SD of the M100-
peak amplitudes of the estimated sources (Fig. 3(e)). The ampli-
tude dispersion for the source in the right hemisphere stabilized
for the average signal derived from 70 trials. In contrast, the
dispersion of the source in the left hemisphere first decreased
to a plateau that extends between 40 and 100 trials, before
it decreased further and reached a constant dispersion at 140
trials. This observation of two distinct intervals is in line with
the findings for the absolute M100-peak amplitude shown in
Fig. S5(b), (d). There, we found in the same interval between
40 and 100 trials an increase of the median and large IQRs,
followed by a distinct reduction in the IQR accompanied by
a clear emergence of outliers when more than 110 trials were
used to compute the average signal. Given that SD and IQR
are different measures of dispersion, it is difficult to match the
140-trials threshold in SD in Fig. 3 with the 110-trials threshold
in IQR in Fig. S5.

As for the M100-peak latency (Fig. 3(f)), with the exception
of very small sizes of trial sets, dispersion stays within the circa
2-ms sampling resolution of the signal for the source in the right
hemisphere, but not for the weaker source in the left hemisphere,
for which it reaches levels of roughly 5 to 6 times the sampling
resolution even for large trial-set sizes. Note that except for
the latency estimates of the source in the right hemisphere
(Wilcoxon test, p = 0.243), statistically significantly smaller
standard deviations of the considered parameter estimates were
obtained with the BCA method of bootstrapping than those
achieved with the BTL method (Wilcoxon test, allp <0.05 when
the two samples of 19 standard deviations each were compared
against each other, i.e., one 19-element sample vs the other).

D. Proposed Framework for an Experimental Design

Based on the findings outlined in Sections III-A, III-B, and
III-C, we propose the following framework for the final design of
an experiment constituting the core of a new study. This frame-
work also applies to EEG. It encompasses standard MEG/EEG
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Fig. 3. Estimated standard deviations (SD) of source locations for x- (a), y- (b) and z- (c) coordinates, 3D Euclidean distances from the mean
locations with respect to the origin of the head frame (d), the absolute peak amplitude of the source waveform (e) and its latency (f) for the
two considered sources and for each considered number of trials obtained using the BTL (Section II-D) and the BCA (Section II-E) method of
bootstrapping. Note the different scales of ordinates in (a), (b), and (c). Green dash-dotted vertical lines indicate the estimated number of trails
needed for signal averaging.

routines for data acquisition and pre-processing, and the use of
BTL (Section II-D) or BCA (Section II-E) as relevant bootstrap
approaches (for a discussion, see Section IV-B):

1) Using the experimental paradigm in question, perform a
lengthy MEG/EEG pre-measurement, with as many trials
as possible, with one or a few subjects.

2) Choose the data analysis pipeline and pre-process the
acquired data (artifact rejection, filtering, baseline cor-
rection, etc.) using that pipeline.

3) Bootstrap pre-processed single trials using BTL or BCA
for various sizes of trial sets.

4) Evaluate the statistical properties of the parameter esti-
mates of interest for each size of trial sets.

5) Based on this statistical evaluation, decide on a sufficient
number of trial repetitions to be used in the final experi-
ment to be run for the entire population of subjects, using
a chosen criterion.

6) Run the final experiment, using the previously chosen
pipeline to analyze the data.

We expect for the majority of MEG/EEG studies that the
number of trials determined in this way is clearly smaller not only
compared to the one used in the lengthy pre-experiment, but also
to the 100–200 trials routinely used in MEG/EEG experiments.

IV. DISCUSSION

We have proposed a bootstrap framework with the aim to sub-
stantially reduce the number of event-related trials in MEG/EEG
experiments focusing on brain evoked responses. To achieve
this, we have adhered to the classical SPN model, expressed by
Eq. (1), as to date, it is still the most commonly used model
across a wide range of experimental paradigms. Even though
several alternative models have been proposed (see, e.g., [6],
[7], [33], [45]–[47] and references therein), the SPN model is
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still omnipresent. This may be rooted in its simplicity, which
translates to the sparseness concerning the number of considered
parameters, thus deftly following the Ockham’s razor principle.
This sparseness is justified insomuch as an unambiguous de-
composition of the measured superposition of the brain response
and the contaminating noise is not possible. This is because in
a trial t, the matrix equation—be it Eq. (1) or any alternative
approach—reflecting the measured superposition contains [at
least] two matrix unknowns of the same size C ×N (with C
denoting the number of channels).

We have demonstrated the usefulness of the proposed boot-
strap framework by its application to the estimation of cortical
locations of current sources underlying the measured magnetic
field and of selected characteristics of the corresponding time
courses. To this aim, we have used an illustrative inverse-solution
method, the spatio-temporal matching pursuit approach. We note
that the applicability of the proposed bootstrap framework is not
limited by STMP in any way, and that the framework can also be
used with other inverse-solution strategies. This may, of course,
lead to somewhat different results as to the number of trials
eventually considered to be sufficient but we see no reasons to
expect that the feasibility of the proposed bootstrap framework
would not hold for those strategies.

A. Estimating the Number of Trials

The proposed bootstrap framework offers an insight into the
quality of estimates for different numbers of trials, without the
need of performing multiple experiments. This is indeed very
useful information whenever one has to compromise on mutu-
ally contradicting requirements regarding experimental designs
(and the related quality of estimation) and experimental cost.
Importantly, this issue regarding costs is not only restricted
to financial aspects of the measurement time per se, but also
includes the artifact problem, which comes into play when the
measurement session is prolonged beyond an acceptable time
limit, when mere habituation becomes an important factor too
(see Section I). The results presented in Section III-A–C, which
are in line with these considerations, have led us to the procedure
proposed in Section III-D. Further analyses, not shown in this
work, indicated that similar results are obtained for only 200
instead of 1000 bootstrap realizations (see also [48]). Therefore,
we suggest that whenever time is critical it may be sufficient to
constrain the number of bootstrap realizations to about 200.

Darvas et al. [16] assessed dispersions of similar parameters
like those we studied and also did so with bootstrap, though they
did not evaluate different sizes of trial sets. Irrespective of dis-
persion they attempted to evaluate bias; however, their approach
was based on a debatable assumption that the inverse solutions
obtained for the mean signal of the original, non-bootstrapped
set of trials can be treated as the ground truth.

The fact that we observe hemispheric differences for the M100
parameters (i.e., peak amplitude and latency) of the two sources
is nothing unusual. It is related to the observation reported
in literature that the auditory cortices in the two hemispheres
may well differ in their morphology [36], [49]. Thus, it may
have implications on the selection of the considered threshold

for the sufficient number of trials. In choosing the criterion
for this threshold, we have essentially followed the accepted
thresholds for spatial and temporal resolution (sampling) of
the MEG method [40]–[44]. Remarkably, the 60-trial threshold
derived from the SDs of the source coordinates (Figs. 3(a)–(d))
appears to be a reliable result, even for small numbers of trials far
below the “magic” number 100. Nonetheless, the different SDs
obtained for the M100-peak amplitude of the two sources in our
example imply that increased caution in the interpretation of the
results must be exercised if—as is the case here—substantial
differences in the SNRs underlying the source waveforms are
present. Hence, we abstain from restricting the generality of the
proposed approach by any particular selection, and leave the
choice of the criterion for selecting the ultimate number to the
user, because different experimental paradigms and processing
strategies (like, e.g., a particular inverse-solution approach) may
require different criteria, of which there are plentiful.

Finally, on a different note, the proposed framework may also
be used to identify a subset of single trials different than those
consisting of the first 10, first 20, first 30, ... trials we have been
discussing here, i.e. a subset of those trials that show the largest
stimulus-evoked response among all trials. This approach might
be interesting especially with regard to a potential increase of the
SNR. However, the single trials forming this subset will spread
across the entire pool of trials, and would therefore require the
acquisition of the full number of trials (typically 100 or more).
Thus, this approach would neither lead to a reduction of the
number of acquired trials nor of the measurement time and,
thus, contradict the intended scope of our work.

B. Performance of BTL and BCA
Bootstrapping Approaches

We have outlined in Section II that only two of the considered
bootstrapping approaches are applicable to properly evaluate the
number of trials for MEG/EEG signal averaging: the already
known bootstrapping of trial labels (BTL, Section II-D) and
the newly proposed bootstrapping of complex amplitudes across
trials (BCA, Section II-E). In principle, both approaches can
be applied in step 3 of the framework proposed in Section III-
D. However, it is still worthwhile to have a closer look at the
performance of the two approaches.

Pronounced differences between the results obtained from
BTL and BCA are only found by comparing the standard de-
viations of the absolute M100-peak amplitude (Fig. 3(e)) and
of the corresponding M100-peak latency (Fig. 3(f)), and, to a
lesser extent, for the source coordinates for smaller sizes of trial
sets (Figs. 3(a)–(d)). Taken together, our results show that the
bootstrapped trials result in larger SNRs, which lead to smaller
SDs, for the mean signals in the BCA approach. These better
SNRs stem from the fact that the likelihood of a repeated single
trial in the scheme of drawing with replacement, inherent to
bootstrap, is way smaller in BCA than in BTL (see Section II-E).
This property is a general advantage of the newly proposed BCA
method.

The question remains what strategy one should use when
collating information on parameter distributions from source
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locations as well as absolute peak amplitude and peak latency.
We do not advocate simply choosing the overall largest number
of trials for which all distributions reach the smallest dispersion
characteristics. Instead, we recommend, for each experimental
paradigm (and possibly for each considered inverse solution),
to examine not only the dispersion characteristics of the param-
eter estimators, but also whether adding additional trials to the
measurement protocol results in a qualitative change of those
characteristics.

C. Bootstrapping and Models of
Evoked-Response Generation

In our approach, we assume the most commonly used model
of evoked response generation, the signal-plus-noise model.
Sayers [50] proposed an alternative view to the SPN model.
He postulated that an increase of amplitude in the trial-averaged
signal stems from a phase reset of the spontaneous brain activity
manifesting itself in the form of oscillations (rhythms). The
phase reset is supposed to be triggered by the occurrence of
the stimulus. Hence, conceptually, for a short period of time
following stimulus onset, the brain rhythms are synchronized in
phase. Their amplitudes sum up, and, thus, form a waveform
with a morphology that contributes to the one observed in
the trial-averaged experimental data. The debate as to which
of the two views—SPN model or phase-reset model—reflects
the true mechanisms of evoked response generation has been
intense (see, e.g., [47] and references therein). In our opinion,
it is not possible to unambiguously identify one model or the
other in real experimental data due to the fact that MEG (as
well as EEG) measurements always register a superposition
of two unknowns—the signal and the noise, which are hard
to disentangle from each other. This is so because one deals
with an underdetermined system of equations (more variables
than linearly independent equations), as even for a large number
of channels in modern MEG/EEG systems there may always
be more current sources contributing to the measured mag-
netic/electric field.

Referring to the novel BCA method (Section II-E), one might
argue that if the phase-reset model applies then we may not as-
sume phase independence across trials and, hence, bootstrapping
complex amplitudes across trials would be questionable, unless
noise components do not obey phase reset. Following [50], one
might conclude that since spontaneous processes are in phase
only for a certain period of time in which they create the evoked
response and out of phase elsewhere, the same process can be
considered a signal in some period of time and noise elsewhere.
If so, it is difficult to assume mutual independence of phase,
or complex amplitudes, across trials, unless for some limited
periods of time. Nonetheless, irrespective of these theoretical
considerations, given that the mechanisms of evoked responses
generation are intensely debated [47], [51], we note that BCA,
when applied to the data we used, yields results similar to
those from the simpler BTL approach presented in Section II-D.
Therefore, we leave it to the preference of the user which of the
two approaches they would choose.

D. Future Real-Time Application

If hardware limitations (such as the speed of a CPU) were
not an issue, an ideal scenario would be to identify a small
but meaningful number of individual trials already during data
acquisition. In such a scenario, one would evaluate the quality
of estimates in real time, sequentially running consecutive trials
until the dispersion measures like those depicted in Fig. 3 reach
stability according to a chosen criterion. Although attempts to
localize MEG/EEG sources in real time have been proposed [52],
[53], they significantly compromise on the spatial resolution
of the solution space due to computational burden. As demon-
strated in this work, employing bootstrap provides statistical
evaluation of a meaningful threshold when reducing the number
of trials. Even if not satisfactorily computable in the real time
of an experiment today, it may—with the fast pace of CPU
development—be realistic in a not so distant future.

V. CONCLUSION

The aim of this work was to develop a systematic framework
that allows MEG/EEG experiments to be performed with a
number of stimulus repetitions as small as possible to minimize
the time load for the subjects and thus reduce related artifacts due
to muscular tension, involuntary head movements, eye blinks,
pronounced alpha rhythm due to sleepiness, etc. We have shown
that the bootstrap technique is a powerful tool for optimizing
the number of single trials used for signal averaging in MEG to
estimate parameters like spatial coordinates of source locations3

or peak attributes of respective time courses. Information from
bootstrap resampling can further be utilized for the estimation
of the required confidence interval or for statistical inference to
differentiate between given parameters of interest with a desired
statistical power. We kept the framework as general as possible,
since our motivation was to provide a universal approach rather
than a definite answer to the quest for the optimal number
of trials, which for any experimental paradigm or processing
pipeline (including source localization) might be different. The
relevant literature either provides only some general recommen-
dations for this number, which are based on tacit priors, or,
for more complex experimental designs, tends to use the “it
depends” argument. To the best of our knowledge, this work is
the first attempt to systematically assess how the reduction of
the number of trials influences the quality of estimates of spatial
and temporal parameters of the current sources underlying brain
evoked activity.
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